1/*
2 * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
3 * Use is subject to license terms.
4 *
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2.1 of the License, or (at your option) any later version.
9 *
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
14 *
15 * You should have received a copy of the GNU Lesser General Public License
16 * along with this library; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 */
23
24/* *********************************************************************
25 *
26 * The Original Code is the elliptic curve math library for prime field curves.
27 *
28 * The Initial Developer of the Original Code is
29 * Sun Microsystems, Inc.
30 * Portions created by the Initial Developer are Copyright (C) 2003
31 * the Initial Developer. All Rights Reserved.
32 *
33 * Contributor(s):
34 * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
35 *
36 * Last Modified Date from the Original Code: May 2017
37 *********************************************************************** */
38
39#ifndef _ECP_H
40#define _ECP_H
41
42#include "ecl-priv.h"
43
44/* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
45mp_err ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py);
46
47/* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
48mp_err ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py);
49
50/* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx,
51 * qy). Uses affine coordinates. */
52mp_err ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py,
53 const mp_int *qx, const mp_int *qy, mp_int *rx,
54 mp_int *ry, const ECGroup *group);
55
56/* Computes R = P - Q. Uses affine coordinates. */
57mp_err ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py,
58 const mp_int *qx, const mp_int *qy, mp_int *rx,
59 mp_int *ry, const ECGroup *group);
60
61/* Computes R = 2P. Uses affine coordinates. */
62mp_err ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
63 mp_int *ry, const ECGroup *group);
64
65/* Validates a point on a GFp curve. */
66mp_err ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group);
67
68#ifdef ECL_ENABLE_GFP_PT_MUL_AFF
69/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
70 * a, b and p are the elliptic curve coefficients and the prime that
71 * determines the field GFp. Uses affine coordinates. */
72mp_err ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px,
73 const mp_int *py, mp_int *rx, mp_int *ry,
74 const ECGroup *group);
75#endif
76
77/* Converts a point P(px, py) from affine coordinates to Jacobian
78 * projective coordinates R(rx, ry, rz). */
79mp_err ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
80 mp_int *ry, mp_int *rz, const ECGroup *group);
81
82/* Converts a point P(px, py, pz) from Jacobian projective coordinates to
83 * affine coordinates R(rx, ry). */
84mp_err ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py,
85 const mp_int *pz, mp_int *rx, mp_int *ry,
86 const ECGroup *group);
87
88/* Checks if point P(px, py, pz) is at infinity. Uses Jacobian
89 * coordinates. */
90mp_err ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py,
91 const mp_int *pz);
92
93/* Sets P(px, py, pz) to be the point at infinity. Uses Jacobian
94 * coordinates. */
95mp_err ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz);
96
97/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
98 * (qx, qy, qz). Uses Jacobian coordinates. */
99mp_err ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py,
100 const mp_int *pz, const mp_int *qx,
101 const mp_int *qy, mp_int *rx, mp_int *ry,
102 mp_int *rz, const ECGroup *group);
103
104/* Computes R = 2P. Uses Jacobian coordinates. */
105mp_err ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py,
106 const mp_int *pz, mp_int *rx, mp_int *ry,
107 mp_int *rz, const ECGroup *group);
108
109#ifdef ECL_ENABLE_GFP_PT_MUL_JAC
110/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
111 * a, b and p are the elliptic curve coefficients and the prime that
112 * determines the field GFp. Uses Jacobian coordinates. */
113mp_err ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px,
114 const mp_int *py, mp_int *rx, mp_int *ry,
115 const ECGroup *group);
116#endif
117
118/* Computes R(x, y) = k1 * G + k2 * P(x, y), where G is the generator
119 * (base point) of the group of points on the elliptic curve. Allows k1 =
120 * NULL or { k2, P } = NULL. Implemented using mixed Jacobian-affine
121 * coordinates. Input and output values are assumed to be NOT
122 * field-encoded and are in affine form. */
123mp_err
124 ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
125 const mp_int *py, mp_int *rx, mp_int *ry,
126 const ECGroup *group, int timing);
127
128/* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
129 * curve points P and R can be identical. Uses mixed Modified-Jacobian
130 * co-ordinates for doubling and Chudnovsky Jacobian coordinates for
131 * additions. Assumes input is already field-encoded using field_enc, and
132 * returns output that is still field-encoded. Uses 5-bit window NAF
133 * method (algorithm 11) for scalar-point multiplication from Brown,
134 * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic
135 * Curves Over Prime Fields. The implementation includes a countermeasure
136 * that attempts to hide the size of n from timing channels. This counter-
137 * measure is enabled using the timing argument. The high-rder bits of timing
138 * must be uniformly random in order for this countermeasure to work. */
139mp_err
140 ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py,
141 mp_int *rx, mp_int *ry, const ECGroup *group,
142 int timing);
143
144#endif /* _ECP_H */
145