| 1 | /* |
| 2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
| 3 | Copyright (C) 2004-2008 Tord Romstad (Glaurung author) |
| 4 | Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad |
| 5 | Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad |
| 6 | |
| 7 | Stockfish is free software: you can redistribute it and/or modify |
| 8 | it under the terms of the GNU General Public License as published by |
| 9 | the Free Software Foundation, either version 3 of the License, or |
| 10 | (at your option) any later version. |
| 11 | |
| 12 | Stockfish is distributed in the hope that it will be useful, |
| 13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | GNU General Public License for more details. |
| 16 | |
| 17 | You should have received a copy of the GNU General Public License |
| 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
| 19 | */ |
| 20 | |
| 21 | #include <cassert> |
| 22 | #include <cstring> // For std::memset |
| 23 | |
| 24 | #include "material.h" |
| 25 | #include "thread.h" |
| 26 | |
| 27 | using namespace std; |
| 28 | |
| 29 | namespace { |
| 30 | |
| 31 | // Polynomial material imbalance parameters |
| 32 | |
| 33 | constexpr int QuadraticOurs[][PIECE_TYPE_NB] = { |
| 34 | // OUR PIECES |
| 35 | // pair pawn knight bishop rook queen |
| 36 | {1438 }, // Bishop pair |
| 37 | { 40, 38 }, // Pawn |
| 38 | { 32, 255, -62 }, // Knight OUR PIECES |
| 39 | { 0, 104, 4, 0 }, // Bishop |
| 40 | { -26, -2, 47, 105, -208 }, // Rook |
| 41 | {-189, 24, 117, 133, -134, -6 } // Queen |
| 42 | }; |
| 43 | |
| 44 | constexpr int QuadraticTheirs[][PIECE_TYPE_NB] = { |
| 45 | // THEIR PIECES |
| 46 | // pair pawn knight bishop rook queen |
| 47 | { 0 }, // Bishop pair |
| 48 | { 36, 0 }, // Pawn |
| 49 | { 9, 63, 0 }, // Knight OUR PIECES |
| 50 | { 59, 65, 42, 0 }, // Bishop |
| 51 | { 46, 39, 24, -24, 0 }, // Rook |
| 52 | { 97, 100, -42, 137, 268, 0 } // Queen |
| 53 | }; |
| 54 | |
| 55 | // Endgame evaluation and scaling functions are accessed directly and not through |
| 56 | // the function maps because they correspond to more than one material hash key. |
| 57 | Endgame<KXK> EvaluateKXK[] = { Endgame<KXK>(WHITE), Endgame<KXK>(BLACK) }; |
| 58 | |
| 59 | Endgame<KBPsK> ScaleKBPsK[] = { Endgame<KBPsK>(WHITE), Endgame<KBPsK>(BLACK) }; |
| 60 | Endgame<KQKRPs> ScaleKQKRPs[] = { Endgame<KQKRPs>(WHITE), Endgame<KQKRPs>(BLACK) }; |
| 61 | Endgame<KPsK> ScaleKPsK[] = { Endgame<KPsK>(WHITE), Endgame<KPsK>(BLACK) }; |
| 62 | Endgame<KPKP> ScaleKPKP[] = { Endgame<KPKP>(WHITE), Endgame<KPKP>(BLACK) }; |
| 63 | |
| 64 | // Helper used to detect a given material distribution |
| 65 | bool is_KXK(const Position& pos, Color us) { |
| 66 | return !more_than_one(pos.pieces(~us)) |
| 67 | && pos.non_pawn_material(us) >= RookValueMg; |
| 68 | } |
| 69 | |
| 70 | bool is_KBPsK(const Position& pos, Color us) { |
| 71 | return pos.non_pawn_material(us) == BishopValueMg |
| 72 | && pos.count<PAWN >(us) >= 1; |
| 73 | } |
| 74 | |
| 75 | bool is_KQKRPs(const Position& pos, Color us) { |
| 76 | return !pos.count<PAWN>(us) |
| 77 | && pos.non_pawn_material(us) == QueenValueMg |
| 78 | && pos.count<ROOK>(~us) == 1 |
| 79 | && pos.count<PAWN>(~us) >= 1; |
| 80 | } |
| 81 | |
| 82 | /// imbalance() calculates the imbalance by comparing the piece count of each |
| 83 | /// piece type for both colors. |
| 84 | template<Color Us> |
| 85 | int imbalance(const int pieceCount[][PIECE_TYPE_NB]) { |
| 86 | |
| 87 | constexpr Color Them = (Us == WHITE ? BLACK : WHITE); |
| 88 | |
| 89 | int bonus = 0; |
| 90 | |
| 91 | // Second-degree polynomial material imbalance, by Tord Romstad |
| 92 | for (int pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; ++pt1) |
| 93 | { |
| 94 | if (!pieceCount[Us][pt1]) |
| 95 | continue; |
| 96 | |
| 97 | int v = 0; |
| 98 | |
| 99 | for (int pt2 = NO_PIECE_TYPE; pt2 <= pt1; ++pt2) |
| 100 | v += QuadraticOurs[pt1][pt2] * pieceCount[Us][pt2] |
| 101 | + QuadraticTheirs[pt1][pt2] * pieceCount[Them][pt2]; |
| 102 | |
| 103 | bonus += pieceCount[Us][pt1] * v; |
| 104 | } |
| 105 | |
| 106 | return bonus; |
| 107 | } |
| 108 | |
| 109 | } // namespace |
| 110 | |
| 111 | namespace Material { |
| 112 | |
| 113 | /// Material::probe() looks up the current position's material configuration in |
| 114 | /// the material hash table. It returns a pointer to the Entry if the position |
| 115 | /// is found. Otherwise a new Entry is computed and stored there, so we don't |
| 116 | /// have to recompute all when the same material configuration occurs again. |
| 117 | |
| 118 | Entry* probe(const Position& pos) { |
| 119 | |
| 120 | Key key = pos.material_key(); |
| 121 | Entry* e = pos.this_thread()->materialTable[key]; |
| 122 | |
| 123 | if (e->key == key) |
| 124 | return e; |
| 125 | |
| 126 | std::memset(e, 0, sizeof(Entry)); |
| 127 | e->key = key; |
| 128 | e->factor[WHITE] = e->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL; |
| 129 | |
| 130 | Value npm_w = pos.non_pawn_material(WHITE); |
| 131 | Value npm_b = pos.non_pawn_material(BLACK); |
| 132 | Value npm = clamp(npm_w + npm_b, EndgameLimit, MidgameLimit); |
| 133 | |
| 134 | // Map total non-pawn material into [PHASE_ENDGAME, PHASE_MIDGAME] |
| 135 | e->gamePhase = Phase(((npm - EndgameLimit) * PHASE_MIDGAME) / (MidgameLimit - EndgameLimit)); |
| 136 | |
| 137 | // Let's look if we have a specialized evaluation function for this particular |
| 138 | // material configuration. Firstly we look for a fixed configuration one, then |
| 139 | // for a generic one if the previous search failed. |
| 140 | if ((e->evaluationFunction = Endgames::probe<Value>(key)) != nullptr) |
| 141 | return e; |
| 142 | |
| 143 | for (Color c : { WHITE, BLACK }) |
| 144 | if (is_KXK(pos, c)) |
| 145 | { |
| 146 | e->evaluationFunction = &EvaluateKXK[c]; |
| 147 | return e; |
| 148 | } |
| 149 | |
| 150 | // OK, we didn't find any special evaluation function for the current material |
| 151 | // configuration. Is there a suitable specialized scaling function? |
| 152 | const auto* sf = Endgames::probe<ScaleFactor>(key); |
| 153 | |
| 154 | if (sf) |
| 155 | { |
| 156 | e->scalingFunction[sf->strongSide] = sf; // Only strong color assigned |
| 157 | return e; |
| 158 | } |
| 159 | |
| 160 | // We didn't find any specialized scaling function, so fall back on generic |
| 161 | // ones that refer to more than one material distribution. Note that in this |
| 162 | // case we don't return after setting the function. |
| 163 | for (Color c : { WHITE, BLACK }) |
| 164 | { |
| 165 | if (is_KBPsK(pos, c)) |
| 166 | e->scalingFunction[c] = &ScaleKBPsK[c]; |
| 167 | |
| 168 | else if (is_KQKRPs(pos, c)) |
| 169 | e->scalingFunction[c] = &ScaleKQKRPs[c]; |
| 170 | } |
| 171 | |
| 172 | if (npm_w + npm_b == VALUE_ZERO && pos.pieces(PAWN)) // Only pawns on the board |
| 173 | { |
| 174 | if (!pos.count<PAWN>(BLACK)) |
| 175 | { |
| 176 | assert(pos.count<PAWN>(WHITE) >= 2); |
| 177 | |
| 178 | e->scalingFunction[WHITE] = &ScaleKPsK[WHITE]; |
| 179 | } |
| 180 | else if (!pos.count<PAWN>(WHITE)) |
| 181 | { |
| 182 | assert(pos.count<PAWN>(BLACK) >= 2); |
| 183 | |
| 184 | e->scalingFunction[BLACK] = &ScaleKPsK[BLACK]; |
| 185 | } |
| 186 | else if (pos.count<PAWN>(WHITE) == 1 && pos.count<PAWN>(BLACK) == 1) |
| 187 | { |
| 188 | // This is a special case because we set scaling functions |
| 189 | // for both colors instead of only one. |
| 190 | e->scalingFunction[WHITE] = &ScaleKPKP[WHITE]; |
| 191 | e->scalingFunction[BLACK] = &ScaleKPKP[BLACK]; |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | // Zero or just one pawn makes it difficult to win, even with a small material |
| 196 | // advantage. This catches some trivial draws like KK, KBK and KNK and gives a |
| 197 | // drawish scale factor for cases such as KRKBP and KmmKm (except for KBBKN). |
| 198 | if (!pos.count<PAWN>(WHITE) && npm_w - npm_b <= BishopValueMg) |
| 199 | e->factor[WHITE] = uint8_t(npm_w < RookValueMg ? SCALE_FACTOR_DRAW : |
| 200 | npm_b <= BishopValueMg ? 4 : 14); |
| 201 | |
| 202 | if (!pos.count<PAWN>(BLACK) && npm_b - npm_w <= BishopValueMg) |
| 203 | e->factor[BLACK] = uint8_t(npm_b < RookValueMg ? SCALE_FACTOR_DRAW : |
| 204 | npm_w <= BishopValueMg ? 4 : 14); |
| 205 | |
| 206 | // Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder |
| 207 | // for the bishop pair "extended piece", which allows us to be more flexible |
| 208 | // in defining bishop pair bonuses. |
| 209 | const int pieceCount[COLOR_NB][PIECE_TYPE_NB] = { |
| 210 | { pos.count<BISHOP>(WHITE) > 1, pos.count<PAWN>(WHITE), pos.count<KNIGHT>(WHITE), |
| 211 | pos.count<BISHOP>(WHITE) , pos.count<ROOK>(WHITE), pos.count<QUEEN >(WHITE) }, |
| 212 | { pos.count<BISHOP>(BLACK) > 1, pos.count<PAWN>(BLACK), pos.count<KNIGHT>(BLACK), |
| 213 | pos.count<BISHOP>(BLACK) , pos.count<ROOK>(BLACK), pos.count<QUEEN >(BLACK) } }; |
| 214 | |
| 215 | e->value = int16_t((imbalance<WHITE>(pieceCount) - imbalance<BLACK>(pieceCount)) / 16); |
| 216 | return e; |
| 217 | } |
| 218 | |
| 219 | } // namespace Material |
| 220 | |