| 1 | /*************************************************************************** |
| 2 | * Copyright (c) Johan Mabille, Sylvain Corlay, Wolf Vollprecht and * |
| 3 | * Martin Renou * |
| 4 | * Copyright (c) QuantStack * |
| 5 | * Copyright (c) Serge Guelton * |
| 6 | * * |
| 7 | * Distributed under the terms of the BSD 3-Clause License. * |
| 8 | * * |
| 9 | * The full license is in the file LICENSE, distributed with this software. * |
| 10 | ****************************************************************************/ |
| 11 | |
| 12 | #include <cmath> |
| 13 | #include <cstdint> |
| 14 | #include <cstring> |
| 15 | |
| 16 | namespace xsimd |
| 17 | { |
| 18 | namespace detail |
| 19 | { |
| 20 | |
| 21 | /* origin: boost/simd/arch/common/scalar/function/rem_pio2.hpp */ |
| 22 | /* |
| 23 | * ==================================================== |
| 24 | * copyright 2016 NumScale SAS |
| 25 | * |
| 26 | * Distributed under the Boost Software License, Version 1.0. |
| 27 | * (See copy at http://boost.org/LICENSE_1_0.txt) |
| 28 | * ==================================================== |
| 29 | */ |
| 30 | #if defined(_MSC_VER) |
| 31 | #define ONCE0 \ |
| 32 | __pragma(warning(push)) \ |
| 33 | __pragma(warning(disable : 4127)) while (0) \ |
| 34 | __pragma(warning(pop)) /**/ |
| 35 | #else |
| 36 | #define ONCE0 while (0) |
| 37 | #endif |
| 38 | |
| 39 | /* |
| 40 | * ==================================================== |
| 41 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 42 | * |
| 43 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 44 | * Permission to use, copy, modify, and distribute this |
| 45 | * software is freely granted, provided that this notice |
| 46 | * is preserved. |
| 47 | * ==================================================== |
| 48 | */ |
| 49 | |
| 50 | #if defined(__GNUC__) && defined(__BYTE_ORDER__) |
| 51 | #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ |
| 52 | #define XSIMD_LITTLE_ENDIAN |
| 53 | #endif |
| 54 | #elif defined(_WIN32) |
| 55 | // We can safely assume that Windows is always little endian |
| 56 | #define XSIMD_LITTLE_ENDIAN |
| 57 | #elif defined(i386) || defined(i486) || defined(intel) || defined(x86) || defined(i86pc) || defined(__alpha) || defined(__osf__) |
| 58 | #define XSIMD_LITTLE_ENDIAN |
| 59 | #endif |
| 60 | |
| 61 | #ifdef XSIMD_LITTLE_ENDIAN |
| 62 | #define LOW_WORD_IDX 0 |
| 63 | #define HIGH_WORD_IDX sizeof(std::uint32_t) |
| 64 | #else |
| 65 | #define LOW_WORD_IDX sizeof(std::uint32_t) |
| 66 | #define HIGH_WORD_IDX 0 |
| 67 | #endif |
| 68 | |
| 69 | #define GET_HIGH_WORD(i, d) \ |
| 70 | do \ |
| 71 | { \ |
| 72 | double f = (d); \ |
| 73 | std::memcpy(&(i), reinterpret_cast<char*>(&f) + HIGH_WORD_IDX, \ |
| 74 | sizeof(std::uint32_t)); \ |
| 75 | } \ |
| 76 | ONCE0 \ |
| 77 | /**/ |
| 78 | |
| 79 | #define GET_LOW_WORD(i, d) \ |
| 80 | do \ |
| 81 | { \ |
| 82 | double f = (d); \ |
| 83 | std::memcpy(&(i), reinterpret_cast<char*>(&f) + LOW_WORD_IDX, \ |
| 84 | sizeof(std::uint32_t)); \ |
| 85 | } \ |
| 86 | ONCE0 \ |
| 87 | /**/ |
| 88 | |
| 89 | #define SET_HIGH_WORD(d, v) \ |
| 90 | do \ |
| 91 | { \ |
| 92 | double f = (d); \ |
| 93 | std::uint32_t value = (v); \ |
| 94 | std::memcpy(reinterpret_cast<char*>(&f) + HIGH_WORD_IDX, \ |
| 95 | &value, sizeof(std::uint32_t)); \ |
| 96 | (d) = f; \ |
| 97 | } \ |
| 98 | ONCE0 \ |
| 99 | /**/ |
| 100 | |
| 101 | #define SET_LOW_WORD(d, v) \ |
| 102 | do \ |
| 103 | { \ |
| 104 | double f = (d); \ |
| 105 | std::uint32_t value = (v); \ |
| 106 | std::memcpy(reinterpret_cast<char*>(&f) + LOW_WORD_IDX, \ |
| 107 | &value, sizeof(std::uint32_t)); \ |
| 108 | (d) = f; \ |
| 109 | } \ |
| 110 | ONCE0 \ |
| 111 | /**/ |
| 112 | |
| 113 | /* |
| 114 | * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) |
| 115 | * double x[],y[]; int e0,nx,prec; int ipio2[]; |
| 116 | * |
| 117 | * __kernel_rem_pio2 return the last three digits of N with |
| 118 | * y = x - N*pi/2 |
| 119 | * so that |y| < pi/2. |
| 120 | * |
| 121 | * The method is to compute the integer (mod 8) and fraction parts of |
| 122 | * (2/pi)*x without doing the full multiplication. In general we |
| 123 | * skip the part of the product that are known to be a huge integer ( |
| 124 | * more accurately, = 0 mod 8 ). Thus the number of operations are |
| 125 | * independent of the exponent of the input. |
| 126 | * |
| 127 | * (2/pi) is represented by an array of 24-bit integers in ipio2[]. |
| 128 | * |
| 129 | * Input parameters: |
| 130 | * x[] The input value (must be positive) is broken into nx |
| 131 | * pieces of 24-bit integers in double precision format. |
| 132 | * x[i] will be the i-th 24 bit of x. The scaled exponent |
| 133 | * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 |
| 134 | * match x's up to 24 bits. |
| 135 | * |
| 136 | * Example of breaking a double positive z into x[0]+x[1]+x[2]: |
| 137 | * e0 = ilogb(z)-23 |
| 138 | * z = scalbn(z,-e0) |
| 139 | * for i = 0,1,2 |
| 140 | * x[i] = floor(z) |
| 141 | * z = (z-x[i])*2**24 |
| 142 | * |
| 143 | * |
| 144 | * y[] ouput result in an array of double precision numbers. |
| 145 | * The dimension of y[] is: |
| 146 | * 24-bit precision 1 |
| 147 | * 53-bit precision 2 |
| 148 | * 64-bit precision 2 |
| 149 | * 113-bit precision 3 |
| 150 | * The actual value is the sum of them. Thus for 113-bit |
| 151 | * precison, one may have to do something like: |
| 152 | * |
| 153 | * long double t,w,r_head, r_tail; |
| 154 | * t = (long double)y[2] + (long double)y[1]; |
| 155 | * w = (long double)y[0]; |
| 156 | * r_head = t+w; |
| 157 | * r_tail = w - (r_head - t); |
| 158 | * |
| 159 | * e0 The exponent of x[0] |
| 160 | * |
| 161 | * nx dimension of x[] |
| 162 | * |
| 163 | * prec an integer indicating the precision: |
| 164 | * 0 24 bits (single) |
| 165 | * 1 53 bits (double) |
| 166 | * 2 64 bits (extended) |
| 167 | * 3 113 bits (quad) |
| 168 | * |
| 169 | * ipio2[] |
| 170 | * integer array, contains the (24*i)-th to (24*i+23)-th |
| 171 | * bit of 2/pi after binary point. The corresponding |
| 172 | * floating value is |
| 173 | * |
| 174 | * ipio2[i] * 2^(-24(i+1)). |
| 175 | * |
| 176 | * External function: |
| 177 | * double scalbn(), floor(); |
| 178 | * |
| 179 | * |
| 180 | * Here is the description of some local variables: |
| 181 | * |
| 182 | * jk jk+1 is the initial number of terms of ipio2[] needed |
| 183 | * in the computation. The recommended value is 2,3,4, |
| 184 | * 6 for single, double, extended,and quad. |
| 185 | * |
| 186 | * jz local integer variable indicating the number of |
| 187 | * terms of ipio2[] used. |
| 188 | * |
| 189 | * jx nx - 1 |
| 190 | * |
| 191 | * jv index for pointing to the suitable ipio2[] for the |
| 192 | * computation. In general, we want |
| 193 | * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 |
| 194 | * is an integer. Thus |
| 195 | * e0-3-24*jv >= 0 or (e0-3)/24 >= jv |
| 196 | * Hence jv = max(0,(e0-3)/24). |
| 197 | * |
| 198 | * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. |
| 199 | * |
| 200 | * q[] double array with integral value, representing the |
| 201 | * 24-bits chunk of the product of x and 2/pi. |
| 202 | * |
| 203 | * q0 the corresponding exponent of q[0]. Note that the |
| 204 | * exponent for q[i] would be q0-24*i. |
| 205 | * |
| 206 | * PIo2[] double precision array, obtained by cutting pi/2 |
| 207 | * into 24 bits chunks. |
| 208 | * |
| 209 | * f[] ipio2[] in floating point |
| 210 | * |
| 211 | * iq[] integer array by breaking up q[] in 24-bits chunk. |
| 212 | * |
| 213 | * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] |
| 214 | * |
| 215 | * ih integer. If >0 it indicates q[] is >= 0.5, hence |
| 216 | * it also indicates the *sign* of the result. |
| 217 | * |
| 218 | */ |
| 219 | |
| 220 | inline int32_t __kernel_rem_pio2(double* x, double* y, int32_t e0, int32_t nx, int32_t prec, const int32_t* ipio2) noexcept |
| 221 | { |
| 222 | static const int32_t init_jk[] = { 2, 3, 4, 6 }; /* initial value for jk */ |
| 223 | |
| 224 | static const double PIo2[] = { |
| 225 | 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ |
| 226 | 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ |
| 227 | 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ |
| 228 | 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ |
| 229 | 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ |
| 230 | 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ |
| 231 | 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ |
| 232 | 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ |
| 233 | }; |
| 234 | |
| 235 | static const double |
| 236 | zero |
| 237 | = 0.0, |
| 238 | one = 1.0, |
| 239 | two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ |
| 240 | twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ |
| 241 | |
| 242 | int32_t jz, jx, jv, jp, jk, carry, n, iq[20], i, j, k, m, q0, ih; |
| 243 | double z, fw, f[20], fq[20], q[20]; |
| 244 | |
| 245 | /* initialize jk*/ |
| 246 | jk = init_jk[prec]; |
| 247 | jp = jk; |
| 248 | |
| 249 | /* determine jx,jv,q0, note that 3>q0 */ |
| 250 | jx = nx - 1; |
| 251 | jv = (e0 - 3) / 24; |
| 252 | if (jv < 0) |
| 253 | jv = 0; |
| 254 | q0 = e0 - 24 * (jv + 1); |
| 255 | |
| 256 | /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ |
| 257 | j = jv - jx; |
| 258 | m = jx + jk; |
| 259 | for (i = 0; i <= m; i++, j++) |
| 260 | f[i] = (j < 0) ? zero : (double)ipio2[j]; |
| 261 | |
| 262 | /* compute q[0],q[1],...q[jk] */ |
| 263 | for (i = 0; i <= jk; i++) |
| 264 | { |
| 265 | for (j = 0, fw = 0.0; j <= jx; j++) |
| 266 | fw += x[j] * f[jx + i - j]; |
| 267 | q[i] = fw; |
| 268 | } |
| 269 | |
| 270 | jz = jk; |
| 271 | |
| 272 | recompute: |
| 273 | /* distill q[] into iq[] reversingly */ |
| 274 | for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--) |
| 275 | { |
| 276 | fw = (double)((int32_t)(twon24 * z)); |
| 277 | iq[i] = (int)(z - two24 * fw); |
| 278 | z = q[j - 1] + fw; |
| 279 | } |
| 280 | |
| 281 | /* compute n */ |
| 282 | z = std::scalbn(x: z, n: q0); /* actual value of z */ |
| 283 | z -= 8.0 * std::floor(x: z * 0.125); /* trim off integer >= 8 */ |
| 284 | n = (int32_t)z; |
| 285 | z -= (double)n; |
| 286 | ih = 0; |
| 287 | if (q0 > 0) |
| 288 | { /* need iq[jz-1] to determine n */ |
| 289 | i = (iq[jz - 1] >> (24 - q0)); |
| 290 | n += i; |
| 291 | iq[jz - 1] -= i << (24 - q0); |
| 292 | ih = iq[jz - 1] >> (23 - q0); |
| 293 | } |
| 294 | else if (q0 == 0) |
| 295 | ih = iq[jz - 1] >> 23; |
| 296 | else if (z >= 0.5) |
| 297 | ih = 2; |
| 298 | |
| 299 | if (ih > 0) |
| 300 | { /* q > 0.5 */ |
| 301 | n += 1; |
| 302 | carry = 0; |
| 303 | for (i = 0; i < jz; i++) |
| 304 | { /* compute 1-q */ |
| 305 | j = iq[i]; |
| 306 | if (carry == 0) |
| 307 | { |
| 308 | if (j != 0) |
| 309 | { |
| 310 | carry = 1; |
| 311 | iq[i] = 0x1000000 - j; |
| 312 | } |
| 313 | } |
| 314 | else |
| 315 | iq[i] = 0xffffff - j; |
| 316 | } |
| 317 | if (q0 > 0) |
| 318 | { /* rare case: chance is 1 in 12 */ |
| 319 | switch (q0) |
| 320 | { |
| 321 | case 1: |
| 322 | iq[jz - 1] &= 0x7fffff; |
| 323 | break; |
| 324 | case 2: |
| 325 | iq[jz - 1] &= 0x3fffff; |
| 326 | break; |
| 327 | } |
| 328 | } |
| 329 | if (ih == 2) |
| 330 | { |
| 331 | z = one - z; |
| 332 | if (carry != 0) |
| 333 | z -= std::scalbn(x: one, n: q0); |
| 334 | } |
| 335 | } |
| 336 | |
| 337 | /* check if recomputation is needed */ |
| 338 | if (z == zero) |
| 339 | { |
| 340 | j = 0; |
| 341 | for (i = jz - 1; i >= jk; i--) |
| 342 | j |= iq[i]; |
| 343 | if (j == 0) |
| 344 | { /* need recomputation */ |
| 345 | for (k = 1; iq[jk - k] == 0; k++) |
| 346 | ; /* k = no. of terms needed */ |
| 347 | |
| 348 | for (i = jz + 1; i <= jz + k; i++) |
| 349 | { /* add q[jz+1] to q[jz+k] */ |
| 350 | f[jx + i] = (double)ipio2[jv + i]; |
| 351 | for (j = 0, fw = 0.0; j <= jx; j++) |
| 352 | fw += x[j] * f[jx + i - j]; |
| 353 | q[i] = fw; |
| 354 | } |
| 355 | jz += k; |
| 356 | goto recompute; |
| 357 | } |
| 358 | } |
| 359 | |
| 360 | /* chop off zero terms */ |
| 361 | if (z == 0.0) |
| 362 | { |
| 363 | jz -= 1; |
| 364 | q0 -= 24; |
| 365 | while (iq[jz] == 0) |
| 366 | { |
| 367 | jz--; |
| 368 | q0 -= 24; |
| 369 | } |
| 370 | } |
| 371 | else |
| 372 | { /* break z into 24-bit if necessary */ |
| 373 | z = std::scalbn(x: z, n: -q0); |
| 374 | if (z >= two24) |
| 375 | { |
| 376 | fw = (double)((int32_t)(twon24 * z)); |
| 377 | iq[jz] = (int32_t)(z - two24 * fw); |
| 378 | jz += 1; |
| 379 | q0 += 24; |
| 380 | iq[jz] = (int32_t)fw; |
| 381 | } |
| 382 | else |
| 383 | iq[jz] = (int32_t)z; |
| 384 | } |
| 385 | |
| 386 | /* convert integer "bit" chunk to floating-point value */ |
| 387 | fw = scalbn(x: one, n: q0); |
| 388 | for (i = jz; i >= 0; i--) |
| 389 | { |
| 390 | q[i] = fw * (double)iq[i]; |
| 391 | fw *= twon24; |
| 392 | } |
| 393 | |
| 394 | /* compute PIo2[0,...,jp]*q[jz,...,0] */ |
| 395 | for (i = jz; i >= 0; i--) |
| 396 | { |
| 397 | for (fw = 0.0, k = 0; k <= jp && k <= jz - i; k++) |
| 398 | fw += PIo2[k] * q[i + k]; |
| 399 | fq[jz - i] = fw; |
| 400 | } |
| 401 | |
| 402 | /* compress fq[] into y[] */ |
| 403 | switch (prec) |
| 404 | { |
| 405 | case 0: |
| 406 | fw = 0.0; |
| 407 | for (i = jz; i >= 0; i--) |
| 408 | fw += fq[i]; |
| 409 | y[0] = (ih == 0) ? fw : -fw; |
| 410 | break; |
| 411 | case 1: |
| 412 | case 2: |
| 413 | fw = 0.0; |
| 414 | for (i = jz; i >= 0; i--) |
| 415 | fw += fq[i]; |
| 416 | y[0] = (ih == 0) ? fw : -fw; |
| 417 | fw = fq[0] - fw; |
| 418 | for (i = 1; i <= jz; i++) |
| 419 | fw += fq[i]; |
| 420 | y[1] = (ih == 0) ? fw : -fw; |
| 421 | break; |
| 422 | case 3: /* painful */ |
| 423 | for (i = jz; i > 0; i--) |
| 424 | { |
| 425 | fw = fq[i - 1] + fq[i]; |
| 426 | fq[i] += fq[i - 1] - fw; |
| 427 | fq[i - 1] = fw; |
| 428 | } |
| 429 | for (i = jz; i > 1; i--) |
| 430 | { |
| 431 | fw = fq[i - 1] + fq[i]; |
| 432 | fq[i] += fq[i - 1] - fw; |
| 433 | fq[i - 1] = fw; |
| 434 | } |
| 435 | for (fw = 0.0, i = jz; i >= 2; i--) |
| 436 | fw += fq[i]; |
| 437 | if (ih == 0) |
| 438 | { |
| 439 | y[0] = fq[0]; |
| 440 | y[1] = fq[1]; |
| 441 | y[2] = fw; |
| 442 | } |
| 443 | else |
| 444 | { |
| 445 | y[0] = -fq[0]; |
| 446 | y[1] = -fq[1]; |
| 447 | y[2] = -fw; |
| 448 | } |
| 449 | } |
| 450 | return n & 7; |
| 451 | } |
| 452 | |
| 453 | inline std::int32_t __ieee754_rem_pio2(double x, double* y) noexcept |
| 454 | { |
| 455 | static const std::int32_t two_over_pi[] = { |
| 456 | 0xA2F983, |
| 457 | 0x6E4E44, |
| 458 | 0x1529FC, |
| 459 | 0x2757D1, |
| 460 | 0xF534DD, |
| 461 | 0xC0DB62, |
| 462 | 0x95993C, |
| 463 | 0x439041, |
| 464 | 0xFE5163, |
| 465 | 0xABDEBB, |
| 466 | 0xC561B7, |
| 467 | 0x246E3A, |
| 468 | 0x424DD2, |
| 469 | 0xE00649, |
| 470 | 0x2EEA09, |
| 471 | 0xD1921C, |
| 472 | 0xFE1DEB, |
| 473 | 0x1CB129, |
| 474 | 0xA73EE8, |
| 475 | 0x8235F5, |
| 476 | 0x2EBB44, |
| 477 | 0x84E99C, |
| 478 | 0x7026B4, |
| 479 | 0x5F7E41, |
| 480 | 0x3991D6, |
| 481 | 0x398353, |
| 482 | 0x39F49C, |
| 483 | 0x845F8B, |
| 484 | 0xBDF928, |
| 485 | 0x3B1FF8, |
| 486 | 0x97FFDE, |
| 487 | 0x05980F, |
| 488 | 0xEF2F11, |
| 489 | 0x8B5A0A, |
| 490 | 0x6D1F6D, |
| 491 | 0x367ECF, |
| 492 | 0x27CB09, |
| 493 | 0xB74F46, |
| 494 | 0x3F669E, |
| 495 | 0x5FEA2D, |
| 496 | 0x7527BA, |
| 497 | 0xC7EBE5, |
| 498 | 0xF17B3D, |
| 499 | 0x0739F7, |
| 500 | 0x8A5292, |
| 501 | 0xEA6BFB, |
| 502 | 0x5FB11F, |
| 503 | 0x8D5D08, |
| 504 | 0x560330, |
| 505 | 0x46FC7B, |
| 506 | 0x6BABF0, |
| 507 | 0xCFBC20, |
| 508 | 0x9AF436, |
| 509 | 0x1DA9E3, |
| 510 | 0x91615E, |
| 511 | 0xE61B08, |
| 512 | 0x659985, |
| 513 | 0x5F14A0, |
| 514 | 0x68408D, |
| 515 | 0xFFD880, |
| 516 | 0x4D7327, |
| 517 | 0x310606, |
| 518 | 0x1556CA, |
| 519 | 0x73A8C9, |
| 520 | 0x60E27B, |
| 521 | 0xC08C6B, |
| 522 | }; |
| 523 | |
| 524 | static const std::int32_t npio2_hw[] = { |
| 525 | 0x3FF921FB, |
| 526 | 0x400921FB, |
| 527 | 0x4012D97C, |
| 528 | 0x401921FB, |
| 529 | 0x401F6A7A, |
| 530 | 0x4022D97C, |
| 531 | 0x4025FDBB, |
| 532 | 0x402921FB, |
| 533 | 0x402C463A, |
| 534 | 0x402F6A7A, |
| 535 | 0x4031475C, |
| 536 | 0x4032D97C, |
| 537 | 0x40346B9C, |
| 538 | 0x4035FDBB, |
| 539 | 0x40378FDB, |
| 540 | 0x403921FB, |
| 541 | 0x403AB41B, |
| 542 | 0x403C463A, |
| 543 | 0x403DD85A, |
| 544 | 0x403F6A7A, |
| 545 | 0x40407E4C, |
| 546 | 0x4041475C, |
| 547 | 0x4042106C, |
| 548 | 0x4042D97C, |
| 549 | 0x4043A28C, |
| 550 | 0x40446B9C, |
| 551 | 0x404534AC, |
| 552 | 0x4045FDBB, |
| 553 | 0x4046C6CB, |
| 554 | 0x40478FDB, |
| 555 | 0x404858EB, |
| 556 | 0x404921FB, |
| 557 | }; |
| 558 | |
| 559 | /* |
| 560 | * invpio2: 53 bits of 2/pi |
| 561 | * pio2_1: first 33 bit of pi/2 |
| 562 | * pio2_1t: pi/2 - pio2_1 |
| 563 | * pio2_2: second 33 bit of pi/2 |
| 564 | * pio2_2t: pi/2 - (pio2_1+pio2_2) |
| 565 | * pio2_3: third 33 bit of pi/2 |
| 566 | * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3) |
| 567 | */ |
| 568 | |
| 569 | static const double |
| 570 | zero |
| 571 | = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ |
| 572 | half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ |
| 573 | two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ |
| 574 | invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ |
| 575 | pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */ |
| 576 | pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */ |
| 577 | pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */ |
| 578 | pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */ |
| 579 | pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */ |
| 580 | pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */ |
| 581 | |
| 582 | double z = 0., w, t, r, fn; |
| 583 | double tx[3]; |
| 584 | std::int32_t e0, i, j, nx, n, ix, hx; |
| 585 | std::uint32_t low; |
| 586 | |
| 587 | GET_HIGH_WORD(hx, x); /* high word of x */ |
| 588 | ix = hx & 0x7fffffff; |
| 589 | if (ix <= 0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */ |
| 590 | { |
| 591 | y[0] = x; |
| 592 | y[1] = 0; |
| 593 | return 0; |
| 594 | } |
| 595 | if (ix < 0x4002d97c) |
| 596 | { /* |x| < 3pi/4, special case with n=+-1 */ |
| 597 | if (hx > 0) |
| 598 | { |
| 599 | z = x - pio2_1; |
| 600 | if (ix != 0x3ff921fb) |
| 601 | { /* 33+53 bit pi is good enough */ |
| 602 | y[0] = z - pio2_1t; |
| 603 | y[1] = (z - y[0]) - pio2_1t; |
| 604 | } |
| 605 | else |
| 606 | { /* near pi/2, use 33+33+53 bit pi */ |
| 607 | z -= pio2_2; |
| 608 | y[0] = z - pio2_2t; |
| 609 | y[1] = (z - y[0]) - pio2_2t; |
| 610 | } |
| 611 | return 1; |
| 612 | } |
| 613 | else |
| 614 | { /* negative x */ |
| 615 | z = x + pio2_1; |
| 616 | if (ix != 0x3ff921fb) |
| 617 | { /* 33+53 bit pi is good enough */ |
| 618 | y[0] = z + pio2_1t; |
| 619 | y[1] = (z - y[0]) + pio2_1t; |
| 620 | } |
| 621 | else |
| 622 | { /* near pi/2, use 33+33+53 bit pi */ |
| 623 | z += pio2_2; |
| 624 | y[0] = z + pio2_2t; |
| 625 | y[1] = (z - y[0]) + pio2_2t; |
| 626 | } |
| 627 | |
| 628 | return -1; |
| 629 | } |
| 630 | } |
| 631 | if (ix <= 0x413921fb) |
| 632 | { /* |x| ~<= 2^19*(pi/2), medium_ size */ |
| 633 | t = std::fabs(x: x); |
| 634 | n = (std::int32_t)(t * invpio2 + half); |
| 635 | fn = (double)n; |
| 636 | r = t - fn * pio2_1; |
| 637 | w = fn * pio2_1t; /* 1st round good to 85 bit */ |
| 638 | if ((n < 32) && (n > 0) && (ix != npio2_hw[n - 1])) |
| 639 | { |
| 640 | y[0] = r - w; /* quick check no cancellation */ |
| 641 | } |
| 642 | else |
| 643 | { |
| 644 | std::uint32_t high; |
| 645 | j = ix >> 20; |
| 646 | y[0] = r - w; |
| 647 | GET_HIGH_WORD(high, y[0]); |
| 648 | i = j - static_cast<int32_t>((high >> 20) & 0x7ff); |
| 649 | if (i > 16) |
| 650 | { /* 2nd iteration needed, good to 118 */ |
| 651 | t = r; |
| 652 | w = fn * pio2_2; |
| 653 | r = t - w; |
| 654 | w = fn * pio2_2t - ((t - r) - w); |
| 655 | y[0] = r - w; |
| 656 | GET_HIGH_WORD(high, y[0]); |
| 657 | i = j - static_cast<int32_t>((high >> 20) & 0x7ff); |
| 658 | if (i > 49) |
| 659 | { /* 3rd iteration need, 151 bits acc */ |
| 660 | t = r; /* will cover all possible cases */ |
| 661 | w = fn * pio2_3; |
| 662 | r = t - w; |
| 663 | w = fn * pio2_3t - ((t - r) - w); |
| 664 | y[0] = r - w; |
| 665 | } |
| 666 | } |
| 667 | } |
| 668 | y[1] = (r - y[0]) - w; |
| 669 | if (hx < 0) |
| 670 | { |
| 671 | y[0] = -y[0]; |
| 672 | y[1] = -y[1]; |
| 673 | return -n; |
| 674 | } |
| 675 | else |
| 676 | return n; |
| 677 | } |
| 678 | /* |
| 679 | * all other (large) arguments |
| 680 | */ |
| 681 | if (ix >= 0x7ff00000) |
| 682 | { /* x is inf or NaN */ |
| 683 | y[0] = y[1] = x - x; |
| 684 | return 0; |
| 685 | } |
| 686 | /* set z = scalbn(|x|,ilogb(x)-23) */ |
| 687 | GET_LOW_WORD(low, x); |
| 688 | SET_LOW_WORD(z, low); |
| 689 | e0 = (ix >> 20) - 1046; /* e0 = ilogb(z)-23; */ |
| 690 | SET_HIGH_WORD(z, static_cast<uint32_t>(ix - (e0 << 20))); |
| 691 | for (i = 0; i < 2; i++) |
| 692 | { |
| 693 | tx[i] = (double)((std::int32_t)(z)); |
| 694 | z = (z - tx[i]) * two24; |
| 695 | } |
| 696 | tx[2] = z; |
| 697 | nx = 3; |
| 698 | while (tx[nx - 1] == zero) |
| 699 | nx--; /* skip zero term */ |
| 700 | n = __kernel_rem_pio2(x: tx, y, e0, nx, prec: 2, ipio2: two_over_pi); |
| 701 | if (hx < 0) |
| 702 | { |
| 703 | y[0] = -y[0]; |
| 704 | y[1] = -y[1]; |
| 705 | return -n; |
| 706 | } |
| 707 | return n; |
| 708 | } |
| 709 | } |
| 710 | |
| 711 | #undef XSIMD_LITTLE_ENDIAN |
| 712 | #undef SET_LOW_WORD |
| 713 | #undef SET_HIGH_WORD |
| 714 | #undef GET_LOW_WORD |
| 715 | #undef GET_HIGH_WORD |
| 716 | #undef HIGH_WORD_IDX |
| 717 | #undef LOW_WORD_IDX |
| 718 | #undef ONCE0 |
| 719 | } |
| 720 | |