1/*
2 * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
3 * Use is subject to license terms.
4 *
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2.1 of the License, or (at your option) any later version.
9 *
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
14 *
15 * You should have received a copy of the GNU Lesser General Public License
16 * along with this library; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 */
23
24/* *********************************************************************
25 *
26 * The Original Code is the elliptic curve math library for binary polynomial field curves.
27 *
28 * The Initial Developer of the Original Code is
29 * Sun Microsystems, Inc.
30 * Portions created by the Initial Developer are Copyright (C) 2003
31 * the Initial Developer. All Rights Reserved.
32 *
33 * Contributor(s):
34 * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
35 *
36 * Last Modified Date from the Original Code: May 2017
37 *********************************************************************** */
38
39#ifndef _EC2_H
40#define _EC2_H
41
42#include "ecl-priv.h"
43
44/* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
45mp_err ec_GF2m_pt_is_inf_aff(const mp_int *px, const mp_int *py);
46
47/* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
48mp_err ec_GF2m_pt_set_inf_aff(mp_int *px, mp_int *py);
49
50/* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx,
51 * qy). Uses affine coordinates. */
52mp_err ec_GF2m_pt_add_aff(const mp_int *px, const mp_int *py,
53 const mp_int *qx, const mp_int *qy, mp_int *rx,
54 mp_int *ry, const ECGroup *group);
55
56/* Computes R = P - Q. Uses affine coordinates. */
57mp_err ec_GF2m_pt_sub_aff(const mp_int *px, const mp_int *py,
58 const mp_int *qx, const mp_int *qy, mp_int *rx,
59 mp_int *ry, const ECGroup *group);
60
61/* Computes R = 2P. Uses affine coordinates. */
62mp_err ec_GF2m_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
63 mp_int *ry, const ECGroup *group);
64
65/* Validates a point on a GF2m curve. */
66mp_err ec_GF2m_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group);
67
68/* by default, this routine is unused and thus doesn't need to be compiled */
69#ifdef ECL_ENABLE_GF2M_PT_MUL_AFF
70/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
71 * a, b and p are the elliptic curve coefficients and the irreducible that
72 * determines the field GF2m. Uses affine coordinates. */
73mp_err ec_GF2m_pt_mul_aff(const mp_int *n, const mp_int *px,
74 const mp_int *py, mp_int *rx, mp_int *ry,
75 const ECGroup *group);
76#endif
77
78/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
79 * a, b and p are the elliptic curve coefficients and the irreducible that
80 * determines the field GF2m. Uses Montgomery projective coordinates. */
81mp_err ec_GF2m_pt_mul_mont(const mp_int *n, const mp_int *px,
82 const mp_int *py, mp_int *rx, mp_int *ry,
83 const ECGroup *group, int timing);
84
85#ifdef ECL_ENABLE_GF2M_PROJ
86/* Converts a point P(px, py) from affine coordinates to projective
87 * coordinates R(rx, ry, rz). */
88mp_err ec_GF2m_pt_aff2proj(const mp_int *px, const mp_int *py, mp_int *rx,
89 mp_int *ry, mp_int *rz, const ECGroup *group);
90
91/* Converts a point P(px, py, pz) from projective coordinates to affine
92 * coordinates R(rx, ry). */
93mp_err ec_GF2m_pt_proj2aff(const mp_int *px, const mp_int *py,
94 const mp_int *pz, mp_int *rx, mp_int *ry,
95 const ECGroup *group);
96
97/* Checks if point P(px, py, pz) is at infinity. Uses projective
98 * coordinates. */
99mp_err ec_GF2m_pt_is_inf_proj(const mp_int *px, const mp_int *py,
100 const mp_int *pz);
101
102/* Sets P(px, py, pz) to be the point at infinity. Uses projective
103 * coordinates. */
104mp_err ec_GF2m_pt_set_inf_proj(mp_int *px, mp_int *py, mp_int *pz);
105
106/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
107 * (qx, qy, qz). Uses projective coordinates. */
108mp_err ec_GF2m_pt_add_proj(const mp_int *px, const mp_int *py,
109 const mp_int *pz, const mp_int *qx,
110 const mp_int *qy, mp_int *rx, mp_int *ry,
111 mp_int *rz, const ECGroup *group);
112
113/* Computes R = 2P. Uses projective coordinates. */
114mp_err ec_GF2m_pt_dbl_proj(const mp_int *px, const mp_int *py,
115 const mp_int *pz, mp_int *rx, mp_int *ry,
116 mp_int *rz, const ECGroup *group);
117
118/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
119 * a, b and p are the elliptic curve coefficients and the prime that
120 * determines the field GF2m. Uses projective coordinates. */
121mp_err ec_GF2m_pt_mul_proj(const mp_int *n, const mp_int *px,
122 const mp_int *py, mp_int *rx, mp_int *ry,
123 const ECGroup *group);
124#endif
125
126#endif /* _EC2_H */
127