| 1 | /* |
| 2 | * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved. |
| 3 | * Use is subject to license terms. |
| 4 | * |
| 5 | * This library is free software; you can redistribute it and/or |
| 6 | * modify it under the terms of the GNU Lesser General Public |
| 7 | * License as published by the Free Software Foundation; either |
| 8 | * version 2.1 of the License, or (at your option) any later version. |
| 9 | * |
| 10 | * This library is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | * Lesser General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU Lesser General Public License |
| 16 | * along with this library; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | */ |
| 23 | |
| 24 | /* ********************************************************************* |
| 25 | * |
| 26 | * The Original Code is the elliptic curve math library for binary polynomial field curves. |
| 27 | * |
| 28 | * The Initial Developer of the Original Code is |
| 29 | * Sun Microsystems, Inc. |
| 30 | * Portions created by the Initial Developer are Copyright (C) 2003 |
| 31 | * the Initial Developer. All Rights Reserved. |
| 32 | * |
| 33 | * Contributor(s): |
| 34 | * Sheueling Chang-Shantz <sheueling.chang@sun.com>, |
| 35 | * Stephen Fung <fungstep@hotmail.com>, and |
| 36 | * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories. |
| 37 | * |
| 38 | *********************************************************************** */ |
| 39 | |
| 40 | #include "ec2.h" |
| 41 | #include "mp_gf2m.h" |
| 42 | #include "mp_gf2m-priv.h" |
| 43 | #include "mpi.h" |
| 44 | #include "mpi-priv.h" |
| 45 | #ifndef _KERNEL |
| 46 | #include <stdlib.h> |
| 47 | #endif |
| 48 | |
| 49 | /* Fast reduction for polynomials over a 233-bit curve. Assumes reduction |
| 50 | * polynomial with terms {233, 74, 0}. */ |
| 51 | mp_err |
| 52 | ec_GF2m_233_mod(const mp_int *a, mp_int *r, const GFMethod *meth) |
| 53 | { |
| 54 | mp_err res = MP_OKAY; |
| 55 | mp_digit *u, z; |
| 56 | |
| 57 | if (a != r) { |
| 58 | MP_CHECKOK(mp_copy(a, r)); |
| 59 | } |
| 60 | #ifdef ECL_SIXTY_FOUR_BIT |
| 61 | if (MP_USED(r) < 8) { |
| 62 | MP_CHECKOK(s_mp_pad(r, 8)); |
| 63 | } |
| 64 | u = MP_DIGITS(r); |
| 65 | MP_USED(r) = 8; |
| 66 | |
| 67 | /* u[7] only has 18 significant bits */ |
| 68 | z = u[7]; |
| 69 | u[4] ^= (z << 33) ^ (z >> 41); |
| 70 | u[3] ^= (z << 23); |
| 71 | z = u[6]; |
| 72 | u[4] ^= (z >> 31); |
| 73 | u[3] ^= (z << 33) ^ (z >> 41); |
| 74 | u[2] ^= (z << 23); |
| 75 | z = u[5]; |
| 76 | u[3] ^= (z >> 31); |
| 77 | u[2] ^= (z << 33) ^ (z >> 41); |
| 78 | u[1] ^= (z << 23); |
| 79 | z = u[4]; |
| 80 | u[2] ^= (z >> 31); |
| 81 | u[1] ^= (z << 33) ^ (z >> 41); |
| 82 | u[0] ^= (z << 23); |
| 83 | z = u[3] >> 41; /* z only has 23 significant bits */ |
| 84 | u[1] ^= (z << 10); |
| 85 | u[0] ^= z; |
| 86 | /* clear bits above 233 */ |
| 87 | u[7] = u[6] = u[5] = u[4] = 0; |
| 88 | u[3] ^= z << 41; |
| 89 | #else |
| 90 | if (MP_USED(r) < 15) { |
| 91 | MP_CHECKOK(s_mp_pad(r, 15)); |
| 92 | } |
| 93 | u = MP_DIGITS(r); |
| 94 | MP_USED(r) = 15; |
| 95 | |
| 96 | /* u[14] only has 18 significant bits */ |
| 97 | z = u[14]; |
| 98 | u[9] ^= (z << 1); |
| 99 | u[7] ^= (z >> 9); |
| 100 | u[6] ^= (z << 23); |
| 101 | z = u[13]; |
| 102 | u[9] ^= (z >> 31); |
| 103 | u[8] ^= (z << 1); |
| 104 | u[6] ^= (z >> 9); |
| 105 | u[5] ^= (z << 23); |
| 106 | z = u[12]; |
| 107 | u[8] ^= (z >> 31); |
| 108 | u[7] ^= (z << 1); |
| 109 | u[5] ^= (z >> 9); |
| 110 | u[4] ^= (z << 23); |
| 111 | z = u[11]; |
| 112 | u[7] ^= (z >> 31); |
| 113 | u[6] ^= (z << 1); |
| 114 | u[4] ^= (z >> 9); |
| 115 | u[3] ^= (z << 23); |
| 116 | z = u[10]; |
| 117 | u[6] ^= (z >> 31); |
| 118 | u[5] ^= (z << 1); |
| 119 | u[3] ^= (z >> 9); |
| 120 | u[2] ^= (z << 23); |
| 121 | z = u[9]; |
| 122 | u[5] ^= (z >> 31); |
| 123 | u[4] ^= (z << 1); |
| 124 | u[2] ^= (z >> 9); |
| 125 | u[1] ^= (z << 23); |
| 126 | z = u[8]; |
| 127 | u[4] ^= (z >> 31); |
| 128 | u[3] ^= (z << 1); |
| 129 | u[1] ^= (z >> 9); |
| 130 | u[0] ^= (z << 23); |
| 131 | z = u[7] >> 9; /* z only has 23 significant bits */ |
| 132 | u[3] ^= (z >> 22); |
| 133 | u[2] ^= (z << 10); |
| 134 | u[0] ^= z; |
| 135 | /* clear bits above 233 */ |
| 136 | u[14] = u[13] = u[12] = u[11] = u[10] = u[9] = u[8] = 0; |
| 137 | u[7] ^= z << 9; |
| 138 | #endif |
| 139 | s_mp_clamp(r); |
| 140 | |
| 141 | CLEANUP: |
| 142 | return res; |
| 143 | } |
| 144 | |
| 145 | /* Fast squaring for polynomials over a 233-bit curve. Assumes reduction |
| 146 | * polynomial with terms {233, 74, 0}. */ |
| 147 | mp_err |
| 148 | ec_GF2m_233_sqr(const mp_int *a, mp_int *r, const GFMethod *meth) |
| 149 | { |
| 150 | mp_err res = MP_OKAY; |
| 151 | mp_digit *u, *v; |
| 152 | |
| 153 | v = MP_DIGITS(a); |
| 154 | |
| 155 | #ifdef ECL_SIXTY_FOUR_BIT |
| 156 | if (MP_USED(a) < 4) { |
| 157 | return mp_bsqrmod(a, meth->irr_arr, r); |
| 158 | } |
| 159 | if (MP_USED(r) < 8) { |
| 160 | MP_CHECKOK(s_mp_pad(r, 8)); |
| 161 | } |
| 162 | MP_USED(r) = 8; |
| 163 | #else |
| 164 | if (MP_USED(a) < 8) { |
| 165 | return mp_bsqrmod(a, meth->irr_arr, r); |
| 166 | } |
| 167 | if (MP_USED(r) < 15) { |
| 168 | MP_CHECKOK(s_mp_pad(r, 15)); |
| 169 | } |
| 170 | MP_USED(r) = 15; |
| 171 | #endif |
| 172 | u = MP_DIGITS(r); |
| 173 | |
| 174 | #ifdef ECL_THIRTY_TWO_BIT |
| 175 | u[14] = gf2m_SQR0(v[7]); |
| 176 | u[13] = gf2m_SQR1(v[6]); |
| 177 | u[12] = gf2m_SQR0(v[6]); |
| 178 | u[11] = gf2m_SQR1(v[5]); |
| 179 | u[10] = gf2m_SQR0(v[5]); |
| 180 | u[9] = gf2m_SQR1(v[4]); |
| 181 | u[8] = gf2m_SQR0(v[4]); |
| 182 | #endif |
| 183 | u[7] = gf2m_SQR1(v[3]); |
| 184 | u[6] = gf2m_SQR0(v[3]); |
| 185 | u[5] = gf2m_SQR1(v[2]); |
| 186 | u[4] = gf2m_SQR0(v[2]); |
| 187 | u[3] = gf2m_SQR1(v[1]); |
| 188 | u[2] = gf2m_SQR0(v[1]); |
| 189 | u[1] = gf2m_SQR1(v[0]); |
| 190 | u[0] = gf2m_SQR0(v[0]); |
| 191 | return ec_GF2m_233_mod(r, r, meth); |
| 192 | |
| 193 | CLEANUP: |
| 194 | return res; |
| 195 | } |
| 196 | |
| 197 | /* Fast multiplication for polynomials over a 233-bit curve. Assumes |
| 198 | * reduction polynomial with terms {233, 74, 0}. */ |
| 199 | mp_err |
| 200 | ec_GF2m_233_mul(const mp_int *a, const mp_int *b, mp_int *r, |
| 201 | const GFMethod *meth) |
| 202 | { |
| 203 | mp_err res = MP_OKAY; |
| 204 | mp_digit a3 = 0, a2 = 0, a1 = 0, a0, b3 = 0, b2 = 0, b1 = 0, b0; |
| 205 | |
| 206 | #ifdef ECL_THIRTY_TWO_BIT |
| 207 | mp_digit a7 = 0, a6 = 0, a5 = 0, a4 = 0, b7 = 0, b6 = 0, b5 = 0, b4 = |
| 208 | 0; |
| 209 | mp_digit rm[8]; |
| 210 | #endif |
| 211 | |
| 212 | if (a == b) { |
| 213 | return ec_GF2m_233_sqr(a, r, meth); |
| 214 | } else { |
| 215 | switch (MP_USED(a)) { |
| 216 | #ifdef ECL_THIRTY_TWO_BIT |
| 217 | case 8: |
| 218 | a7 = MP_DIGIT(a, 7); |
| 219 | case 7: |
| 220 | a6 = MP_DIGIT(a, 6); |
| 221 | case 6: |
| 222 | a5 = MP_DIGIT(a, 5); |
| 223 | case 5: |
| 224 | a4 = MP_DIGIT(a, 4); |
| 225 | #endif |
| 226 | case 4: |
| 227 | a3 = MP_DIGIT(a, 3); |
| 228 | case 3: |
| 229 | a2 = MP_DIGIT(a, 2); |
| 230 | case 2: |
| 231 | a1 = MP_DIGIT(a, 1); |
| 232 | default: |
| 233 | a0 = MP_DIGIT(a, 0); |
| 234 | } |
| 235 | switch (MP_USED(b)) { |
| 236 | #ifdef ECL_THIRTY_TWO_BIT |
| 237 | case 8: |
| 238 | b7 = MP_DIGIT(b, 7); |
| 239 | case 7: |
| 240 | b6 = MP_DIGIT(b, 6); |
| 241 | case 6: |
| 242 | b5 = MP_DIGIT(b, 5); |
| 243 | case 5: |
| 244 | b4 = MP_DIGIT(b, 4); |
| 245 | #endif |
| 246 | case 4: |
| 247 | b3 = MP_DIGIT(b, 3); |
| 248 | case 3: |
| 249 | b2 = MP_DIGIT(b, 2); |
| 250 | case 2: |
| 251 | b1 = MP_DIGIT(b, 1); |
| 252 | default: |
| 253 | b0 = MP_DIGIT(b, 0); |
| 254 | } |
| 255 | #ifdef ECL_SIXTY_FOUR_BIT |
| 256 | MP_CHECKOK(s_mp_pad(r, 8)); |
| 257 | s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0); |
| 258 | MP_USED(r) = 8; |
| 259 | s_mp_clamp(r); |
| 260 | #else |
| 261 | MP_CHECKOK(s_mp_pad(r, 16)); |
| 262 | s_bmul_4x4(MP_DIGITS(r) + 8, a7, a6, a5, a4, b7, b6, b5, b4); |
| 263 | s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0); |
| 264 | s_bmul_4x4(rm, a7 ^ a3, a6 ^ a2, a5 ^ a1, a4 ^ a0, b7 ^ b3, |
| 265 | b6 ^ b2, b5 ^ b1, b4 ^ b0); |
| 266 | rm[7] ^= MP_DIGIT(r, 7) ^ MP_DIGIT(r, 15); |
| 267 | rm[6] ^= MP_DIGIT(r, 6) ^ MP_DIGIT(r, 14); |
| 268 | rm[5] ^= MP_DIGIT(r, 5) ^ MP_DIGIT(r, 13); |
| 269 | rm[4] ^= MP_DIGIT(r, 4) ^ MP_DIGIT(r, 12); |
| 270 | rm[3] ^= MP_DIGIT(r, 3) ^ MP_DIGIT(r, 11); |
| 271 | rm[2] ^= MP_DIGIT(r, 2) ^ MP_DIGIT(r, 10); |
| 272 | rm[1] ^= MP_DIGIT(r, 1) ^ MP_DIGIT(r, 9); |
| 273 | rm[0] ^= MP_DIGIT(r, 0) ^ MP_DIGIT(r, 8); |
| 274 | MP_DIGIT(r, 11) ^= rm[7]; |
| 275 | MP_DIGIT(r, 10) ^= rm[6]; |
| 276 | MP_DIGIT(r, 9) ^= rm[5]; |
| 277 | MP_DIGIT(r, 8) ^= rm[4]; |
| 278 | MP_DIGIT(r, 7) ^= rm[3]; |
| 279 | MP_DIGIT(r, 6) ^= rm[2]; |
| 280 | MP_DIGIT(r, 5) ^= rm[1]; |
| 281 | MP_DIGIT(r, 4) ^= rm[0]; |
| 282 | MP_USED(r) = 16; |
| 283 | s_mp_clamp(r); |
| 284 | #endif |
| 285 | return ec_GF2m_233_mod(r, r, meth); |
| 286 | } |
| 287 | |
| 288 | CLEANUP: |
| 289 | return res; |
| 290 | } |
| 291 | |
| 292 | /* Wire in fast field arithmetic for 233-bit curves. */ |
| 293 | mp_err |
| 294 | ec_group_set_gf2m233(ECGroup *group, ECCurveName name) |
| 295 | { |
| 296 | group->meth->field_mod = &ec_GF2m_233_mod; |
| 297 | group->meth->field_mul = &ec_GF2m_233_mul; |
| 298 | group->meth->field_sqr = &ec_GF2m_233_sqr; |
| 299 | return MP_OKAY; |
| 300 | } |
| 301 | |