| 1 | /* |
| 2 | * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved. |
| 3 | * Use is subject to license terms. |
| 4 | * |
| 5 | * This library is free software; you can redistribute it and/or |
| 6 | * modify it under the terms of the GNU Lesser General Public |
| 7 | * License as published by the Free Software Foundation; either |
| 8 | * version 2.1 of the License, or (at your option) any later version. |
| 9 | * |
| 10 | * This library is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | * Lesser General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU Lesser General Public License |
| 16 | * along with this library; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | */ |
| 23 | |
| 24 | /* ********************************************************************* |
| 25 | * |
| 26 | * The Original Code is the elliptic curve math library for prime field curves. |
| 27 | * |
| 28 | * The Initial Developer of the Original Code is |
| 29 | * Sun Microsystems, Inc. |
| 30 | * Portions created by the Initial Developer are Copyright (C) 2003 |
| 31 | * the Initial Developer. All Rights Reserved. |
| 32 | * |
| 33 | * Contributor(s): |
| 34 | * Douglas Stebila <douglas@stebila.ca> |
| 35 | * |
| 36 | *********************************************************************** */ |
| 37 | |
| 38 | #include "ecp.h" |
| 39 | #include "mpi.h" |
| 40 | #include "mplogic.h" |
| 41 | #include "mpi-priv.h" |
| 42 | #ifndef _KERNEL |
| 43 | #include <stdlib.h> |
| 44 | #endif |
| 45 | |
| 46 | #define ECP521_DIGITS ECL_CURVE_DIGITS(521) |
| 47 | |
| 48 | /* Fast modular reduction for p521 = 2^521 - 1. a can be r. Uses |
| 49 | * algorithm 2.31 from Hankerson, Menezes, Vanstone. Guide to |
| 50 | * Elliptic Curve Cryptography. */ |
| 51 | mp_err |
| 52 | ec_GFp_nistp521_mod(const mp_int *a, mp_int *r, const GFMethod *meth) |
| 53 | { |
| 54 | mp_err res = MP_OKAY; |
| 55 | int a_bits = mpl_significant_bits(a); |
| 56 | unsigned int i; |
| 57 | |
| 58 | /* m1, m2 are statically-allocated mp_int of exactly the size we need */ |
| 59 | mp_int m1; |
| 60 | |
| 61 | mp_digit s1[ECP521_DIGITS] = { 0 }; |
| 62 | |
| 63 | MP_SIGN(&m1) = MP_ZPOS; |
| 64 | MP_ALLOC(&m1) = ECP521_DIGITS; |
| 65 | MP_USED(&m1) = ECP521_DIGITS; |
| 66 | MP_DIGITS(&m1) = s1; |
| 67 | |
| 68 | if (a_bits < 521) { |
| 69 | if (a==r) return MP_OKAY; |
| 70 | return mp_copy(a, r); |
| 71 | } |
| 72 | /* for polynomials larger than twice the field size or polynomials |
| 73 | * not using all words, use regular reduction */ |
| 74 | if (a_bits > (521*2)) { |
| 75 | MP_CHECKOK(mp_mod(a, &meth->irr, r)); |
| 76 | } else { |
| 77 | #define FIRST_DIGIT (ECP521_DIGITS-1) |
| 78 | for (i = FIRST_DIGIT; i < MP_USED(a)-1; i++) { |
| 79 | s1[i-FIRST_DIGIT] = (MP_DIGIT(a, i) >> 9) |
| 80 | | (MP_DIGIT(a, 1+i) << (MP_DIGIT_BIT-9)); |
| 81 | } |
| 82 | s1[i-FIRST_DIGIT] = MP_DIGIT(a, i) >> 9; |
| 83 | |
| 84 | if ( a != r ) { |
| 85 | MP_CHECKOK(s_mp_pad(r,ECP521_DIGITS)); |
| 86 | for (i = 0; i < ECP521_DIGITS; i++) { |
| 87 | MP_DIGIT(r,i) = MP_DIGIT(a, i); |
| 88 | } |
| 89 | } |
| 90 | MP_USED(r) = ECP521_DIGITS; |
| 91 | MP_DIGIT(r,FIRST_DIGIT) &= 0x1FF; |
| 92 | |
| 93 | MP_CHECKOK(s_mp_add(r, &m1)); |
| 94 | if (MP_DIGIT(r, FIRST_DIGIT) & 0x200) { |
| 95 | MP_CHECKOK(s_mp_add_d(r,1)); |
| 96 | MP_DIGIT(r,FIRST_DIGIT) &= 0x1FF; |
| 97 | } |
| 98 | s_mp_clamp(r); |
| 99 | } |
| 100 | |
| 101 | CLEANUP: |
| 102 | return res; |
| 103 | } |
| 104 | |
| 105 | /* Compute the square of polynomial a, reduce modulo p521. Store the |
| 106 | * result in r. r could be a. Uses optimized modular reduction for p521. |
| 107 | */ |
| 108 | mp_err |
| 109 | ec_GFp_nistp521_sqr(const mp_int *a, mp_int *r, const GFMethod *meth) |
| 110 | { |
| 111 | mp_err res = MP_OKAY; |
| 112 | |
| 113 | MP_CHECKOK(mp_sqr(a, r)); |
| 114 | MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth)); |
| 115 | CLEANUP: |
| 116 | return res; |
| 117 | } |
| 118 | |
| 119 | /* Compute the product of two polynomials a and b, reduce modulo p521. |
| 120 | * Store the result in r. r could be a or b; a could be b. Uses |
| 121 | * optimized modular reduction for p521. */ |
| 122 | mp_err |
| 123 | ec_GFp_nistp521_mul(const mp_int *a, const mp_int *b, mp_int *r, |
| 124 | const GFMethod *meth) |
| 125 | { |
| 126 | mp_err res = MP_OKAY; |
| 127 | |
| 128 | MP_CHECKOK(mp_mul(a, b, r)); |
| 129 | MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth)); |
| 130 | CLEANUP: |
| 131 | return res; |
| 132 | } |
| 133 | |
| 134 | /* Divides two field elements. If a is NULL, then returns the inverse of |
| 135 | * b. */ |
| 136 | mp_err |
| 137 | ec_GFp_nistp521_div(const mp_int *a, const mp_int *b, mp_int *r, |
| 138 | const GFMethod *meth) |
| 139 | { |
| 140 | mp_err res = MP_OKAY; |
| 141 | mp_int t; |
| 142 | |
| 143 | /* If a is NULL, then return the inverse of b, otherwise return a/b. */ |
| 144 | if (a == NULL) { |
| 145 | return mp_invmod(b, &meth->irr, r); |
| 146 | } else { |
| 147 | /* MPI doesn't support divmod, so we implement it using invmod and |
| 148 | * mulmod. */ |
| 149 | MP_CHECKOK(mp_init(&t, FLAG(b))); |
| 150 | MP_CHECKOK(mp_invmod(b, &meth->irr, &t)); |
| 151 | MP_CHECKOK(mp_mul(a, &t, r)); |
| 152 | MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth)); |
| 153 | CLEANUP: |
| 154 | mp_clear(&t); |
| 155 | return res; |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | /* Wire in fast field arithmetic and precomputation of base point for |
| 160 | * named curves. */ |
| 161 | mp_err |
| 162 | ec_group_set_gfp521(ECGroup *group, ECCurveName name) |
| 163 | { |
| 164 | if (name == ECCurve_NIST_P521) { |
| 165 | group->meth->field_mod = &ec_GFp_nistp521_mod; |
| 166 | group->meth->field_mul = &ec_GFp_nistp521_mul; |
| 167 | group->meth->field_sqr = &ec_GFp_nistp521_sqr; |
| 168 | group->meth->field_div = &ec_GFp_nistp521_div; |
| 169 | } |
| 170 | return MP_OKAY; |
| 171 | } |
| 172 | |