| 1 | // this software is distributed under the MIT License (http://www.opensource.org/licenses/MIT): |
| 2 | // |
| 3 | // Copyright 2018-2020, CWI, TU Munich, FSU Jena |
| 4 | // |
| 5 | // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files |
| 6 | // (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, |
| 7 | // merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is |
| 8 | // furnished to do so, subject to the following conditions: |
| 9 | // |
| 10 | // - The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. |
| 11 | // |
| 12 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES |
| 13 | // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
| 14 | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR |
| 15 | // IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| 16 | // |
| 17 | // You can contact the authors via the FSST source repository : https://github.com/cwida/fsst |
| 18 | #include "libfsst.hpp" |
| 19 | |
| 20 | Symbol concat(Symbol a, Symbol b) { |
| 21 | Symbol s; |
| 22 | u32 length = a.length()+b.length(); |
| 23 | if (length > Symbol::maxLength) length = Symbol::maxLength; |
| 24 | s.set_code_len(FSST_CODE_MASK, len: length); |
| 25 | s.val.num = (b.val.num << (8*a.length())) | a.val.num; |
| 26 | return s; |
| 27 | } |
| 28 | |
| 29 | namespace std { |
| 30 | template <> |
| 31 | class hash<QSymbol> { |
| 32 | public: |
| 33 | size_t operator()(const QSymbol& q) const { |
| 34 | uint64_t k = q.symbol.val.num; |
| 35 | const uint64_t m = 0xc6a4a7935bd1e995; |
| 36 | const int r = 47; |
| 37 | uint64_t h = 0x8445d61a4e774912 ^ (8*m); |
| 38 | k *= m; |
| 39 | k ^= k >> r; |
| 40 | k *= m; |
| 41 | h ^= k; |
| 42 | h *= m; |
| 43 | h ^= h >> r; |
| 44 | h *= m; |
| 45 | h ^= h >> r; |
| 46 | return h; |
| 47 | } |
| 48 | }; |
| 49 | } |
| 50 | |
| 51 | bool isEscapeCode(u16 pos) { return pos < FSST_CODE_BASE; } |
| 52 | |
| 53 | std::ostream& operator<<(std::ostream& out, const Symbol& s) { |
| 54 | for (u32 i=0; i<s.length(); i++) |
| 55 | out << s.val.str[i]; |
| 56 | return out; |
| 57 | } |
| 58 | |
| 59 | SymbolTable *(Counters& counters, vector<u8*> line, size_t len[], bool zeroTerminated=false) { |
| 60 | SymbolTable *st = new SymbolTable(), *bestTable = new SymbolTable(); |
| 61 | int bestGain = (int) -FSST_SAMPLEMAXSZ; // worst case (everything exception) |
| 62 | size_t sampleFrac = 128; |
| 63 | |
| 64 | // start by determining the terminator. We use the (lowest) most infrequent byte as terminator |
| 65 | st->zeroTerminated = zeroTerminated; |
| 66 | if (zeroTerminated) { |
| 67 | st->terminator = 0; // except in case of zeroTerminated mode, then byte 0 is terminator regardless frequency |
| 68 | } else { |
| 69 | u16 byteHisto[256]; |
| 70 | memset(s: byteHisto, c: 0, n: sizeof(byteHisto)); |
| 71 | for(size_t i=0; i<line.size(); i++) { |
| 72 | u8* cur = line[i]; |
| 73 | u8* end = cur + len[i]; |
| 74 | while(cur < end) byteHisto[*cur++]++; |
| 75 | } |
| 76 | u32 minSize = FSST_SAMPLEMAXSZ, i = st->terminator = 256; |
| 77 | while(i-- > 0) { |
| 78 | if (byteHisto[i] > minSize) continue; |
| 79 | st->terminator = i; |
| 80 | minSize = byteHisto[i]; |
| 81 | } |
| 82 | } |
| 83 | assert(st->terminator != 256); |
| 84 | |
| 85 | // a random number between 0 and 128 |
| 86 | auto rnd128 = [&](size_t i) { return 1 + (FSST_HASH((i+1UL)*sampleFrac)&127); }; |
| 87 | |
| 88 | // compress sample, and compute (pair-)frequencies |
| 89 | auto compressCount = [&](SymbolTable *st, Counters &counters) { // returns gain |
| 90 | int gain = 0; |
| 91 | |
| 92 | for(size_t i=0; i<line.size(); i++) { |
| 93 | u8* cur = line[i]; |
| 94 | u8* end = cur + len[i]; |
| 95 | |
| 96 | if (sampleFrac < 128) { |
| 97 | // in earlier rounds (sampleFrac < 128) we skip data in the sample (reduces overall work ~2x) |
| 98 | if (rnd128(i) > sampleFrac) continue; |
| 99 | } |
| 100 | if (cur < end) { |
| 101 | u8* start = cur; |
| 102 | u16 code2 = 255, code1 = st->findLongestSymbol(cur, end); |
| 103 | cur += st->symbols[code1].length(); |
| 104 | gain += (int) (st->symbols[code1].length()-(1+isEscapeCode(pos: code1))); |
| 105 | while (true) { |
| 106 | // count single symbol (i.e. an option is not extending it) |
| 107 | counters.count1Inc(pos1: code1); |
| 108 | |
| 109 | // as an alternative, consider just using the next byte.. |
| 110 | if (st->symbols[code1].length() != 1) // .. but do not count single byte symbols doubly |
| 111 | counters.count1Inc(pos1: *start); |
| 112 | |
| 113 | if (cur==end) { |
| 114 | break; |
| 115 | } |
| 116 | |
| 117 | // now match a new symbol |
| 118 | start = cur; |
| 119 | if (cur<end-7) { |
| 120 | u64 word = fsst_unaligned_load(V: cur); |
| 121 | size_t code = word & 0xFFFFFF; |
| 122 | size_t idx = FSST_HASH(code)&(st->hashTabSize-1); |
| 123 | Symbol s = st->hashTab[idx]; |
| 124 | code2 = st->shortCodes[word & 0xFFFF] & FSST_CODE_MASK; |
| 125 | word &= (0xFFFFFFFFFFFFFFFF >> (u8) s.icl); |
| 126 | if ((s.icl < FSST_ICL_FREE) & (s.val.num == word)) { |
| 127 | code2 = s.code(); |
| 128 | cur += s.length(); |
| 129 | } else if (code2 >= FSST_CODE_BASE) { |
| 130 | cur += 2; |
| 131 | } else { |
| 132 | code2 = st->byteCodes[word & 0xFF] & FSST_CODE_MASK; |
| 133 | cur += 1; |
| 134 | } |
| 135 | } else { |
| 136 | code2 = st->findLongestSymbol(cur, end); |
| 137 | cur += st->symbols[code2].length(); |
| 138 | } |
| 139 | |
| 140 | // compute compressed output size |
| 141 | gain += ((int) (cur-start))-(1+isEscapeCode(pos: code2)); |
| 142 | |
| 143 | // now count the subsequent two symbols we encode as an extension codesibility |
| 144 | if (sampleFrac < 128) { // no need to count pairs in final round |
| 145 | // consider the symbol that is the concatenation of the two last symbols |
| 146 | counters.count2Inc(pos1: code1, pos2: code2); |
| 147 | |
| 148 | // as an alternative, consider just extending with the next byte.. |
| 149 | if ((cur-start) > 1) // ..but do not count single byte extensions doubly |
| 150 | counters.count2Inc(pos1: code1, pos2: *start); |
| 151 | } |
| 152 | code1 = code2; |
| 153 | } |
| 154 | } |
| 155 | } |
| 156 | return gain; |
| 157 | }; |
| 158 | |
| 159 | auto makeTable = [&](SymbolTable *st, Counters &counters) { |
| 160 | // hashmap of c (needed because we can generate duplicate candidates) |
| 161 | unordered_set<QSymbol> cands; |
| 162 | |
| 163 | // artificially make terminater the most frequent symbol so it gets included |
| 164 | u16 terminator = st->nSymbols?FSST_CODE_BASE:st->terminator; |
| 165 | counters.count1Set(pos1: terminator,val: 65535); |
| 166 | |
| 167 | auto addOrInc = [&](unordered_set<QSymbol> &cands, Symbol s, u64 count) { |
| 168 | if (count < (5*sampleFrac)/128) return; // improves both compression speed (less candidates), but also quality!! |
| 169 | QSymbol q; |
| 170 | q.symbol = s; |
| 171 | q.gain = count * s.length(); |
| 172 | auto it = cands.find(x: q); |
| 173 | if (it != cands.end()) { |
| 174 | q.gain += (*it).gain; |
| 175 | cands.erase(x: *it); |
| 176 | } |
| 177 | cands.insert(x: q); |
| 178 | }; |
| 179 | |
| 180 | // add candidate symbols based on counted frequency |
| 181 | for (u32 pos1=0; pos1<FSST_CODE_BASE+(size_t) st->nSymbols; pos1++) { |
| 182 | u32 cnt1 = counters.count1GetNext(pos1); // may advance pos1!! |
| 183 | if (!cnt1) continue; |
| 184 | |
| 185 | // heuristic: promoting single-byte symbols (*8) helps reduce exception rates and increases [de]compression speed |
| 186 | Symbol s1 = st->symbols[pos1]; |
| 187 | addOrInc(cands, s1, ((s1.length()==1)?8LL:1LL)*cnt1); |
| 188 | |
| 189 | if (sampleFrac >= 128 || // last round we do not create new (combined) symbols |
| 190 | s1.length() == Symbol::maxLength || // symbol cannot be extended |
| 191 | s1.val.str[0] == st->terminator) { // multi-byte symbols cannot contain the terminator byte |
| 192 | continue; |
| 193 | } |
| 194 | for (u32 pos2=0; pos2<FSST_CODE_BASE+(size_t)st->nSymbols; pos2++) { |
| 195 | u32 cnt2 = counters.count2GetNext(pos1, pos2); // may advance pos2!! |
| 196 | if (!cnt2) continue; |
| 197 | |
| 198 | // create a new symbol |
| 199 | Symbol s2 = st->symbols[pos2]; |
| 200 | Symbol s3 = concat(a: s1, b: s2); |
| 201 | if (s2.val.str[0] != st->terminator) // multi-byte symbols cannot contain the terminator byte |
| 202 | addOrInc(cands, s3, cnt2); |
| 203 | } |
| 204 | } |
| 205 | |
| 206 | // insert candidates into priority queue (by gain) |
| 207 | auto cmpGn = [](const QSymbol& q1, const QSymbol& q2) { return (q1.gain < q2.gain) || (q1.gain == q2.gain && q1.symbol.val.num > q2.symbol.val.num); }; |
| 208 | priority_queue<QSymbol,vector<QSymbol>,decltype(cmpGn)> pq(cmpGn); |
| 209 | for (auto& q : cands) |
| 210 | pq.push(x: q); |
| 211 | |
| 212 | // Create new symbol map using best candidates |
| 213 | st->clear(); |
| 214 | while (st->nSymbols < 255 && !pq.empty()) { |
| 215 | QSymbol q = pq.top(); |
| 216 | pq.pop(); |
| 217 | st->add(s: q.symbol); |
| 218 | } |
| 219 | }; |
| 220 | |
| 221 | u8 bestCounters[512*sizeof(u16)]; |
| 222 | #ifdef NONOPT_FSST |
| 223 | for(size_t frac : {127, 127, 127, 127, 127, 127, 127, 127, 127, 128}) { |
| 224 | sampleFrac = frac; |
| 225 | #else |
| 226 | for(sampleFrac=8; true; sampleFrac += 30) { |
| 227 | #endif |
| 228 | memset(s: &counters, c: 0, n: sizeof(Counters)); |
| 229 | long gain = compressCount(st, counters); |
| 230 | if (gain >= bestGain) { // a new best solution! |
| 231 | counters.backup1(buf: bestCounters); |
| 232 | *bestTable = *st; bestGain = gain; |
| 233 | } |
| 234 | if (sampleFrac >= 128) break; // we do 5 rounds (sampleFrac=8,38,68,98,128) |
| 235 | makeTable(st, counters); |
| 236 | } |
| 237 | delete st; |
| 238 | counters.restore1(buf: bestCounters); |
| 239 | makeTable(bestTable, counters); |
| 240 | bestTable->finalize(zeroTerminated); // renumber codes for more efficient compression |
| 241 | return bestTable; |
| 242 | } |
| 243 | |
| 244 | static inline size_t compressSIMD(SymbolTable &symbolTable, u8* symbolBase, size_t nlines, size_t len[], u8* line[], size_t size, u8* dst, size_t lenOut[], u8* strOut[], int unroll) { |
| 245 | size_t curLine = 0, inOff = 0, outOff = 0, batchPos = 0, empty = 0, budget = size; |
| 246 | u8 *lim = dst + size, *codeBase = symbolBase + (1<<18); // 512KB temp space for compressing 512 strings |
| 247 | SIMDjob input[512]; // combined offsets of input strings (cur,end), and string #id (pos) and output (dst) pointer |
| 248 | SIMDjob output[512]; // output are (pos:9,dst:19) end pointers (compute compressed length from this) |
| 249 | size_t jobLine[512]; // for which line in the input sequence was this job (needed because we may split a line into multiple jobs) |
| 250 | |
| 251 | while (curLine < nlines && outOff <= (1<<19)) { |
| 252 | size_t prevLine = curLine, chunk, curOff = 0; |
| 253 | |
| 254 | // bail out if the output buffer cannot hold the compressed next string fully |
| 255 | if (((len[curLine]-curOff)*2 + 7) > budget) break; // see below for the +7 |
| 256 | else budget -= (len[curLine]-curOff)*2; |
| 257 | |
| 258 | strOut[curLine] = (u8*) 0; |
| 259 | lenOut[curLine] = 0; |
| 260 | |
| 261 | do { |
| 262 | do { |
| 263 | chunk = len[curLine] - curOff; |
| 264 | if (chunk > 511) { |
| 265 | chunk = 511; // large strings need to be chopped up into segments of 511 bytes |
| 266 | } |
| 267 | // create a job in this batch |
| 268 | SIMDjob job; |
| 269 | job.cur = inOff; |
| 270 | job.end = job.cur + chunk; |
| 271 | job.pos = batchPos; |
| 272 | job.out = outOff; |
| 273 | |
| 274 | // worst case estimate for compressed size (+7 is for the scatter that writes extra 7 zeros) |
| 275 | outOff += 7 + 2*(size_t)(job.end - job.cur); // note, total size needed is 512*(511*2+7) bytes. |
| 276 | if (outOff > (1<<19)) break; // simdbuf may get full, stop before this chunk |
| 277 | |
| 278 | // register job in this batch |
| 279 | input[batchPos] = job; |
| 280 | jobLine[batchPos] = curLine; |
| 281 | |
| 282 | if (chunk == 0) { |
| 283 | empty++; // detect empty chunks -- SIMD code cannot handle empty strings, so they need to be filtered out |
| 284 | } else { |
| 285 | // copy string chunk into temp buffer |
| 286 | memcpy(dest: symbolBase + inOff, src: line[curLine] + curOff, n: chunk); |
| 287 | inOff += chunk; |
| 288 | curOff += chunk; |
| 289 | symbolBase[inOff++] = (u8) symbolTable.terminator; // write an extra char at the end that will not be encoded |
| 290 | } |
| 291 | if (++batchPos == 512) break; |
| 292 | } while(curOff < len[curLine]); |
| 293 | |
| 294 | if ((batchPos == 512) || (outOff > (1<<19)) || (++curLine >= nlines)) { // cannot accumulate more? |
| 295 | if (batchPos-empty >= 32) { // if we have enough work, fire off fsst_compressAVX512 (32 is due to max 4x8 unrolling) |
| 296 | // radix-sort jobs on length (longest string first) |
| 297 | // -- this provides best load balancing and allows to skip empty jobs at the end |
| 298 | u16 sortpos[513]; |
| 299 | memset(s: sortpos, c: 0, n: sizeof(sortpos)); |
| 300 | |
| 301 | // calculate length histo |
| 302 | for(size_t i=0; i<batchPos; i++) { |
| 303 | size_t len = input[i].end - input[i].cur; |
| 304 | sortpos[512UL - len]++; |
| 305 | } |
| 306 | // calculate running sum |
| 307 | for(size_t i=1; i<=512; i++) |
| 308 | sortpos[i] += sortpos[i-1]; |
| 309 | |
| 310 | // move jobs to their final destination |
| 311 | SIMDjob inputOrdered[512]; |
| 312 | for(size_t i=0; i<batchPos; i++) { |
| 313 | size_t len = input[i].end - input[i].cur; |
| 314 | size_t pos = sortpos[511UL - len]++; |
| 315 | inputOrdered[pos] = input[i]; |
| 316 | } |
| 317 | // finally.. SIMD compress max 256KB of simdbuf into (max) 512KB of simdbuf (but presumably much less..) |
| 318 | for(size_t done = duckdb_fsst_compressAVX512(symbolTable, codeBase, symbolBase, input: inputOrdered, output, n: batchPos-empty, unroll); |
| 319 | done < batchPos; done++) output[done] = inputOrdered[done]; |
| 320 | } else { |
| 321 | memcpy(dest: output, src: input, n: batchPos*sizeof(SIMDjob)); |
| 322 | } |
| 323 | |
| 324 | // finish encoding (unfinished strings in process, plus the few last strings not yet processed) |
| 325 | for(size_t i=0; i<batchPos; i++) { |
| 326 | SIMDjob job = output[i]; |
| 327 | if (job.cur < job.end) { // finish encoding this string with scalar code |
| 328 | u8* cur = symbolBase + job.cur; |
| 329 | u8* end = symbolBase + job.end; |
| 330 | u8* out = codeBase + job.out; |
| 331 | while (cur < end) { |
| 332 | u64 word = fsst_unaligned_load(V: cur); |
| 333 | size_t code = symbolTable.shortCodes[word & 0xFFFF]; |
| 334 | size_t pos = word & 0xFFFFFF; |
| 335 | size_t idx = FSST_HASH(pos)&(symbolTable.hashTabSize-1); |
| 336 | Symbol s = symbolTable.hashTab[idx]; |
| 337 | out[1] = (u8) word; // speculatively write out escaped byte |
| 338 | word &= (0xFFFFFFFFFFFFFFFF >> (u8) s.icl); |
| 339 | if ((s.icl < FSST_ICL_FREE) && s.val.num == word) { |
| 340 | *out++ = (u8) s.code(); cur += s.length(); |
| 341 | } else { |
| 342 | // could be a 2-byte or 1-byte code, or miss |
| 343 | // handle everything with predication |
| 344 | *out = (u8) code; |
| 345 | out += 1+((code&FSST_CODE_BASE)>>8); |
| 346 | cur += (code>>FSST_LEN_BITS); |
| 347 | } |
| 348 | } |
| 349 | job.out = out - codeBase; |
| 350 | } |
| 351 | // postprocess job info |
| 352 | job.cur = 0; |
| 353 | job.end = job.out - input[job.pos].out; // misuse .end field as compressed size |
| 354 | job.out = input[job.pos].out; // reset offset to start of encoded string |
| 355 | input[job.pos] = job; |
| 356 | } |
| 357 | |
| 358 | // copy out the result data |
| 359 | for(size_t i=0; i<batchPos; i++) { |
| 360 | size_t lineNr = jobLine[i]; // the sort must be order-preserving, as we concatenate results string in order |
| 361 | size_t sz = input[i].end; // had stored compressed lengths here |
| 362 | if (!strOut[lineNr]) strOut[lineNr] = dst; // first segment will be the strOut pointer |
| 363 | lenOut[lineNr] += sz; // add segment (lenOut starts at 0 for this reason) |
| 364 | memcpy(dest: dst, src: codeBase+input[i].out, n: sz); |
| 365 | dst += sz; |
| 366 | } |
| 367 | |
| 368 | // go for the next batch of 512 chunks |
| 369 | inOff = outOff = batchPos = empty = 0; |
| 370 | budget = (size_t) (lim - dst); |
| 371 | } |
| 372 | } while (curLine == prevLine && outOff <= (1<<19)); |
| 373 | } |
| 374 | return curLine; |
| 375 | } |
| 376 | |
| 377 | |
| 378 | // optimized adaptive *scalar* compression method |
| 379 | static inline size_t compressBulk(SymbolTable &symbolTable, size_t nlines, size_t lenIn[], u8* strIn[], size_t size, u8* out, size_t lenOut[], u8* strOut[], bool noSuffixOpt, bool avoidBranch) { |
| 380 | u8 *cur = NULL, *end = NULL, *lim = out + size; |
| 381 | size_t curLine, suffixLim = symbolTable.suffixLim; |
| 382 | u8 byteLim = symbolTable.nSymbols + symbolTable.zeroTerminated - symbolTable.lenHisto[0]; |
| 383 | |
| 384 | u8 buf[512+7] = {}; /* +7 sentinel is to avoid 8-byte unaligned-loads going beyond 511 out-of-bounds */ |
| 385 | |
| 386 | // three variants are possible. dead code falls away since the bool arguments are constants |
| 387 | auto compressVariant = [&](bool noSuffixOpt, bool avoidBranch) { |
| 388 | while (cur < end) { |
| 389 | u64 word = fsst_unaligned_load(V: cur); |
| 390 | size_t code = symbolTable.shortCodes[word & 0xFFFF]; |
| 391 | if (noSuffixOpt && ((u8) code) < suffixLim) { |
| 392 | // 2 byte code without having to worry about longer matches |
| 393 | *out++ = (u8) code; cur += 2; |
| 394 | } else { |
| 395 | size_t pos = word & 0xFFFFFF; |
| 396 | size_t idx = FSST_HASH(pos)&(symbolTable.hashTabSize-1); |
| 397 | Symbol s = symbolTable.hashTab[idx]; |
| 398 | out[1] = (u8) word; // speculatively write out escaped byte |
| 399 | word &= (0xFFFFFFFFFFFFFFFF >> (u8) s.icl); |
| 400 | if ((s.icl < FSST_ICL_FREE) && s.val.num == word) { |
| 401 | *out++ = (u8) s.code(); cur += s.length(); |
| 402 | } else if (avoidBranch) { |
| 403 | // could be a 2-byte or 1-byte code, or miss |
| 404 | // handle everything with predication |
| 405 | *out = (u8) code; |
| 406 | out += 1+((code&FSST_CODE_BASE)>>8); |
| 407 | cur += (code>>FSST_LEN_BITS); |
| 408 | } else if ((u8) code < byteLim) { |
| 409 | // 2 byte code after checking there is no longer pattern |
| 410 | *out++ = (u8) code; cur += 2; |
| 411 | } else { |
| 412 | // 1 byte code or miss. |
| 413 | *out = (u8) code; |
| 414 | out += 1+((code&FSST_CODE_BASE)>>8); // predicated - tested with a branch, that was always worse |
| 415 | cur++; |
| 416 | } |
| 417 | } |
| 418 | } |
| 419 | }; |
| 420 | |
| 421 | for(curLine=0; curLine<nlines; curLine++) { |
| 422 | size_t chunk, curOff = 0; |
| 423 | strOut[curLine] = out; |
| 424 | do { |
| 425 | cur = strIn[curLine] + curOff; |
| 426 | chunk = lenIn[curLine] - curOff; |
| 427 | if (chunk > 511) { |
| 428 | chunk = 511; // we need to compress in chunks of 511 in order to be byte-compatible with simd-compressed FSST |
| 429 | } |
| 430 | if ((2*chunk+7) > (size_t) (lim-out)) { |
| 431 | return curLine; // out of memory |
| 432 | } |
| 433 | // copy the string to the 511-byte buffer |
| 434 | memcpy(dest: buf, src: cur, n: chunk); |
| 435 | buf[chunk] = (u8) symbolTable.terminator; |
| 436 | cur = buf; |
| 437 | end = cur + chunk; |
| 438 | |
| 439 | // based on symboltable stats, choose a variant that is nice to the branch predictor |
| 440 | if (noSuffixOpt) { |
| 441 | compressVariant(true,false); |
| 442 | } else if (avoidBranch) { |
| 443 | compressVariant(false,true); |
| 444 | } else { |
| 445 | compressVariant(false, false); |
| 446 | } |
| 447 | } while((curOff += chunk) < lenIn[curLine]); |
| 448 | lenOut[curLine] = (size_t) (out - strOut[curLine]); |
| 449 | } |
| 450 | return curLine; |
| 451 | } |
| 452 | |
| 453 | #define FSST_SAMPLELINE ((size_t) 512) |
| 454 | |
| 455 | // quickly select a uniformly random set of lines such that we have between [FSST_SAMPLETARGET,FSST_SAMPLEMAXSZ) string bytes |
| 456 | vector<u8*> makeSample(u8* sampleBuf, u8* strIn[], size_t *lenIn, size_t nlines, |
| 457 | unique_ptr<vector<size_t>>& sample_len_out) { |
| 458 | size_t totSize = 0; |
| 459 | vector<u8*> sample; |
| 460 | |
| 461 | for(size_t i=0; i<nlines; i++) |
| 462 | totSize += lenIn[i]; |
| 463 | if (totSize < FSST_SAMPLETARGET) { |
| 464 | for(size_t i=0; i<nlines; i++) |
| 465 | sample.push_back(x: strIn[i]); |
| 466 | } else { |
| 467 | size_t sampleRnd = FSST_HASH(4637947); |
| 468 | u8* sampleLim = sampleBuf + FSST_SAMPLETARGET; |
| 469 | |
| 470 | sample_len_out = unique_ptr<vector<size_t>>(new vector<size_t>()); |
| 471 | sample_len_out->reserve(n: nlines + FSST_SAMPLEMAXSZ/FSST_SAMPLELINE); |
| 472 | |
| 473 | // This fails if we have a lot of small strings and a few big ones? |
| 474 | while(sampleBuf < sampleLim) { |
| 475 | // choose a non-empty line |
| 476 | sampleRnd = FSST_HASH(sampleRnd); |
| 477 | size_t linenr = sampleRnd % nlines; |
| 478 | while (lenIn[linenr] == 0) |
| 479 | if (++linenr == nlines) linenr = 0; |
| 480 | |
| 481 | // choose a chunk |
| 482 | size_t chunks = 1 + ((lenIn[linenr]-1) / FSST_SAMPLELINE); |
| 483 | sampleRnd = FSST_HASH(sampleRnd); |
| 484 | size_t chunk = FSST_SAMPLELINE*(sampleRnd % chunks); |
| 485 | |
| 486 | // add the chunk to the sample |
| 487 | size_t len = min(lenIn[linenr]-chunk,FSST_SAMPLELINE); |
| 488 | memcpy(dest: sampleBuf, src: strIn[linenr]+chunk, n: len); |
| 489 | sample.push_back(x: sampleBuf); |
| 490 | |
| 491 | sample_len_out->push_back(x: len); |
| 492 | sampleBuf += len; |
| 493 | } |
| 494 | } |
| 495 | return sample; |
| 496 | } |
| 497 | |
| 498 | extern "C" duckdb_fsst_encoder_t* duckdb_fsst_create(size_t n, size_t lenIn[], u8 *strIn[], int zeroTerminated) { |
| 499 | u8* sampleBuf = new u8[FSST_SAMPLEMAXSZ]; |
| 500 | unique_ptr<vector<size_t>> sample_sizes; |
| 501 | vector<u8*> sample = makeSample(sampleBuf, strIn, lenIn, nlines: n?n:1, sample_len_out&: sample_sizes); // careful handling of input to get a right-size and representative sample |
| 502 | Encoder *encoder = new Encoder(); |
| 503 | size_t* sampleLen = sample_sizes ? sample_sizes->data() : &lenIn[0]; |
| 504 | encoder->symbolTable = shared_ptr<SymbolTable>(buildSymbolTable(counters&: encoder->counters, line: sample, len: sampleLen, zeroTerminated)); |
| 505 | delete[] sampleBuf; |
| 506 | return (duckdb_fsst_encoder_t*) encoder; |
| 507 | } |
| 508 | |
| 509 | /* create another encoder instance, necessary to do multi-threaded encoding using the same symbol table */ |
| 510 | extern "C" duckdb_fsst_encoder_t* duckdb_fsst_duplicate(duckdb_fsst_encoder_t *encoder) { |
| 511 | Encoder *e = new Encoder(); |
| 512 | e->symbolTable = ((Encoder*)encoder)->symbolTable; // it is a shared_ptr |
| 513 | return (duckdb_fsst_encoder_t*) e; |
| 514 | } |
| 515 | |
| 516 | // export a symbol table in compact format. |
| 517 | extern "C" u32 duckdb_fsst_export(duckdb_fsst_encoder_t *encoder, u8 *buf) { |
| 518 | Encoder *e = (Encoder*) encoder; |
| 519 | // In ->version there is a versionnr, but we hide also suffixLim/terminator/nSymbols there. |
| 520 | // This is sufficient in principle to *reconstruct* a duckdb_fsst_encoder_t from a duckdb_fsst_decoder_t |
| 521 | // (such functionality could be useful to append compressed data to an existing block). |
| 522 | // |
| 523 | // However, the hash function in the encoder hash table is endian-sensitive, and given its |
| 524 | // 'lossy perfect' hashing scheme is *unable* to contain other-endian-produced symbol tables. |
| 525 | // Doing a endian-conversion during hashing will be slow and self-defeating. |
| 526 | // |
| 527 | // Overall, we could support reconstructing an encoder for incremental compression, but |
| 528 | // should enforce equal-endianness. Bit of a bummer. Not going there now. |
| 529 | // |
| 530 | // The version field is now there just for future-proofness, but not used yet |
| 531 | |
| 532 | // version allows keeping track of fsst versions, track endianness, and encoder reconstruction |
| 533 | u64 version = (FSST_VERSION << 32) | // version is 24 bits, most significant byte is 0 |
| 534 | (((u64) e->symbolTable->suffixLim) << 24) | |
| 535 | (((u64) e->symbolTable->terminator) << 16) | |
| 536 | (((u64) e->symbolTable->nSymbols) << 8) | |
| 537 | FSST_ENDIAN_MARKER; // least significant byte is nonzero |
| 538 | |
| 539 | /* do not assume unaligned reads here */ |
| 540 | memcpy(dest: buf, src: &version, n: 8); |
| 541 | buf[8] = e->symbolTable->zeroTerminated; |
| 542 | for(u32 i=0; i<8; i++) |
| 543 | buf[9+i] = (u8) e->symbolTable->lenHisto[i]; |
| 544 | u32 pos = 17; |
| 545 | |
| 546 | // emit only the used bytes of the symbols |
| 547 | for(u32 i = e->symbolTable->zeroTerminated; i < e->symbolTable->nSymbols; i++) |
| 548 | for(u32 j = 0; j < e->symbolTable->symbols[i].length(); j++) |
| 549 | buf[pos++] = e->symbolTable->symbols[i].val.str[j]; // serialize used symbol bytes |
| 550 | |
| 551 | return pos; // length of what was serialized |
| 552 | } |
| 553 | |
| 554 | #define FSST_CORRUPT 32774747032022883 /* 7-byte number in little endian containing "corrupt" */ |
| 555 | |
| 556 | extern "C" u32 duckdb_fsst_import(duckdb_fsst_decoder_t *decoder, u8 *buf) { |
| 557 | u64 version = 0; |
| 558 | u32 code, pos = 17; |
| 559 | u8 lenHisto[8]; |
| 560 | |
| 561 | // version field (first 8 bytes) is now there just for future-proofness, unused still (skipped) |
| 562 | memcpy(dest: &version, src: buf, n: 8); |
| 563 | if ((version>>32) != FSST_VERSION) return 0; |
| 564 | decoder->zeroTerminated = buf[8]&1; |
| 565 | memcpy(dest: lenHisto, src: buf+9, n: 8); |
| 566 | |
| 567 | // in case of zero-terminated, first symbol is "" (zero always, may be overwritten) |
| 568 | decoder->len[0] = 1; |
| 569 | decoder->symbol[0] = 0; |
| 570 | |
| 571 | // we use lenHisto[0] as 1-byte symbol run length (at the end) |
| 572 | code = decoder->zeroTerminated; |
| 573 | if (decoder->zeroTerminated) lenHisto[0]--; // if zeroTerminated, then symbol "" aka 1-byte code=0, is not stored at the end |
| 574 | |
| 575 | // now get all symbols from the buffer |
| 576 | for(u32 l=1; l<=8; l++) { /* l = 1,2,3,4,5,6,7,8 */ |
| 577 | for(u32 i=0; i < lenHisto[(l&7) /* 1,2,3,4,5,6,7,0 */]; i++, code++) { |
| 578 | decoder->len[code] = (l&7)+1; /* len = 2,3,4,5,6,7,8,1 */ |
| 579 | decoder->symbol[code] = 0; |
| 580 | for(u32 j=0; j<decoder->len[code]; j++) |
| 581 | ((u8*) &decoder->symbol[code])[j] = buf[pos++]; // note this enforces 'little endian' symbols |
| 582 | } |
| 583 | } |
| 584 | if (decoder->zeroTerminated) lenHisto[0]++; |
| 585 | |
| 586 | // fill unused symbols with text "corrupt". Gives a chance to detect corrupted code sequences (if there are unused symbols). |
| 587 | while(code<255) { |
| 588 | decoder->symbol[code] = FSST_CORRUPT; |
| 589 | decoder->len[code++] = 8; |
| 590 | } |
| 591 | return pos; |
| 592 | } |
| 593 | |
| 594 | // runtime check for simd |
| 595 | inline size_t _compressImpl(Encoder *e, size_t nlines, size_t lenIn[], u8 *strIn[], size_t size, u8 *output, size_t *lenOut, u8 *strOut[], bool noSuffixOpt, bool avoidBranch, int simd) { |
| 596 | #ifndef NONOPT_FSST |
| 597 | if (simd && duckdb_fsst_hasAVX512()) |
| 598 | return compressSIMD(symbolTable&: *e->symbolTable, symbolBase: e->simdbuf, nlines, len: lenIn, line: strIn, size, dst: output, lenOut, strOut, unroll: simd); |
| 599 | #endif |
| 600 | (void) simd; |
| 601 | return compressBulk(symbolTable&: *e->symbolTable, nlines, lenIn, strIn, size, out: output, lenOut, strOut, noSuffixOpt, avoidBranch); |
| 602 | } |
| 603 | size_t compressImpl(Encoder *e, size_t nlines, size_t lenIn[], u8 *strIn[], size_t size, u8 *output, size_t *lenOut, u8 *strOut[], bool noSuffixOpt, bool avoidBranch, int simd) { |
| 604 | return _compressImpl(e, nlines, lenIn, strIn, size, output, lenOut, strOut, noSuffixOpt, avoidBranch, simd); |
| 605 | } |
| 606 | |
| 607 | // adaptive choosing of scalar compression method based on symbol length histogram |
| 608 | inline size_t _compressAuto(Encoder *e, size_t nlines, size_t lenIn[], u8 *strIn[], size_t size, u8 *output, size_t *lenOut, u8 *strOut[], int simd) { |
| 609 | bool avoidBranch = false, noSuffixOpt = false; |
| 610 | if (100*e->symbolTable->lenHisto[1] > 65*e->symbolTable->nSymbols && 100*e->symbolTable->suffixLim > 95*e->symbolTable->lenHisto[1]) { |
| 611 | noSuffixOpt = true; |
| 612 | } else if ((e->symbolTable->lenHisto[0] > 24 && e->symbolTable->lenHisto[0] < 92) && |
| 613 | (e->symbolTable->lenHisto[0] < 43 || e->symbolTable->lenHisto[6] + e->symbolTable->lenHisto[7] < 29) && |
| 614 | (e->symbolTable->lenHisto[0] < 72 || e->symbolTable->lenHisto[2] < 72)) { |
| 615 | avoidBranch = true; |
| 616 | } |
| 617 | return _compressImpl(e, nlines, lenIn, strIn, size, output, lenOut, strOut, noSuffixOpt, avoidBranch, simd); |
| 618 | } |
| 619 | size_t compressAuto(Encoder *e, size_t nlines, size_t lenIn[], u8 *strIn[], size_t size, u8 *output, size_t *lenOut, u8 *strOut[], int simd) { |
| 620 | return _compressAuto(e, nlines, lenIn, strIn, size, output, lenOut, strOut, simd); |
| 621 | } |
| 622 | |
| 623 | // the main compression function (everything automatic) |
| 624 | extern "C" size_t duckdb_fsst_compress(duckdb_fsst_encoder_t *encoder, size_t nlines, size_t lenIn[], u8 *strIn[], size_t size, u8 *output, size_t *lenOut, u8 *strOut[]) { |
| 625 | // to be faster than scalar, simd needs 64 lines or more of length >=12; or fewer lines, but big ones (totLen > 32KB) |
| 626 | size_t totLen = accumulate(first: lenIn, last: lenIn+nlines, init: 0); |
| 627 | int simd = totLen > nlines*12 && (nlines > 64 || totLen > (size_t) 1<<15); |
| 628 | return _compressAuto(e: (Encoder*) encoder, nlines, lenIn, strIn, size, output, lenOut, strOut, simd: 3*simd); |
| 629 | } |
| 630 | |
| 631 | /* deallocate encoder */ |
| 632 | extern "C" void duckdb_fsst_destroy(duckdb_fsst_encoder_t* encoder) { |
| 633 | Encoder *e = (Encoder*) encoder; |
| 634 | delete e; |
| 635 | } |
| 636 | |
| 637 | /* very lazy implementation relying on export and import */ |
| 638 | extern "C" duckdb_fsst_decoder_t duckdb_fsst_decoder(duckdb_fsst_encoder_t *encoder) { |
| 639 | u8 buf[sizeof(duckdb_fsst_decoder_t)]; |
| 640 | u32 cnt1 = duckdb_fsst_export(encoder, buf); |
| 641 | duckdb_fsst_decoder_t decoder; |
| 642 | u32 cnt2 = duckdb_fsst_import(decoder: &decoder, buf); |
| 643 | assert(cnt1 == cnt2); (void) cnt1; (void) cnt2; |
| 644 | return decoder; |
| 645 | } |