| 1 | /* |
| 2 | * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved. |
| 3 | * Use is subject to license terms. |
| 4 | * |
| 5 | * This library is free software; you can redistribute it and/or |
| 6 | * modify it under the terms of the GNU Lesser General Public |
| 7 | * License as published by the Free Software Foundation; either |
| 8 | * version 2.1 of the License, or (at your option) any later version. |
| 9 | * |
| 10 | * This library is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | * Lesser General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU Lesser General Public License |
| 16 | * along with this library; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | */ |
| 23 | |
| 24 | /* ********************************************************************* |
| 25 | * |
| 26 | * The Original Code is the elliptic curve math library for prime field curves. |
| 27 | * |
| 28 | * The Initial Developer of the Original Code is |
| 29 | * Sun Microsystems, Inc. |
| 30 | * Portions created by the Initial Developer are Copyright (C) 2003 |
| 31 | * the Initial Developer. All Rights Reserved. |
| 32 | * |
| 33 | * Contributor(s): |
| 34 | * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories |
| 35 | * |
| 36 | * Last Modified Date from the Original Code: May 2017 |
| 37 | *********************************************************************** */ |
| 38 | |
| 39 | #ifndef _ECP_H |
| 40 | #define _ECP_H |
| 41 | |
| 42 | #include "ecl-priv.h" |
| 43 | |
| 44 | /* Checks if point P(px, py) is at infinity. Uses affine coordinates. */ |
| 45 | mp_err ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py); |
| 46 | |
| 47 | /* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */ |
| 48 | mp_err ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py); |
| 49 | |
| 50 | /* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx, |
| 51 | * qy). Uses affine coordinates. */ |
| 52 | mp_err ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py, |
| 53 | const mp_int *qx, const mp_int *qy, mp_int *rx, |
| 54 | mp_int *ry, const ECGroup *group); |
| 55 | |
| 56 | /* Computes R = P - Q. Uses affine coordinates. */ |
| 57 | mp_err ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py, |
| 58 | const mp_int *qx, const mp_int *qy, mp_int *rx, |
| 59 | mp_int *ry, const ECGroup *group); |
| 60 | |
| 61 | /* Computes R = 2P. Uses affine coordinates. */ |
| 62 | mp_err ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx, |
| 63 | mp_int *ry, const ECGroup *group); |
| 64 | |
| 65 | /* Validates a point on a GFp curve. */ |
| 66 | mp_err ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group); |
| 67 | |
| 68 | #ifdef ECL_ENABLE_GFP_PT_MUL_AFF |
| 69 | /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters |
| 70 | * a, b and p are the elliptic curve coefficients and the prime that |
| 71 | * determines the field GFp. Uses affine coordinates. */ |
| 72 | mp_err ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px, |
| 73 | const mp_int *py, mp_int *rx, mp_int *ry, |
| 74 | const ECGroup *group); |
| 75 | #endif |
| 76 | |
| 77 | /* Converts a point P(px, py) from affine coordinates to Jacobian |
| 78 | * projective coordinates R(rx, ry, rz). */ |
| 79 | mp_err ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx, |
| 80 | mp_int *ry, mp_int *rz, const ECGroup *group); |
| 81 | |
| 82 | /* Converts a point P(px, py, pz) from Jacobian projective coordinates to |
| 83 | * affine coordinates R(rx, ry). */ |
| 84 | mp_err ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py, |
| 85 | const mp_int *pz, mp_int *rx, mp_int *ry, |
| 86 | const ECGroup *group); |
| 87 | |
| 88 | /* Checks if point P(px, py, pz) is at infinity. Uses Jacobian |
| 89 | * coordinates. */ |
| 90 | mp_err ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py, |
| 91 | const mp_int *pz); |
| 92 | |
| 93 | /* Sets P(px, py, pz) to be the point at infinity. Uses Jacobian |
| 94 | * coordinates. */ |
| 95 | mp_err ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz); |
| 96 | |
| 97 | /* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is |
| 98 | * (qx, qy, qz). Uses Jacobian coordinates. */ |
| 99 | mp_err ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py, |
| 100 | const mp_int *pz, const mp_int *qx, |
| 101 | const mp_int *qy, mp_int *rx, mp_int *ry, |
| 102 | mp_int *rz, const ECGroup *group); |
| 103 | |
| 104 | /* Computes R = 2P. Uses Jacobian coordinates. */ |
| 105 | mp_err ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py, |
| 106 | const mp_int *pz, mp_int *rx, mp_int *ry, |
| 107 | mp_int *rz, const ECGroup *group); |
| 108 | |
| 109 | #ifdef ECL_ENABLE_GFP_PT_MUL_JAC |
| 110 | /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters |
| 111 | * a, b and p are the elliptic curve coefficients and the prime that |
| 112 | * determines the field GFp. Uses Jacobian coordinates. */ |
| 113 | mp_err ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px, |
| 114 | const mp_int *py, mp_int *rx, mp_int *ry, |
| 115 | const ECGroup *group); |
| 116 | #endif |
| 117 | |
| 118 | /* Computes R(x, y) = k1 * G + k2 * P(x, y), where G is the generator |
| 119 | * (base point) of the group of points on the elliptic curve. Allows k1 = |
| 120 | * NULL or { k2, P } = NULL. Implemented using mixed Jacobian-affine |
| 121 | * coordinates. Input and output values are assumed to be NOT |
| 122 | * field-encoded and are in affine form. */ |
| 123 | mp_err |
| 124 | ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px, |
| 125 | const mp_int *py, mp_int *rx, mp_int *ry, |
| 126 | const ECGroup *group, int timing); |
| 127 | |
| 128 | /* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic |
| 129 | * curve points P and R can be identical. Uses mixed Modified-Jacobian |
| 130 | * co-ordinates for doubling and Chudnovsky Jacobian coordinates for |
| 131 | * additions. Assumes input is already field-encoded using field_enc, and |
| 132 | * returns output that is still field-encoded. Uses 5-bit window NAF |
| 133 | * method (algorithm 11) for scalar-point multiplication from Brown, |
| 134 | * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic |
| 135 | * Curves Over Prime Fields. The implementation includes a countermeasure |
| 136 | * that attempts to hide the size of n from timing channels. This counter- |
| 137 | * measure is enabled using the timing argument. The high-rder bits of timing |
| 138 | * must be uniformly random in order for this countermeasure to work. */ |
| 139 | mp_err |
| 140 | ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py, |
| 141 | mp_int *rx, mp_int *ry, const ECGroup *group, |
| 142 | int timing); |
| 143 | |
| 144 | #endif /* _ECP_H */ |
| 145 | |