| 1 | /* |
| 2 | * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved. |
| 3 | * Use is subject to license terms. |
| 4 | * |
| 5 | * This library is free software; you can redistribute it and/or |
| 6 | * modify it under the terms of the GNU Lesser General Public |
| 7 | * License as published by the Free Software Foundation; either |
| 8 | * version 2.1 of the License, or (at your option) any later version. |
| 9 | * |
| 10 | * This library is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | * Lesser General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU Lesser General Public License |
| 16 | * along with this library; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | */ |
| 23 | |
| 24 | /* ********************************************************************* |
| 25 | * |
| 26 | * The Original Code is the elliptic curve math library for prime field curves. |
| 27 | * |
| 28 | * The Initial Developer of the Original Code is |
| 29 | * Sun Microsystems, Inc. |
| 30 | * Portions created by the Initial Developer are Copyright (C) 2003 |
| 31 | * the Initial Developer. All Rights Reserved. |
| 32 | * |
| 33 | * Contributor(s): |
| 34 | * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories |
| 35 | * |
| 36 | *********************************************************************** */ |
| 37 | |
| 38 | #include "ecp.h" |
| 39 | #include "mpi.h" |
| 40 | #include "mplogic.h" |
| 41 | #include "mpi-priv.h" |
| 42 | #ifndef _KERNEL |
| 43 | #include <stdlib.h> |
| 44 | #endif |
| 45 | |
| 46 | #define ECP192_DIGITS ECL_CURVE_DIGITS(192) |
| 47 | |
| 48 | /* Fast modular reduction for p192 = 2^192 - 2^64 - 1. a can be r. Uses |
| 49 | * algorithm 7 from Brown, Hankerson, Lopez, Menezes. Software |
| 50 | * Implementation of the NIST Elliptic Curves over Prime Fields. */ |
| 51 | mp_err |
| 52 | ec_GFp_nistp192_mod(const mp_int *a, mp_int *r, const GFMethod *meth) |
| 53 | { |
| 54 | mp_err res = MP_OKAY; |
| 55 | mp_size a_used = MP_USED(a); |
| 56 | mp_digit r3; |
| 57 | #ifndef MPI_AMD64_ADD |
| 58 | mp_digit carry; |
| 59 | #endif |
| 60 | #ifdef ECL_THIRTY_TWO_BIT |
| 61 | mp_digit a5a = 0, a5b = 0, a4a = 0, a4b = 0, a3a = 0, a3b = 0; |
| 62 | mp_digit r0a, r0b, r1a, r1b, r2a, r2b; |
| 63 | #else |
| 64 | mp_digit a5 = 0, a4 = 0, a3 = 0; |
| 65 | mp_digit r0, r1, r2; |
| 66 | #endif |
| 67 | |
| 68 | /* reduction not needed if a is not larger than field size */ |
| 69 | if (a_used < ECP192_DIGITS) { |
| 70 | if (a == r) { |
| 71 | return MP_OKAY; |
| 72 | } |
| 73 | return mp_copy(a, r); |
| 74 | } |
| 75 | |
| 76 | /* for polynomials larger than twice the field size, use regular |
| 77 | * reduction */ |
| 78 | if (a_used > ECP192_DIGITS*2) { |
| 79 | MP_CHECKOK(mp_mod(a, &meth->irr, r)); |
| 80 | } else { |
| 81 | /* copy out upper words of a */ |
| 82 | |
| 83 | #ifdef ECL_THIRTY_TWO_BIT |
| 84 | |
| 85 | /* in all the math below, |
| 86 | * nXb is most signifiant, nXa is least significant */ |
| 87 | switch (a_used) { |
| 88 | case 12: |
| 89 | a5b = MP_DIGIT(a, 11); |
| 90 | case 11: |
| 91 | a5a = MP_DIGIT(a, 10); |
| 92 | case 10: |
| 93 | a4b = MP_DIGIT(a, 9); |
| 94 | case 9: |
| 95 | a4a = MP_DIGIT(a, 8); |
| 96 | case 8: |
| 97 | a3b = MP_DIGIT(a, 7); |
| 98 | case 7: |
| 99 | a3a = MP_DIGIT(a, 6); |
| 100 | } |
| 101 | |
| 102 | |
| 103 | r2b= MP_DIGIT(a, 5); |
| 104 | r2a= MP_DIGIT(a, 4); |
| 105 | r1b = MP_DIGIT(a, 3); |
| 106 | r1a = MP_DIGIT(a, 2); |
| 107 | r0b = MP_DIGIT(a, 1); |
| 108 | r0a = MP_DIGIT(a, 0); |
| 109 | |
| 110 | /* implement r = (a2,a1,a0)+(a5,a5,a5)+(a4,a4,0)+(0,a3,a3) */ |
| 111 | MP_ADD_CARRY(r0a, a3a, r0a, 0, carry); |
| 112 | MP_ADD_CARRY(r0b, a3b, r0b, carry, carry); |
| 113 | MP_ADD_CARRY(r1a, a3a, r1a, carry, carry); |
| 114 | MP_ADD_CARRY(r1b, a3b, r1b, carry, carry); |
| 115 | MP_ADD_CARRY(r2a, a4a, r2a, carry, carry); |
| 116 | MP_ADD_CARRY(r2b, a4b, r2b, carry, carry); |
| 117 | r3 = carry; carry = 0; |
| 118 | MP_ADD_CARRY(r0a, a5a, r0a, 0, carry); |
| 119 | MP_ADD_CARRY(r0b, a5b, r0b, carry, carry); |
| 120 | MP_ADD_CARRY(r1a, a5a, r1a, carry, carry); |
| 121 | MP_ADD_CARRY(r1b, a5b, r1b, carry, carry); |
| 122 | MP_ADD_CARRY(r2a, a5a, r2a, carry, carry); |
| 123 | MP_ADD_CARRY(r2b, a5b, r2b, carry, carry); |
| 124 | r3 += carry; |
| 125 | MP_ADD_CARRY(r1a, a4a, r1a, 0, carry); |
| 126 | MP_ADD_CARRY(r1b, a4b, r1b, carry, carry); |
| 127 | MP_ADD_CARRY(r2a, 0, r2a, carry, carry); |
| 128 | MP_ADD_CARRY(r2b, 0, r2b, carry, carry); |
| 129 | r3 += carry; |
| 130 | |
| 131 | /* reduce out the carry */ |
| 132 | while (r3) { |
| 133 | MP_ADD_CARRY(r0a, r3, r0a, 0, carry); |
| 134 | MP_ADD_CARRY(r0b, 0, r0b, carry, carry); |
| 135 | MP_ADD_CARRY(r1a, r3, r1a, carry, carry); |
| 136 | MP_ADD_CARRY(r1b, 0, r1b, carry, carry); |
| 137 | MP_ADD_CARRY(r2a, 0, r2a, carry, carry); |
| 138 | MP_ADD_CARRY(r2b, 0, r2b, carry, carry); |
| 139 | r3 = carry; |
| 140 | } |
| 141 | |
| 142 | /* check for final reduction */ |
| 143 | /* |
| 144 | * our field is 0xffffffffffffffff, 0xfffffffffffffffe, |
| 145 | * 0xffffffffffffffff. That means we can only be over and need |
| 146 | * one more reduction |
| 147 | * if r2 == 0xffffffffffffffffff (same as r2+1 == 0) |
| 148 | * and |
| 149 | * r1 == 0xffffffffffffffffff or |
| 150 | * r1 == 0xfffffffffffffffffe and r0 = 0xfffffffffffffffff |
| 151 | * In all cases, we subtract the field (or add the 2's |
| 152 | * complement value (1,1,0)). (r0, r1, r2) |
| 153 | */ |
| 154 | if (((r2b == 0xffffffff) && (r2a == 0xffffffff) |
| 155 | && (r1b == 0xffffffff) ) && |
| 156 | ((r1a == 0xffffffff) || |
| 157 | (r1a == 0xfffffffe) && (r0a == 0xffffffff) && |
| 158 | (r0b == 0xffffffff)) ) { |
| 159 | /* do a quick subtract */ |
| 160 | MP_ADD_CARRY(r0a, 1, r0a, 0, carry); |
| 161 | r0b += carry; |
| 162 | r1a = r1b = r2a = r2b = 0; |
| 163 | } |
| 164 | |
| 165 | /* set the lower words of r */ |
| 166 | if (a != r) { |
| 167 | MP_CHECKOK(s_mp_pad(r, 6)); |
| 168 | } |
| 169 | MP_DIGIT(r, 5) = r2b; |
| 170 | MP_DIGIT(r, 4) = r2a; |
| 171 | MP_DIGIT(r, 3) = r1b; |
| 172 | MP_DIGIT(r, 2) = r1a; |
| 173 | MP_DIGIT(r, 1) = r0b; |
| 174 | MP_DIGIT(r, 0) = r0a; |
| 175 | MP_USED(r) = 6; |
| 176 | #else |
| 177 | switch (a_used) { |
| 178 | case 6: |
| 179 | a5 = MP_DIGIT(a, 5); |
| 180 | case 5: |
| 181 | a4 = MP_DIGIT(a, 4); |
| 182 | case 4: |
| 183 | a3 = MP_DIGIT(a, 3); |
| 184 | } |
| 185 | |
| 186 | r2 = MP_DIGIT(a, 2); |
| 187 | r1 = MP_DIGIT(a, 1); |
| 188 | r0 = MP_DIGIT(a, 0); |
| 189 | |
| 190 | /* implement r = (a2,a1,a0)+(a5,a5,a5)+(a4,a4,0)+(0,a3,a3) */ |
| 191 | #ifndef MPI_AMD64_ADD |
| 192 | MP_ADD_CARRY_ZERO(r0, a3, r0, carry); |
| 193 | MP_ADD_CARRY(r1, a3, r1, carry, carry); |
| 194 | MP_ADD_CARRY(r2, a4, r2, carry, carry); |
| 195 | r3 = carry; |
| 196 | MP_ADD_CARRY_ZERO(r0, a5, r0, carry); |
| 197 | MP_ADD_CARRY(r1, a5, r1, carry, carry); |
| 198 | MP_ADD_CARRY(r2, a5, r2, carry, carry); |
| 199 | r3 += carry; |
| 200 | MP_ADD_CARRY_ZERO(r1, a4, r1, carry); |
| 201 | MP_ADD_CARRY(r2, 0, r2, carry, carry); |
| 202 | r3 += carry; |
| 203 | |
| 204 | #else |
| 205 | r2 = MP_DIGIT(a, 2); |
| 206 | r1 = MP_DIGIT(a, 1); |
| 207 | r0 = MP_DIGIT(a, 0); |
| 208 | |
| 209 | /* set the lower words of r */ |
| 210 | __asm__ ( |
| 211 | "xorq %3,%3 \n\t" |
| 212 | "addq %4,%0 \n\t" |
| 213 | "adcq %4,%1 \n\t" |
| 214 | "adcq %5,%2 \n\t" |
| 215 | "adcq $0,%3 \n\t" |
| 216 | "addq %6,%0 \n\t" |
| 217 | "adcq %6,%1 \n\t" |
| 218 | "adcq %6,%2 \n\t" |
| 219 | "adcq $0,%3 \n\t" |
| 220 | "addq %5,%1 \n\t" |
| 221 | "adcq $0,%2 \n\t" |
| 222 | "adcq $0,%3 \n\t" |
| 223 | : "=r" (r0), "=r" (r1), "=r" (r2), "=r" (r3), "=r" (a3), |
| 224 | "=r" (a4), "=r" (a5) |
| 225 | : "0" (r0), "1" (r1), "2" (r2), "3" (r3), |
| 226 | "4" (a3), "5" (a4), "6" (a5) |
| 227 | : "%cc" ); |
| 228 | #endif |
| 229 | |
| 230 | /* reduce out the carry */ |
| 231 | while (r3) { |
| 232 | #ifndef MPI_AMD64_ADD |
| 233 | MP_ADD_CARRY_ZERO(r0, r3, r0, carry); |
| 234 | MP_ADD_CARRY(r1, r3, r1, carry, carry); |
| 235 | MP_ADD_CARRY(r2, 0, r2, carry, carry); |
| 236 | r3 = carry; |
| 237 | #else |
| 238 | a3=r3; |
| 239 | __asm__ ( |
| 240 | "xorq %3,%3 \n\t" |
| 241 | "addq %4,%0 \n\t" |
| 242 | "adcq %4,%1 \n\t" |
| 243 | "adcq $0,%2 \n\t" |
| 244 | "adcq $0,%3 \n\t" |
| 245 | : "=r" (r0), "=r" (r1), "=r" (r2), "=r" (r3), "=r" (a3) |
| 246 | : "0" (r0), "1" (r1), "2" (r2), "3" (r3), "4" (a3) |
| 247 | : "%cc" ); |
| 248 | #endif |
| 249 | } |
| 250 | |
| 251 | /* check for final reduction */ |
| 252 | /* |
| 253 | * our field is 0xffffffffffffffff, 0xfffffffffffffffe, |
| 254 | * 0xffffffffffffffff. That means we can only be over and need |
| 255 | * one more reduction |
| 256 | * if r2 == 0xffffffffffffffffff (same as r2+1 == 0) |
| 257 | * and |
| 258 | * r1 == 0xffffffffffffffffff or |
| 259 | * r1 == 0xfffffffffffffffffe and r0 = 0xfffffffffffffffff |
| 260 | * In all cases, we subtract the field (or add the 2's |
| 261 | * complement value (1,1,0)). (r0, r1, r2) |
| 262 | */ |
| 263 | if (r3 || ((r2 == MP_DIGIT_MAX) && |
| 264 | ((r1 == MP_DIGIT_MAX) || |
| 265 | ((r1 == (MP_DIGIT_MAX-1)) && (r0 == MP_DIGIT_MAX))))) { |
| 266 | /* do a quick subtract */ |
| 267 | r0++; |
| 268 | r1 = r2 = 0; |
| 269 | } |
| 270 | /* set the lower words of r */ |
| 271 | if (a != r) { |
| 272 | MP_CHECKOK(s_mp_pad(r, 3)); |
| 273 | } |
| 274 | MP_DIGIT(r, 2) = r2; |
| 275 | MP_DIGIT(r, 1) = r1; |
| 276 | MP_DIGIT(r, 0) = r0; |
| 277 | MP_USED(r) = 3; |
| 278 | #endif |
| 279 | } |
| 280 | |
| 281 | CLEANUP: |
| 282 | return res; |
| 283 | } |
| 284 | |
| 285 | #ifndef ECL_THIRTY_TWO_BIT |
| 286 | /* Compute the sum of 192 bit curves. Do the work in-line since the |
| 287 | * number of words are so small, we don't want to overhead of mp function |
| 288 | * calls. Uses optimized modular reduction for p192. |
| 289 | */ |
| 290 | mp_err |
| 291 | ec_GFp_nistp192_add(const mp_int *a, const mp_int *b, mp_int *r, |
| 292 | const GFMethod *meth) |
| 293 | { |
| 294 | mp_err res = MP_OKAY; |
| 295 | mp_digit a0 = 0, a1 = 0, a2 = 0; |
| 296 | mp_digit r0 = 0, r1 = 0, r2 = 0; |
| 297 | mp_digit carry; |
| 298 | |
| 299 | switch(MP_USED(a)) { |
| 300 | case 3: |
| 301 | a2 = MP_DIGIT(a,2); |
| 302 | case 2: |
| 303 | a1 = MP_DIGIT(a,1); |
| 304 | case 1: |
| 305 | a0 = MP_DIGIT(a,0); |
| 306 | } |
| 307 | switch(MP_USED(b)) { |
| 308 | case 3: |
| 309 | r2 = MP_DIGIT(b,2); |
| 310 | case 2: |
| 311 | r1 = MP_DIGIT(b,1); |
| 312 | case 1: |
| 313 | r0 = MP_DIGIT(b,0); |
| 314 | } |
| 315 | |
| 316 | #ifndef MPI_AMD64_ADD |
| 317 | MP_ADD_CARRY_ZERO(a0, r0, r0, carry); |
| 318 | MP_ADD_CARRY(a1, r1, r1, carry, carry); |
| 319 | MP_ADD_CARRY(a2, r2, r2, carry, carry); |
| 320 | #else |
| 321 | __asm__ ( |
| 322 | "xorq %3,%3 \n\t" |
| 323 | "addq %4,%0 \n\t" |
| 324 | "adcq %5,%1 \n\t" |
| 325 | "adcq %6,%2 \n\t" |
| 326 | "adcq $0,%3 \n\t" |
| 327 | : "=r" (r0), "=r" (r1), "=r" (r2), "=r" (carry) |
| 328 | : "r" (a0), "r" (a1), "r" (a2), "0" (r0), |
| 329 | "1" (r1), "2" (r2) |
| 330 | : "%cc" ); |
| 331 | #endif |
| 332 | |
| 333 | /* Do quick 'subract' if we've gone over |
| 334 | * (add the 2's complement of the curve field) */ |
| 335 | if (carry || ((r2 == MP_DIGIT_MAX) && |
| 336 | ((r1 == MP_DIGIT_MAX) || |
| 337 | ((r1 == (MP_DIGIT_MAX-1)) && (r0 == MP_DIGIT_MAX))))) { |
| 338 | #ifndef MPI_AMD64_ADD |
| 339 | MP_ADD_CARRY_ZERO(r0, 1, r0, carry); |
| 340 | MP_ADD_CARRY(r1, 1, r1, carry, carry); |
| 341 | MP_ADD_CARRY(r2, 0, r2, carry, carry); |
| 342 | #else |
| 343 | __asm__ ( |
| 344 | "addq $1,%0 \n\t" |
| 345 | "adcq $1,%1 \n\t" |
| 346 | "adcq $0,%2 \n\t" |
| 347 | : "=r" (r0), "=r" (r1), "=r" (r2) |
| 348 | : "0" (r0), "1" (r1), "2" (r2) |
| 349 | : "%cc" ); |
| 350 | #endif |
| 351 | } |
| 352 | |
| 353 | |
| 354 | MP_CHECKOK(s_mp_pad(r, 3)); |
| 355 | MP_DIGIT(r, 2) = r2; |
| 356 | MP_DIGIT(r, 1) = r1; |
| 357 | MP_DIGIT(r, 0) = r0; |
| 358 | MP_SIGN(r) = MP_ZPOS; |
| 359 | MP_USED(r) = 3; |
| 360 | s_mp_clamp(r); |
| 361 | |
| 362 | |
| 363 | CLEANUP: |
| 364 | return res; |
| 365 | } |
| 366 | |
| 367 | /* Compute the diff of 192 bit curves. Do the work in-line since the |
| 368 | * number of words are so small, we don't want to overhead of mp function |
| 369 | * calls. Uses optimized modular reduction for p192. |
| 370 | */ |
| 371 | mp_err |
| 372 | ec_GFp_nistp192_sub(const mp_int *a, const mp_int *b, mp_int *r, |
| 373 | const GFMethod *meth) |
| 374 | { |
| 375 | mp_err res = MP_OKAY; |
| 376 | mp_digit b0 = 0, b1 = 0, b2 = 0; |
| 377 | mp_digit r0 = 0, r1 = 0, r2 = 0; |
| 378 | mp_digit borrow; |
| 379 | |
| 380 | switch(MP_USED(a)) { |
| 381 | case 3: |
| 382 | r2 = MP_DIGIT(a,2); |
| 383 | case 2: |
| 384 | r1 = MP_DIGIT(a,1); |
| 385 | case 1: |
| 386 | r0 = MP_DIGIT(a,0); |
| 387 | } |
| 388 | |
| 389 | switch(MP_USED(b)) { |
| 390 | case 3: |
| 391 | b2 = MP_DIGIT(b,2); |
| 392 | case 2: |
| 393 | b1 = MP_DIGIT(b,1); |
| 394 | case 1: |
| 395 | b0 = MP_DIGIT(b,0); |
| 396 | } |
| 397 | |
| 398 | #ifndef MPI_AMD64_ADD |
| 399 | MP_SUB_BORROW(r0, b0, r0, 0, borrow); |
| 400 | MP_SUB_BORROW(r1, b1, r1, borrow, borrow); |
| 401 | MP_SUB_BORROW(r2, b2, r2, borrow, borrow); |
| 402 | #else |
| 403 | __asm__ ( |
| 404 | "xorq %3,%3 \n\t" |
| 405 | "subq %4,%0 \n\t" |
| 406 | "sbbq %5,%1 \n\t" |
| 407 | "sbbq %6,%2 \n\t" |
| 408 | "adcq $0,%3 \n\t" |
| 409 | : "=r" (r0), "=r" (r1), "=r" (r2), "=r" (borrow) |
| 410 | : "r" (b0), "r" (b1), "r" (b2), "0" (r0), |
| 411 | "1" (r1), "2" (r2) |
| 412 | : "%cc" ); |
| 413 | #endif |
| 414 | |
| 415 | /* Do quick 'add' if we've gone under 0 |
| 416 | * (subtract the 2's complement of the curve field) */ |
| 417 | if (borrow) { |
| 418 | #ifndef MPI_AMD64_ADD |
| 419 | MP_SUB_BORROW(r0, 1, r0, 0, borrow); |
| 420 | MP_SUB_BORROW(r1, 1, r1, borrow, borrow); |
| 421 | MP_SUB_BORROW(r2, 0, r2, borrow, borrow); |
| 422 | #else |
| 423 | __asm__ ( |
| 424 | "subq $1,%0 \n\t" |
| 425 | "sbbq $1,%1 \n\t" |
| 426 | "sbbq $0,%2 \n\t" |
| 427 | : "=r" (r0), "=r" (r1), "=r" (r2) |
| 428 | : "0" (r0), "1" (r1), "2" (r2) |
| 429 | : "%cc" ); |
| 430 | #endif |
| 431 | } |
| 432 | |
| 433 | MP_CHECKOK(s_mp_pad(r, 3)); |
| 434 | MP_DIGIT(r, 2) = r2; |
| 435 | MP_DIGIT(r, 1) = r1; |
| 436 | MP_DIGIT(r, 0) = r0; |
| 437 | MP_SIGN(r) = MP_ZPOS; |
| 438 | MP_USED(r) = 3; |
| 439 | s_mp_clamp(r); |
| 440 | |
| 441 | CLEANUP: |
| 442 | return res; |
| 443 | } |
| 444 | |
| 445 | #endif |
| 446 | |
| 447 | /* Compute the square of polynomial a, reduce modulo p192. Store the |
| 448 | * result in r. r could be a. Uses optimized modular reduction for p192. |
| 449 | */ |
| 450 | mp_err |
| 451 | ec_GFp_nistp192_sqr(const mp_int *a, mp_int *r, const GFMethod *meth) |
| 452 | { |
| 453 | mp_err res = MP_OKAY; |
| 454 | |
| 455 | MP_CHECKOK(mp_sqr(a, r)); |
| 456 | MP_CHECKOK(ec_GFp_nistp192_mod(r, r, meth)); |
| 457 | CLEANUP: |
| 458 | return res; |
| 459 | } |
| 460 | |
| 461 | /* Compute the product of two polynomials a and b, reduce modulo p192. |
| 462 | * Store the result in r. r could be a or b; a could be b. Uses |
| 463 | * optimized modular reduction for p192. */ |
| 464 | mp_err |
| 465 | ec_GFp_nistp192_mul(const mp_int *a, const mp_int *b, mp_int *r, |
| 466 | const GFMethod *meth) |
| 467 | { |
| 468 | mp_err res = MP_OKAY; |
| 469 | |
| 470 | MP_CHECKOK(mp_mul(a, b, r)); |
| 471 | MP_CHECKOK(ec_GFp_nistp192_mod(r, r, meth)); |
| 472 | CLEANUP: |
| 473 | return res; |
| 474 | } |
| 475 | |
| 476 | /* Divides two field elements. If a is NULL, then returns the inverse of |
| 477 | * b. */ |
| 478 | mp_err |
| 479 | ec_GFp_nistp192_div(const mp_int *a, const mp_int *b, mp_int *r, |
| 480 | const GFMethod *meth) |
| 481 | { |
| 482 | mp_err res = MP_OKAY; |
| 483 | mp_int t; |
| 484 | |
| 485 | /* If a is NULL, then return the inverse of b, otherwise return a/b. */ |
| 486 | if (a == NULL) { |
| 487 | return mp_invmod(b, &meth->irr, r); |
| 488 | } else { |
| 489 | /* MPI doesn't support divmod, so we implement it using invmod and |
| 490 | * mulmod. */ |
| 491 | MP_CHECKOK(mp_init(&t, FLAG(b))); |
| 492 | MP_CHECKOK(mp_invmod(b, &meth->irr, &t)); |
| 493 | MP_CHECKOK(mp_mul(a, &t, r)); |
| 494 | MP_CHECKOK(ec_GFp_nistp192_mod(r, r, meth)); |
| 495 | CLEANUP: |
| 496 | mp_clear(&t); |
| 497 | return res; |
| 498 | } |
| 499 | } |
| 500 | |
| 501 | /* Wire in fast field arithmetic and precomputation of base point for |
| 502 | * named curves. */ |
| 503 | mp_err |
| 504 | ec_group_set_gfp192(ECGroup *group, ECCurveName name) |
| 505 | { |
| 506 | if (name == ECCurve_NIST_P192) { |
| 507 | group->meth->field_mod = &ec_GFp_nistp192_mod; |
| 508 | group->meth->field_mul = &ec_GFp_nistp192_mul; |
| 509 | group->meth->field_sqr = &ec_GFp_nistp192_sqr; |
| 510 | group->meth->field_div = &ec_GFp_nistp192_div; |
| 511 | #ifndef ECL_THIRTY_TWO_BIT |
| 512 | group->meth->field_add = &ec_GFp_nistp192_add; |
| 513 | group->meth->field_sub = &ec_GFp_nistp192_sub; |
| 514 | #endif |
| 515 | } |
| 516 | return MP_OKAY; |
| 517 | } |
| 518 | |