| 1 | /* |
| 2 | * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved. |
| 3 | * Use is subject to license terms. |
| 4 | * |
| 5 | * This library is free software; you can redistribute it and/or |
| 6 | * modify it under the terms of the GNU Lesser General Public |
| 7 | * License as published by the Free Software Foundation; either |
| 8 | * version 2.1 of the License, or (at your option) any later version. |
| 9 | * |
| 10 | * This library is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | * Lesser General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU Lesser General Public License |
| 16 | * along with this library; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | */ |
| 23 | |
| 24 | /* ********************************************************************* |
| 25 | * |
| 26 | * The Original Code is the elliptic curve math library for prime field curves. |
| 27 | * |
| 28 | * The Initial Developer of the Original Code is |
| 29 | * Sun Microsystems, Inc. |
| 30 | * Portions created by the Initial Developer are Copyright (C) 2003 |
| 31 | * the Initial Developer. All Rights Reserved. |
| 32 | * |
| 33 | * Contributor(s): |
| 34 | * Sheueling Chang-Shantz <sheueling.chang@sun.com>, |
| 35 | * Stephen Fung <fungstep@hotmail.com>, and |
| 36 | * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories. |
| 37 | * Bodo Moeller <moeller@cdc.informatik.tu-darmstadt.de>, |
| 38 | * Nils Larsch <nla@trustcenter.de>, and |
| 39 | * Lenka Fibikova <fibikova@exp-math.uni-essen.de>, the OpenSSL Project |
| 40 | * |
| 41 | * Last Modified Date from the Original Code: May 2017 |
| 42 | *********************************************************************** */ |
| 43 | |
| 44 | #include "ecp.h" |
| 45 | #include "mplogic.h" |
| 46 | #ifndef _KERNEL |
| 47 | #include <stdlib.h> |
| 48 | #endif |
| 49 | #ifdef ECL_DEBUG |
| 50 | #include <assert.h> |
| 51 | #endif |
| 52 | |
| 53 | /* Converts a point P(px, py) from affine coordinates to Jacobian |
| 54 | * projective coordinates R(rx, ry, rz). Assumes input is already |
| 55 | * field-encoded using field_enc, and returns output that is still |
| 56 | * field-encoded. */ |
| 57 | mp_err |
| 58 | ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx, |
| 59 | mp_int *ry, mp_int *rz, const ECGroup *group) |
| 60 | { |
| 61 | mp_err res = MP_OKAY; |
| 62 | |
| 63 | if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) { |
| 64 | MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz)); |
| 65 | } else { |
| 66 | MP_CHECKOK(mp_copy(px, rx)); |
| 67 | MP_CHECKOK(mp_copy(py, ry)); |
| 68 | MP_CHECKOK(mp_set_int(rz, 1)); |
| 69 | if (group->meth->field_enc) { |
| 70 | MP_CHECKOK(group->meth->field_enc(rz, rz, group->meth)); |
| 71 | } |
| 72 | } |
| 73 | CLEANUP: |
| 74 | return res; |
| 75 | } |
| 76 | |
| 77 | /* Converts a point P(px, py, pz) from Jacobian projective coordinates to |
| 78 | * affine coordinates R(rx, ry). P and R can share x and y coordinates. |
| 79 | * Assumes input is already field-encoded using field_enc, and returns |
| 80 | * output that is still field-encoded. */ |
| 81 | mp_err |
| 82 | ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py, const mp_int *pz, |
| 83 | mp_int *rx, mp_int *ry, const ECGroup *group) |
| 84 | { |
| 85 | mp_err res = MP_OKAY; |
| 86 | mp_int z1, z2, z3; |
| 87 | |
| 88 | MP_DIGITS(&z1) = 0; |
| 89 | MP_DIGITS(&z2) = 0; |
| 90 | MP_DIGITS(&z3) = 0; |
| 91 | MP_CHECKOK(mp_init(&z1, FLAG(px))); |
| 92 | MP_CHECKOK(mp_init(&z2, FLAG(px))); |
| 93 | MP_CHECKOK(mp_init(&z3, FLAG(px))); |
| 94 | |
| 95 | /* if point at infinity, then set point at infinity and exit */ |
| 96 | if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) { |
| 97 | MP_CHECKOK(ec_GFp_pt_set_inf_aff(rx, ry)); |
| 98 | goto CLEANUP; |
| 99 | } |
| 100 | |
| 101 | /* transform (px, py, pz) into (px / pz^2, py / pz^3) */ |
| 102 | if (mp_cmp_d(pz, 1) == 0) { |
| 103 | MP_CHECKOK(mp_copy(px, rx)); |
| 104 | MP_CHECKOK(mp_copy(py, ry)); |
| 105 | } else { |
| 106 | MP_CHECKOK(group->meth->field_div(NULL, pz, &z1, group->meth)); |
| 107 | MP_CHECKOK(group->meth->field_sqr(&z1, &z2, group->meth)); |
| 108 | MP_CHECKOK(group->meth->field_mul(&z1, &z2, &z3, group->meth)); |
| 109 | MP_CHECKOK(group->meth->field_mul(px, &z2, rx, group->meth)); |
| 110 | MP_CHECKOK(group->meth->field_mul(py, &z3, ry, group->meth)); |
| 111 | } |
| 112 | |
| 113 | CLEANUP: |
| 114 | mp_clear(&z1); |
| 115 | mp_clear(&z2); |
| 116 | mp_clear(&z3); |
| 117 | return res; |
| 118 | } |
| 119 | |
| 120 | /* Checks if point P(px, py, pz) is at infinity. Uses Jacobian |
| 121 | * coordinates. */ |
| 122 | mp_err |
| 123 | ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py, const mp_int *pz) |
| 124 | { |
| 125 | return mp_cmp_z(pz); |
| 126 | } |
| 127 | |
| 128 | /* Sets P(px, py, pz) to be the point at infinity. Uses Jacobian |
| 129 | * coordinates. */ |
| 130 | mp_err |
| 131 | ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz) |
| 132 | { |
| 133 | mp_zero(pz); |
| 134 | return MP_OKAY; |
| 135 | } |
| 136 | |
| 137 | /* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is |
| 138 | * (qx, qy, 1). Elliptic curve points P, Q, and R can all be identical. |
| 139 | * Uses mixed Jacobian-affine coordinates. Assumes input is already |
| 140 | * field-encoded using field_enc, and returns output that is still |
| 141 | * field-encoded. Uses equation (2) from Brown, Hankerson, Lopez, and |
| 142 | * Menezes. Software Implementation of the NIST Elliptic Curves Over Prime |
| 143 | * Fields. */ |
| 144 | mp_err |
| 145 | ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py, const mp_int *pz, |
| 146 | const mp_int *qx, const mp_int *qy, mp_int *rx, |
| 147 | mp_int *ry, mp_int *rz, const ECGroup *group) |
| 148 | { |
| 149 | mp_err res = MP_OKAY; |
| 150 | mp_int A, B, C, D, C2, C3; |
| 151 | |
| 152 | MP_DIGITS(&A) = 0; |
| 153 | MP_DIGITS(&B) = 0; |
| 154 | MP_DIGITS(&C) = 0; |
| 155 | MP_DIGITS(&D) = 0; |
| 156 | MP_DIGITS(&C2) = 0; |
| 157 | MP_DIGITS(&C3) = 0; |
| 158 | MP_CHECKOK(mp_init(&A, FLAG(px))); |
| 159 | MP_CHECKOK(mp_init(&B, FLAG(px))); |
| 160 | MP_CHECKOK(mp_init(&C, FLAG(px))); |
| 161 | MP_CHECKOK(mp_init(&D, FLAG(px))); |
| 162 | MP_CHECKOK(mp_init(&C2, FLAG(px))); |
| 163 | MP_CHECKOK(mp_init(&C3, FLAG(px))); |
| 164 | |
| 165 | /* If either P or Q is the point at infinity, then return the other |
| 166 | * point */ |
| 167 | if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) { |
| 168 | MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group)); |
| 169 | goto CLEANUP; |
| 170 | } |
| 171 | if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) { |
| 172 | MP_CHECKOK(mp_copy(px, rx)); |
| 173 | MP_CHECKOK(mp_copy(py, ry)); |
| 174 | MP_CHECKOK(mp_copy(pz, rz)); |
| 175 | goto CLEANUP; |
| 176 | } |
| 177 | |
| 178 | /* A = qx * pz^2, B = qy * pz^3 */ |
| 179 | MP_CHECKOK(group->meth->field_sqr(pz, &A, group->meth)); |
| 180 | MP_CHECKOK(group->meth->field_mul(&A, pz, &B, group->meth)); |
| 181 | MP_CHECKOK(group->meth->field_mul(&A, qx, &A, group->meth)); |
| 182 | MP_CHECKOK(group->meth->field_mul(&B, qy, &B, group->meth)); |
| 183 | |
| 184 | /* |
| 185 | * Additional checks for point equality and point at infinity |
| 186 | */ |
| 187 | if (mp_cmp(px, &A) == 0 && mp_cmp(py, &B) == 0) { |
| 188 | /* POINT_DOUBLE(P) */ |
| 189 | MP_CHECKOK(ec_GFp_pt_dbl_jac(px, py, pz, rx, ry, rz, group)); |
| 190 | goto CLEANUP; |
| 191 | } |
| 192 | |
| 193 | /* C = A - px, D = B - py */ |
| 194 | MP_CHECKOK(group->meth->field_sub(&A, px, &C, group->meth)); |
| 195 | MP_CHECKOK(group->meth->field_sub(&B, py, &D, group->meth)); |
| 196 | |
| 197 | /* C2 = C^2, C3 = C^3 */ |
| 198 | MP_CHECKOK(group->meth->field_sqr(&C, &C2, group->meth)); |
| 199 | MP_CHECKOK(group->meth->field_mul(&C, &C2, &C3, group->meth)); |
| 200 | |
| 201 | /* rz = pz * C */ |
| 202 | MP_CHECKOK(group->meth->field_mul(pz, &C, rz, group->meth)); |
| 203 | |
| 204 | /* C = px * C^2 */ |
| 205 | MP_CHECKOK(group->meth->field_mul(px, &C2, &C, group->meth)); |
| 206 | /* A = D^2 */ |
| 207 | MP_CHECKOK(group->meth->field_sqr(&D, &A, group->meth)); |
| 208 | |
| 209 | /* rx = D^2 - (C^3 + 2 * (px * C^2)) */ |
| 210 | MP_CHECKOK(group->meth->field_add(&C, &C, rx, group->meth)); |
| 211 | MP_CHECKOK(group->meth->field_add(&C3, rx, rx, group->meth)); |
| 212 | MP_CHECKOK(group->meth->field_sub(&A, rx, rx, group->meth)); |
| 213 | |
| 214 | /* C3 = py * C^3 */ |
| 215 | MP_CHECKOK(group->meth->field_mul(py, &C3, &C3, group->meth)); |
| 216 | |
| 217 | /* ry = D * (px * C^2 - rx) - py * C^3 */ |
| 218 | MP_CHECKOK(group->meth->field_sub(&C, rx, ry, group->meth)); |
| 219 | MP_CHECKOK(group->meth->field_mul(&D, ry, ry, group->meth)); |
| 220 | MP_CHECKOK(group->meth->field_sub(ry, &C3, ry, group->meth)); |
| 221 | |
| 222 | CLEANUP: |
| 223 | mp_clear(&A); |
| 224 | mp_clear(&B); |
| 225 | mp_clear(&C); |
| 226 | mp_clear(&D); |
| 227 | mp_clear(&C2); |
| 228 | mp_clear(&C3); |
| 229 | return res; |
| 230 | } |
| 231 | |
| 232 | /* Computes R = 2P. Elliptic curve points P and R can be identical. Uses |
| 233 | * Jacobian coordinates. |
| 234 | * |
| 235 | * Assumes input is already field-encoded using field_enc, and returns |
| 236 | * output that is still field-encoded. |
| 237 | * |
| 238 | * This routine implements Point Doubling in the Jacobian Projective |
| 239 | * space as described in the paper "Efficient elliptic curve exponentiation |
| 240 | * using mixed coordinates", by H. Cohen, A Miyaji, T. Ono. |
| 241 | */ |
| 242 | mp_err |
| 243 | ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py, const mp_int *pz, |
| 244 | mp_int *rx, mp_int *ry, mp_int *rz, const ECGroup *group) |
| 245 | { |
| 246 | mp_err res = MP_OKAY; |
| 247 | mp_int t0, t1, M, S; |
| 248 | |
| 249 | MP_DIGITS(&t0) = 0; |
| 250 | MP_DIGITS(&t1) = 0; |
| 251 | MP_DIGITS(&M) = 0; |
| 252 | MP_DIGITS(&S) = 0; |
| 253 | MP_CHECKOK(mp_init(&t0, FLAG(px))); |
| 254 | MP_CHECKOK(mp_init(&t1, FLAG(px))); |
| 255 | MP_CHECKOK(mp_init(&M, FLAG(px))); |
| 256 | MP_CHECKOK(mp_init(&S, FLAG(px))); |
| 257 | |
| 258 | if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) { |
| 259 | MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz)); |
| 260 | goto CLEANUP; |
| 261 | } |
| 262 | |
| 263 | if (mp_cmp_d(pz, 1) == 0) { |
| 264 | /* M = 3 * px^2 + a */ |
| 265 | MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth)); |
| 266 | MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth)); |
| 267 | MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth)); |
| 268 | MP_CHECKOK(group->meth-> |
| 269 | field_add(&t0, &group->curvea, &M, group->meth)); |
| 270 | } else if (mp_cmp_int(&group->curvea, -3, FLAG(px)) == 0) { |
| 271 | /* M = 3 * (px + pz^2) * (px - pz^2) */ |
| 272 | MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth)); |
| 273 | MP_CHECKOK(group->meth->field_add(px, &M, &t0, group->meth)); |
| 274 | MP_CHECKOK(group->meth->field_sub(px, &M, &t1, group->meth)); |
| 275 | MP_CHECKOK(group->meth->field_mul(&t0, &t1, &M, group->meth)); |
| 276 | MP_CHECKOK(group->meth->field_add(&M, &M, &t0, group->meth)); |
| 277 | MP_CHECKOK(group->meth->field_add(&t0, &M, &M, group->meth)); |
| 278 | } else { |
| 279 | /* M = 3 * (px^2) + a * (pz^4) */ |
| 280 | MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth)); |
| 281 | MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth)); |
| 282 | MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth)); |
| 283 | MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth)); |
| 284 | MP_CHECKOK(group->meth->field_sqr(&M, &M, group->meth)); |
| 285 | MP_CHECKOK(group->meth-> |
| 286 | field_mul(&M, &group->curvea, &M, group->meth)); |
| 287 | MP_CHECKOK(group->meth->field_add(&M, &t0, &M, group->meth)); |
| 288 | } |
| 289 | |
| 290 | /* rz = 2 * py * pz */ |
| 291 | /* t0 = 4 * py^2 */ |
| 292 | if (mp_cmp_d(pz, 1) == 0) { |
| 293 | MP_CHECKOK(group->meth->field_add(py, py, rz, group->meth)); |
| 294 | MP_CHECKOK(group->meth->field_sqr(rz, &t0, group->meth)); |
| 295 | } else { |
| 296 | MP_CHECKOK(group->meth->field_add(py, py, &t0, group->meth)); |
| 297 | MP_CHECKOK(group->meth->field_mul(&t0, pz, rz, group->meth)); |
| 298 | MP_CHECKOK(group->meth->field_sqr(&t0, &t0, group->meth)); |
| 299 | } |
| 300 | |
| 301 | /* S = 4 * px * py^2 = px * (2 * py)^2 */ |
| 302 | MP_CHECKOK(group->meth->field_mul(px, &t0, &S, group->meth)); |
| 303 | |
| 304 | /* rx = M^2 - 2 * S */ |
| 305 | MP_CHECKOK(group->meth->field_add(&S, &S, &t1, group->meth)); |
| 306 | MP_CHECKOK(group->meth->field_sqr(&M, rx, group->meth)); |
| 307 | MP_CHECKOK(group->meth->field_sub(rx, &t1, rx, group->meth)); |
| 308 | |
| 309 | /* ry = M * (S - rx) - 8 * py^4 */ |
| 310 | MP_CHECKOK(group->meth->field_sqr(&t0, &t1, group->meth)); |
| 311 | if (mp_isodd(&t1)) { |
| 312 | MP_CHECKOK(mp_add(&t1, &group->meth->irr, &t1)); |
| 313 | } |
| 314 | MP_CHECKOK(mp_div_2(&t1, &t1)); |
| 315 | MP_CHECKOK(group->meth->field_sub(&S, rx, &S, group->meth)); |
| 316 | MP_CHECKOK(group->meth->field_mul(&M, &S, &M, group->meth)); |
| 317 | MP_CHECKOK(group->meth->field_sub(&M, &t1, ry, group->meth)); |
| 318 | |
| 319 | CLEANUP: |
| 320 | mp_clear(&t0); |
| 321 | mp_clear(&t1); |
| 322 | mp_clear(&M); |
| 323 | mp_clear(&S); |
| 324 | return res; |
| 325 | } |
| 326 | |
| 327 | /* by default, this routine is unused and thus doesn't need to be compiled */ |
| 328 | #ifdef ECL_ENABLE_GFP_PT_MUL_JAC |
| 329 | /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters |
| 330 | * a, b and p are the elliptic curve coefficients and the prime that |
| 331 | * determines the field GFp. Elliptic curve points P and R can be |
| 332 | * identical. Uses mixed Jacobian-affine coordinates. Assumes input is |
| 333 | * already field-encoded using field_enc, and returns output that is still |
| 334 | * field-encoded. Uses 4-bit window method. */ |
| 335 | mp_err |
| 336 | ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px, const mp_int *py, |
| 337 | mp_int *rx, mp_int *ry, const ECGroup *group) |
| 338 | { |
| 339 | mp_err res = MP_OKAY; |
| 340 | mp_int precomp[16][2], rz; |
| 341 | int i, ni, d; |
| 342 | |
| 343 | MP_DIGITS(&rz) = 0; |
| 344 | for (i = 0; i < 16; i++) { |
| 345 | MP_DIGITS(&precomp[i][0]) = 0; |
| 346 | MP_DIGITS(&precomp[i][1]) = 0; |
| 347 | } |
| 348 | |
| 349 | ARGCHK(group != NULL, MP_BADARG); |
| 350 | ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG); |
| 351 | |
| 352 | /* initialize precomputation table */ |
| 353 | for (i = 0; i < 16; i++) { |
| 354 | MP_CHECKOK(mp_init(&precomp[i][0])); |
| 355 | MP_CHECKOK(mp_init(&precomp[i][1])); |
| 356 | } |
| 357 | |
| 358 | /* fill precomputation table */ |
| 359 | mp_zero(&precomp[0][0]); |
| 360 | mp_zero(&precomp[0][1]); |
| 361 | MP_CHECKOK(mp_copy(px, &precomp[1][0])); |
| 362 | MP_CHECKOK(mp_copy(py, &precomp[1][1])); |
| 363 | for (i = 2; i < 16; i++) { |
| 364 | MP_CHECKOK(group-> |
| 365 | point_add(&precomp[1][0], &precomp[1][1], |
| 366 | &precomp[i - 1][0], &precomp[i - 1][1], |
| 367 | &precomp[i][0], &precomp[i][1], group)); |
| 368 | } |
| 369 | |
| 370 | d = (mpl_significant_bits(n) + 3) / 4; |
| 371 | |
| 372 | /* R = inf */ |
| 373 | MP_CHECKOK(mp_init(&rz)); |
| 374 | MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz)); |
| 375 | |
| 376 | for (i = d - 1; i >= 0; i--) { |
| 377 | /* compute window ni */ |
| 378 | ni = MP_GET_BIT(n, 4 * i + 3); |
| 379 | ni <<= 1; |
| 380 | ni |= MP_GET_BIT(n, 4 * i + 2); |
| 381 | ni <<= 1; |
| 382 | ni |= MP_GET_BIT(n, 4 * i + 1); |
| 383 | ni <<= 1; |
| 384 | ni |= MP_GET_BIT(n, 4 * i); |
| 385 | /* R = 2^4 * R */ |
| 386 | MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group)); |
| 387 | MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group)); |
| 388 | MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group)); |
| 389 | MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group)); |
| 390 | /* R = R + (ni * P) */ |
| 391 | MP_CHECKOK(ec_GFp_pt_add_jac_aff |
| 392 | (rx, ry, &rz, &precomp[ni][0], &precomp[ni][1], rx, ry, |
| 393 | &rz, group)); |
| 394 | } |
| 395 | |
| 396 | /* convert result S to affine coordinates */ |
| 397 | MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group)); |
| 398 | |
| 399 | CLEANUP: |
| 400 | mp_clear(&rz); |
| 401 | for (i = 0; i < 16; i++) { |
| 402 | mp_clear(&precomp[i][0]); |
| 403 | mp_clear(&precomp[i][1]); |
| 404 | } |
| 405 | return res; |
| 406 | } |
| 407 | #endif |
| 408 | |
| 409 | /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G + |
| 410 | * k2 * P(x, y), where G is the generator (base point) of the group of |
| 411 | * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL. |
| 412 | * Uses mixed Jacobian-affine coordinates. Input and output values are |
| 413 | * assumed to be NOT field-encoded. Uses algorithm 15 (simultaneous |
| 414 | * multiple point multiplication) from Brown, Hankerson, Lopez, Menezes. |
| 415 | * Software Implementation of the NIST Elliptic Curves over Prime Fields. */ |
| 416 | mp_err |
| 417 | ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px, |
| 418 | const mp_int *py, mp_int *rx, mp_int *ry, |
| 419 | const ECGroup *group, int timing) |
| 420 | { |
| 421 | mp_err res = MP_OKAY; |
| 422 | mp_int precomp[4][4][2]; |
| 423 | mp_int rz; |
| 424 | const mp_int *a, *b; |
| 425 | int i, j; |
| 426 | int ai, bi, d; |
| 427 | |
| 428 | for (i = 0; i < 4; i++) { |
| 429 | for (j = 0; j < 4; j++) { |
| 430 | MP_DIGITS(&precomp[i][j][0]) = 0; |
| 431 | MP_DIGITS(&precomp[i][j][1]) = 0; |
| 432 | } |
| 433 | } |
| 434 | MP_DIGITS(&rz) = 0; |
| 435 | |
| 436 | ARGCHK(group != NULL, MP_BADARG); |
| 437 | ARGCHK(!((k1 == NULL) |
| 438 | && ((k2 == NULL) || (px == NULL) |
| 439 | || (py == NULL))), MP_BADARG); |
| 440 | |
| 441 | /* if some arguments are not defined used ECPoint_mul */ |
| 442 | if (k1 == NULL) { |
| 443 | return ECPoint_mul(group, k2, px, py, rx, ry, timing); |
| 444 | } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) { |
| 445 | return ECPoint_mul(group, k1, NULL, NULL, rx, ry, timing); |
| 446 | } |
| 447 | |
| 448 | /* initialize precomputation table */ |
| 449 | for (i = 0; i < 4; i++) { |
| 450 | for (j = 0; j < 4; j++) { |
| 451 | MP_CHECKOK(mp_init(&precomp[i][j][0], FLAG(k1))); |
| 452 | MP_CHECKOK(mp_init(&precomp[i][j][1], FLAG(k1))); |
| 453 | } |
| 454 | } |
| 455 | |
| 456 | /* fill precomputation table */ |
| 457 | /* assign {k1, k2} = {a, b} such that len(a) >= len(b) */ |
| 458 | if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) { |
| 459 | a = k2; |
| 460 | b = k1; |
| 461 | if (group->meth->field_enc) { |
| 462 | MP_CHECKOK(group->meth-> |
| 463 | field_enc(px, &precomp[1][0][0], group->meth)); |
| 464 | MP_CHECKOK(group->meth-> |
| 465 | field_enc(py, &precomp[1][0][1], group->meth)); |
| 466 | } else { |
| 467 | MP_CHECKOK(mp_copy(px, &precomp[1][0][0])); |
| 468 | MP_CHECKOK(mp_copy(py, &precomp[1][0][1])); |
| 469 | } |
| 470 | MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0])); |
| 471 | MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1])); |
| 472 | } else { |
| 473 | a = k1; |
| 474 | b = k2; |
| 475 | MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0])); |
| 476 | MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1])); |
| 477 | if (group->meth->field_enc) { |
| 478 | MP_CHECKOK(group->meth-> |
| 479 | field_enc(px, &precomp[0][1][0], group->meth)); |
| 480 | MP_CHECKOK(group->meth-> |
| 481 | field_enc(py, &precomp[0][1][1], group->meth)); |
| 482 | } else { |
| 483 | MP_CHECKOK(mp_copy(px, &precomp[0][1][0])); |
| 484 | MP_CHECKOK(mp_copy(py, &precomp[0][1][1])); |
| 485 | } |
| 486 | } |
| 487 | /* precompute [*][0][*] */ |
| 488 | mp_zero(&precomp[0][0][0]); |
| 489 | mp_zero(&precomp[0][0][1]); |
| 490 | MP_CHECKOK(group-> |
| 491 | point_dbl(&precomp[1][0][0], &precomp[1][0][1], |
| 492 | &precomp[2][0][0], &precomp[2][0][1], group)); |
| 493 | MP_CHECKOK(group-> |
| 494 | point_add(&precomp[1][0][0], &precomp[1][0][1], |
| 495 | &precomp[2][0][0], &precomp[2][0][1], |
| 496 | &precomp[3][0][0], &precomp[3][0][1], group)); |
| 497 | /* precompute [*][1][*] */ |
| 498 | for (i = 1; i < 4; i++) { |
| 499 | MP_CHECKOK(group-> |
| 500 | point_add(&precomp[0][1][0], &precomp[0][1][1], |
| 501 | &precomp[i][0][0], &precomp[i][0][1], |
| 502 | &precomp[i][1][0], &precomp[i][1][1], group)); |
| 503 | } |
| 504 | /* precompute [*][2][*] */ |
| 505 | MP_CHECKOK(group-> |
| 506 | point_dbl(&precomp[0][1][0], &precomp[0][1][1], |
| 507 | &precomp[0][2][0], &precomp[0][2][1], group)); |
| 508 | for (i = 1; i < 4; i++) { |
| 509 | MP_CHECKOK(group-> |
| 510 | point_add(&precomp[0][2][0], &precomp[0][2][1], |
| 511 | &precomp[i][0][0], &precomp[i][0][1], |
| 512 | &precomp[i][2][0], &precomp[i][2][1], group)); |
| 513 | } |
| 514 | /* precompute [*][3][*] */ |
| 515 | MP_CHECKOK(group-> |
| 516 | point_add(&precomp[0][1][0], &precomp[0][1][1], |
| 517 | &precomp[0][2][0], &precomp[0][2][1], |
| 518 | &precomp[0][3][0], &precomp[0][3][1], group)); |
| 519 | for (i = 1; i < 4; i++) { |
| 520 | MP_CHECKOK(group-> |
| 521 | point_add(&precomp[0][3][0], &precomp[0][3][1], |
| 522 | &precomp[i][0][0], &precomp[i][0][1], |
| 523 | &precomp[i][3][0], &precomp[i][3][1], group)); |
| 524 | } |
| 525 | |
| 526 | d = (mpl_significant_bits(a) + 1) / 2; |
| 527 | |
| 528 | /* R = inf */ |
| 529 | MP_CHECKOK(mp_init(&rz, FLAG(k1))); |
| 530 | MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz)); |
| 531 | |
| 532 | for (i = d - 1; i >= 0; i--) { |
| 533 | ai = MP_GET_BIT(a, 2 * i + 1); |
| 534 | ai <<= 1; |
| 535 | ai |= MP_GET_BIT(a, 2 * i); |
| 536 | bi = MP_GET_BIT(b, 2 * i + 1); |
| 537 | bi <<= 1; |
| 538 | bi |= MP_GET_BIT(b, 2 * i); |
| 539 | /* R = 2^2 * R */ |
| 540 | MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group)); |
| 541 | MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group)); |
| 542 | /* R = R + (ai * A + bi * B) */ |
| 543 | MP_CHECKOK(ec_GFp_pt_add_jac_aff |
| 544 | (rx, ry, &rz, &precomp[ai][bi][0], &precomp[ai][bi][1], |
| 545 | rx, ry, &rz, group)); |
| 546 | } |
| 547 | |
| 548 | MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group)); |
| 549 | |
| 550 | if (group->meth->field_dec) { |
| 551 | MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth)); |
| 552 | MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth)); |
| 553 | } |
| 554 | |
| 555 | CLEANUP: |
| 556 | mp_clear(&rz); |
| 557 | for (i = 0; i < 4; i++) { |
| 558 | for (j = 0; j < 4; j++) { |
| 559 | mp_clear(&precomp[i][j][0]); |
| 560 | mp_clear(&precomp[i][j][1]); |
| 561 | } |
| 562 | } |
| 563 | return res; |
| 564 | } |
| 565 | |