| 1 | /* |
| 2 | * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved. |
| 3 | * Use is subject to license terms. |
| 4 | * |
| 5 | * This library is free software; you can redistribute it and/or |
| 6 | * modify it under the terms of the GNU Lesser General Public |
| 7 | * License as published by the Free Software Foundation; either |
| 8 | * version 2.1 of the License, or (at your option) any later version. |
| 9 | * |
| 10 | * This library is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | * Lesser General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU Lesser General Public License |
| 16 | * along with this library; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | */ |
| 23 | |
| 24 | /* ********************************************************************* |
| 25 | * |
| 26 | * The Original Code is the elliptic curve math library for prime field curves. |
| 27 | * |
| 28 | * The Initial Developer of the Original Code is |
| 29 | * Sun Microsystems, Inc. |
| 30 | * Portions created by the Initial Developer are Copyright (C) 2003 |
| 31 | * the Initial Developer. All Rights Reserved. |
| 32 | * |
| 33 | * Contributor(s): |
| 34 | * Stephen Fung <fungstep@hotmail.com>, Sun Microsystems Laboratories |
| 35 | * |
| 36 | * Last Modified Date from the Original Code: May 2017 |
| 37 | *********************************************************************** */ |
| 38 | |
| 39 | #include "ecp.h" |
| 40 | #include "ecl-priv.h" |
| 41 | #include "mplogic.h" |
| 42 | #ifndef _KERNEL |
| 43 | #include <stdlib.h> |
| 44 | #endif |
| 45 | |
| 46 | #define MAX_SCRATCH 6 |
| 47 | |
| 48 | /* Computes R = 2P. Elliptic curve points P and R can be identical. Uses |
| 49 | * Modified Jacobian coordinates. |
| 50 | * |
| 51 | * Assumes input is already field-encoded using field_enc, and returns |
| 52 | * output that is still field-encoded. |
| 53 | * |
| 54 | */ |
| 55 | mp_err |
| 56 | ec_GFp_pt_dbl_jm(const mp_int *px, const mp_int *py, const mp_int *pz, |
| 57 | const mp_int *paz4, mp_int *rx, mp_int *ry, mp_int *rz, |
| 58 | mp_int *raz4, mp_int scratch[], const ECGroup *group) |
| 59 | { |
| 60 | mp_err res = MP_OKAY; |
| 61 | mp_int *t0, *t1, *M, *S; |
| 62 | |
| 63 | t0 = &scratch[0]; |
| 64 | t1 = &scratch[1]; |
| 65 | M = &scratch[2]; |
| 66 | S = &scratch[3]; |
| 67 | |
| 68 | #if MAX_SCRATCH < 4 |
| 69 | #error "Scratch array defined too small " |
| 70 | #endif |
| 71 | |
| 72 | /* Check for point at infinity */ |
| 73 | if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) { |
| 74 | /* Set r = pt at infinity by setting rz = 0 */ |
| 75 | |
| 76 | MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz)); |
| 77 | goto CLEANUP; |
| 78 | } |
| 79 | |
| 80 | /* M = 3 (px^2) + a*(pz^4) */ |
| 81 | MP_CHECKOK(group->meth->field_sqr(px, t0, group->meth)); |
| 82 | MP_CHECKOK(group->meth->field_add(t0, t0, M, group->meth)); |
| 83 | MP_CHECKOK(group->meth->field_add(t0, M, t0, group->meth)); |
| 84 | MP_CHECKOK(group->meth->field_add(t0, paz4, M, group->meth)); |
| 85 | |
| 86 | /* rz = 2 * py * pz */ |
| 87 | MP_CHECKOK(group->meth->field_mul(py, pz, S, group->meth)); |
| 88 | MP_CHECKOK(group->meth->field_add(S, S, rz, group->meth)); |
| 89 | |
| 90 | /* t0 = 2y^2 , t1 = 8y^4 */ |
| 91 | MP_CHECKOK(group->meth->field_sqr(py, t0, group->meth)); |
| 92 | MP_CHECKOK(group->meth->field_add(t0, t0, t0, group->meth)); |
| 93 | MP_CHECKOK(group->meth->field_sqr(t0, t1, group->meth)); |
| 94 | MP_CHECKOK(group->meth->field_add(t1, t1, t1, group->meth)); |
| 95 | |
| 96 | /* S = 4 * px * py^2 = 2 * px * t0 */ |
| 97 | MP_CHECKOK(group->meth->field_mul(px, t0, S, group->meth)); |
| 98 | MP_CHECKOK(group->meth->field_add(S, S, S, group->meth)); |
| 99 | |
| 100 | |
| 101 | /* rx = M^2 - 2S */ |
| 102 | MP_CHECKOK(group->meth->field_sqr(M, rx, group->meth)); |
| 103 | MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth)); |
| 104 | MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth)); |
| 105 | |
| 106 | /* ry = M * (S - rx) - t1 */ |
| 107 | MP_CHECKOK(group->meth->field_sub(S, rx, S, group->meth)); |
| 108 | MP_CHECKOK(group->meth->field_mul(S, M, ry, group->meth)); |
| 109 | MP_CHECKOK(group->meth->field_sub(ry, t1, ry, group->meth)); |
| 110 | |
| 111 | /* ra*z^4 = 2*t1*(apz4) */ |
| 112 | MP_CHECKOK(group->meth->field_mul(paz4, t1, raz4, group->meth)); |
| 113 | MP_CHECKOK(group->meth->field_add(raz4, raz4, raz4, group->meth)); |
| 114 | |
| 115 | |
| 116 | CLEANUP: |
| 117 | return res; |
| 118 | } |
| 119 | |
| 120 | /* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is |
| 121 | * (qx, qy, 1). Elliptic curve points P, Q, and R can all be identical. |
| 122 | * Uses mixed Modified_Jacobian-affine coordinates. Assumes input is |
| 123 | * already field-encoded using field_enc, and returns output that is still |
| 124 | * field-encoded. */ |
| 125 | mp_err |
| 126 | ec_GFp_pt_add_jm_aff(const mp_int *px, const mp_int *py, const mp_int *pz, |
| 127 | const mp_int *paz4, const mp_int *qx, |
| 128 | const mp_int *qy, mp_int *rx, mp_int *ry, mp_int *rz, |
| 129 | mp_int *raz4, mp_int scratch[], const ECGroup *group) |
| 130 | { |
| 131 | mp_err res = MP_OKAY; |
| 132 | mp_int *A, *B, *C, *D, *C2, *C3; |
| 133 | |
| 134 | A = &scratch[0]; |
| 135 | B = &scratch[1]; |
| 136 | C = &scratch[2]; |
| 137 | D = &scratch[3]; |
| 138 | C2 = &scratch[4]; |
| 139 | C3 = &scratch[5]; |
| 140 | |
| 141 | #if MAX_SCRATCH < 6 |
| 142 | #error "Scratch array defined too small " |
| 143 | #endif |
| 144 | |
| 145 | /* If either P or Q is the point at infinity, then return the other |
| 146 | * point */ |
| 147 | if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) { |
| 148 | MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group)); |
| 149 | MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth)); |
| 150 | MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth)); |
| 151 | MP_CHECKOK(group->meth-> |
| 152 | field_mul(raz4, &group->curvea, raz4, group->meth)); |
| 153 | goto CLEANUP; |
| 154 | } |
| 155 | if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) { |
| 156 | MP_CHECKOK(mp_copy(px, rx)); |
| 157 | MP_CHECKOK(mp_copy(py, ry)); |
| 158 | MP_CHECKOK(mp_copy(pz, rz)); |
| 159 | MP_CHECKOK(mp_copy(paz4, raz4)); |
| 160 | goto CLEANUP; |
| 161 | } |
| 162 | |
| 163 | /* A = qx * pz^2, B = qy * pz^3 */ |
| 164 | MP_CHECKOK(group->meth->field_sqr(pz, A, group->meth)); |
| 165 | MP_CHECKOK(group->meth->field_mul(A, pz, B, group->meth)); |
| 166 | MP_CHECKOK(group->meth->field_mul(A, qx, A, group->meth)); |
| 167 | MP_CHECKOK(group->meth->field_mul(B, qy, B, group->meth)); |
| 168 | |
| 169 | /* |
| 170 | * Additional checks for point equality and point at infinity |
| 171 | */ |
| 172 | if (mp_cmp(px, A) == 0 && mp_cmp(py, B) == 0) { |
| 173 | /* POINT_DOUBLE(P) */ |
| 174 | MP_CHECKOK(ec_GFp_pt_dbl_jm(px, py, pz, paz4, rx, ry, rz, raz4, |
| 175 | scratch, group)); |
| 176 | goto CLEANUP; |
| 177 | } |
| 178 | |
| 179 | /* C = A - px, D = B - py */ |
| 180 | MP_CHECKOK(group->meth->field_sub(A, px, C, group->meth)); |
| 181 | MP_CHECKOK(group->meth->field_sub(B, py, D, group->meth)); |
| 182 | |
| 183 | /* C2 = C^2, C3 = C^3 */ |
| 184 | MP_CHECKOK(group->meth->field_sqr(C, C2, group->meth)); |
| 185 | MP_CHECKOK(group->meth->field_mul(C, C2, C3, group->meth)); |
| 186 | |
| 187 | /* rz = pz * C */ |
| 188 | MP_CHECKOK(group->meth->field_mul(pz, C, rz, group->meth)); |
| 189 | |
| 190 | /* C = px * C^2 */ |
| 191 | MP_CHECKOK(group->meth->field_mul(px, C2, C, group->meth)); |
| 192 | /* A = D^2 */ |
| 193 | MP_CHECKOK(group->meth->field_sqr(D, A, group->meth)); |
| 194 | |
| 195 | /* rx = D^2 - (C^3 + 2 * (px * C^2)) */ |
| 196 | MP_CHECKOK(group->meth->field_add(C, C, rx, group->meth)); |
| 197 | MP_CHECKOK(group->meth->field_add(C3, rx, rx, group->meth)); |
| 198 | MP_CHECKOK(group->meth->field_sub(A, rx, rx, group->meth)); |
| 199 | |
| 200 | /* C3 = py * C^3 */ |
| 201 | MP_CHECKOK(group->meth->field_mul(py, C3, C3, group->meth)); |
| 202 | |
| 203 | /* ry = D * (px * C^2 - rx) - py * C^3 */ |
| 204 | MP_CHECKOK(group->meth->field_sub(C, rx, ry, group->meth)); |
| 205 | MP_CHECKOK(group->meth->field_mul(D, ry, ry, group->meth)); |
| 206 | MP_CHECKOK(group->meth->field_sub(ry, C3, ry, group->meth)); |
| 207 | |
| 208 | /* raz4 = a * rz^4 */ |
| 209 | MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth)); |
| 210 | MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth)); |
| 211 | MP_CHECKOK(group->meth-> |
| 212 | field_mul(raz4, &group->curvea, raz4, group->meth)); |
| 213 | CLEANUP: |
| 214 | return res; |
| 215 | } |
| 216 | |
| 217 | /* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic |
| 218 | * curve points P and R can be identical. Uses mixed Modified-Jacobian |
| 219 | * co-ordinates for doubling and Chudnovsky Jacobian coordinates for |
| 220 | * additions. Assumes input is already field-encoded using field_enc, and |
| 221 | * returns output that is still field-encoded. Uses 5-bit window NAF |
| 222 | * method (algorithm 11) for scalar-point multiplication from Brown, |
| 223 | * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic |
| 224 | * Curves Over Prime Fields. */ |
| 225 | mp_err |
| 226 | ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py, |
| 227 | mp_int *rx, mp_int *ry, const ECGroup *group, |
| 228 | int timing) |
| 229 | { |
| 230 | mp_err res = MP_OKAY; |
| 231 | mp_int precomp[16][2], rz, tpx, tpy, tpz; |
| 232 | mp_int raz4, tpaz4; |
| 233 | mp_int scratch[MAX_SCRATCH]; |
| 234 | signed char *naf = NULL; |
| 235 | int i, orderBitSize; |
| 236 | int numDoubles, numAdds, , ; |
| 237 | |
| 238 | MP_DIGITS(&rz) = 0; |
| 239 | MP_DIGITS(&raz4) = 0; |
| 240 | MP_DIGITS(&tpx) = 0; |
| 241 | MP_DIGITS(&tpy) = 0; |
| 242 | MP_DIGITS(&tpz) = 0; |
| 243 | MP_DIGITS(&tpaz4) = 0; |
| 244 | for (i = 0; i < 16; i++) { |
| 245 | MP_DIGITS(&precomp[i][0]) = 0; |
| 246 | MP_DIGITS(&precomp[i][1]) = 0; |
| 247 | } |
| 248 | for (i = 0; i < MAX_SCRATCH; i++) { |
| 249 | MP_DIGITS(&scratch[i]) = 0; |
| 250 | } |
| 251 | |
| 252 | ARGCHK(group != NULL, MP_BADARG); |
| 253 | ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG); |
| 254 | |
| 255 | /* initialize precomputation table */ |
| 256 | MP_CHECKOK(mp_init(&tpx, FLAG(n))); |
| 257 | MP_CHECKOK(mp_init(&tpy, FLAG(n))); |
| 258 | MP_CHECKOK(mp_init(&tpz, FLAG(n))); |
| 259 | MP_CHECKOK(mp_init(&tpaz4, FLAG(n))); |
| 260 | MP_CHECKOK(mp_init(&rz, FLAG(n))); |
| 261 | MP_CHECKOK(mp_init(&raz4, FLAG(n))); |
| 262 | |
| 263 | for (i = 0; i < 16; i++) { |
| 264 | MP_CHECKOK(mp_init(&precomp[i][0], FLAG(n))); |
| 265 | MP_CHECKOK(mp_init(&precomp[i][1], FLAG(n))); |
| 266 | } |
| 267 | for (i = 0; i < MAX_SCRATCH; i++) { |
| 268 | MP_CHECKOK(mp_init(&scratch[i], FLAG(n))); |
| 269 | } |
| 270 | |
| 271 | /* Set out[8] = P */ |
| 272 | MP_CHECKOK(mp_copy(px, &precomp[8][0])); |
| 273 | MP_CHECKOK(mp_copy(py, &precomp[8][1])); |
| 274 | |
| 275 | /* Set (tpx, tpy) = 2P */ |
| 276 | MP_CHECKOK(group-> |
| 277 | point_dbl(&precomp[8][0], &precomp[8][1], &tpx, &tpy, |
| 278 | group)); |
| 279 | |
| 280 | /* Set 3P, 5P, ..., 15P */ |
| 281 | for (i = 8; i < 15; i++) { |
| 282 | MP_CHECKOK(group-> |
| 283 | point_add(&precomp[i][0], &precomp[i][1], &tpx, &tpy, |
| 284 | &precomp[i + 1][0], &precomp[i + 1][1], |
| 285 | group)); |
| 286 | } |
| 287 | |
| 288 | /* Set -15P, -13P, ..., -P */ |
| 289 | for (i = 0; i < 8; i++) { |
| 290 | MP_CHECKOK(mp_copy(&precomp[15 - i][0], &precomp[i][0])); |
| 291 | MP_CHECKOK(group->meth-> |
| 292 | field_neg(&precomp[15 - i][1], &precomp[i][1], |
| 293 | group->meth)); |
| 294 | } |
| 295 | |
| 296 | /* R = inf */ |
| 297 | MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz)); |
| 298 | |
| 299 | orderBitSize = mpl_significant_bits(&group->order); |
| 300 | |
| 301 | /* Allocate memory for NAF */ |
| 302 | #ifdef _KERNEL |
| 303 | naf = (signed char *) kmem_alloc((orderBitSize + 1), FLAG(n)); |
| 304 | #else |
| 305 | naf = (signed char *) malloc(sizeof(signed char) * (orderBitSize + 1)); |
| 306 | if (naf == NULL) { |
| 307 | res = MP_MEM; |
| 308 | goto CLEANUP; |
| 309 | } |
| 310 | #endif |
| 311 | |
| 312 | /* Compute 5NAF */ |
| 313 | ec_compute_wNAF(naf, orderBitSize, n, 5); |
| 314 | |
| 315 | numAdds = 0; |
| 316 | numDoubles = orderBitSize; |
| 317 | /* wNAF method */ |
| 318 | for (i = orderBitSize; i >= 0; i--) { |
| 319 | |
| 320 | if (ec_GFp_pt_is_inf_jac(rx, ry, &rz) == MP_YES) { |
| 321 | numDoubles--; |
| 322 | } |
| 323 | |
| 324 | /* R = 2R */ |
| 325 | ec_GFp_pt_dbl_jm(rx, ry, &rz, &raz4, rx, ry, &rz, |
| 326 | &raz4, scratch, group); |
| 327 | |
| 328 | if (naf[i] != 0) { |
| 329 | ec_GFp_pt_add_jm_aff(rx, ry, &rz, &raz4, |
| 330 | &precomp[(naf[i] + 15) / 2][0], |
| 331 | &precomp[(naf[i] + 15) / 2][1], rx, ry, |
| 332 | &rz, &raz4, scratch, group); |
| 333 | numAdds++; |
| 334 | } |
| 335 | } |
| 336 | |
| 337 | /* extra operations to make timing less dependent on secrets */ |
| 338 | if (timing) { |
| 339 | /* low-order bit of timing argument contains no entropy */ |
| 340 | timing >>= 1; |
| 341 | |
| 342 | MP_CHECKOK(ec_GFp_pt_set_inf_jac(&tpx, &tpy, &tpz)); |
| 343 | mp_zero(&tpaz4); |
| 344 | |
| 345 | /* Set the temp value to a non-infinite point */ |
| 346 | ec_GFp_pt_add_jm_aff(&tpx, &tpy, &tpz, &tpaz4, |
| 347 | &precomp[8][0], |
| 348 | &precomp[8][1], &tpx, &tpy, |
| 349 | &tpz, &tpaz4, scratch, group); |
| 350 | |
| 351 | /* two bits of extra adds */ |
| 352 | extraAdds = timing & 0x3; |
| 353 | timing >>= 2; |
| 354 | /* Window size is 5, so the maximum number of additions is ceil(orderBitSize/5) */ |
| 355 | /* This is the same as (orderBitSize + 4) / 5 */ |
| 356 | for(i = numAdds; i <= (orderBitSize + 4) / 5 + extraAdds; i++) { |
| 357 | ec_GFp_pt_add_jm_aff(&tpx, &tpy, &tpz, &tpaz4, |
| 358 | &precomp[9 + (i % 3)][0], |
| 359 | &precomp[9 + (i % 3)][1], &tpx, &tpy, |
| 360 | &tpz, &tpaz4, scratch, group); |
| 361 | } |
| 362 | |
| 363 | /* two bits of extra doubles */ |
| 364 | extraDoubles = timing & 0x3; |
| 365 | timing >>= 2; |
| 366 | for(i = numDoubles; i <= orderBitSize + extraDoubles; i++) { |
| 367 | ec_GFp_pt_dbl_jm(&tpx, &tpy, &tpz, &tpaz4, &tpx, &tpy, &tpz, |
| 368 | &tpaz4, scratch, group); |
| 369 | } |
| 370 | |
| 371 | } |
| 372 | |
| 373 | /* convert result S to affine coordinates */ |
| 374 | MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group)); |
| 375 | |
| 376 | CLEANUP: |
| 377 | for (i = 0; i < MAX_SCRATCH; i++) { |
| 378 | mp_clear(&scratch[i]); |
| 379 | } |
| 380 | for (i = 0; i < 16; i++) { |
| 381 | mp_clear(&precomp[i][0]); |
| 382 | mp_clear(&precomp[i][1]); |
| 383 | } |
| 384 | mp_clear(&tpx); |
| 385 | mp_clear(&tpy); |
| 386 | mp_clear(&tpz); |
| 387 | mp_clear(&tpaz4); |
| 388 | mp_clear(&rz); |
| 389 | mp_clear(&raz4); |
| 390 | #ifdef _KERNEL |
| 391 | kmem_free(naf, (orderBitSize + 1)); |
| 392 | #else |
| 393 | free(naf); |
| 394 | #endif |
| 395 | return res; |
| 396 | } |
| 397 | |