| 1 | #include "duckdb/execution/operator/aggregate/physical_window.hpp" |
| 2 | |
| 3 | #include "duckdb/common/operator/add.hpp" |
| 4 | #include "duckdb/common/operator/cast_operators.hpp" |
| 5 | #include "duckdb/common/operator/comparison_operators.hpp" |
| 6 | #include "duckdb/common/operator/subtract.hpp" |
| 7 | #include "duckdb/common/optional_ptr.hpp" |
| 8 | #include "duckdb/common/radix_partitioning.hpp" |
| 9 | #include "duckdb/common/row_operations/row_operations.hpp" |
| 10 | #include "duckdb/common/sort/partition_state.hpp" |
| 11 | #include "duckdb/common/types/chunk_collection.hpp" |
| 12 | #include "duckdb/common/types/column/column_data_consumer.hpp" |
| 13 | #include "duckdb/common/types/row/row_data_collection_scanner.hpp" |
| 14 | #include "duckdb/common/vector_operations/vector_operations.hpp" |
| 15 | #include "duckdb/common/windows_undefs.hpp" |
| 16 | #include "duckdb/execution/expression_executor.hpp" |
| 17 | #include "duckdb/execution/partitionable_hashtable.hpp" |
| 18 | #include "duckdb/execution/window_segment_tree.hpp" |
| 19 | #include "duckdb/main/client_config.hpp" |
| 20 | #include "duckdb/main/config.hpp" |
| 21 | #include "duckdb/parallel/base_pipeline_event.hpp" |
| 22 | #include "duckdb/planner/expression/bound_reference_expression.hpp" |
| 23 | #include "duckdb/planner/expression/bound_window_expression.hpp" |
| 24 | |
| 25 | #include <algorithm> |
| 26 | #include <cmath> |
| 27 | #include <numeric> |
| 28 | |
| 29 | namespace duckdb { |
| 30 | |
| 31 | // Global sink state |
| 32 | class WindowGlobalSinkState : public GlobalSinkState { |
| 33 | public: |
| 34 | WindowGlobalSinkState(const PhysicalWindow &op, ClientContext &context) |
| 35 | : mode(DBConfig::GetConfig(context).options.window_mode) { |
| 36 | |
| 37 | D_ASSERT(op.select_list[0]->GetExpressionClass() == ExpressionClass::BOUND_WINDOW); |
| 38 | auto &wexpr = op.select_list[0]->Cast<BoundWindowExpression>(); |
| 39 | |
| 40 | global_partition = |
| 41 | make_uniq<PartitionGlobalSinkState>(args&: context, args&: wexpr.partitions, args&: wexpr.orders, args&: op.children[0]->types, |
| 42 | args&: wexpr.partitions_stats, args: op.estimated_cardinality); |
| 43 | } |
| 44 | |
| 45 | unique_ptr<PartitionGlobalSinkState> global_partition; |
| 46 | WindowAggregationMode mode; |
| 47 | }; |
| 48 | |
| 49 | // Per-thread sink state |
| 50 | class WindowLocalSinkState : public LocalSinkState { |
| 51 | public: |
| 52 | WindowLocalSinkState(ClientContext &context, const WindowGlobalSinkState &gstate) |
| 53 | : local_partition(context, *gstate.global_partition) { |
| 54 | } |
| 55 | |
| 56 | void Sink(DataChunk &input_chunk) { |
| 57 | local_partition.Sink(input_chunk); |
| 58 | } |
| 59 | |
| 60 | void Combine() { |
| 61 | local_partition.Combine(); |
| 62 | } |
| 63 | |
| 64 | PartitionLocalSinkState local_partition; |
| 65 | }; |
| 66 | |
| 67 | // this implements a sorted window functions variant |
| 68 | PhysicalWindow::PhysicalWindow(vector<LogicalType> types, vector<unique_ptr<Expression>> select_list_p, |
| 69 | idx_t estimated_cardinality, PhysicalOperatorType type) |
| 70 | : PhysicalOperator(type, std::move(types), estimated_cardinality), select_list(std::move(select_list_p)) { |
| 71 | is_order_dependent = false; |
| 72 | for (auto &expr : select_list) { |
| 73 | D_ASSERT(expr->expression_class == ExpressionClass::BOUND_WINDOW); |
| 74 | auto &bound_window = expr->Cast<BoundWindowExpression>(); |
| 75 | if (bound_window.partitions.empty() && bound_window.orders.empty()) { |
| 76 | is_order_dependent = true; |
| 77 | } |
| 78 | } |
| 79 | } |
| 80 | |
| 81 | static idx_t FindNextStart(const ValidityMask &mask, idx_t l, const idx_t r, idx_t &n) { |
| 82 | if (mask.AllValid()) { |
| 83 | auto start = MinValue(a: l + n - 1, b: r); |
| 84 | n -= MinValue(a: n, b: r - l); |
| 85 | return start; |
| 86 | } |
| 87 | |
| 88 | while (l < r) { |
| 89 | // If l is aligned with the start of a block, and the block is blank, then skip forward one block. |
| 90 | idx_t entry_idx; |
| 91 | idx_t shift; |
| 92 | mask.GetEntryIndex(row_idx: l, entry_idx, idx_in_entry&: shift); |
| 93 | |
| 94 | const auto block = mask.GetValidityEntry(entry_idx); |
| 95 | if (mask.NoneValid(entry: block) && !shift) { |
| 96 | l += ValidityMask::BITS_PER_VALUE; |
| 97 | continue; |
| 98 | } |
| 99 | |
| 100 | // Loop over the block |
| 101 | for (; shift < ValidityMask::BITS_PER_VALUE && l < r; ++shift, ++l) { |
| 102 | if (mask.RowIsValid(entry: block, idx_in_entry: shift) && --n == 0) { |
| 103 | return MinValue(a: l, b: r); |
| 104 | } |
| 105 | } |
| 106 | } |
| 107 | |
| 108 | // Didn't find a start so return the end of the range |
| 109 | return r; |
| 110 | } |
| 111 | |
| 112 | static idx_t FindPrevStart(const ValidityMask &mask, const idx_t l, idx_t r, idx_t &n) { |
| 113 | if (mask.AllValid()) { |
| 114 | auto start = (r <= l + n) ? l : r - n; |
| 115 | n -= r - start; |
| 116 | return start; |
| 117 | } |
| 118 | |
| 119 | while (l < r) { |
| 120 | // If r is aligned with the start of a block, and the previous block is blank, |
| 121 | // then skip backwards one block. |
| 122 | idx_t entry_idx; |
| 123 | idx_t shift; |
| 124 | mask.GetEntryIndex(row_idx: r - 1, entry_idx, idx_in_entry&: shift); |
| 125 | |
| 126 | const auto block = mask.GetValidityEntry(entry_idx); |
| 127 | if (mask.NoneValid(entry: block) && (shift + 1 == ValidityMask::BITS_PER_VALUE)) { |
| 128 | // r is nonzero (> l) and word aligned, so this will not underflow. |
| 129 | r -= ValidityMask::BITS_PER_VALUE; |
| 130 | continue; |
| 131 | } |
| 132 | |
| 133 | // Loop backwards over the block |
| 134 | // shift is probing r-1 >= l >= 0 |
| 135 | for (++shift; shift-- > 0; --r) { |
| 136 | if (mask.RowIsValid(entry: block, idx_in_entry: shift) && --n == 0) { |
| 137 | return MaxValue(a: l, b: r - 1); |
| 138 | } |
| 139 | } |
| 140 | } |
| 141 | |
| 142 | // Didn't find a start so return the start of the range |
| 143 | return l; |
| 144 | } |
| 145 | |
| 146 | static void PrepareInputExpressions(vector<unique_ptr<Expression>> &exprs, ExpressionExecutor &executor, |
| 147 | DataChunk &chunk) { |
| 148 | if (exprs.empty()) { |
| 149 | return; |
| 150 | } |
| 151 | |
| 152 | vector<LogicalType> types; |
| 153 | for (idx_t expr_idx = 0; expr_idx < exprs.size(); ++expr_idx) { |
| 154 | types.push_back(x: exprs[expr_idx]->return_type); |
| 155 | executor.AddExpression(expr: *exprs[expr_idx]); |
| 156 | } |
| 157 | |
| 158 | if (!types.empty()) { |
| 159 | auto &allocator = executor.GetAllocator(); |
| 160 | chunk.Initialize(allocator, types); |
| 161 | } |
| 162 | } |
| 163 | |
| 164 | static void PrepareInputExpression(Expression &expr, ExpressionExecutor &executor, DataChunk &chunk) { |
| 165 | vector<LogicalType> types; |
| 166 | types.push_back(x: expr.return_type); |
| 167 | executor.AddExpression(expr); |
| 168 | |
| 169 | auto &allocator = executor.GetAllocator(); |
| 170 | chunk.Initialize(allocator, types); |
| 171 | } |
| 172 | |
| 173 | struct WindowInputExpression { |
| 174 | WindowInputExpression(optional_ptr<Expression> expr_p, ClientContext &context) |
| 175 | : expr(expr_p), ptype(PhysicalType::INVALID), scalar(true), executor(context) { |
| 176 | if (expr) { |
| 177 | PrepareInputExpression(expr&: *expr, executor, chunk); |
| 178 | ptype = expr->return_type.InternalType(); |
| 179 | scalar = expr->IsScalar(); |
| 180 | } |
| 181 | } |
| 182 | |
| 183 | void Execute(DataChunk &input_chunk) { |
| 184 | if (expr) { |
| 185 | chunk.Reset(); |
| 186 | executor.Execute(input&: input_chunk, result&: chunk); |
| 187 | chunk.Verify(); |
| 188 | } |
| 189 | } |
| 190 | |
| 191 | template <typename T> |
| 192 | inline T GetCell(idx_t i) const { |
| 193 | D_ASSERT(!chunk.data.empty()); |
| 194 | const auto data = FlatVector::GetData<T>(chunk.data[0]); |
| 195 | return data[scalar ? 0 : i]; |
| 196 | } |
| 197 | |
| 198 | inline bool CellIsNull(idx_t i) const { |
| 199 | D_ASSERT(!chunk.data.empty()); |
| 200 | if (chunk.data[0].GetVectorType() == VectorType::CONSTANT_VECTOR) { |
| 201 | return ConstantVector::IsNull(vector: chunk.data[0]); |
| 202 | } |
| 203 | return FlatVector::IsNull(vector: chunk.data[0], idx: i); |
| 204 | } |
| 205 | |
| 206 | inline void CopyCell(Vector &target, idx_t target_offset) const { |
| 207 | D_ASSERT(!chunk.data.empty()); |
| 208 | auto &source = chunk.data[0]; |
| 209 | auto source_offset = scalar ? 0 : target_offset; |
| 210 | VectorOperations::Copy(source, target, source_count: source_offset + 1, source_offset, target_offset); |
| 211 | } |
| 212 | |
| 213 | optional_ptr<Expression> expr; |
| 214 | PhysicalType ptype; |
| 215 | bool scalar; |
| 216 | ExpressionExecutor executor; |
| 217 | DataChunk chunk; |
| 218 | }; |
| 219 | |
| 220 | struct WindowInputColumn { |
| 221 | WindowInputColumn(Expression *expr_p, ClientContext &context, idx_t capacity_p) |
| 222 | : input_expr(expr_p, context), count(0), capacity(capacity_p) { |
| 223 | if (input_expr.expr) { |
| 224 | target = make_uniq<Vector>(args: input_expr.chunk.data[0].GetType(), args&: capacity); |
| 225 | } |
| 226 | } |
| 227 | |
| 228 | void Append(DataChunk &input_chunk) { |
| 229 | if (input_expr.expr) { |
| 230 | const auto source_count = input_chunk.size(); |
| 231 | D_ASSERT(count + source_count <= capacity); |
| 232 | if (!input_expr.scalar || !count) { |
| 233 | input_expr.Execute(input_chunk); |
| 234 | auto &source = input_expr.chunk.data[0]; |
| 235 | VectorOperations::Copy(source, target&: *target, source_count, source_offset: 0, target_offset: count); |
| 236 | } |
| 237 | count += source_count; |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | inline bool CellIsNull(idx_t i) { |
| 242 | D_ASSERT(target); |
| 243 | D_ASSERT(i < count); |
| 244 | return FlatVector::IsNull(vector: *target, idx: input_expr.scalar ? 0 : i); |
| 245 | } |
| 246 | |
| 247 | template <typename T> |
| 248 | inline T GetCell(idx_t i) const { |
| 249 | D_ASSERT(target); |
| 250 | D_ASSERT(i < count); |
| 251 | const auto data = FlatVector::GetData<T>(*target); |
| 252 | return data[input_expr.scalar ? 0 : i]; |
| 253 | } |
| 254 | |
| 255 | WindowInputExpression input_expr; |
| 256 | |
| 257 | private: |
| 258 | unique_ptr<Vector> target; |
| 259 | idx_t count; |
| 260 | idx_t capacity; |
| 261 | }; |
| 262 | |
| 263 | static inline bool BoundaryNeedsPeer(const WindowBoundary &boundary) { |
| 264 | switch (boundary) { |
| 265 | case WindowBoundary::CURRENT_ROW_RANGE: |
| 266 | case WindowBoundary::EXPR_PRECEDING_RANGE: |
| 267 | case WindowBoundary::EXPR_FOLLOWING_RANGE: |
| 268 | return true; |
| 269 | default: |
| 270 | return false; |
| 271 | } |
| 272 | } |
| 273 | |
| 274 | struct WindowBoundariesState { |
| 275 | static inline bool IsScalar(const unique_ptr<Expression> &expr) { |
| 276 | return expr ? expr->IsScalar() : true; |
| 277 | } |
| 278 | |
| 279 | WindowBoundariesState(BoundWindowExpression &wexpr, const idx_t input_size) |
| 280 | : type(wexpr.type), input_size(input_size), start_boundary(wexpr.start), end_boundary(wexpr.end), |
| 281 | partition_count(wexpr.partitions.size()), order_count(wexpr.orders.size()), |
| 282 | range_sense(wexpr.orders.empty() ? OrderType::INVALID : wexpr.orders[0].type), |
| 283 | has_preceding_range(wexpr.start == WindowBoundary::EXPR_PRECEDING_RANGE || |
| 284 | wexpr.end == WindowBoundary::EXPR_PRECEDING_RANGE), |
| 285 | has_following_range(wexpr.start == WindowBoundary::EXPR_FOLLOWING_RANGE || |
| 286 | wexpr.end == WindowBoundary::EXPR_FOLLOWING_RANGE), |
| 287 | needs_peer(BoundaryNeedsPeer(boundary: wexpr.end) || wexpr.type == ExpressionType::WINDOW_CUME_DIST) { |
| 288 | } |
| 289 | |
| 290 | void Update(const idx_t row_idx, WindowInputColumn &range_collection, const idx_t source_offset, |
| 291 | WindowInputExpression &boundary_start, WindowInputExpression &boundary_end, |
| 292 | const ValidityMask &partition_mask, const ValidityMask &order_mask); |
| 293 | |
| 294 | // Cached lookups |
| 295 | const ExpressionType type; |
| 296 | const idx_t input_size; |
| 297 | const WindowBoundary start_boundary; |
| 298 | const WindowBoundary end_boundary; |
| 299 | const size_t partition_count; |
| 300 | const size_t order_count; |
| 301 | const OrderType range_sense; |
| 302 | const bool has_preceding_range; |
| 303 | const bool has_following_range; |
| 304 | const bool needs_peer; |
| 305 | |
| 306 | idx_t partition_start = 0; |
| 307 | idx_t partition_end = 0; |
| 308 | idx_t peer_start = 0; |
| 309 | idx_t peer_end = 0; |
| 310 | idx_t valid_start = 0; |
| 311 | idx_t valid_end = 0; |
| 312 | int64_t window_start = -1; |
| 313 | int64_t window_end = -1; |
| 314 | bool is_same_partition = false; |
| 315 | bool is_peer = false; |
| 316 | }; |
| 317 | |
| 318 | static bool WindowNeedsRank(const BoundWindowExpression &wexpr) { |
| 319 | return wexpr.type == ExpressionType::WINDOW_PERCENT_RANK || wexpr.type == ExpressionType::WINDOW_RANK || |
| 320 | wexpr.type == ExpressionType::WINDOW_RANK_DENSE || wexpr.type == ExpressionType::WINDOW_CUME_DIST; |
| 321 | } |
| 322 | |
| 323 | template <typename T> |
| 324 | static T GetCell(DataChunk &chunk, idx_t column, idx_t index) { |
| 325 | D_ASSERT(chunk.ColumnCount() > column); |
| 326 | auto &source = chunk.data[column]; |
| 327 | const auto data = FlatVector::GetData<T>(source); |
| 328 | return data[index]; |
| 329 | } |
| 330 | |
| 331 | static bool CellIsNull(DataChunk &chunk, idx_t column, idx_t index) { |
| 332 | D_ASSERT(chunk.ColumnCount() > column); |
| 333 | auto &source = chunk.data[column]; |
| 334 | return FlatVector::IsNull(vector: source, idx: index); |
| 335 | } |
| 336 | |
| 337 | static void CopyCell(DataChunk &chunk, idx_t column, idx_t index, Vector &target, idx_t target_offset) { |
| 338 | D_ASSERT(chunk.ColumnCount() > column); |
| 339 | auto &source = chunk.data[column]; |
| 340 | VectorOperations::Copy(source, target, source_count: index + 1, source_offset: index, target_offset); |
| 341 | } |
| 342 | |
| 343 | template <typename T> |
| 344 | struct WindowColumnIterator { |
| 345 | using iterator = WindowColumnIterator<T>; |
| 346 | using iterator_category = std::forward_iterator_tag; |
| 347 | using difference_type = std::ptrdiff_t; |
| 348 | using value_type = T; |
| 349 | using reference = T; |
| 350 | using pointer = idx_t; |
| 351 | |
| 352 | explicit WindowColumnIterator(WindowInputColumn &coll_p, pointer pos_p = 0) : coll(&coll_p), pos(pos_p) { |
| 353 | } |
| 354 | |
| 355 | inline reference operator*() const { |
| 356 | return coll->GetCell<T>(pos); |
| 357 | } |
| 358 | inline explicit operator pointer() const { |
| 359 | return pos; |
| 360 | } |
| 361 | |
| 362 | inline iterator &operator++() { |
| 363 | ++pos; |
| 364 | return *this; |
| 365 | } |
| 366 | inline iterator operator++(int) { |
| 367 | auto result = *this; |
| 368 | ++(*this); |
| 369 | return result; |
| 370 | } |
| 371 | |
| 372 | friend inline bool operator==(const iterator &a, const iterator &b) { |
| 373 | return a.pos == b.pos; |
| 374 | } |
| 375 | friend inline bool operator!=(const iterator &a, const iterator &b) { |
| 376 | return a.pos != b.pos; |
| 377 | } |
| 378 | |
| 379 | private: |
| 380 | optional_ptr<WindowInputColumn> coll; |
| 381 | pointer pos; |
| 382 | }; |
| 383 | |
| 384 | template <typename T, typename OP> |
| 385 | struct OperationCompare : public std::function<bool(T, T)> { |
| 386 | inline bool operator()(const T &lhs, const T &val) const { |
| 387 | return OP::template Operation(lhs, val); |
| 388 | } |
| 389 | }; |
| 390 | |
| 391 | template <typename T, typename OP, bool FROM> |
| 392 | static idx_t FindTypedRangeBound(WindowInputColumn &over, const idx_t order_begin, const idx_t order_end, |
| 393 | WindowInputExpression &boundary, const idx_t boundary_row) { |
| 394 | D_ASSERT(!boundary.CellIsNull(boundary_row)); |
| 395 | const auto val = boundary.GetCell<T>(boundary_row); |
| 396 | |
| 397 | OperationCompare<T, OP> comp; |
| 398 | WindowColumnIterator<T> begin(over, order_begin); |
| 399 | WindowColumnIterator<T> end(over, order_end); |
| 400 | if (FROM) { |
| 401 | return idx_t(std::lower_bound(begin, end, val, comp)); |
| 402 | } else { |
| 403 | return idx_t(std::upper_bound(begin, end, val, comp)); |
| 404 | } |
| 405 | } |
| 406 | |
| 407 | template <typename OP, bool FROM> |
| 408 | static idx_t FindRangeBound(WindowInputColumn &over, const idx_t order_begin, const idx_t order_end, |
| 409 | WindowInputExpression &boundary, const idx_t expr_idx) { |
| 410 | D_ASSERT(boundary.chunk.ColumnCount() == 1); |
| 411 | D_ASSERT(boundary.chunk.data[0].GetType().InternalType() == over.input_expr.ptype); |
| 412 | |
| 413 | switch (over.input_expr.ptype) { |
| 414 | case PhysicalType::INT8: |
| 415 | return FindTypedRangeBound<int8_t, OP, FROM>(over, order_begin, order_end, boundary, expr_idx); |
| 416 | case PhysicalType::INT16: |
| 417 | return FindTypedRangeBound<int16_t, OP, FROM>(over, order_begin, order_end, boundary, expr_idx); |
| 418 | case PhysicalType::INT32: |
| 419 | return FindTypedRangeBound<int32_t, OP, FROM>(over, order_begin, order_end, boundary, expr_idx); |
| 420 | case PhysicalType::INT64: |
| 421 | return FindTypedRangeBound<int64_t, OP, FROM>(over, order_begin, order_end, boundary, expr_idx); |
| 422 | case PhysicalType::UINT8: |
| 423 | return FindTypedRangeBound<uint8_t, OP, FROM>(over, order_begin, order_end, boundary, expr_idx); |
| 424 | case PhysicalType::UINT16: |
| 425 | return FindTypedRangeBound<uint16_t, OP, FROM>(over, order_begin, order_end, boundary, expr_idx); |
| 426 | case PhysicalType::UINT32: |
| 427 | return FindTypedRangeBound<uint32_t, OP, FROM>(over, order_begin, order_end, boundary, expr_idx); |
| 428 | case PhysicalType::UINT64: |
| 429 | return FindTypedRangeBound<uint64_t, OP, FROM>(over, order_begin, order_end, boundary, expr_idx); |
| 430 | case PhysicalType::INT128: |
| 431 | return FindTypedRangeBound<hugeint_t, OP, FROM>(over, order_begin, order_end, boundary, expr_idx); |
| 432 | case PhysicalType::FLOAT: |
| 433 | return FindTypedRangeBound<float, OP, FROM>(over, order_begin, order_end, boundary, expr_idx); |
| 434 | case PhysicalType::DOUBLE: |
| 435 | return FindTypedRangeBound<double, OP, FROM>(over, order_begin, order_end, boundary, expr_idx); |
| 436 | case PhysicalType::INTERVAL: |
| 437 | return FindTypedRangeBound<interval_t, OP, FROM>(over, order_begin, order_end, boundary, expr_idx); |
| 438 | default: |
| 439 | throw InternalException("Unsupported column type for RANGE" ); |
| 440 | } |
| 441 | } |
| 442 | |
| 443 | template <bool FROM> |
| 444 | static idx_t FindOrderedRangeBound(WindowInputColumn &over, const OrderType range_sense, const idx_t order_begin, |
| 445 | const idx_t order_end, WindowInputExpression &boundary, const idx_t expr_idx) { |
| 446 | switch (range_sense) { |
| 447 | case OrderType::ASCENDING: |
| 448 | return FindRangeBound<LessThan, FROM>(over, order_begin, order_end, boundary, expr_idx); |
| 449 | case OrderType::DESCENDING: |
| 450 | return FindRangeBound<GreaterThan, FROM>(over, order_begin, order_end, boundary, expr_idx); |
| 451 | default: |
| 452 | throw InternalException("Unsupported ORDER BY sense for RANGE" ); |
| 453 | } |
| 454 | } |
| 455 | |
| 456 | void WindowBoundariesState::Update(const idx_t row_idx, WindowInputColumn &range_collection, const idx_t expr_idx, |
| 457 | WindowInputExpression &boundary_start, WindowInputExpression &boundary_end, |
| 458 | const ValidityMask &partition_mask, const ValidityMask &order_mask) { |
| 459 | |
| 460 | auto &bounds = *this; |
| 461 | if (bounds.partition_count + bounds.order_count > 0) { |
| 462 | |
| 463 | // determine partition and peer group boundaries to ultimately figure out window size |
| 464 | bounds.is_same_partition = !partition_mask.RowIsValidUnsafe(row_idx); |
| 465 | bounds.is_peer = !order_mask.RowIsValidUnsafe(row_idx); |
| 466 | |
| 467 | // when the partition changes, recompute the boundaries |
| 468 | if (!bounds.is_same_partition) { |
| 469 | bounds.partition_start = row_idx; |
| 470 | bounds.peer_start = row_idx; |
| 471 | |
| 472 | // find end of partition |
| 473 | bounds.partition_end = bounds.input_size; |
| 474 | if (bounds.partition_count) { |
| 475 | idx_t n = 1; |
| 476 | bounds.partition_end = FindNextStart(mask: partition_mask, l: bounds.partition_start + 1, r: bounds.input_size, n); |
| 477 | } |
| 478 | |
| 479 | // Find valid ordering values for the new partition |
| 480 | // so we can exclude NULLs from RANGE expression computations |
| 481 | bounds.valid_start = bounds.partition_start; |
| 482 | bounds.valid_end = bounds.partition_end; |
| 483 | |
| 484 | if ((bounds.valid_start < bounds.valid_end) && bounds.has_preceding_range) { |
| 485 | // Exclude any leading NULLs |
| 486 | if (range_collection.CellIsNull(i: bounds.valid_start)) { |
| 487 | idx_t n = 1; |
| 488 | bounds.valid_start = FindNextStart(mask: order_mask, l: bounds.valid_start + 1, r: bounds.valid_end, n); |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | if ((bounds.valid_start < bounds.valid_end) && bounds.has_following_range) { |
| 493 | // Exclude any trailing NULLs |
| 494 | if (range_collection.CellIsNull(i: bounds.valid_end - 1)) { |
| 495 | idx_t n = 1; |
| 496 | bounds.valid_end = FindPrevStart(mask: order_mask, l: bounds.valid_start, r: bounds.valid_end, n); |
| 497 | } |
| 498 | } |
| 499 | |
| 500 | } else if (!bounds.is_peer) { |
| 501 | bounds.peer_start = row_idx; |
| 502 | } |
| 503 | |
| 504 | if (bounds.needs_peer) { |
| 505 | bounds.peer_end = bounds.partition_end; |
| 506 | if (bounds.order_count) { |
| 507 | idx_t n = 1; |
| 508 | bounds.peer_end = FindNextStart(mask: order_mask, l: bounds.peer_start + 1, r: bounds.partition_end, n); |
| 509 | } |
| 510 | } |
| 511 | |
| 512 | } else { |
| 513 | bounds.is_same_partition = false; |
| 514 | bounds.is_peer = true; |
| 515 | bounds.partition_end = bounds.input_size; |
| 516 | bounds.peer_end = bounds.partition_end; |
| 517 | } |
| 518 | |
| 519 | // determine window boundaries depending on the type of expression |
| 520 | bounds.window_start = -1; |
| 521 | bounds.window_end = -1; |
| 522 | |
| 523 | switch (bounds.start_boundary) { |
| 524 | case WindowBoundary::UNBOUNDED_PRECEDING: |
| 525 | bounds.window_start = bounds.partition_start; |
| 526 | break; |
| 527 | case WindowBoundary::CURRENT_ROW_ROWS: |
| 528 | bounds.window_start = row_idx; |
| 529 | break; |
| 530 | case WindowBoundary::CURRENT_ROW_RANGE: |
| 531 | bounds.window_start = bounds.peer_start; |
| 532 | break; |
| 533 | case WindowBoundary::EXPR_PRECEDING_ROWS: { |
| 534 | if (!TrySubtractOperator::Operation(left: int64_t(row_idx), right: boundary_start.GetCell<int64_t>(i: expr_idx), |
| 535 | result&: bounds.window_start)) { |
| 536 | throw OutOfRangeException("Overflow computing ROWS PRECEDING start" ); |
| 537 | } |
| 538 | break; |
| 539 | } |
| 540 | case WindowBoundary::EXPR_FOLLOWING_ROWS: { |
| 541 | if (!TryAddOperator::Operation(left: int64_t(row_idx), right: boundary_start.GetCell<int64_t>(i: expr_idx), |
| 542 | result&: bounds.window_start)) { |
| 543 | throw OutOfRangeException("Overflow computing ROWS FOLLOWING start" ); |
| 544 | } |
| 545 | break; |
| 546 | } |
| 547 | case WindowBoundary::EXPR_PRECEDING_RANGE: { |
| 548 | if (boundary_start.CellIsNull(i: expr_idx)) { |
| 549 | bounds.window_start = bounds.peer_start; |
| 550 | } else { |
| 551 | bounds.window_start = FindOrderedRangeBound<true>(over&: range_collection, range_sense: bounds.range_sense, order_begin: bounds.valid_start, |
| 552 | order_end: row_idx, boundary&: boundary_start, expr_idx); |
| 553 | } |
| 554 | break; |
| 555 | } |
| 556 | case WindowBoundary::EXPR_FOLLOWING_RANGE: { |
| 557 | if (boundary_start.CellIsNull(i: expr_idx)) { |
| 558 | bounds.window_start = bounds.peer_start; |
| 559 | } else { |
| 560 | bounds.window_start = FindOrderedRangeBound<true>(over&: range_collection, range_sense: bounds.range_sense, order_begin: row_idx, |
| 561 | order_end: bounds.valid_end, boundary&: boundary_start, expr_idx); |
| 562 | } |
| 563 | break; |
| 564 | } |
| 565 | default: |
| 566 | throw InternalException("Unsupported window start boundary" ); |
| 567 | } |
| 568 | |
| 569 | switch (bounds.end_boundary) { |
| 570 | case WindowBoundary::CURRENT_ROW_ROWS: |
| 571 | bounds.window_end = row_idx + 1; |
| 572 | break; |
| 573 | case WindowBoundary::CURRENT_ROW_RANGE: |
| 574 | bounds.window_end = bounds.peer_end; |
| 575 | break; |
| 576 | case WindowBoundary::UNBOUNDED_FOLLOWING: |
| 577 | bounds.window_end = bounds.partition_end; |
| 578 | break; |
| 579 | case WindowBoundary::EXPR_PRECEDING_ROWS: |
| 580 | if (!TrySubtractOperator::Operation(left: int64_t(row_idx + 1), right: boundary_end.GetCell<int64_t>(i: expr_idx), |
| 581 | result&: bounds.window_end)) { |
| 582 | throw OutOfRangeException("Overflow computing ROWS PRECEDING end" ); |
| 583 | } |
| 584 | break; |
| 585 | case WindowBoundary::EXPR_FOLLOWING_ROWS: |
| 586 | if (!TryAddOperator::Operation(left: int64_t(row_idx + 1), right: boundary_end.GetCell<int64_t>(i: expr_idx), |
| 587 | result&: bounds.window_end)) { |
| 588 | throw OutOfRangeException("Overflow computing ROWS FOLLOWING end" ); |
| 589 | } |
| 590 | break; |
| 591 | case WindowBoundary::EXPR_PRECEDING_RANGE: { |
| 592 | if (boundary_end.CellIsNull(i: expr_idx)) { |
| 593 | bounds.window_end = bounds.peer_end; |
| 594 | } else { |
| 595 | bounds.window_end = FindOrderedRangeBound<false>(over&: range_collection, range_sense: bounds.range_sense, order_begin: bounds.valid_start, |
| 596 | order_end: row_idx, boundary&: boundary_end, expr_idx); |
| 597 | } |
| 598 | break; |
| 599 | } |
| 600 | case WindowBoundary::EXPR_FOLLOWING_RANGE: { |
| 601 | if (boundary_end.CellIsNull(i: expr_idx)) { |
| 602 | bounds.window_end = bounds.peer_end; |
| 603 | } else { |
| 604 | bounds.window_end = FindOrderedRangeBound<false>(over&: range_collection, range_sense: bounds.range_sense, order_begin: row_idx, |
| 605 | order_end: bounds.valid_end, boundary&: boundary_end, expr_idx); |
| 606 | } |
| 607 | break; |
| 608 | } |
| 609 | default: |
| 610 | throw InternalException("Unsupported window end boundary" ); |
| 611 | } |
| 612 | |
| 613 | // clamp windows to partitions if they should exceed |
| 614 | if (bounds.window_start < (int64_t)bounds.partition_start) { |
| 615 | bounds.window_start = bounds.partition_start; |
| 616 | } |
| 617 | if (bounds.window_start > (int64_t)bounds.partition_end) { |
| 618 | bounds.window_start = bounds.partition_end; |
| 619 | } |
| 620 | if (bounds.window_end < (int64_t)bounds.partition_start) { |
| 621 | bounds.window_end = bounds.partition_start; |
| 622 | } |
| 623 | if (bounds.window_end > (int64_t)bounds.partition_end) { |
| 624 | bounds.window_end = bounds.partition_end; |
| 625 | } |
| 626 | |
| 627 | if (bounds.window_start < 0 || bounds.window_end < 0) { |
| 628 | throw InternalException("Failed to compute window boundaries" ); |
| 629 | } |
| 630 | } |
| 631 | |
| 632 | struct WindowExecutor { |
| 633 | static bool IsConstantAggregate(const BoundWindowExpression &wexpr); |
| 634 | |
| 635 | WindowExecutor(BoundWindowExpression &wexpr, ClientContext &context, const ValidityMask &partition_mask, |
| 636 | const idx_t count); |
| 637 | |
| 638 | void Sink(DataChunk &input_chunk, const idx_t input_idx, const idx_t total_count); |
| 639 | void Finalize(WindowAggregationMode mode); |
| 640 | |
| 641 | void Evaluate(idx_t row_idx, DataChunk &input_chunk, Vector &result, const ValidityMask &partition_mask, |
| 642 | const ValidityMask &order_mask); |
| 643 | |
| 644 | // The function |
| 645 | BoundWindowExpression &wexpr; |
| 646 | |
| 647 | // Frame management |
| 648 | WindowBoundariesState bounds; |
| 649 | uint64_t dense_rank = 1; |
| 650 | uint64_t rank_equal = 0; |
| 651 | uint64_t rank = 1; |
| 652 | |
| 653 | // Expression collections |
| 654 | DataChunk payload_collection; |
| 655 | ExpressionExecutor payload_executor; |
| 656 | DataChunk payload_chunk; |
| 657 | |
| 658 | ExpressionExecutor filter_executor; |
| 659 | ValidityMask filter_mask; |
| 660 | vector<validity_t> filter_bits; |
| 661 | SelectionVector filter_sel; |
| 662 | |
| 663 | // LEAD/LAG Evaluation |
| 664 | WindowInputExpression leadlag_offset; |
| 665 | WindowInputExpression leadlag_default; |
| 666 | |
| 667 | // evaluate boundaries if present. Parser has checked boundary types. |
| 668 | WindowInputExpression boundary_start; |
| 669 | WindowInputExpression boundary_end; |
| 670 | |
| 671 | // evaluate RANGE expressions, if needed |
| 672 | WindowInputColumn range; |
| 673 | |
| 674 | // IGNORE NULLS |
| 675 | ValidityMask ignore_nulls; |
| 676 | |
| 677 | // build a segment tree for frame-adhering aggregates |
| 678 | // see http://www.vldb.org/pvldb/vol8/p1058-leis.pdf |
| 679 | unique_ptr<WindowSegmentTree> segment_tree = nullptr; |
| 680 | |
| 681 | // all aggregate values are the same for each partition |
| 682 | unique_ptr<WindowConstantAggregate> constant_aggregate = nullptr; |
| 683 | }; |
| 684 | |
| 685 | bool WindowExecutor::IsConstantAggregate(const BoundWindowExpression &wexpr) { |
| 686 | if (!wexpr.aggregate) { |
| 687 | return false; |
| 688 | } |
| 689 | |
| 690 | // COUNT(*) is already handled efficiently by segment trees. |
| 691 | if (wexpr.children.empty()) { |
| 692 | return false; |
| 693 | } |
| 694 | |
| 695 | /* |
| 696 | The default framing option is RANGE UNBOUNDED PRECEDING, which |
| 697 | is the same as RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT |
| 698 | ROW; it sets the frame to be all rows from the partition start |
| 699 | up through the current row's last peer (a row that the window's |
| 700 | ORDER BY clause considers equivalent to the current row; all |
| 701 | rows are peers if there is no ORDER BY). In general, UNBOUNDED |
| 702 | PRECEDING means that the frame starts with the first row of the |
| 703 | partition, and similarly UNBOUNDED FOLLOWING means that the |
| 704 | frame ends with the last row of the partition, regardless of |
| 705 | RANGE, ROWS or GROUPS mode. In ROWS mode, CURRENT ROW means that |
| 706 | the frame starts or ends with the current row; but in RANGE or |
| 707 | GROUPS mode it means that the frame starts or ends with the |
| 708 | current row's first or last peer in the ORDER BY ordering. The |
| 709 | offset PRECEDING and offset FOLLOWING options vary in meaning |
| 710 | depending on the frame mode. |
| 711 | */ |
| 712 | switch (wexpr.start) { |
| 713 | case WindowBoundary::UNBOUNDED_PRECEDING: |
| 714 | break; |
| 715 | case WindowBoundary::CURRENT_ROW_RANGE: |
| 716 | if (!wexpr.orders.empty()) { |
| 717 | return false; |
| 718 | } |
| 719 | break; |
| 720 | default: |
| 721 | return false; |
| 722 | } |
| 723 | |
| 724 | switch (wexpr.end) { |
| 725 | case WindowBoundary::UNBOUNDED_FOLLOWING: |
| 726 | break; |
| 727 | case WindowBoundary::CURRENT_ROW_RANGE: |
| 728 | if (!wexpr.orders.empty()) { |
| 729 | return false; |
| 730 | } |
| 731 | break; |
| 732 | default: |
| 733 | return false; |
| 734 | } |
| 735 | |
| 736 | return true; |
| 737 | } |
| 738 | |
| 739 | WindowExecutor::WindowExecutor(BoundWindowExpression &wexpr, ClientContext &context, const ValidityMask &partition_mask, |
| 740 | const idx_t count) |
| 741 | : wexpr(wexpr), bounds(wexpr, count), payload_collection(), payload_executor(context), filter_executor(context), |
| 742 | leadlag_offset(wexpr.offset_expr.get(), context), leadlag_default(wexpr.default_expr.get(), context), |
| 743 | boundary_start(wexpr.start_expr.get(), context), boundary_end(wexpr.end_expr.get(), context), |
| 744 | range((bounds.has_preceding_range || bounds.has_following_range) ? wexpr.orders[0].expression.get() : nullptr, |
| 745 | context, count) |
| 746 | |
| 747 | { |
| 748 | // TODO we could evaluate those expressions in parallel |
| 749 | |
| 750 | // Check for constant aggregate |
| 751 | if (IsConstantAggregate(wexpr)) { |
| 752 | constant_aggregate = |
| 753 | make_uniq<WindowConstantAggregate>(args: AggregateObject(wexpr), args&: wexpr.return_type, args: partition_mask, args: count); |
| 754 | } |
| 755 | |
| 756 | // evaluate the FILTER clause and stuff it into a large mask for compactness and reuse |
| 757 | if (wexpr.filter_expr) { |
| 758 | // Start with all invalid and set the ones that pass |
| 759 | filter_bits.resize(new_size: ValidityMask::ValidityMaskSize(count), x: 0); |
| 760 | filter_mask.Initialize(validity: filter_bits.data()); |
| 761 | filter_executor.AddExpression(expr: *wexpr.filter_expr); |
| 762 | filter_sel.Initialize(STANDARD_VECTOR_SIZE); |
| 763 | } |
| 764 | |
| 765 | // TODO: child may be a scalar, don't need to materialize the whole collection then |
| 766 | |
| 767 | // evaluate inner expressions of window functions, could be more complex |
| 768 | PrepareInputExpressions(exprs&: wexpr.children, executor&: payload_executor, chunk&: payload_chunk); |
| 769 | |
| 770 | auto types = payload_chunk.GetTypes(); |
| 771 | if (!types.empty()) { |
| 772 | payload_collection.Initialize(allocator&: Allocator::Get(context), types); |
| 773 | } |
| 774 | } |
| 775 | |
| 776 | void WindowExecutor::Sink(DataChunk &input_chunk, const idx_t input_idx, const idx_t total_count) { |
| 777 | // Single pass over the input to produce the global data. |
| 778 | // Vectorisation for the win... |
| 779 | |
| 780 | // Set up a validity mask for IGNORE NULLS |
| 781 | bool check_nulls = false; |
| 782 | if (wexpr.ignore_nulls) { |
| 783 | switch (wexpr.type) { |
| 784 | case ExpressionType::WINDOW_LEAD: |
| 785 | case ExpressionType::WINDOW_LAG: |
| 786 | case ExpressionType::WINDOW_FIRST_VALUE: |
| 787 | case ExpressionType::WINDOW_LAST_VALUE: |
| 788 | case ExpressionType::WINDOW_NTH_VALUE: |
| 789 | check_nulls = true; |
| 790 | break; |
| 791 | default: |
| 792 | break; |
| 793 | } |
| 794 | } |
| 795 | |
| 796 | const auto count = input_chunk.size(); |
| 797 | |
| 798 | idx_t filtered = 0; |
| 799 | SelectionVector *filtering = nullptr; |
| 800 | if (wexpr.filter_expr) { |
| 801 | filtering = &filter_sel; |
| 802 | filtered = filter_executor.SelectExpression(input&: input_chunk, sel&: filter_sel); |
| 803 | for (idx_t f = 0; f < filtered; ++f) { |
| 804 | filter_mask.SetValid(input_idx + filter_sel[f]); |
| 805 | } |
| 806 | } |
| 807 | |
| 808 | if (!wexpr.children.empty()) { |
| 809 | payload_chunk.Reset(); |
| 810 | payload_executor.Execute(input&: input_chunk, result&: payload_chunk); |
| 811 | payload_chunk.Verify(); |
| 812 | if (constant_aggregate) { |
| 813 | constant_aggregate->Sink(payload_chunk, filter_sel: filtering, filtered); |
| 814 | } else { |
| 815 | payload_collection.Append(other: payload_chunk, resize: true); |
| 816 | } |
| 817 | |
| 818 | // process payload chunks while they are still piping hot |
| 819 | if (check_nulls) { |
| 820 | UnifiedVectorFormat vdata; |
| 821 | payload_chunk.data[0].ToUnifiedFormat(count, data&: vdata); |
| 822 | if (!vdata.validity.AllValid()) { |
| 823 | // Lazily materialise the contents when we find the first NULL |
| 824 | if (ignore_nulls.AllValid()) { |
| 825 | ignore_nulls.Initialize(count: total_count); |
| 826 | } |
| 827 | // Write to the current position |
| 828 | if (input_idx % ValidityMask::BITS_PER_VALUE == 0) { |
| 829 | // If we are at the edge of an output entry, just copy the entries |
| 830 | auto dst = ignore_nulls.GetData() + ignore_nulls.EntryCount(count: input_idx); |
| 831 | auto src = vdata.validity.GetData(); |
| 832 | for (auto entry_count = vdata.validity.EntryCount(count); entry_count-- > 0;) { |
| 833 | *dst++ = *src++; |
| 834 | } |
| 835 | } else { |
| 836 | // If not, we have ragged data and need to copy one bit at a time. |
| 837 | for (idx_t i = 0; i < count; ++i) { |
| 838 | ignore_nulls.Set(row_idx: input_idx + i, valid: vdata.validity.RowIsValid(row_idx: i)); |
| 839 | } |
| 840 | } |
| 841 | } |
| 842 | } |
| 843 | } |
| 844 | |
| 845 | range.Append(input_chunk); |
| 846 | } |
| 847 | |
| 848 | void WindowExecutor::Finalize(WindowAggregationMode mode) { |
| 849 | // build a segment tree for frame-adhering aggregates |
| 850 | // see http://www.vldb.org/pvldb/vol8/p1058-leis.pdf |
| 851 | if (constant_aggregate) { |
| 852 | constant_aggregate->Finalize(); |
| 853 | } else if (wexpr.aggregate) { |
| 854 | segment_tree = make_uniq<WindowSegmentTree>(args: AggregateObject(wexpr), args&: wexpr.return_type, args: &payload_collection, |
| 855 | args&: filter_mask, args&: mode); |
| 856 | } |
| 857 | } |
| 858 | |
| 859 | void WindowExecutor::Evaluate(idx_t row_idx, DataChunk &input_chunk, Vector &result, const ValidityMask &partition_mask, |
| 860 | const ValidityMask &order_mask) { |
| 861 | // Evaluate the row-level arguments |
| 862 | boundary_start.Execute(input_chunk); |
| 863 | boundary_end.Execute(input_chunk); |
| 864 | |
| 865 | leadlag_offset.Execute(input_chunk); |
| 866 | leadlag_default.Execute(input_chunk); |
| 867 | |
| 868 | // this is the main loop, go through all sorted rows and compute window function result |
| 869 | for (idx_t output_offset = 0; output_offset < input_chunk.size(); ++output_offset, ++row_idx) { |
| 870 | // special case, OVER (), aggregate over everything |
| 871 | bounds.Update(row_idx, range_collection&: range, expr_idx: output_offset, boundary_start, boundary_end, partition_mask, order_mask); |
| 872 | if (WindowNeedsRank(wexpr)) { |
| 873 | if (!bounds.is_same_partition || row_idx == 0) { // special case for first row, need to init |
| 874 | dense_rank = 1; |
| 875 | rank = 1; |
| 876 | rank_equal = 0; |
| 877 | } else if (!bounds.is_peer) { |
| 878 | dense_rank++; |
| 879 | rank += rank_equal; |
| 880 | rank_equal = 0; |
| 881 | } |
| 882 | rank_equal++; |
| 883 | } |
| 884 | |
| 885 | // if no values are read for window, result is NULL |
| 886 | if (bounds.window_start >= bounds.window_end) { |
| 887 | FlatVector::SetNull(vector&: result, idx: output_offset, is_null: true); |
| 888 | continue; |
| 889 | } |
| 890 | |
| 891 | switch (wexpr.type) { |
| 892 | case ExpressionType::WINDOW_AGGREGATE: { |
| 893 | if (constant_aggregate) { |
| 894 | constant_aggregate->Compute(result, rid: output_offset, start: bounds.window_start, end: bounds.window_end); |
| 895 | } else { |
| 896 | segment_tree->Compute(result, rid: output_offset, start: bounds.window_start, end: bounds.window_end); |
| 897 | } |
| 898 | break; |
| 899 | } |
| 900 | case ExpressionType::WINDOW_ROW_NUMBER: { |
| 901 | auto rdata = FlatVector::GetData<int64_t>(vector&: result); |
| 902 | rdata[output_offset] = row_idx - bounds.partition_start + 1; |
| 903 | break; |
| 904 | } |
| 905 | case ExpressionType::WINDOW_RANK_DENSE: { |
| 906 | auto rdata = FlatVector::GetData<int64_t>(vector&: result); |
| 907 | rdata[output_offset] = dense_rank; |
| 908 | break; |
| 909 | } |
| 910 | case ExpressionType::WINDOW_RANK: { |
| 911 | auto rdata = FlatVector::GetData<int64_t>(vector&: result); |
| 912 | rdata[output_offset] = rank; |
| 913 | break; |
| 914 | } |
| 915 | case ExpressionType::WINDOW_PERCENT_RANK: { |
| 916 | int64_t denom = (int64_t)bounds.partition_end - bounds.partition_start - 1; |
| 917 | double percent_rank = denom > 0 ? ((double)rank - 1) / denom : 0; |
| 918 | auto rdata = FlatVector::GetData<double>(vector&: result); |
| 919 | rdata[output_offset] = percent_rank; |
| 920 | break; |
| 921 | } |
| 922 | case ExpressionType::WINDOW_CUME_DIST: { |
| 923 | int64_t denom = (int64_t)bounds.partition_end - bounds.partition_start; |
| 924 | double cume_dist = denom > 0 ? ((double)(bounds.peer_end - bounds.partition_start)) / denom : 0; |
| 925 | auto rdata = FlatVector::GetData<double>(vector&: result); |
| 926 | rdata[output_offset] = cume_dist; |
| 927 | break; |
| 928 | } |
| 929 | case ExpressionType::WINDOW_NTILE: { |
| 930 | D_ASSERT(payload_collection.ColumnCount() == 1); |
| 931 | if (CellIsNull(chunk&: payload_collection, column: 0, index: row_idx)) { |
| 932 | FlatVector::SetNull(vector&: result, idx: output_offset, is_null: true); |
| 933 | } else { |
| 934 | auto n_param = GetCell<int64_t>(chunk&: payload_collection, column: 0, index: row_idx); |
| 935 | if (n_param < 1) { |
| 936 | throw InvalidInputException("Argument for ntile must be greater than zero" ); |
| 937 | } |
| 938 | // With thanks from SQLite's ntileValueFunc() |
| 939 | int64_t n_total = bounds.partition_end - bounds.partition_start; |
| 940 | if (n_param > n_total) { |
| 941 | // more groups allowed than we have values |
| 942 | // map every entry to a unique group |
| 943 | n_param = n_total; |
| 944 | } |
| 945 | int64_t n_size = (n_total / n_param); |
| 946 | // find the row idx within the group |
| 947 | D_ASSERT(row_idx >= bounds.partition_start); |
| 948 | int64_t adjusted_row_idx = row_idx - bounds.partition_start; |
| 949 | // now compute the ntile |
| 950 | int64_t n_large = n_total - n_param * n_size; |
| 951 | int64_t i_small = n_large * (n_size + 1); |
| 952 | int64_t result_ntile; |
| 953 | |
| 954 | D_ASSERT((n_large * (n_size + 1) + (n_param - n_large) * n_size) == n_total); |
| 955 | |
| 956 | if (adjusted_row_idx < i_small) { |
| 957 | result_ntile = 1 + adjusted_row_idx / (n_size + 1); |
| 958 | } else { |
| 959 | result_ntile = 1 + n_large + (adjusted_row_idx - i_small) / n_size; |
| 960 | } |
| 961 | // result has to be between [1, NTILE] |
| 962 | D_ASSERT(result_ntile >= 1 && result_ntile <= n_param); |
| 963 | auto rdata = FlatVector::GetData<int64_t>(vector&: result); |
| 964 | rdata[output_offset] = result_ntile; |
| 965 | } |
| 966 | break; |
| 967 | } |
| 968 | case ExpressionType::WINDOW_LEAD: |
| 969 | case ExpressionType::WINDOW_LAG: { |
| 970 | int64_t offset = 1; |
| 971 | if (wexpr.offset_expr) { |
| 972 | offset = leadlag_offset.GetCell<int64_t>(i: output_offset); |
| 973 | } |
| 974 | int64_t val_idx = (int64_t)row_idx; |
| 975 | if (wexpr.type == ExpressionType::WINDOW_LEAD) { |
| 976 | val_idx += offset; |
| 977 | } else { |
| 978 | val_idx -= offset; |
| 979 | } |
| 980 | |
| 981 | idx_t delta = 0; |
| 982 | if (val_idx < (int64_t)row_idx) { |
| 983 | // Count backwards |
| 984 | delta = idx_t(row_idx - val_idx); |
| 985 | val_idx = FindPrevStart(mask: ignore_nulls, l: bounds.partition_start, r: row_idx, n&: delta); |
| 986 | } else if (val_idx > (int64_t)row_idx) { |
| 987 | delta = idx_t(val_idx - row_idx); |
| 988 | val_idx = FindNextStart(mask: ignore_nulls, l: row_idx + 1, r: bounds.partition_end, n&: delta); |
| 989 | } |
| 990 | // else offset is zero, so don't move. |
| 991 | |
| 992 | if (!delta) { |
| 993 | CopyCell(chunk&: payload_collection, column: 0, index: val_idx, target&: result, target_offset: output_offset); |
| 994 | } else if (wexpr.default_expr) { |
| 995 | leadlag_default.CopyCell(target&: result, target_offset: output_offset); |
| 996 | } else { |
| 997 | FlatVector::SetNull(vector&: result, idx: output_offset, is_null: true); |
| 998 | } |
| 999 | break; |
| 1000 | } |
| 1001 | case ExpressionType::WINDOW_FIRST_VALUE: { |
| 1002 | // Same as NTH_VALUE(..., 1) |
| 1003 | idx_t n = 1; |
| 1004 | const auto first_idx = FindNextStart(mask: ignore_nulls, l: bounds.window_start, r: bounds.window_end, n); |
| 1005 | if (!n) { |
| 1006 | CopyCell(chunk&: payload_collection, column: 0, index: first_idx, target&: result, target_offset: output_offset); |
| 1007 | } else { |
| 1008 | FlatVector::SetNull(vector&: result, idx: output_offset, is_null: true); |
| 1009 | } |
| 1010 | break; |
| 1011 | } |
| 1012 | case ExpressionType::WINDOW_LAST_VALUE: { |
| 1013 | idx_t n = 1; |
| 1014 | const auto last_idx = FindPrevStart(mask: ignore_nulls, l: bounds.window_start, r: bounds.window_end, n); |
| 1015 | if (!n) { |
| 1016 | CopyCell(chunk&: payload_collection, column: 0, index: last_idx, target&: result, target_offset: output_offset); |
| 1017 | } else { |
| 1018 | FlatVector::SetNull(vector&: result, idx: output_offset, is_null: true); |
| 1019 | } |
| 1020 | break; |
| 1021 | } |
| 1022 | case ExpressionType::WINDOW_NTH_VALUE: { |
| 1023 | D_ASSERT(payload_collection.ColumnCount() == 2); |
| 1024 | // Returns value evaluated at the row that is the n'th row of the window frame (counting from 1); |
| 1025 | // returns NULL if there is no such row. |
| 1026 | if (CellIsNull(chunk&: payload_collection, column: 1, index: row_idx)) { |
| 1027 | FlatVector::SetNull(vector&: result, idx: output_offset, is_null: true); |
| 1028 | } else { |
| 1029 | auto n_param = GetCell<int64_t>(chunk&: payload_collection, column: 1, index: row_idx); |
| 1030 | if (n_param < 1) { |
| 1031 | FlatVector::SetNull(vector&: result, idx: output_offset, is_null: true); |
| 1032 | } else { |
| 1033 | auto n = idx_t(n_param); |
| 1034 | const auto nth_index = FindNextStart(mask: ignore_nulls, l: bounds.window_start, r: bounds.window_end, n); |
| 1035 | if (!n) { |
| 1036 | CopyCell(chunk&: payload_collection, column: 0, index: nth_index, target&: result, target_offset: output_offset); |
| 1037 | } else { |
| 1038 | FlatVector::SetNull(vector&: result, idx: output_offset, is_null: true); |
| 1039 | } |
| 1040 | } |
| 1041 | } |
| 1042 | break; |
| 1043 | } |
| 1044 | default: |
| 1045 | throw InternalException("Window aggregate type %s" , ExpressionTypeToString(type: wexpr.type)); |
| 1046 | } |
| 1047 | } |
| 1048 | |
| 1049 | result.Verify(count: input_chunk.size()); |
| 1050 | } |
| 1051 | |
| 1052 | //===--------------------------------------------------------------------===// |
| 1053 | // Sink |
| 1054 | //===--------------------------------------------------------------------===// |
| 1055 | SinkResultType PhysicalWindow::Sink(ExecutionContext &context, DataChunk &chunk, OperatorSinkInput &input) const { |
| 1056 | auto &lstate = input.local_state.Cast<WindowLocalSinkState>(); |
| 1057 | |
| 1058 | lstate.Sink(input_chunk&: chunk); |
| 1059 | |
| 1060 | return SinkResultType::NEED_MORE_INPUT; |
| 1061 | } |
| 1062 | |
| 1063 | void PhysicalWindow::Combine(ExecutionContext &context, GlobalSinkState &gstate_p, LocalSinkState &lstate_p) const { |
| 1064 | auto &lstate = lstate_p.Cast<WindowLocalSinkState>(); |
| 1065 | lstate.Combine(); |
| 1066 | } |
| 1067 | |
| 1068 | unique_ptr<LocalSinkState> PhysicalWindow::GetLocalSinkState(ExecutionContext &context) const { |
| 1069 | auto &gstate = sink_state->Cast<WindowGlobalSinkState>(); |
| 1070 | return make_uniq<WindowLocalSinkState>(args&: context.client, args&: gstate); |
| 1071 | } |
| 1072 | |
| 1073 | unique_ptr<GlobalSinkState> PhysicalWindow::GetGlobalSinkState(ClientContext &context) const { |
| 1074 | return make_uniq<WindowGlobalSinkState>(args: *this, args&: context); |
| 1075 | } |
| 1076 | |
| 1077 | SinkFinalizeType PhysicalWindow::Finalize(Pipeline &pipeline, Event &event, ClientContext &context, |
| 1078 | GlobalSinkState &gstate_p) const { |
| 1079 | auto &state = gstate_p.Cast<WindowGlobalSinkState>(); |
| 1080 | |
| 1081 | // Did we get any data? |
| 1082 | if (!state.global_partition->count) { |
| 1083 | return SinkFinalizeType::NO_OUTPUT_POSSIBLE; |
| 1084 | } |
| 1085 | |
| 1086 | // Do we have any sorting to schedule? |
| 1087 | if (state.global_partition->rows) { |
| 1088 | D_ASSERT(!state.global_partition->grouping_data); |
| 1089 | return state.global_partition->rows->count ? SinkFinalizeType::READY : SinkFinalizeType::NO_OUTPUT_POSSIBLE; |
| 1090 | } |
| 1091 | |
| 1092 | // Find the first group to sort |
| 1093 | auto &groups = state.global_partition->grouping_data->GetPartitions(); |
| 1094 | if (groups.empty()) { |
| 1095 | // Empty input! |
| 1096 | return SinkFinalizeType::NO_OUTPUT_POSSIBLE; |
| 1097 | } |
| 1098 | |
| 1099 | // Schedule all the sorts for maximum thread utilisation |
| 1100 | auto new_event = make_shared<PartitionMergeEvent>(args&: *state.global_partition, args&: pipeline); |
| 1101 | event.InsertEvent(replacement_event: std::move(new_event)); |
| 1102 | |
| 1103 | return SinkFinalizeType::READY; |
| 1104 | } |
| 1105 | |
| 1106 | //===--------------------------------------------------------------------===// |
| 1107 | // Source |
| 1108 | //===--------------------------------------------------------------------===// |
| 1109 | class WindowGlobalSourceState : public GlobalSourceState { |
| 1110 | public: |
| 1111 | explicit WindowGlobalSourceState(WindowGlobalSinkState &gsink) : gsink(*gsink.global_partition), next_bin(0) { |
| 1112 | } |
| 1113 | |
| 1114 | PartitionGlobalSinkState &gsink; |
| 1115 | //! The output read position. |
| 1116 | atomic<idx_t> next_bin; |
| 1117 | |
| 1118 | public: |
| 1119 | idx_t MaxThreads() override { |
| 1120 | // If there is only one partition, we have to process it on one thread. |
| 1121 | if (!gsink.grouping_data) { |
| 1122 | return 1; |
| 1123 | } |
| 1124 | |
| 1125 | // If there is not a lot of data, process serially. |
| 1126 | if (gsink.count < STANDARD_ROW_GROUPS_SIZE) { |
| 1127 | return 1; |
| 1128 | } |
| 1129 | |
| 1130 | return gsink.hash_groups.size(); |
| 1131 | } |
| 1132 | }; |
| 1133 | |
| 1134 | // Per-thread read state |
| 1135 | class WindowLocalSourceState : public LocalSourceState { |
| 1136 | public: |
| 1137 | using HashGroupPtr = unique_ptr<PartitionGlobalHashGroup>; |
| 1138 | using WindowExecutorPtr = unique_ptr<WindowExecutor>; |
| 1139 | using WindowExecutors = vector<WindowExecutorPtr>; |
| 1140 | |
| 1141 | WindowLocalSourceState(const PhysicalWindow &op_p, ExecutionContext &context, WindowGlobalSourceState &gsource) |
| 1142 | : context(context.client), op(op_p), gsink(gsource.gsink) { |
| 1143 | |
| 1144 | vector<LogicalType> output_types; |
| 1145 | for (idx_t expr_idx = 0; expr_idx < op.select_list.size(); ++expr_idx) { |
| 1146 | D_ASSERT(op.select_list[expr_idx]->GetExpressionClass() == ExpressionClass::BOUND_WINDOW); |
| 1147 | auto &wexpr = op.select_list[expr_idx]->Cast<BoundWindowExpression>(); |
| 1148 | output_types.emplace_back(args&: wexpr.return_type); |
| 1149 | } |
| 1150 | output_chunk.Initialize(allocator&: Allocator::Get(context&: context.client), types: output_types); |
| 1151 | |
| 1152 | const auto &input_types = gsink.payload_types; |
| 1153 | layout.Initialize(types: input_types); |
| 1154 | input_chunk.Initialize(allocator&: gsink.allocator, types: input_types); |
| 1155 | } |
| 1156 | |
| 1157 | void MaterializeSortedData(); |
| 1158 | void GeneratePartition(WindowGlobalSinkState &gstate, const idx_t hash_bin); |
| 1159 | void Scan(DataChunk &chunk); |
| 1160 | |
| 1161 | HashGroupPtr hash_group; |
| 1162 | ClientContext &context; |
| 1163 | const PhysicalWindow &op; |
| 1164 | |
| 1165 | PartitionGlobalSinkState &gsink; |
| 1166 | |
| 1167 | //! The generated input chunks |
| 1168 | unique_ptr<RowDataCollection> rows; |
| 1169 | unique_ptr<RowDataCollection> heap; |
| 1170 | RowLayout layout; |
| 1171 | //! The partition boundary mask |
| 1172 | vector<validity_t> partition_bits; |
| 1173 | ValidityMask partition_mask; |
| 1174 | //! The order boundary mask |
| 1175 | vector<validity_t> order_bits; |
| 1176 | ValidityMask order_mask; |
| 1177 | //! The current execution functions |
| 1178 | WindowExecutors window_execs; |
| 1179 | |
| 1180 | //! The read partition |
| 1181 | idx_t hash_bin; |
| 1182 | //! The read cursor |
| 1183 | unique_ptr<RowDataCollectionScanner> scanner; |
| 1184 | //! Buffer for the inputs |
| 1185 | DataChunk input_chunk; |
| 1186 | //! Buffer for window results |
| 1187 | DataChunk output_chunk; |
| 1188 | }; |
| 1189 | |
| 1190 | void WindowLocalSourceState::MaterializeSortedData() { |
| 1191 | auto &global_sort_state = *hash_group->global_sort; |
| 1192 | if (global_sort_state.sorted_blocks.empty()) { |
| 1193 | return; |
| 1194 | } |
| 1195 | |
| 1196 | // scan the sorted row data |
| 1197 | D_ASSERT(global_sort_state.sorted_blocks.size() == 1); |
| 1198 | auto &sb = *global_sort_state.sorted_blocks[0]; |
| 1199 | |
| 1200 | // Free up some memory before allocating more |
| 1201 | sb.radix_sorting_data.clear(); |
| 1202 | sb.blob_sorting_data = nullptr; |
| 1203 | |
| 1204 | // Move the sorting row blocks into our RDCs |
| 1205 | auto &buffer_manager = global_sort_state.buffer_manager; |
| 1206 | auto &sd = *sb.payload_data; |
| 1207 | |
| 1208 | // Data blocks are required |
| 1209 | D_ASSERT(!sd.data_blocks.empty()); |
| 1210 | auto &block = sd.data_blocks[0]; |
| 1211 | rows = make_uniq<RowDataCollection>(args&: buffer_manager, args&: block->capacity, args: block->entry_size); |
| 1212 | rows->blocks = std::move(sd.data_blocks); |
| 1213 | rows->count = std::accumulate(first: rows->blocks.begin(), last: rows->blocks.end(), init: idx_t(0), |
| 1214 | binary_op: [&](idx_t c, const unique_ptr<RowDataBlock> &b) { return c + b->count; }); |
| 1215 | |
| 1216 | // Heap blocks are optional, but we want both for iteration. |
| 1217 | if (!sd.heap_blocks.empty()) { |
| 1218 | auto &block = sd.heap_blocks[0]; |
| 1219 | heap = make_uniq<RowDataCollection>(args&: buffer_manager, args&: block->capacity, args: block->entry_size); |
| 1220 | heap->blocks = std::move(sd.heap_blocks); |
| 1221 | hash_group.reset(); |
| 1222 | } else { |
| 1223 | heap = make_uniq<RowDataCollection>(args&: buffer_manager, args: (idx_t)Storage::BLOCK_SIZE, args: 1, args: true); |
| 1224 | } |
| 1225 | heap->count = std::accumulate(first: heap->blocks.begin(), last: heap->blocks.end(), init: idx_t(0), |
| 1226 | binary_op: [&](idx_t c, const unique_ptr<RowDataBlock> &b) { return c + b->count; }); |
| 1227 | } |
| 1228 | |
| 1229 | void WindowLocalSourceState::GeneratePartition(WindowGlobalSinkState &gstate, const idx_t hash_bin_p) { |
| 1230 | // Get rid of any stale data |
| 1231 | hash_bin = hash_bin_p; |
| 1232 | |
| 1233 | // There are three types of partitions: |
| 1234 | // 1. No partition (no sorting) |
| 1235 | // 2. One partition (sorting, but no hashing) |
| 1236 | // 3. Multiple partitions (sorting and hashing) |
| 1237 | |
| 1238 | // How big is the partition? |
| 1239 | idx_t count = 0; |
| 1240 | if (hash_bin < gsink.hash_groups.size() && gsink.hash_groups[hash_bin]) { |
| 1241 | count = gsink.hash_groups[hash_bin]->count; |
| 1242 | } else if (gsink.rows && !hash_bin) { |
| 1243 | count = gsink.count; |
| 1244 | } else { |
| 1245 | return; |
| 1246 | } |
| 1247 | |
| 1248 | // Initialise masks to false |
| 1249 | const auto bit_count = ValidityMask::ValidityMaskSize(count); |
| 1250 | partition_bits.clear(); |
| 1251 | partition_bits.resize(new_size: bit_count, x: 0); |
| 1252 | partition_mask.Initialize(validity: partition_bits.data()); |
| 1253 | |
| 1254 | order_bits.clear(); |
| 1255 | order_bits.resize(new_size: bit_count, x: 0); |
| 1256 | order_mask.Initialize(validity: order_bits.data()); |
| 1257 | |
| 1258 | // Scan the sorted data into new Collections |
| 1259 | auto external = gsink.external; |
| 1260 | if (gsink.rows && !hash_bin) { |
| 1261 | // Simple mask |
| 1262 | partition_mask.SetValidUnsafe(0); |
| 1263 | order_mask.SetValidUnsafe(0); |
| 1264 | // No partition - align the heap blocks with the row blocks |
| 1265 | rows = gsink.rows->CloneEmpty(keep_pinned: gsink.rows->keep_pinned); |
| 1266 | heap = gsink.strings->CloneEmpty(keep_pinned: gsink.strings->keep_pinned); |
| 1267 | RowDataCollectionScanner::AlignHeapBlocks(dst_block_collection&: *rows, dst_string_heap&: *heap, src_block_collection&: *gsink.rows, src_string_heap&: *gsink.strings, layout); |
| 1268 | external = true; |
| 1269 | } else if (hash_bin < gsink.hash_groups.size() && gsink.hash_groups[hash_bin]) { |
| 1270 | // Overwrite the collections with the sorted data |
| 1271 | hash_group = std::move(gsink.hash_groups[hash_bin]); |
| 1272 | hash_group->ComputeMasks(partition_mask, order_mask); |
| 1273 | external = hash_group->global_sort->external; |
| 1274 | MaterializeSortedData(); |
| 1275 | } else { |
| 1276 | return; |
| 1277 | } |
| 1278 | |
| 1279 | // Create the executors for each function |
| 1280 | window_execs.clear(); |
| 1281 | for (idx_t expr_idx = 0; expr_idx < op.select_list.size(); ++expr_idx) { |
| 1282 | D_ASSERT(op.select_list[expr_idx]->GetExpressionClass() == ExpressionClass::BOUND_WINDOW); |
| 1283 | auto &wexpr = op.select_list[expr_idx]->Cast<BoundWindowExpression>(); |
| 1284 | auto wexec = make_uniq<WindowExecutor>(args&: wexpr, args&: context, args&: partition_mask, args&: count); |
| 1285 | window_execs.emplace_back(args: std::move(wexec)); |
| 1286 | } |
| 1287 | |
| 1288 | // First pass over the input without flushing |
| 1289 | // TODO: Factor out the constructor data as global state |
| 1290 | scanner = make_uniq<RowDataCollectionScanner>(args&: *rows, args&: *heap, args&: layout, args&: external, args: false); |
| 1291 | idx_t input_idx = 0; |
| 1292 | while (true) { |
| 1293 | input_chunk.Reset(); |
| 1294 | scanner->Scan(chunk&: input_chunk); |
| 1295 | if (input_chunk.size() == 0) { |
| 1296 | break; |
| 1297 | } |
| 1298 | |
| 1299 | // TODO: Parallelization opportunity |
| 1300 | for (auto &wexec : window_execs) { |
| 1301 | wexec->Sink(input_chunk, input_idx, total_count: scanner->Count()); |
| 1302 | } |
| 1303 | input_idx += input_chunk.size(); |
| 1304 | } |
| 1305 | |
| 1306 | // TODO: Parallelization opportunity |
| 1307 | for (auto &wexec : window_execs) { |
| 1308 | wexec->Finalize(mode: gstate.mode); |
| 1309 | } |
| 1310 | |
| 1311 | // External scanning assumes all blocks are swizzled. |
| 1312 | scanner->ReSwizzle(); |
| 1313 | |
| 1314 | // Second pass can flush |
| 1315 | scanner->Reset(flush: true); |
| 1316 | } |
| 1317 | |
| 1318 | void WindowLocalSourceState::Scan(DataChunk &result) { |
| 1319 | D_ASSERT(scanner); |
| 1320 | if (!scanner->Remaining()) { |
| 1321 | return; |
| 1322 | } |
| 1323 | |
| 1324 | const auto position = scanner->Scanned(); |
| 1325 | input_chunk.Reset(); |
| 1326 | scanner->Scan(chunk&: input_chunk); |
| 1327 | |
| 1328 | output_chunk.Reset(); |
| 1329 | for (idx_t expr_idx = 0; expr_idx < window_execs.size(); ++expr_idx) { |
| 1330 | auto &executor = *window_execs[expr_idx]; |
| 1331 | executor.Evaluate(row_idx: position, input_chunk, result&: output_chunk.data[expr_idx], partition_mask, order_mask); |
| 1332 | } |
| 1333 | output_chunk.SetCardinality(input_chunk); |
| 1334 | output_chunk.Verify(); |
| 1335 | |
| 1336 | idx_t out_idx = 0; |
| 1337 | result.SetCardinality(input_chunk); |
| 1338 | for (idx_t col_idx = 0; col_idx < input_chunk.ColumnCount(); col_idx++) { |
| 1339 | result.data[out_idx++].Reference(other&: input_chunk.data[col_idx]); |
| 1340 | } |
| 1341 | for (idx_t col_idx = 0; col_idx < output_chunk.ColumnCount(); col_idx++) { |
| 1342 | result.data[out_idx++].Reference(other&: output_chunk.data[col_idx]); |
| 1343 | } |
| 1344 | result.Verify(); |
| 1345 | } |
| 1346 | |
| 1347 | unique_ptr<LocalSourceState> PhysicalWindow::GetLocalSourceState(ExecutionContext &context, |
| 1348 | GlobalSourceState &gstate_p) const { |
| 1349 | auto &gstate = gstate_p.Cast<WindowGlobalSourceState>(); |
| 1350 | return make_uniq<WindowLocalSourceState>(args: *this, args&: context, args&: gstate); |
| 1351 | } |
| 1352 | |
| 1353 | unique_ptr<GlobalSourceState> PhysicalWindow::GetGlobalSourceState(ClientContext &context) const { |
| 1354 | auto &gsink = sink_state->Cast<WindowGlobalSinkState>(); |
| 1355 | return make_uniq<WindowGlobalSourceState>(args&: gsink); |
| 1356 | } |
| 1357 | |
| 1358 | SourceResultType PhysicalWindow::GetData(ExecutionContext &context, DataChunk &chunk, |
| 1359 | OperatorSourceInput &input) const { |
| 1360 | auto &lsource = input.local_state.Cast<WindowLocalSourceState>(); |
| 1361 | auto &gsource = input.global_state.Cast<WindowGlobalSourceState>(); |
| 1362 | auto &gsink = sink_state->Cast<WindowGlobalSinkState>(); |
| 1363 | |
| 1364 | auto &hash_groups = gsink.global_partition->hash_groups; |
| 1365 | const auto bin_count = hash_groups.empty() ? 1 : hash_groups.size(); |
| 1366 | |
| 1367 | while (chunk.size() == 0) { |
| 1368 | // Move to the next bin if we are done. |
| 1369 | while (!lsource.scanner || !lsource.scanner->Remaining()) { |
| 1370 | lsource.scanner.reset(); |
| 1371 | lsource.rows.reset(); |
| 1372 | lsource.heap.reset(); |
| 1373 | lsource.hash_group.reset(); |
| 1374 | auto hash_bin = gsource.next_bin++; |
| 1375 | if (hash_bin >= bin_count) { |
| 1376 | return chunk.size() > 0 ? SourceResultType::HAVE_MORE_OUTPUT : SourceResultType::FINISHED; |
| 1377 | } |
| 1378 | |
| 1379 | for (; hash_bin < hash_groups.size(); hash_bin = gsource.next_bin++) { |
| 1380 | if (hash_groups[hash_bin]) { |
| 1381 | break; |
| 1382 | } |
| 1383 | } |
| 1384 | lsource.GeneratePartition(gstate&: gsink, hash_bin_p: hash_bin); |
| 1385 | } |
| 1386 | |
| 1387 | lsource.Scan(result&: chunk); |
| 1388 | } |
| 1389 | |
| 1390 | return chunk.size() == 0 ? SourceResultType::FINISHED : SourceResultType::HAVE_MORE_OUTPUT; |
| 1391 | } |
| 1392 | |
| 1393 | string PhysicalWindow::ParamsToString() const { |
| 1394 | string result; |
| 1395 | for (idx_t i = 0; i < select_list.size(); i++) { |
| 1396 | if (i > 0) { |
| 1397 | result += "\n" ; |
| 1398 | } |
| 1399 | result += select_list[i]->GetName(); |
| 1400 | } |
| 1401 | return result; |
| 1402 | } |
| 1403 | |
| 1404 | } // namespace duckdb |
| 1405 | |