| 1 | |
| 2 | //////////////////////////////////////////////////////////// |
| 3 | // Headers |
| 4 | //////////////////////////////////////////////////////////// |
| 5 | #define GLAD_VULKAN_IMPLEMENTATION |
| 6 | #include "vulkan.h" |
| 7 | |
| 8 | // Include graphics because we use sf::Image for loading images |
| 9 | #include <SFML/Graphics.hpp> |
| 10 | |
| 11 | #include <SFML/Window.hpp> |
| 12 | #include <vector> |
| 13 | #include <limits> |
| 14 | #include <cstring> |
| 15 | #include <cmath> |
| 16 | |
| 17 | |
| 18 | //////////////////////////////////////////////////////////// |
| 19 | // Helper functions |
| 20 | //////////////////////////////////////////////////////////// |
| 21 | namespace |
| 22 | { |
| 23 | typedef float Vec3[3]; |
| 24 | typedef float Matrix[4][4]; |
| 25 | |
| 26 | // Multiply 2 matrices |
| 27 | void matrixMultiply(Matrix& result, const Matrix& left, const Matrix& right) |
| 28 | { |
| 29 | Matrix temp; |
| 30 | |
| 31 | for (int i = 0; i < 4; i++) |
| 32 | { |
| 33 | for (int j = 0; j < 4; j++) |
| 34 | temp[i][j] = left[0][j] * right[i][0] + left[1][j] * right[i][1] + left[2][j] * right[i][2] + left[3][j] * right[i][3]; |
| 35 | } |
| 36 | |
| 37 | std::memcpy(result, temp, sizeof(Matrix)); |
| 38 | } |
| 39 | |
| 40 | // Rotate a matrix around the x-axis |
| 41 | void matrixRotateX(Matrix& result, float angle) |
| 42 | { |
| 43 | Matrix matrix = { |
| 44 | {1.f, 0.f, 0.f, 0.f}, |
| 45 | {0.f, std::cos(angle), std::sin(angle), 0.f}, |
| 46 | {0.f, -std::sin(angle), std::cos(angle), 0.f}, |
| 47 | {0.f, 0.f, 0.f, 1.f} |
| 48 | }; |
| 49 | |
| 50 | matrixMultiply(result, result, matrix); |
| 51 | } |
| 52 | |
| 53 | // Rotate a matrix around the y-axis |
| 54 | void matrixRotateY(Matrix& result, float angle) |
| 55 | { |
| 56 | Matrix matrix = { |
| 57 | { std::cos(angle), 0.f, std::sin(angle), 0.f}, |
| 58 | { 0.f, 1.f, 0.f, 0.f}, |
| 59 | {-std::sin(angle), 0.f, std::cos(angle), 0.f}, |
| 60 | { 0.f, 0.f, 0.f, 1.f} |
| 61 | }; |
| 62 | |
| 63 | matrixMultiply(result, result, matrix); |
| 64 | } |
| 65 | |
| 66 | // Rotate a matrix around the z-axis |
| 67 | void matrixRotateZ(Matrix& result, float angle) |
| 68 | { |
| 69 | Matrix matrix = { |
| 70 | { std::cos(angle), std::sin(angle), 0.f, 0.f}, |
| 71 | {-std::sin(angle), std::cos(angle), 0.f, 0.f}, |
| 72 | { 0.f, 0.f, 1.f, 0.f}, |
| 73 | { 0.f, 0.f, 0.f, 1.f} |
| 74 | }; |
| 75 | |
| 76 | matrixMultiply(result, result, matrix); |
| 77 | } |
| 78 | |
| 79 | // Construct a lookat view matrix |
| 80 | void matrixLookAt(Matrix& result, const Vec3& eye, const Vec3& center, const Vec3& up) |
| 81 | { |
| 82 | // Forward-looking vector |
| 83 | Vec3 forward = { |
| 84 | center[0] - eye[0], |
| 85 | center[1] - eye[1], |
| 86 | center[2] - eye[2] |
| 87 | }; |
| 88 | |
| 89 | // Normalize |
| 90 | float factor = 1.0f / std::sqrt(forward[0] * forward[0] + forward[1] * forward[1] + forward[2] * forward[2]); |
| 91 | |
| 92 | for(int i = 0; i < 3; i++) |
| 93 | forward[i] = forward[i] * factor; |
| 94 | |
| 95 | // Side vector (Forward cross product Up) |
| 96 | Vec3 side = { |
| 97 | forward[1] * up[2] - forward[2] * up[1], |
| 98 | forward[2] * up[0] - forward[0] * up[2], |
| 99 | forward[0] * up[1] - forward[1] * up[0] |
| 100 | }; |
| 101 | |
| 102 | // Normalize |
| 103 | factor = 1.0f / std::sqrt(side[0] * side[0] + side[1] * side[1] + side[2] * side[2]); |
| 104 | |
| 105 | for(int i = 0; i < 3; i++) |
| 106 | side[i] = side[i] * factor; |
| 107 | |
| 108 | result[0][0] = side[0]; |
| 109 | result[0][1] = side[1] * forward[2] - side[2] * forward[1]; |
| 110 | result[0][2] = -forward[0]; |
| 111 | result[0][3] = 0.f; |
| 112 | |
| 113 | result[1][0] = side[1]; |
| 114 | result[1][1] = side[2] * forward[0] - side[0] * forward[2]; |
| 115 | result[1][2] = -forward[1]; |
| 116 | result[1][3] = 0.f; |
| 117 | |
| 118 | result[2][0] = side[2]; |
| 119 | result[2][1] = side[0] * forward[1] - side[1] * forward[0]; |
| 120 | result[2][2] = -forward[2]; |
| 121 | result[2][3] = 0.f; |
| 122 | |
| 123 | result[3][0] = (-eye[0]) * result[0][0] + (-eye[1]) * result[1][0] + (-eye[2]) * result[2][0]; |
| 124 | result[3][1] = (-eye[0]) * result[0][1] + (-eye[1]) * result[1][1] + (-eye[2]) * result[2][1]; |
| 125 | result[3][2] = (-eye[0]) * result[0][2] + (-eye[1]) * result[1][2] + (-eye[2]) * result[2][2]; |
| 126 | result[3][3] = (-eye[0]) * result[0][3] + (-eye[1]) * result[1][3] + (-eye[2]) * result[2][3] + 1.0f; |
| 127 | } |
| 128 | |
| 129 | // Construct a perspective projection matrix |
| 130 | void matrixPerspective(Matrix& result, float fov, float aspect, float nearPlane, float farPlane) |
| 131 | { |
| 132 | const float a = 1.f / std::tan(fov / 2.f); |
| 133 | |
| 134 | result[0][0] = a / aspect; |
| 135 | result[0][1] = 0.f; |
| 136 | result[0][2] = 0.f; |
| 137 | result[0][3] = 0.f; |
| 138 | |
| 139 | result[1][0] = 0.f; |
| 140 | result[1][1] = -a; |
| 141 | result[1][2] = 0.f; |
| 142 | result[1][3] = 0.f; |
| 143 | |
| 144 | result[2][0] = 0.f; |
| 145 | result[2][1] = 0.f; |
| 146 | result[2][2] = -((farPlane + nearPlane) / (farPlane - nearPlane)); |
| 147 | result[2][3] = -1.f; |
| 148 | |
| 149 | result[3][0] = 0.f; |
| 150 | result[3][1] = 0.f; |
| 151 | result[3][2] = -((2.f * farPlane * nearPlane) / (farPlane - nearPlane)); |
| 152 | result[3][3] = 0.f; |
| 153 | } |
| 154 | |
| 155 | // Clamp a value between low and high values |
| 156 | template<typename T> |
| 157 | T clamp(T value, T low, T high) |
| 158 | { |
| 159 | return (value <= low) ? low : ((value >= high) ? high : value); |
| 160 | } |
| 161 | |
| 162 | // Helper function we pass to GLAD to load Vulkan functions via SFML |
| 163 | GLADapiproc getVulkanFunction(const char* name) |
| 164 | { |
| 165 | return reinterpret_cast<GLADapiproc>(sf::Vulkan::getFunction(name)); |
| 166 | } |
| 167 | |
| 168 | // Debug we pass to Vulkan to call when it detects warnings or errors |
| 169 | VKAPI_ATTR VkBool32 VKAPI_CALL debugCallback(VkDebugReportFlagsEXT, VkDebugReportObjectTypeEXT, uint64_t, size_t, int32_t, const char*, const char* pMessage, void*) |
| 170 | { |
| 171 | sf::err() << pMessage << std::endl; |
| 172 | |
| 173 | return VK_FALSE; |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | |
| 178 | //////////////////////////////////////////////////////////// |
| 179 | // VulkanExample class |
| 180 | //////////////////////////////////////////////////////////// |
| 181 | class VulkanExample |
| 182 | { |
| 183 | public: |
| 184 | // Constructor |
| 185 | VulkanExample() : |
| 186 | window(sf::VideoMode(800, 600), "SFML window with Vulkan" , sf::Style::Default), |
| 187 | vulkanAvailable(sf::Vulkan::isAvailable()), |
| 188 | maxFramesInFlight(2), |
| 189 | currentFrame(0), |
| 190 | swapchainOutOfDate(false), |
| 191 | instance(0), |
| 192 | debugReportCallback(0), |
| 193 | surface(0), |
| 194 | gpu(0), |
| 195 | queueFamilyIndex(-1), |
| 196 | device(0), |
| 197 | queue(0), |
| 198 | swapchainFormat(), |
| 199 | swapchainExtent(), |
| 200 | swapchain(0), |
| 201 | depthFormat(VK_FORMAT_UNDEFINED), |
| 202 | depthImage(0), |
| 203 | depthImageMemory(0), |
| 204 | depthImageView(0), |
| 205 | vertexShaderModule(0), |
| 206 | fragmentShaderModule(0), |
| 207 | descriptorSetLayout(0), |
| 208 | pipelineLayout(0), |
| 209 | renderPass(0), |
| 210 | graphicsPipeline(0), |
| 211 | commandPool(0), |
| 212 | vertexBuffer(0), |
| 213 | vertexBufferMemory(0), |
| 214 | indexBuffer(0), |
| 215 | indexBufferMemory(0), |
| 216 | textureImage(0), |
| 217 | textureImageMemory(0), |
| 218 | textureImageView(0), |
| 219 | textureSampler(0), |
| 220 | descriptorPool(0) |
| 221 | { |
| 222 | // Vulkan setup procedure |
| 223 | if (vulkanAvailable) setupInstance(); |
| 224 | if (vulkanAvailable) setupDebugReportCallback(); |
| 225 | if (vulkanAvailable) setupSurface(); |
| 226 | if (vulkanAvailable) setupPhysicalDevice(); |
| 227 | if (vulkanAvailable) setupLogicalDevice(); |
| 228 | if (vulkanAvailable) setupSwapchain(); |
| 229 | if (vulkanAvailable) setupSwapchainImages(); |
| 230 | if (vulkanAvailable) setupShaders(); |
| 231 | if (vulkanAvailable) setupRenderpass(); |
| 232 | if (vulkanAvailable) setupDescriptorSetLayout(); |
| 233 | if (vulkanAvailable) setupPipelineLayout(); |
| 234 | if (vulkanAvailable) setupPipeline(); |
| 235 | if (vulkanAvailable) setupCommandPool(); |
| 236 | if (vulkanAvailable) setupVertexBuffer(); |
| 237 | if (vulkanAvailable) setupIndexBuffer(); |
| 238 | if (vulkanAvailable) setupUniformBuffers(); |
| 239 | if (vulkanAvailable) setupDepthImage(); |
| 240 | if (vulkanAvailable) setupDepthImageView(); |
| 241 | if (vulkanAvailable) setupTextureImage(); |
| 242 | if (vulkanAvailable) setupTextureImageView(); |
| 243 | if (vulkanAvailable) setupTextureSampler(); |
| 244 | if (vulkanAvailable) setupFramebuffers(); |
| 245 | if (vulkanAvailable) setupDescriptorPool(); |
| 246 | if (vulkanAvailable) setupDescriptorSets(); |
| 247 | if (vulkanAvailable) setupCommandBuffers(); |
| 248 | if (vulkanAvailable) setupDraw(); |
| 249 | if (vulkanAvailable) setupSemaphores(); |
| 250 | if (vulkanAvailable) setupFences(); |
| 251 | |
| 252 | // If something went wrong, notify the user by setting the window title |
| 253 | if (!vulkanAvailable) |
| 254 | window.setTitle("SFML window with Vulkan (Vulkan not available)" ); |
| 255 | } |
| 256 | |
| 257 | |
| 258 | // Destructor |
| 259 | ~VulkanExample() |
| 260 | { |
| 261 | // Wait until there are no pending frames |
| 262 | if (device) |
| 263 | vkDeviceWaitIdle(device); |
| 264 | |
| 265 | // Teardown swapchain |
| 266 | cleanupSwapchain(); |
| 267 | |
| 268 | // Vulkan teardown procedure |
| 269 | for (std::size_t i = 0; i < fences.size(); i++) |
| 270 | vkDestroyFence(device, fences[i], 0); |
| 271 | |
| 272 | for (std::size_t i = 0; i < renderFinishedSemaphores.size(); i++) |
| 273 | vkDestroySemaphore(device, renderFinishedSemaphores[i], 0); |
| 274 | |
| 275 | for (std::size_t i = 0; i < imageAvailableSemaphores.size(); i++) |
| 276 | vkDestroySemaphore(device, imageAvailableSemaphores[i], 0); |
| 277 | |
| 278 | if (descriptorPool) |
| 279 | vkDestroyDescriptorPool(device, descriptorPool, 0); |
| 280 | |
| 281 | for (std::size_t i = 0; i < uniformBuffersMemory.size(); i++) |
| 282 | vkFreeMemory(device, uniformBuffersMemory[i], 0); |
| 283 | |
| 284 | for (std::size_t i = 0; i < uniformBuffers.size(); i++) |
| 285 | vkDestroyBuffer(device, uniformBuffers[i], 0); |
| 286 | |
| 287 | if (textureSampler) |
| 288 | vkDestroySampler(device, textureSampler, 0); |
| 289 | |
| 290 | if (textureImageView) |
| 291 | vkDestroyImageView(device, textureImageView, 0); |
| 292 | |
| 293 | if (textureImageMemory) |
| 294 | vkFreeMemory(device, textureImageMemory, 0); |
| 295 | |
| 296 | if (textureImage) |
| 297 | vkDestroyImage(device, textureImage, 0); |
| 298 | |
| 299 | if (indexBufferMemory) |
| 300 | vkFreeMemory(device, indexBufferMemory, 0); |
| 301 | |
| 302 | if (indexBuffer) |
| 303 | vkDestroyBuffer(device, indexBuffer, 0); |
| 304 | |
| 305 | if (vertexBufferMemory) |
| 306 | vkFreeMemory(device, vertexBufferMemory, 0); |
| 307 | |
| 308 | if (vertexBuffer) |
| 309 | vkDestroyBuffer(device, vertexBuffer, 0); |
| 310 | |
| 311 | if (commandPool) |
| 312 | vkDestroyCommandPool(device, commandPool, 0); |
| 313 | |
| 314 | if (descriptorSetLayout) |
| 315 | vkDestroyDescriptorSetLayout(device, descriptorSetLayout, 0); |
| 316 | |
| 317 | if (fragmentShaderModule) |
| 318 | vkDestroyShaderModule(device, fragmentShaderModule, 0); |
| 319 | |
| 320 | if (vertexShaderModule) |
| 321 | vkDestroyShaderModule(device, vertexShaderModule, 0); |
| 322 | |
| 323 | if (device) |
| 324 | vkDestroyDevice(device, 0); |
| 325 | |
| 326 | if (surface) |
| 327 | vkDestroySurfaceKHR(instance, surface, 0); |
| 328 | |
| 329 | if (debugReportCallback) |
| 330 | vkDestroyDebugReportCallbackEXT(instance, debugReportCallback, 0); |
| 331 | |
| 332 | if (instance) |
| 333 | vkDestroyInstance(instance, 0); |
| 334 | } |
| 335 | |
| 336 | // Cleanup swapchain |
| 337 | void cleanupSwapchain() |
| 338 | { |
| 339 | // Swapchain teardown procedure |
| 340 | for (std::size_t i = 0; i < fences.size(); i++) |
| 341 | vkWaitForFences(device, 1, &fences[i], VK_TRUE, std::numeric_limits<uint64_t>::max()); |
| 342 | |
| 343 | if (commandBuffers.size()) |
| 344 | vkFreeCommandBuffers(device, commandPool, commandBuffers.size(), &commandBuffers[0]); |
| 345 | |
| 346 | commandBuffers.clear(); |
| 347 | |
| 348 | for (std::size_t i = 0; i < swapchainFramebuffers.size(); i++) |
| 349 | vkDestroyFramebuffer(device, swapchainFramebuffers[i], 0); |
| 350 | |
| 351 | swapchainFramebuffers.clear(); |
| 352 | |
| 353 | if (graphicsPipeline) |
| 354 | vkDestroyPipeline(device, graphicsPipeline, 0); |
| 355 | |
| 356 | if (renderPass) |
| 357 | vkDestroyRenderPass(device, renderPass, 0); |
| 358 | |
| 359 | if (pipelineLayout) |
| 360 | vkDestroyPipelineLayout(device, pipelineLayout, 0); |
| 361 | |
| 362 | if (depthImageView) |
| 363 | vkDestroyImageView(device, depthImageView, 0); |
| 364 | |
| 365 | if (depthImageMemory) |
| 366 | vkFreeMemory(device, depthImageMemory, 0); |
| 367 | |
| 368 | if (depthImage) |
| 369 | vkDestroyImage(device, depthImage, 0); |
| 370 | |
| 371 | for (std::size_t i = 0; i < swapchainImageViews.size(); i++) |
| 372 | vkDestroyImageView(device, swapchainImageViews[i], 0); |
| 373 | |
| 374 | swapchainImageViews.clear(); |
| 375 | |
| 376 | if (swapchain) |
| 377 | vkDestroySwapchainKHR(device, swapchain, 0); |
| 378 | } |
| 379 | |
| 380 | // Cleanup and recreate swapchain |
| 381 | void recreateSwapchain() |
| 382 | { |
| 383 | // Wait until there are no pending frames |
| 384 | vkDeviceWaitIdle(device); |
| 385 | |
| 386 | // Cleanup swapchain |
| 387 | cleanupSwapchain(); |
| 388 | |
| 389 | // Swapchain setup procedure |
| 390 | if (vulkanAvailable) setupSwapchain(); |
| 391 | if (vulkanAvailable) setupSwapchainImages(); |
| 392 | if (vulkanAvailable) setupPipelineLayout(); |
| 393 | if (vulkanAvailable) setupRenderpass(); |
| 394 | if (vulkanAvailable) setupPipeline(); |
| 395 | if (vulkanAvailable) setupDepthImage(); |
| 396 | if (vulkanAvailable) setupDepthImageView(); |
| 397 | if (vulkanAvailable) setupFramebuffers(); |
| 398 | if (vulkanAvailable) setupCommandBuffers(); |
| 399 | if (vulkanAvailable) setupDraw(); |
| 400 | } |
| 401 | |
| 402 | // Setup Vulkan instance |
| 403 | void setupInstance() |
| 404 | { |
| 405 | // Load bootstrap entry points |
| 406 | gladLoadVulkan(0, getVulkanFunction); |
| 407 | |
| 408 | if (!vkCreateInstance) |
| 409 | { |
| 410 | vulkanAvailable = false; |
| 411 | return; |
| 412 | } |
| 413 | |
| 414 | // Retrieve the available instance layers |
| 415 | uint32_t objectCount = 0; |
| 416 | |
| 417 | std::vector<VkLayerProperties> layers; |
| 418 | |
| 419 | if (vkEnumerateInstanceLayerProperties(&objectCount, 0) != VK_SUCCESS) |
| 420 | { |
| 421 | vulkanAvailable = false; |
| 422 | return; |
| 423 | } |
| 424 | |
| 425 | layers.resize(objectCount); |
| 426 | |
| 427 | if (vkEnumerateInstanceLayerProperties(&objectCount, &layers[0]) != VK_SUCCESS) |
| 428 | { |
| 429 | vulkanAvailable = false; |
| 430 | return; |
| 431 | } |
| 432 | |
| 433 | // Activate the layers we are interested in |
| 434 | std::vector<const char*> validationLayers; |
| 435 | |
| 436 | for (std::size_t i = 0; i < layers.size(); i++) |
| 437 | { |
| 438 | // VK_LAYER_LUNARG_standard_validation, meta-layer for the following layers: |
| 439 | // -- VK_LAYER_GOOGLE_threading |
| 440 | // -- VK_LAYER_LUNARG_parameter_validation |
| 441 | // -- VK_LAYER_LUNARG_device_limits |
| 442 | // -- VK_LAYER_LUNARG_object_tracker |
| 443 | // -- VK_LAYER_LUNARG_image |
| 444 | // -- VK_LAYER_LUNARG_core_validation |
| 445 | // -- VK_LAYER_LUNARG_swapchain |
| 446 | // -- VK_LAYER_GOOGLE_unique_objects |
| 447 | // These layers perform error checking and warn about bad or sub-optimal Vulkan API usage |
| 448 | // VK_LAYER_LUNARG_monitor appends an FPS counter to the window title |
| 449 | if (!std::strcmp(layers[i].layerName, "VK_LAYER_LUNARG_standard_validation" )) |
| 450 | { |
| 451 | validationLayers.push_back("VK_LAYER_LUNARG_standard_validation" ); |
| 452 | } |
| 453 | else if (!std::strcmp(layers[i].layerName, "VK_LAYER_LUNARG_monitor" )) |
| 454 | { |
| 455 | validationLayers.push_back("VK_LAYER_LUNARG_monitor" ); |
| 456 | } |
| 457 | } |
| 458 | |
| 459 | // Retrieve the extensions we need to enable in order to use Vulkan with SFML |
| 460 | std::vector<const char*> requiredExtentions = sf::Vulkan::getGraphicsRequiredInstanceExtensions(); |
| 461 | requiredExtentions.push_back(VK_EXT_DEBUG_REPORT_EXTENSION_NAME); |
| 462 | |
| 463 | // Register our application information |
| 464 | VkApplicationInfo applicationInfo = VkApplicationInfo(); |
| 465 | applicationInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO; |
| 466 | applicationInfo.pApplicationName = "SFML Vulkan Test" ; |
| 467 | applicationInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0); |
| 468 | applicationInfo.pEngineName = "SFML Vulkan Test Engine" ; |
| 469 | applicationInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0); |
| 470 | applicationInfo.apiVersion = VK_API_VERSION_1_0; |
| 471 | |
| 472 | VkInstanceCreateInfo instanceCreateInfo = VkInstanceCreateInfo(); |
| 473 | instanceCreateInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO; |
| 474 | instanceCreateInfo.pApplicationInfo = &applicationInfo; |
| 475 | instanceCreateInfo.enabledLayerCount = validationLayers.size(); |
| 476 | instanceCreateInfo.ppEnabledLayerNames = &validationLayers[0]; |
| 477 | instanceCreateInfo.enabledExtensionCount = requiredExtentions.size(); |
| 478 | instanceCreateInfo.ppEnabledExtensionNames = &requiredExtentions[0]; |
| 479 | |
| 480 | // Try to create a Vulkan instance with debug report enabled |
| 481 | VkResult result = vkCreateInstance(&instanceCreateInfo, 0, &instance); |
| 482 | |
| 483 | // If an extension is missing, try disabling debug report |
| 484 | if (result == VK_ERROR_EXTENSION_NOT_PRESENT) |
| 485 | { |
| 486 | requiredExtentions.pop_back(); |
| 487 | |
| 488 | instanceCreateInfo.enabledExtensionCount = requiredExtentions.size(); |
| 489 | instanceCreateInfo.ppEnabledExtensionNames = &requiredExtentions[0]; |
| 490 | |
| 491 | result = vkCreateInstance(&instanceCreateInfo, 0, &instance); |
| 492 | } |
| 493 | |
| 494 | // If instance creation still fails, give up |
| 495 | if (result != VK_SUCCESS) |
| 496 | { |
| 497 | vulkanAvailable = false; |
| 498 | return; |
| 499 | } |
| 500 | |
| 501 | // Load instance entry points |
| 502 | gladLoadVulkan(0, getVulkanFunction); |
| 503 | } |
| 504 | |
| 505 | // Setup our debug callback function to be called by Vulkan |
| 506 | void setupDebugReportCallback() |
| 507 | { |
| 508 | // Don't try to register the callback if the extension is not available |
| 509 | if (!vkCreateDebugReportCallbackEXT) |
| 510 | return; |
| 511 | |
| 512 | // Register for warnings and errors |
| 513 | VkDebugReportCallbackCreateInfoEXT debugReportCallbackCreateInfo = VkDebugReportCallbackCreateInfoEXT(); |
| 514 | debugReportCallbackCreateInfo.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT; |
| 515 | debugReportCallbackCreateInfo.flags = VK_DEBUG_REPORT_WARNING_BIT_EXT | VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT | VK_DEBUG_REPORT_ERROR_BIT_EXT; |
| 516 | debugReportCallbackCreateInfo.pfnCallback = debugCallback; |
| 517 | |
| 518 | // Create the debug callback |
| 519 | if (vkCreateDebugReportCallbackEXT(instance, &debugReportCallbackCreateInfo, 0, &debugReportCallback) != VK_SUCCESS) |
| 520 | { |
| 521 | vulkanAvailable = false; |
| 522 | return; |
| 523 | } |
| 524 | } |
| 525 | |
| 526 | // Setup the SFML window Vulkan rendering surface |
| 527 | void setupSurface() |
| 528 | { |
| 529 | if (!window.createVulkanSurface(instance, surface)) |
| 530 | vulkanAvailable = false; |
| 531 | } |
| 532 | |
| 533 | // Select a GPU to use and query its capabilities |
| 534 | void setupPhysicalDevice() |
| 535 | { |
| 536 | // Last sanity check |
| 537 | if (!vkEnumeratePhysicalDevices || !vkCreateDevice || !vkGetPhysicalDeviceProperties) |
| 538 | { |
| 539 | vulkanAvailable = false; |
| 540 | return; |
| 541 | } |
| 542 | |
| 543 | // Retrieve list of GPUs |
| 544 | uint32_t objectCount = 0; |
| 545 | |
| 546 | std::vector<VkPhysicalDevice> devices; |
| 547 | |
| 548 | if (vkEnumeratePhysicalDevices(instance, &objectCount, 0) != VK_SUCCESS) |
| 549 | { |
| 550 | vulkanAvailable = false; |
| 551 | return; |
| 552 | } |
| 553 | |
| 554 | devices.resize(objectCount); |
| 555 | |
| 556 | if (vkEnumeratePhysicalDevices(instance, &objectCount, &devices[0]) != VK_SUCCESS) |
| 557 | { |
| 558 | vulkanAvailable = false; |
| 559 | return; |
| 560 | } |
| 561 | |
| 562 | // Look for a GPU that supports swapchains |
| 563 | for (std::size_t i = 0; i < devices.size(); i++) |
| 564 | { |
| 565 | VkPhysicalDeviceProperties deviceProperties; |
| 566 | vkGetPhysicalDeviceProperties(devices[i], &deviceProperties); |
| 567 | |
| 568 | std::vector<VkExtensionProperties> extensions; |
| 569 | |
| 570 | if (vkEnumerateDeviceExtensionProperties(devices[i], 0, &objectCount, 0) != VK_SUCCESS) |
| 571 | { |
| 572 | vulkanAvailable = false; |
| 573 | return; |
| 574 | } |
| 575 | |
| 576 | extensions.resize(objectCount); |
| 577 | |
| 578 | if (vkEnumerateDeviceExtensionProperties(devices[i], 0, &objectCount, &extensions[0]) != VK_SUCCESS) |
| 579 | { |
| 580 | vulkanAvailable = false; |
| 581 | return; |
| 582 | } |
| 583 | |
| 584 | bool supportsSwapchain = false; |
| 585 | |
| 586 | for (std::size_t j = 0; j < extensions.size(); j++) |
| 587 | { |
| 588 | if (!std::strcmp(extensions[j].extensionName, VK_KHR_SWAPCHAIN_EXTENSION_NAME)) |
| 589 | { |
| 590 | supportsSwapchain = true; |
| 591 | break; |
| 592 | } |
| 593 | } |
| 594 | |
| 595 | if (!supportsSwapchain) |
| 596 | continue; |
| 597 | |
| 598 | // Prefer discrete over integrated GPUs if multiple are available |
| 599 | if (deviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) |
| 600 | { |
| 601 | gpu = devices[i]; |
| 602 | break; |
| 603 | } |
| 604 | else if (deviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) |
| 605 | { |
| 606 | gpu = devices[i]; |
| 607 | } |
| 608 | } |
| 609 | |
| 610 | if (!gpu) |
| 611 | { |
| 612 | vulkanAvailable = false; |
| 613 | return; |
| 614 | } |
| 615 | |
| 616 | // Load physical device entry points |
| 617 | gladLoadVulkan(gpu, getVulkanFunction); |
| 618 | |
| 619 | // Check what depth formats are available and select one |
| 620 | VkFormatProperties formatProperties = VkFormatProperties(); |
| 621 | |
| 622 | vkGetPhysicalDeviceFormatProperties(gpu, VK_FORMAT_D24_UNORM_S8_UINT, &formatProperties); |
| 623 | |
| 624 | if (formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) { |
| 625 | depthFormat = VK_FORMAT_D24_UNORM_S8_UINT; |
| 626 | } |
| 627 | else |
| 628 | { |
| 629 | vkGetPhysicalDeviceFormatProperties(gpu, VK_FORMAT_D32_SFLOAT_S8_UINT, &formatProperties); |
| 630 | |
| 631 | if (formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) { |
| 632 | depthFormat = VK_FORMAT_D32_SFLOAT_S8_UINT; |
| 633 | } |
| 634 | else |
| 635 | { |
| 636 | vkGetPhysicalDeviceFormatProperties(gpu, VK_FORMAT_D32_SFLOAT, &formatProperties); |
| 637 | |
| 638 | if (formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) { |
| 639 | depthFormat = VK_FORMAT_D32_SFLOAT; |
| 640 | } |
| 641 | else |
| 642 | { |
| 643 | vulkanAvailable = false; |
| 644 | return; |
| 645 | } |
| 646 | } |
| 647 | } |
| 648 | } |
| 649 | |
| 650 | // Setup logical device and device queue |
| 651 | void setupLogicalDevice() |
| 652 | { |
| 653 | // Select a queue family that supports graphics operations and surface presentation |
| 654 | uint32_t objectCount = 0; |
| 655 | |
| 656 | std::vector<VkQueueFamilyProperties> queueFamilyProperties; |
| 657 | |
| 658 | vkGetPhysicalDeviceQueueFamilyProperties(gpu, &objectCount, 0); |
| 659 | |
| 660 | queueFamilyProperties.resize(objectCount); |
| 661 | |
| 662 | vkGetPhysicalDeviceQueueFamilyProperties(gpu, &objectCount, &queueFamilyProperties[0]); |
| 663 | |
| 664 | for (std::size_t i = 0; i < queueFamilyProperties.size(); i++) |
| 665 | { |
| 666 | VkBool32 surfaceSupported = VK_FALSE; |
| 667 | |
| 668 | vkGetPhysicalDeviceSurfaceSupportKHR(gpu, i, surface, &surfaceSupported); |
| 669 | |
| 670 | if ((queueFamilyProperties[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) && (surfaceSupported == VK_TRUE)) |
| 671 | { |
| 672 | queueFamilyIndex = i; |
| 673 | break; |
| 674 | } |
| 675 | } |
| 676 | |
| 677 | if (queueFamilyIndex < 0) |
| 678 | { |
| 679 | vulkanAvailable = false; |
| 680 | return; |
| 681 | } |
| 682 | |
| 683 | float queuePriority = 1.0f; |
| 684 | |
| 685 | VkDeviceQueueCreateInfo deviceQueueCreateInfo = VkDeviceQueueCreateInfo(); |
| 686 | deviceQueueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; |
| 687 | deviceQueueCreateInfo.queueCount = 1; |
| 688 | deviceQueueCreateInfo.queueFamilyIndex = queueFamilyIndex; |
| 689 | deviceQueueCreateInfo.pQueuePriorities = &queuePriority; |
| 690 | |
| 691 | // Enable the swapchain extension |
| 692 | const char* extentions[1] = { VK_KHR_SWAPCHAIN_EXTENSION_NAME }; |
| 693 | |
| 694 | // Enable anisotropic filtering |
| 695 | VkPhysicalDeviceFeatures physicalDeviceFeatures = VkPhysicalDeviceFeatures(); |
| 696 | physicalDeviceFeatures.samplerAnisotropy = VK_TRUE; |
| 697 | |
| 698 | VkDeviceCreateInfo deviceCreateInfo = VkDeviceCreateInfo(); |
| 699 | deviceCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO; |
| 700 | deviceCreateInfo.enabledExtensionCount = 1; |
| 701 | deviceCreateInfo.ppEnabledExtensionNames = extentions; |
| 702 | deviceCreateInfo.queueCreateInfoCount = 1; |
| 703 | deviceCreateInfo.pQueueCreateInfos = &deviceQueueCreateInfo; |
| 704 | deviceCreateInfo.pEnabledFeatures = &physicalDeviceFeatures; |
| 705 | |
| 706 | // Create our logical device |
| 707 | if (vkCreateDevice(gpu, &deviceCreateInfo, 0, &device) != VK_SUCCESS) |
| 708 | { |
| 709 | vulkanAvailable = false; |
| 710 | return; |
| 711 | } |
| 712 | |
| 713 | // Retrieve a handle to the logical device command queue |
| 714 | vkGetDeviceQueue(device, queueFamilyIndex, 0, &queue); |
| 715 | } |
| 716 | |
| 717 | // Query surface formats and set up swapchain |
| 718 | void setupSwapchain() |
| 719 | { |
| 720 | // Select a surface format that supports RGBA color format |
| 721 | uint32_t objectCount = 0; |
| 722 | |
| 723 | std::vector<VkSurfaceFormatKHR> surfaceFormats; |
| 724 | |
| 725 | if (vkGetPhysicalDeviceSurfaceFormatsKHR(gpu, surface, &objectCount, 0) != VK_SUCCESS) |
| 726 | { |
| 727 | vulkanAvailable = false; |
| 728 | return; |
| 729 | } |
| 730 | |
| 731 | surfaceFormats.resize(objectCount); |
| 732 | |
| 733 | if (vkGetPhysicalDeviceSurfaceFormatsKHR(gpu, surface, &objectCount, &surfaceFormats[0]) != VK_SUCCESS) |
| 734 | { |
| 735 | vulkanAvailable = false; |
| 736 | return; |
| 737 | } |
| 738 | |
| 739 | if ((surfaceFormats.size() == 1) && (surfaceFormats[0].format == VK_FORMAT_UNDEFINED)) |
| 740 | { |
| 741 | swapchainFormat.format = VK_FORMAT_B8G8R8A8_UNORM; |
| 742 | swapchainFormat.colorSpace = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR; |
| 743 | } |
| 744 | else if (!surfaceFormats.empty()) |
| 745 | { |
| 746 | for (std::size_t i = 0; i < surfaceFormats.size(); i++) |
| 747 | { |
| 748 | if ((surfaceFormats[i].format == VK_FORMAT_B8G8R8A8_UNORM) && (surfaceFormats[i].colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR)) |
| 749 | { |
| 750 | swapchainFormat.format = VK_FORMAT_B8G8R8A8_UNORM; |
| 751 | swapchainFormat.colorSpace = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR; |
| 752 | |
| 753 | break; |
| 754 | } |
| 755 | } |
| 756 | |
| 757 | if (swapchainFormat.format == VK_FORMAT_UNDEFINED) |
| 758 | swapchainFormat = surfaceFormats[0]; |
| 759 | } |
| 760 | else |
| 761 | { |
| 762 | vulkanAvailable = false; |
| 763 | return; |
| 764 | } |
| 765 | |
| 766 | // Select a swapchain present mode |
| 767 | std::vector<VkPresentModeKHR> presentModes; |
| 768 | |
| 769 | if (vkGetPhysicalDeviceSurfacePresentModesKHR(gpu, surface, &objectCount, 0) != VK_SUCCESS) |
| 770 | { |
| 771 | vulkanAvailable = false; |
| 772 | return; |
| 773 | } |
| 774 | |
| 775 | presentModes.resize(objectCount); |
| 776 | |
| 777 | if (vkGetPhysicalDeviceSurfacePresentModesKHR(gpu, surface, &objectCount, &presentModes[0]) != VK_SUCCESS) |
| 778 | { |
| 779 | vulkanAvailable = false; |
| 780 | return; |
| 781 | } |
| 782 | |
| 783 | // Prefer mailbox over FIFO if it is available |
| 784 | VkPresentModeKHR presentMode = VK_PRESENT_MODE_FIFO_KHR; |
| 785 | |
| 786 | for (std::size_t i = 0; i < presentModes.size(); i++) |
| 787 | { |
| 788 | if (presentModes[i] == VK_PRESENT_MODE_MAILBOX_KHR) |
| 789 | { |
| 790 | presentMode = presentModes[i]; |
| 791 | break; |
| 792 | } |
| 793 | } |
| 794 | |
| 795 | // Determine size and count of swapchain images |
| 796 | VkSurfaceCapabilitiesKHR surfaceCapabilities; |
| 797 | |
| 798 | if (vkGetPhysicalDeviceSurfaceCapabilitiesKHR(gpu, surface, &surfaceCapabilities) != VK_SUCCESS) |
| 799 | { |
| 800 | vulkanAvailable = false; |
| 801 | return; |
| 802 | } |
| 803 | |
| 804 | swapchainExtent.width = clamp<uint32_t>(window.getSize().x, surfaceCapabilities.minImageExtent.width, surfaceCapabilities.maxImageExtent.width); |
| 805 | swapchainExtent.height = clamp<uint32_t>(window.getSize().y, surfaceCapabilities.minImageExtent.height, surfaceCapabilities.maxImageExtent.height); |
| 806 | |
| 807 | uint32_t imageCount = clamp<uint32_t>(2, surfaceCapabilities.minImageCount, surfaceCapabilities.maxImageCount); |
| 808 | |
| 809 | VkSwapchainCreateInfoKHR swapchainCreateInfo = VkSwapchainCreateInfoKHR(); |
| 810 | swapchainCreateInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR; |
| 811 | swapchainCreateInfo.surface = surface; |
| 812 | swapchainCreateInfo.minImageCount = imageCount; |
| 813 | swapchainCreateInfo.imageFormat = swapchainFormat.format; |
| 814 | swapchainCreateInfo.imageColorSpace = swapchainFormat.colorSpace; |
| 815 | swapchainCreateInfo.imageExtent = swapchainExtent; |
| 816 | swapchainCreateInfo.imageArrayLayers = 1; |
| 817 | swapchainCreateInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; |
| 818 | swapchainCreateInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; |
| 819 | swapchainCreateInfo.preTransform = surfaceCapabilities.currentTransform; |
| 820 | swapchainCreateInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; |
| 821 | swapchainCreateInfo.presentMode = presentMode; |
| 822 | swapchainCreateInfo.clipped = VK_TRUE; |
| 823 | swapchainCreateInfo.oldSwapchain = VK_NULL_HANDLE; |
| 824 | |
| 825 | // Create the swapchain |
| 826 | if (vkCreateSwapchainKHR(device, &swapchainCreateInfo, 0, &swapchain) != VK_SUCCESS) |
| 827 | { |
| 828 | vulkanAvailable = false; |
| 829 | return; |
| 830 | } |
| 831 | } |
| 832 | |
| 833 | // Retrieve the swapchain images and create image views for them |
| 834 | void setupSwapchainImages() |
| 835 | { |
| 836 | // Retrieve swapchain images |
| 837 | uint32_t objectCount = 0; |
| 838 | |
| 839 | if (vkGetSwapchainImagesKHR(device, swapchain, &objectCount, 0) != VK_SUCCESS) |
| 840 | { |
| 841 | vulkanAvailable = false; |
| 842 | return; |
| 843 | } |
| 844 | |
| 845 | swapchainImages.resize(objectCount); |
| 846 | swapchainImageViews.resize(objectCount); |
| 847 | |
| 848 | if (vkGetSwapchainImagesKHR(device, swapchain, &objectCount, &swapchainImages[0]) != VK_SUCCESS) |
| 849 | { |
| 850 | vulkanAvailable = false; |
| 851 | return; |
| 852 | } |
| 853 | |
| 854 | VkImageViewCreateInfo imageViewCreateInfo = VkImageViewCreateInfo(); |
| 855 | imageViewCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; |
| 856 | imageViewCreateInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; |
| 857 | imageViewCreateInfo.format = swapchainFormat.format; |
| 858 | imageViewCreateInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY; |
| 859 | imageViewCreateInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY; |
| 860 | imageViewCreateInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY; |
| 861 | imageViewCreateInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY; |
| 862 | imageViewCreateInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
| 863 | imageViewCreateInfo.subresourceRange.baseMipLevel = 0; |
| 864 | imageViewCreateInfo.subresourceRange.levelCount = 1; |
| 865 | imageViewCreateInfo.subresourceRange.baseArrayLayer = 0; |
| 866 | imageViewCreateInfo.subresourceRange.layerCount = 1; |
| 867 | |
| 868 | // Create an image view for each swapchain image |
| 869 | for (std::size_t i = 0; i < swapchainImages.size(); i++) |
| 870 | { |
| 871 | imageViewCreateInfo.image = swapchainImages[i]; |
| 872 | |
| 873 | if (vkCreateImageView(device, &imageViewCreateInfo, 0, &swapchainImageViews[i]) != VK_SUCCESS) |
| 874 | { |
| 875 | vulkanAvailable = false; |
| 876 | return; |
| 877 | } |
| 878 | } |
| 879 | } |
| 880 | |
| 881 | // Load vertex and fragment shader modules |
| 882 | void setupShaders() |
| 883 | { |
| 884 | VkShaderModuleCreateInfo shaderModuleCreateInfo = VkShaderModuleCreateInfo(); |
| 885 | shaderModuleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; |
| 886 | |
| 887 | // Use the vertex shader SPIR-V code to create a vertex shader module |
| 888 | { |
| 889 | sf::FileInputStream file; |
| 890 | |
| 891 | if (!file.open("resources/shader.vert.spv" )) |
| 892 | { |
| 893 | vulkanAvailable = false; |
| 894 | return; |
| 895 | } |
| 896 | |
| 897 | std::vector<char> buffer(static_cast<std::size_t>(file.getSize())); |
| 898 | |
| 899 | if (file.read(&buffer[0], file.getSize()) != file.getSize()) |
| 900 | { |
| 901 | vulkanAvailable = false; |
| 902 | return; |
| 903 | } |
| 904 | |
| 905 | shaderModuleCreateInfo.codeSize = buffer.size(); |
| 906 | shaderModuleCreateInfo.pCode = reinterpret_cast<const uint32_t*>(&buffer[0]); |
| 907 | |
| 908 | if (vkCreateShaderModule(device, &shaderModuleCreateInfo, 0, &vertexShaderModule) != VK_SUCCESS) |
| 909 | { |
| 910 | vulkanAvailable = false; |
| 911 | return; |
| 912 | } |
| 913 | } |
| 914 | |
| 915 | // Use the fragment shader SPIR-V code to create a fragment shader module |
| 916 | { |
| 917 | sf::FileInputStream file; |
| 918 | |
| 919 | if (!file.open("resources/shader.frag.spv" )) |
| 920 | { |
| 921 | vulkanAvailable = false; |
| 922 | return; |
| 923 | } |
| 924 | |
| 925 | std::vector<char> buffer(static_cast<std::size_t>(file.getSize())); |
| 926 | |
| 927 | if (file.read(&buffer[0], file.getSize()) != file.getSize()) |
| 928 | { |
| 929 | vulkanAvailable = false; |
| 930 | return; |
| 931 | } |
| 932 | |
| 933 | shaderModuleCreateInfo.codeSize = buffer.size(); |
| 934 | shaderModuleCreateInfo.pCode = reinterpret_cast<const uint32_t*>(&buffer[0]); |
| 935 | |
| 936 | if (vkCreateShaderModule(device, &shaderModuleCreateInfo, 0, &fragmentShaderModule) != VK_SUCCESS) |
| 937 | { |
| 938 | vulkanAvailable = false; |
| 939 | return; |
| 940 | } |
| 941 | } |
| 942 | |
| 943 | // Prepare the shader stage information for later pipeline creation |
| 944 | shaderStages[0]= VkPipelineShaderStageCreateInfo(); |
| 945 | shaderStages[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; |
| 946 | shaderStages[0].stage = VK_SHADER_STAGE_VERTEX_BIT; |
| 947 | shaderStages[0].module = vertexShaderModule; |
| 948 | shaderStages[0].pName = "main" ; |
| 949 | |
| 950 | shaderStages[1]= VkPipelineShaderStageCreateInfo(); |
| 951 | shaderStages[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; |
| 952 | shaderStages[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT; |
| 953 | shaderStages[1].module = fragmentShaderModule; |
| 954 | shaderStages[1].pName = "main" ; |
| 955 | } |
| 956 | |
| 957 | // Setup renderpass and its subpass dependencies |
| 958 | void setupRenderpass() |
| 959 | { |
| 960 | VkAttachmentDescription attachmentDescriptions[2]; |
| 961 | |
| 962 | // Color attachment |
| 963 | attachmentDescriptions[0] = VkAttachmentDescription(); |
| 964 | attachmentDescriptions[0].format = swapchainFormat.format; |
| 965 | attachmentDescriptions[0].samples = VK_SAMPLE_COUNT_1_BIT; |
| 966 | attachmentDescriptions[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; |
| 967 | attachmentDescriptions[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE; |
| 968 | attachmentDescriptions[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; |
| 969 | attachmentDescriptions[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; |
| 970 | attachmentDescriptions[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; |
| 971 | attachmentDescriptions[0].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; |
| 972 | |
| 973 | // Depth attachment |
| 974 | attachmentDescriptions[1] = VkAttachmentDescription(); |
| 975 | attachmentDescriptions[1].format = depthFormat; |
| 976 | attachmentDescriptions[1].samples = VK_SAMPLE_COUNT_1_BIT; |
| 977 | attachmentDescriptions[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; |
| 978 | attachmentDescriptions[1].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; |
| 979 | attachmentDescriptions[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; |
| 980 | attachmentDescriptions[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; |
| 981 | attachmentDescriptions[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; |
| 982 | attachmentDescriptions[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; |
| 983 | |
| 984 | VkAttachmentReference attachmentReferences[2]; |
| 985 | |
| 986 | attachmentReferences[0] = VkAttachmentReference(); |
| 987 | attachmentReferences[0].attachment = 0; |
| 988 | attachmentReferences[0].layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; |
| 989 | |
| 990 | attachmentReferences[1] = VkAttachmentReference(); |
| 991 | attachmentReferences[1].attachment = 1; |
| 992 | attachmentReferences[1].layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; |
| 993 | |
| 994 | // Set up the renderpass to depend on commands that execute before the renderpass begins |
| 995 | VkSubpassDescription subpassDescription = VkSubpassDescription(); |
| 996 | subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; |
| 997 | subpassDescription.colorAttachmentCount = 1; |
| 998 | subpassDescription.pColorAttachments = &attachmentReferences[0]; |
| 999 | subpassDescription.pDepthStencilAttachment = &attachmentReferences[1]; |
| 1000 | |
| 1001 | VkSubpassDependency subpassDependency = VkSubpassDependency(); |
| 1002 | subpassDependency.srcSubpass = VK_SUBPASS_EXTERNAL; |
| 1003 | subpassDependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; |
| 1004 | subpassDependency.srcAccessMask = 0; |
| 1005 | subpassDependency.dstSubpass = 0; |
| 1006 | subpassDependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; |
| 1007 | subpassDependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; |
| 1008 | |
| 1009 | VkRenderPassCreateInfo renderPassCreateInfo = VkRenderPassCreateInfo(); |
| 1010 | renderPassCreateInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; |
| 1011 | renderPassCreateInfo.attachmentCount = 2; |
| 1012 | renderPassCreateInfo.pAttachments = attachmentDescriptions; |
| 1013 | renderPassCreateInfo.subpassCount = 1; |
| 1014 | renderPassCreateInfo.pSubpasses = &subpassDescription; |
| 1015 | renderPassCreateInfo.dependencyCount = 1; |
| 1016 | renderPassCreateInfo.pDependencies = &subpassDependency; |
| 1017 | |
| 1018 | // Create the renderpass |
| 1019 | if (vkCreateRenderPass(device, &renderPassCreateInfo, 0, &renderPass) != VK_SUCCESS) |
| 1020 | { |
| 1021 | vulkanAvailable = false; |
| 1022 | return; |
| 1023 | } |
| 1024 | } |
| 1025 | |
| 1026 | // Set up uniform buffer and texture sampler descriptor set layouts |
| 1027 | void setupDescriptorSetLayout() |
| 1028 | { |
| 1029 | VkDescriptorSetLayoutBinding descriptorSetLayoutBindings[2]; |
| 1030 | |
| 1031 | // Layout binding for uniform buffer |
| 1032 | descriptorSetLayoutBindings[0] = VkDescriptorSetLayoutBinding(); |
| 1033 | descriptorSetLayoutBindings[0].binding = 0; |
| 1034 | descriptorSetLayoutBindings[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; |
| 1035 | descriptorSetLayoutBindings[0].descriptorCount = 1; |
| 1036 | descriptorSetLayoutBindings[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT; |
| 1037 | |
| 1038 | // Layout binding for texture sampler |
| 1039 | descriptorSetLayoutBindings[1] = VkDescriptorSetLayoutBinding(); |
| 1040 | descriptorSetLayoutBindings[1].binding = 1; |
| 1041 | descriptorSetLayoutBindings[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; |
| 1042 | descriptorSetLayoutBindings[1].descriptorCount = 1; |
| 1043 | descriptorSetLayoutBindings[1].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; |
| 1044 | |
| 1045 | VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCreateInfo = VkDescriptorSetLayoutCreateInfo(); |
| 1046 | descriptorSetLayoutCreateInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; |
| 1047 | descriptorSetLayoutCreateInfo.bindingCount = 2; |
| 1048 | descriptorSetLayoutCreateInfo.pBindings = descriptorSetLayoutBindings; |
| 1049 | |
| 1050 | // Create descriptor set layout |
| 1051 | if (vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCreateInfo, 0, &descriptorSetLayout) != VK_SUCCESS) |
| 1052 | { |
| 1053 | vulkanAvailable = false; |
| 1054 | return; |
| 1055 | } |
| 1056 | } |
| 1057 | |
| 1058 | // Set up pipeline layout |
| 1059 | void setupPipelineLayout() |
| 1060 | { |
| 1061 | VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = VkPipelineLayoutCreateInfo(); |
| 1062 | pipelineLayoutCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; |
| 1063 | pipelineLayoutCreateInfo.setLayoutCount = 1; |
| 1064 | pipelineLayoutCreateInfo.pSetLayouts = &descriptorSetLayout; |
| 1065 | |
| 1066 | // Create pipeline layout |
| 1067 | if (vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, 0, &pipelineLayout) != VK_SUCCESS) |
| 1068 | { |
| 1069 | vulkanAvailable = false; |
| 1070 | return; |
| 1071 | } |
| 1072 | } |
| 1073 | |
| 1074 | // Set up rendering pipeline |
| 1075 | void setupPipeline() |
| 1076 | { |
| 1077 | // Set up how the vertex shader pulls data out of our vertex buffer |
| 1078 | VkVertexInputBindingDescription vertexInputBindingDescription = VkVertexInputBindingDescription(); |
| 1079 | vertexInputBindingDescription.binding = 0; |
| 1080 | vertexInputBindingDescription.stride = sizeof(float) * 9; |
| 1081 | vertexInputBindingDescription.inputRate = VK_VERTEX_INPUT_RATE_VERTEX; |
| 1082 | |
| 1083 | // Set up how the vertex buffer data is interpreted as attributes by the vertex shader |
| 1084 | VkVertexInputAttributeDescription vertexInputAttributeDescriptions[3]; |
| 1085 | |
| 1086 | // Position attribute |
| 1087 | vertexInputAttributeDescriptions[0] = VkVertexInputAttributeDescription(); |
| 1088 | vertexInputAttributeDescriptions[0].binding = 0; |
| 1089 | vertexInputAttributeDescriptions[0].location = 0; |
| 1090 | vertexInputAttributeDescriptions[0].format = VK_FORMAT_R32G32B32_SFLOAT; |
| 1091 | vertexInputAttributeDescriptions[0].offset = sizeof(float) * 0; |
| 1092 | |
| 1093 | // Color attribute |
| 1094 | vertexInputAttributeDescriptions[1] = VkVertexInputAttributeDescription(); |
| 1095 | vertexInputAttributeDescriptions[1].binding = 0; |
| 1096 | vertexInputAttributeDescriptions[1].location = 1; |
| 1097 | vertexInputAttributeDescriptions[1].format = VK_FORMAT_R32G32B32A32_SFLOAT; |
| 1098 | vertexInputAttributeDescriptions[1].offset = sizeof(float) * 3; |
| 1099 | |
| 1100 | // Texture coordinate attribute |
| 1101 | vertexInputAttributeDescriptions[2] = VkVertexInputAttributeDescription(); |
| 1102 | vertexInputAttributeDescriptions[2].binding = 0; |
| 1103 | vertexInputAttributeDescriptions[2].location = 2; |
| 1104 | vertexInputAttributeDescriptions[2].format = VK_FORMAT_R32G32_SFLOAT; |
| 1105 | vertexInputAttributeDescriptions[2].offset = sizeof(float) * 7; |
| 1106 | |
| 1107 | VkPipelineVertexInputStateCreateInfo vertexInputStateCreateInfo = VkPipelineVertexInputStateCreateInfo(); |
| 1108 | vertexInputStateCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; |
| 1109 | vertexInputStateCreateInfo.vertexBindingDescriptionCount = 1; |
| 1110 | vertexInputStateCreateInfo.pVertexBindingDescriptions = &vertexInputBindingDescription; |
| 1111 | vertexInputStateCreateInfo.vertexAttributeDescriptionCount = 3; |
| 1112 | vertexInputStateCreateInfo.pVertexAttributeDescriptions = vertexInputAttributeDescriptions; |
| 1113 | |
| 1114 | // We want to generate a triangle list with our vertex data |
| 1115 | VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCreateInfo = VkPipelineInputAssemblyStateCreateInfo(); |
| 1116 | inputAssemblyStateCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; |
| 1117 | inputAssemblyStateCreateInfo.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; |
| 1118 | inputAssemblyStateCreateInfo.primitiveRestartEnable = VK_FALSE; |
| 1119 | |
| 1120 | // Set up the viewport |
| 1121 | VkViewport viewport = VkViewport(); |
| 1122 | viewport.x = 0.0f; |
| 1123 | viewport.y = 0.0f; |
| 1124 | viewport.width = static_cast<float>(swapchainExtent.width); |
| 1125 | viewport.height = static_cast<float>(swapchainExtent.height); |
| 1126 | viewport.minDepth = 0.0f; |
| 1127 | viewport.maxDepth = 1.f; |
| 1128 | |
| 1129 | // Set up the scissor region |
| 1130 | VkRect2D scissor = VkRect2D(); |
| 1131 | scissor.offset.x = 0; |
| 1132 | scissor.offset.y = 0; |
| 1133 | scissor.extent = swapchainExtent; |
| 1134 | |
| 1135 | VkPipelineViewportStateCreateInfo pipelineViewportStateCreateInfo = VkPipelineViewportStateCreateInfo(); |
| 1136 | pipelineViewportStateCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; |
| 1137 | pipelineViewportStateCreateInfo.viewportCount = 1; |
| 1138 | pipelineViewportStateCreateInfo.pViewports = &viewport; |
| 1139 | pipelineViewportStateCreateInfo.scissorCount = 1; |
| 1140 | pipelineViewportStateCreateInfo.pScissors = &scissor; |
| 1141 | |
| 1142 | // Set up rasterization parameters: fill polygons, no backface culling, front face is counter-clockwise |
| 1143 | VkPipelineRasterizationStateCreateInfo pipelineRasterizationStateCreateInfo = VkPipelineRasterizationStateCreateInfo(); |
| 1144 | pipelineRasterizationStateCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; |
| 1145 | pipelineRasterizationStateCreateInfo.depthClampEnable = VK_FALSE; |
| 1146 | pipelineRasterizationStateCreateInfo.rasterizerDiscardEnable = VK_FALSE; |
| 1147 | pipelineRasterizationStateCreateInfo.polygonMode = VK_POLYGON_MODE_FILL; |
| 1148 | pipelineRasterizationStateCreateInfo.lineWidth = 1.0f; |
| 1149 | pipelineRasterizationStateCreateInfo.cullMode = VK_CULL_MODE_NONE; |
| 1150 | pipelineRasterizationStateCreateInfo.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE; |
| 1151 | pipelineRasterizationStateCreateInfo.depthBiasEnable = VK_FALSE; |
| 1152 | |
| 1153 | // Enable depth testing and disable scissor testing |
| 1154 | VkPipelineDepthStencilStateCreateInfo pipelineDepthStencilStateCreateInfo = VkPipelineDepthStencilStateCreateInfo(); |
| 1155 | pipelineDepthStencilStateCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO; |
| 1156 | pipelineDepthStencilStateCreateInfo.depthTestEnable = VK_TRUE; |
| 1157 | pipelineDepthStencilStateCreateInfo.depthWriteEnable = VK_TRUE; |
| 1158 | pipelineDepthStencilStateCreateInfo.depthCompareOp = VK_COMPARE_OP_LESS; |
| 1159 | pipelineDepthStencilStateCreateInfo.depthBoundsTestEnable = VK_FALSE; |
| 1160 | pipelineDepthStencilStateCreateInfo.stencilTestEnable = VK_FALSE; |
| 1161 | |
| 1162 | // Enable multi-sampling |
| 1163 | VkPipelineMultisampleStateCreateInfo pipelineMultisampleStateCreateInfo = VkPipelineMultisampleStateCreateInfo(); |
| 1164 | pipelineMultisampleStateCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; |
| 1165 | pipelineMultisampleStateCreateInfo.sampleShadingEnable = VK_FALSE; |
| 1166 | pipelineMultisampleStateCreateInfo.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; |
| 1167 | |
| 1168 | // Set up blending parameters |
| 1169 | VkPipelineColorBlendAttachmentState pipelineColorBlendAttachmentState = VkPipelineColorBlendAttachmentState(); |
| 1170 | pipelineColorBlendAttachmentState.blendEnable = VK_TRUE; |
| 1171 | pipelineColorBlendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA; |
| 1172 | pipelineColorBlendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; |
| 1173 | pipelineColorBlendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD; |
| 1174 | pipelineColorBlendAttachmentState.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE; |
| 1175 | pipelineColorBlendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; |
| 1176 | pipelineColorBlendAttachmentState.alphaBlendOp = VK_BLEND_OP_ADD; |
| 1177 | pipelineColorBlendAttachmentState.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT; |
| 1178 | |
| 1179 | VkPipelineColorBlendStateCreateInfo pipelineColorBlendStateCreateInfo = VkPipelineColorBlendStateCreateInfo(); |
| 1180 | pipelineColorBlendStateCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; |
| 1181 | pipelineColorBlendStateCreateInfo.logicOpEnable = VK_FALSE; |
| 1182 | pipelineColorBlendStateCreateInfo.attachmentCount = 1; |
| 1183 | pipelineColorBlendStateCreateInfo.pAttachments = &pipelineColorBlendAttachmentState; |
| 1184 | |
| 1185 | VkGraphicsPipelineCreateInfo graphicsPipelineCreateInfo = VkGraphicsPipelineCreateInfo(); |
| 1186 | graphicsPipelineCreateInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; |
| 1187 | graphicsPipelineCreateInfo.stageCount = 2; |
| 1188 | graphicsPipelineCreateInfo.pStages = shaderStages; |
| 1189 | graphicsPipelineCreateInfo.pVertexInputState = &vertexInputStateCreateInfo; |
| 1190 | graphicsPipelineCreateInfo.pInputAssemblyState = &inputAssemblyStateCreateInfo; |
| 1191 | graphicsPipelineCreateInfo.pViewportState = &pipelineViewportStateCreateInfo; |
| 1192 | graphicsPipelineCreateInfo.pRasterizationState = &pipelineRasterizationStateCreateInfo; |
| 1193 | graphicsPipelineCreateInfo.pDepthStencilState = &pipelineDepthStencilStateCreateInfo; |
| 1194 | graphicsPipelineCreateInfo.pMultisampleState = &pipelineMultisampleStateCreateInfo; |
| 1195 | graphicsPipelineCreateInfo.pColorBlendState = &pipelineColorBlendStateCreateInfo; |
| 1196 | graphicsPipelineCreateInfo.layout = pipelineLayout; |
| 1197 | graphicsPipelineCreateInfo.renderPass = renderPass; |
| 1198 | graphicsPipelineCreateInfo.subpass = 0; |
| 1199 | |
| 1200 | // Create our graphics pipeline |
| 1201 | if (vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &graphicsPipelineCreateInfo, 0, &graphicsPipeline) != VK_SUCCESS) |
| 1202 | { |
| 1203 | vulkanAvailable = false; |
| 1204 | return; |
| 1205 | } |
| 1206 | } |
| 1207 | |
| 1208 | // Use our renderpass and swapchain images to create the corresponding framebuffers |
| 1209 | void setupFramebuffers() |
| 1210 | { |
| 1211 | swapchainFramebuffers.resize(swapchainImageViews.size()); |
| 1212 | |
| 1213 | VkFramebufferCreateInfo framebufferCreateInfo = VkFramebufferCreateInfo(); |
| 1214 | framebufferCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; |
| 1215 | framebufferCreateInfo.renderPass = renderPass; |
| 1216 | framebufferCreateInfo.attachmentCount = 2; |
| 1217 | framebufferCreateInfo.width = swapchainExtent.width; |
| 1218 | framebufferCreateInfo.height = swapchainExtent.height; |
| 1219 | framebufferCreateInfo.layers = 1; |
| 1220 | |
| 1221 | for (std::size_t i = 0; i < swapchainFramebuffers.size(); i++) |
| 1222 | { |
| 1223 | // Each framebuffer consists of a corresponding swapchain image and the shared depth image |
| 1224 | VkImageView attachments[] = {swapchainImageViews[i], depthImageView}; |
| 1225 | |
| 1226 | framebufferCreateInfo.pAttachments = attachments; |
| 1227 | |
| 1228 | // Create the framebuffer |
| 1229 | if (vkCreateFramebuffer(device, &framebufferCreateInfo, 0, &swapchainFramebuffers[i]) != VK_SUCCESS) |
| 1230 | { |
| 1231 | vulkanAvailable = false; |
| 1232 | return; |
| 1233 | } |
| 1234 | } |
| 1235 | } |
| 1236 | |
| 1237 | // Set up our command pool |
| 1238 | void setupCommandPool() |
| 1239 | { |
| 1240 | // We want to be able to reset command buffers after submitting them |
| 1241 | VkCommandPoolCreateInfo commandPoolCreateInfo = VkCommandPoolCreateInfo(); |
| 1242 | commandPoolCreateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; |
| 1243 | commandPoolCreateInfo.queueFamilyIndex = queueFamilyIndex; |
| 1244 | commandPoolCreateInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT; |
| 1245 | |
| 1246 | // Create our command pool |
| 1247 | if (vkCreateCommandPool(device, &commandPoolCreateInfo, 0, &commandPool) != VK_SUCCESS) |
| 1248 | { |
| 1249 | vulkanAvailable = false; |
| 1250 | return; |
| 1251 | } |
| 1252 | } |
| 1253 | |
| 1254 | // Helper to create a generic buffer with the specified size, usage and memory flags |
| 1255 | bool createBuffer(VkDeviceSize size, VkBufferUsageFlags usage, VkMemoryPropertyFlags properties, VkBuffer& buffer, VkDeviceMemory& memory) |
| 1256 | { |
| 1257 | // We only have a single queue so we can request exclusive access |
| 1258 | VkBufferCreateInfo bufferCreateInfo = VkBufferCreateInfo(); |
| 1259 | bufferCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; |
| 1260 | bufferCreateInfo.size = size; |
| 1261 | bufferCreateInfo.usage = usage; |
| 1262 | bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; |
| 1263 | |
| 1264 | // Create the buffer, this does not allocate any memory for it yet |
| 1265 | if (vkCreateBuffer(device, &bufferCreateInfo, 0, &buffer) != VK_SUCCESS) |
| 1266 | return false; |
| 1267 | |
| 1268 | // Check what kind of memory we need to request from the GPU |
| 1269 | VkMemoryRequirements memoryRequirements = VkMemoryRequirements(); |
| 1270 | vkGetBufferMemoryRequirements(device, buffer, &memoryRequirements); |
| 1271 | |
| 1272 | // Check what GPU memory type is available for us to allocate out of |
| 1273 | VkPhysicalDeviceMemoryProperties memoryProperties = VkPhysicalDeviceMemoryProperties(); |
| 1274 | vkGetPhysicalDeviceMemoryProperties(gpu, &memoryProperties); |
| 1275 | |
| 1276 | uint32_t memoryType = 0; |
| 1277 | |
| 1278 | for (; memoryType < memoryProperties.memoryTypeCount; memoryType++) |
| 1279 | { |
| 1280 | if ((memoryRequirements.memoryTypeBits & (1 << memoryType)) && |
| 1281 | ((memoryProperties.memoryTypes[memoryType].propertyFlags & properties) == properties)) |
| 1282 | break; |
| 1283 | } |
| 1284 | |
| 1285 | if (memoryType == memoryProperties.memoryTypeCount) |
| 1286 | return false; |
| 1287 | |
| 1288 | VkMemoryAllocateInfo memoryAllocateInfo = VkMemoryAllocateInfo(); |
| 1289 | memoryAllocateInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; |
| 1290 | memoryAllocateInfo.allocationSize = memoryRequirements.size; |
| 1291 | memoryAllocateInfo.memoryTypeIndex = memoryType; |
| 1292 | |
| 1293 | // Allocate the memory out of the GPU pool for the required memory type |
| 1294 | if (vkAllocateMemory(device, &memoryAllocateInfo, 0, &memory) != VK_SUCCESS) |
| 1295 | return false; |
| 1296 | |
| 1297 | // Bind the allocated memory to our buffer object |
| 1298 | if (vkBindBufferMemory(device, buffer, memory, 0) != VK_SUCCESS) |
| 1299 | return false; |
| 1300 | |
| 1301 | return true; |
| 1302 | } |
| 1303 | |
| 1304 | // Helper to copy the contents of one buffer to another buffer |
| 1305 | bool copyBuffer(VkBuffer dst, VkBuffer src, VkDeviceSize size) |
| 1306 | { |
| 1307 | // Allocate a primary command buffer out of our command pool |
| 1308 | VkCommandBufferAllocateInfo commandBufferAllocateInfo = VkCommandBufferAllocateInfo(); |
| 1309 | commandBufferAllocateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; |
| 1310 | commandBufferAllocateInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; |
| 1311 | commandBufferAllocateInfo.commandPool = commandPool; |
| 1312 | commandBufferAllocateInfo.commandBufferCount = 1; |
| 1313 | |
| 1314 | VkCommandBuffer commandBuffer; |
| 1315 | |
| 1316 | if (vkAllocateCommandBuffers(device, &commandBufferAllocateInfo, &commandBuffer) != VK_SUCCESS) |
| 1317 | return false; |
| 1318 | |
| 1319 | // Begin the command buffer |
| 1320 | VkCommandBufferBeginInfo commandBufferBeginInfo = VkCommandBufferBeginInfo(); |
| 1321 | commandBufferBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; |
| 1322 | commandBufferBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; |
| 1323 | |
| 1324 | if (vkBeginCommandBuffer(commandBuffer, &commandBufferBeginInfo) != VK_SUCCESS) |
| 1325 | { |
| 1326 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
| 1327 | |
| 1328 | return false; |
| 1329 | } |
| 1330 | |
| 1331 | // Add our buffer copy command |
| 1332 | VkBufferCopy bufferCopy = VkBufferCopy(); |
| 1333 | bufferCopy.srcOffset = 0; |
| 1334 | bufferCopy.dstOffset = 0; |
| 1335 | bufferCopy.size = size; |
| 1336 | |
| 1337 | vkCmdCopyBuffer(commandBuffer, src, dst, 1, &bufferCopy); |
| 1338 | |
| 1339 | // End and submit the command buffer |
| 1340 | vkEndCommandBuffer(commandBuffer); |
| 1341 | |
| 1342 | VkSubmitInfo submitInfo = VkSubmitInfo(); |
| 1343 | submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; |
| 1344 | submitInfo.commandBufferCount = 1; |
| 1345 | submitInfo.pCommandBuffers = &commandBuffer; |
| 1346 | |
| 1347 | if (vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE) != VK_SUCCESS) |
| 1348 | { |
| 1349 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
| 1350 | |
| 1351 | return false; |
| 1352 | } |
| 1353 | |
| 1354 | // Ensure the command buffer has been processed |
| 1355 | if (vkQueueWaitIdle(queue) != VK_SUCCESS) |
| 1356 | { |
| 1357 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
| 1358 | |
| 1359 | return false; |
| 1360 | } |
| 1361 | |
| 1362 | // Free the command buffer |
| 1363 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
| 1364 | |
| 1365 | return true; |
| 1366 | } |
| 1367 | |
| 1368 | // Create our vertex buffer and upload its data |
| 1369 | void setupVertexBuffer() |
| 1370 | { |
| 1371 | float vertexData[] = { |
| 1372 | // X Y Z R G B A U V |
| 1373 | -0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, |
| 1374 | 0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, |
| 1375 | 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, |
| 1376 | -0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, |
| 1377 | |
| 1378 | -0.5f, -0.5f, -0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, |
| 1379 | 0.5f, -0.5f, -0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, |
| 1380 | 0.5f, 0.5f, -0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, |
| 1381 | -0.5f, 0.5f, -0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, |
| 1382 | |
| 1383 | 0.5f, -0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, |
| 1384 | 0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, |
| 1385 | 0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, |
| 1386 | 0.5f, -0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, |
| 1387 | |
| 1388 | -0.5f, -0.5f, -0.5f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, |
| 1389 | -0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, |
| 1390 | -0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, |
| 1391 | -0.5f, -0.5f, 0.5f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, |
| 1392 | |
| 1393 | -0.5f, -0.5f, -0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, |
| 1394 | 0.5f, -0.5f, -0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, |
| 1395 | 0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, |
| 1396 | -0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, |
| 1397 | |
| 1398 | -0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, |
| 1399 | 0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, |
| 1400 | 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, |
| 1401 | -0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f |
| 1402 | }; |
| 1403 | |
| 1404 | // Create a staging buffer that is writable by the CPU |
| 1405 | VkBuffer stagingBuffer = 0; |
| 1406 | VkDeviceMemory stagingBufferMemory = 0; |
| 1407 | |
| 1408 | if (!createBuffer( |
| 1409 | sizeof(vertexData), |
| 1410 | VK_BUFFER_USAGE_TRANSFER_SRC_BIT, |
| 1411 | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, |
| 1412 | stagingBuffer, |
| 1413 | stagingBufferMemory |
| 1414 | )) |
| 1415 | { |
| 1416 | vulkanAvailable = false; |
| 1417 | return; |
| 1418 | } |
| 1419 | |
| 1420 | void* ptr; |
| 1421 | |
| 1422 | // Map the buffer into our address space |
| 1423 | if (vkMapMemory(device, stagingBufferMemory, 0, sizeof(vertexData), 0, &ptr) != VK_SUCCESS) |
| 1424 | { |
| 1425 | vkFreeMemory(device, stagingBufferMemory, 0); |
| 1426 | vkDestroyBuffer(device, stagingBuffer, 0); |
| 1427 | |
| 1428 | vulkanAvailable = false; |
| 1429 | return; |
| 1430 | } |
| 1431 | |
| 1432 | // Copy the vertex data into the buffer |
| 1433 | std::memcpy(ptr, vertexData, sizeof(vertexData)); |
| 1434 | |
| 1435 | // Unmap the buffer |
| 1436 | vkUnmapMemory(device, stagingBufferMemory); |
| 1437 | |
| 1438 | // Create the GPU local vertex buffer |
| 1439 | if (!createBuffer( |
| 1440 | sizeof(vertexData), |
| 1441 | VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, |
| 1442 | VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, |
| 1443 | vertexBuffer, |
| 1444 | vertexBufferMemory |
| 1445 | )) |
| 1446 | { |
| 1447 | vkFreeMemory(device, stagingBufferMemory, 0); |
| 1448 | vkDestroyBuffer(device, stagingBuffer, 0); |
| 1449 | |
| 1450 | vulkanAvailable = false; |
| 1451 | return; |
| 1452 | } |
| 1453 | |
| 1454 | // Copy the contents of the staging buffer into the GPU vertex buffer |
| 1455 | vulkanAvailable = copyBuffer(vertexBuffer, stagingBuffer, sizeof(vertexData)); |
| 1456 | |
| 1457 | // Free the staging buffer and its memory |
| 1458 | vkFreeMemory(device, stagingBufferMemory, 0); |
| 1459 | vkDestroyBuffer(device, stagingBuffer, 0); |
| 1460 | } |
| 1461 | |
| 1462 | // Create our index buffer and upload its data |
| 1463 | void setupIndexBuffer() |
| 1464 | { |
| 1465 | uint16_t indexData[] = { |
| 1466 | 0, 1, 2, |
| 1467 | 2, 3, 0, |
| 1468 | |
| 1469 | 4, 5, 6, |
| 1470 | 6, 7, 4, |
| 1471 | |
| 1472 | 8, 9, 10, |
| 1473 | 10, 11, 8, |
| 1474 | |
| 1475 | 12, 13, 14, |
| 1476 | 14, 15, 12, |
| 1477 | |
| 1478 | 16, 17, 18, |
| 1479 | 18, 19, 16, |
| 1480 | |
| 1481 | 20, 21, 22, |
| 1482 | 22, 23, 20 |
| 1483 | }; |
| 1484 | |
| 1485 | // Create a staging buffer that is writable by the CPU |
| 1486 | VkBuffer stagingBuffer = 0; |
| 1487 | VkDeviceMemory stagingBufferMemory = 0; |
| 1488 | |
| 1489 | if (!createBuffer( |
| 1490 | sizeof(indexData), |
| 1491 | VK_BUFFER_USAGE_TRANSFER_SRC_BIT, |
| 1492 | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, |
| 1493 | stagingBuffer, |
| 1494 | stagingBufferMemory |
| 1495 | )) |
| 1496 | { |
| 1497 | vulkanAvailable = false; |
| 1498 | return; |
| 1499 | } |
| 1500 | |
| 1501 | void* ptr; |
| 1502 | |
| 1503 | // Map the buffer into our address space |
| 1504 | if (vkMapMemory(device, stagingBufferMemory, 0, sizeof(indexData), 0, &ptr) != VK_SUCCESS) |
| 1505 | { |
| 1506 | vkFreeMemory(device, stagingBufferMemory, 0); |
| 1507 | vkDestroyBuffer(device, stagingBuffer, 0); |
| 1508 | |
| 1509 | vulkanAvailable = false; |
| 1510 | return; |
| 1511 | } |
| 1512 | |
| 1513 | // Copy the index data into the buffer |
| 1514 | std::memcpy(ptr, indexData, sizeof(indexData)); |
| 1515 | |
| 1516 | // Unmap the buffer |
| 1517 | vkUnmapMemory(device, stagingBufferMemory); |
| 1518 | |
| 1519 | // Create the GPU local index buffer |
| 1520 | if (!createBuffer( |
| 1521 | sizeof(indexData), |
| 1522 | VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT, |
| 1523 | VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, |
| 1524 | indexBuffer, |
| 1525 | indexBufferMemory |
| 1526 | )) |
| 1527 | { |
| 1528 | vkFreeMemory(device, stagingBufferMemory, 0); |
| 1529 | vkDestroyBuffer(device, stagingBuffer, 0); |
| 1530 | |
| 1531 | vulkanAvailable = false; |
| 1532 | return; |
| 1533 | } |
| 1534 | |
| 1535 | // Copy the contents of the staging buffer into the GPU index buffer |
| 1536 | vulkanAvailable = copyBuffer(indexBuffer, stagingBuffer, sizeof(indexData)); |
| 1537 | |
| 1538 | // Free the staging buffer and its memory |
| 1539 | vkFreeMemory(device, stagingBufferMemory, 0); |
| 1540 | vkDestroyBuffer(device, stagingBuffer, 0); |
| 1541 | } |
| 1542 | |
| 1543 | // Create our uniform buffer but don't upload any data yet |
| 1544 | void setupUniformBuffers() |
| 1545 | { |
| 1546 | // Create a uniform buffer for every frame that might be in flight to prevent clobbering |
| 1547 | for (size_t i = 0; i < swapchainImages.size(); i++) |
| 1548 | { |
| 1549 | uniformBuffers.push_back(0); |
| 1550 | uniformBuffersMemory.push_back(0); |
| 1551 | |
| 1552 | // The uniform buffer will be host visible and coherent since we use it for streaming data every frame |
| 1553 | if (!createBuffer( |
| 1554 | sizeof(Matrix) * 3, |
| 1555 | VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, |
| 1556 | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, |
| 1557 | uniformBuffers[i], |
| 1558 | uniformBuffersMemory[i] |
| 1559 | )) |
| 1560 | { |
| 1561 | vulkanAvailable = false; |
| 1562 | return; |
| 1563 | } |
| 1564 | } |
| 1565 | } |
| 1566 | |
| 1567 | // Helper to create a generic image with the specified size, format, usage and memory flags |
| 1568 | bool createImage(uint32_t width, uint32_t height, VkFormat format, VkImageTiling tiling, VkImageUsageFlags usage, VkMemoryPropertyFlags properties, VkImage& image, VkDeviceMemory& imageMemory) |
| 1569 | { |
| 1570 | // We only have a single queue so we can request exclusive access |
| 1571 | VkImageCreateInfo imageCreateInfo = VkImageCreateInfo(); |
| 1572 | imageCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; |
| 1573 | imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; |
| 1574 | imageCreateInfo.extent.width = width; |
| 1575 | imageCreateInfo.extent.height = height; |
| 1576 | imageCreateInfo.extent.depth = 1; |
| 1577 | imageCreateInfo.mipLevels = 1; |
| 1578 | imageCreateInfo.arrayLayers = 1; |
| 1579 | imageCreateInfo.format = format; |
| 1580 | imageCreateInfo.tiling = tiling; |
| 1581 | imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; |
| 1582 | imageCreateInfo.usage = usage; |
| 1583 | imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; |
| 1584 | imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; |
| 1585 | |
| 1586 | // Create the image, this does not allocate any memory for it yet |
| 1587 | if (vkCreateImage(device, &imageCreateInfo, 0, &image) != VK_SUCCESS) |
| 1588 | return false; |
| 1589 | |
| 1590 | // Check what kind of memory we need to request from the GPU |
| 1591 | VkMemoryRequirements memoryRequirements = VkMemoryRequirements(); |
| 1592 | vkGetImageMemoryRequirements(device, image, &memoryRequirements); |
| 1593 | |
| 1594 | // Check what GPU memory type is available for us to allocate out of |
| 1595 | VkPhysicalDeviceMemoryProperties memoryProperties = VkPhysicalDeviceMemoryProperties(); |
| 1596 | vkGetPhysicalDeviceMemoryProperties(gpu, &memoryProperties); |
| 1597 | |
| 1598 | uint32_t memoryType = 0; |
| 1599 | |
| 1600 | for (; memoryType < memoryProperties.memoryTypeCount; memoryType++) |
| 1601 | { |
| 1602 | if ((memoryRequirements.memoryTypeBits & (1 << memoryType)) && |
| 1603 | ((memoryProperties.memoryTypes[memoryType].propertyFlags & properties) == properties)) |
| 1604 | break; |
| 1605 | } |
| 1606 | |
| 1607 | if (memoryType == memoryProperties.memoryTypeCount) |
| 1608 | return false; |
| 1609 | |
| 1610 | VkMemoryAllocateInfo memoryAllocateInfo = VkMemoryAllocateInfo(); |
| 1611 | memoryAllocateInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; |
| 1612 | memoryAllocateInfo.allocationSize = memoryRequirements.size; |
| 1613 | memoryAllocateInfo.memoryTypeIndex = memoryType; |
| 1614 | |
| 1615 | // Allocate the memory out of the GPU pool for the required memory type |
| 1616 | if (vkAllocateMemory(device, &memoryAllocateInfo, 0, &imageMemory) != VK_SUCCESS) |
| 1617 | return false; |
| 1618 | |
| 1619 | // Bind the allocated memory to our image object |
| 1620 | if (vkBindImageMemory(device, image, imageMemory, 0) != VK_SUCCESS) |
| 1621 | return false; |
| 1622 | |
| 1623 | return true; |
| 1624 | } |
| 1625 | |
| 1626 | // Create our depth image and transition it into the proper layout |
| 1627 | void setupDepthImage() |
| 1628 | { |
| 1629 | // Create our depth image |
| 1630 | if (!createImage( |
| 1631 | swapchainExtent.width, |
| 1632 | swapchainExtent.height, |
| 1633 | depthFormat, |
| 1634 | VK_IMAGE_TILING_OPTIMAL, |
| 1635 | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, |
| 1636 | VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, |
| 1637 | depthImage, |
| 1638 | depthImageMemory |
| 1639 | )) |
| 1640 | { |
| 1641 | vulkanAvailable = false; |
| 1642 | return; |
| 1643 | } |
| 1644 | |
| 1645 | // Allocate a command buffer |
| 1646 | VkCommandBufferAllocateInfo commandBufferAllocateInfo = VkCommandBufferAllocateInfo(); |
| 1647 | commandBufferAllocateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; |
| 1648 | commandBufferAllocateInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; |
| 1649 | commandBufferAllocateInfo.commandPool = commandPool; |
| 1650 | commandBufferAllocateInfo.commandBufferCount = 1; |
| 1651 | |
| 1652 | VkCommandBuffer commandBuffer; |
| 1653 | |
| 1654 | if (vkAllocateCommandBuffers(device, &commandBufferAllocateInfo, &commandBuffer) != VK_SUCCESS) |
| 1655 | { |
| 1656 | vulkanAvailable = false; |
| 1657 | return; |
| 1658 | } |
| 1659 | |
| 1660 | // Begin the command buffer |
| 1661 | VkCommandBufferBeginInfo commandBufferBeginInfo = VkCommandBufferBeginInfo(); |
| 1662 | commandBufferBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; |
| 1663 | commandBufferBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; |
| 1664 | |
| 1665 | VkSubmitInfo submitInfo = VkSubmitInfo(); |
| 1666 | submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; |
| 1667 | submitInfo.commandBufferCount = 1; |
| 1668 | submitInfo.pCommandBuffers = &commandBuffer; |
| 1669 | |
| 1670 | if (vkBeginCommandBuffer(commandBuffer, &commandBufferBeginInfo) != VK_SUCCESS) |
| 1671 | { |
| 1672 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
| 1673 | |
| 1674 | vulkanAvailable = false; |
| 1675 | return; |
| 1676 | } |
| 1677 | |
| 1678 | // Submit a barrier to transition the image layout to depth stencil optimal |
| 1679 | VkImageMemoryBarrier barrier = VkImageMemoryBarrier(); |
| 1680 | barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; |
| 1681 | barrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED; |
| 1682 | barrier.newLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; |
| 1683 | barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; |
| 1684 | barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; |
| 1685 | barrier.image = depthImage; |
| 1686 | barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | ((depthFormat == VK_FORMAT_D32_SFLOAT) ? 0 : VK_IMAGE_ASPECT_STENCIL_BIT); |
| 1687 | barrier.subresourceRange.baseMipLevel = 0; |
| 1688 | barrier.subresourceRange.levelCount = 1; |
| 1689 | barrier.subresourceRange.baseArrayLayer = 0; |
| 1690 | barrier.subresourceRange.layerCount = 1; |
| 1691 | barrier.srcAccessMask = 0; |
| 1692 | barrier.dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; |
| 1693 | |
| 1694 | vkCmdPipelineBarrier(commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT, 0, 0, 0, 0, 0, 1, &barrier); |
| 1695 | |
| 1696 | // End and submit the command buffer |
| 1697 | if (vkEndCommandBuffer(commandBuffer) != VK_SUCCESS) |
| 1698 | { |
| 1699 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
| 1700 | |
| 1701 | vulkanAvailable = false; |
| 1702 | return; |
| 1703 | } |
| 1704 | |
| 1705 | if (vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE) != VK_SUCCESS) |
| 1706 | { |
| 1707 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
| 1708 | |
| 1709 | vulkanAvailable = false; |
| 1710 | return; |
| 1711 | } |
| 1712 | |
| 1713 | // Ensure the command buffer has been processed |
| 1714 | if (vkQueueWaitIdle(queue) != VK_SUCCESS) |
| 1715 | { |
| 1716 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
| 1717 | |
| 1718 | vulkanAvailable = false; |
| 1719 | return; |
| 1720 | } |
| 1721 | |
| 1722 | // Free the command buffer |
| 1723 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
| 1724 | } |
| 1725 | |
| 1726 | // Create an image view for our depth image |
| 1727 | void setupDepthImageView() |
| 1728 | { |
| 1729 | VkImageViewCreateInfo imageViewCreateInfo = VkImageViewCreateInfo(); |
| 1730 | imageViewCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; |
| 1731 | imageViewCreateInfo.image = depthImage; |
| 1732 | imageViewCreateInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; |
| 1733 | imageViewCreateInfo.format = depthFormat; |
| 1734 | imageViewCreateInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | ((depthFormat == VK_FORMAT_D32_SFLOAT) ? 0 : VK_IMAGE_ASPECT_STENCIL_BIT); |
| 1735 | imageViewCreateInfo.subresourceRange.baseMipLevel = 0; |
| 1736 | imageViewCreateInfo.subresourceRange.levelCount = 1; |
| 1737 | imageViewCreateInfo.subresourceRange.baseArrayLayer = 0; |
| 1738 | imageViewCreateInfo.subresourceRange.layerCount = 1; |
| 1739 | |
| 1740 | // Create the depth image view |
| 1741 | if (vkCreateImageView(device, &imageViewCreateInfo, 0, &depthImageView) != VK_SUCCESS) |
| 1742 | { |
| 1743 | vulkanAvailable = false; |
| 1744 | return; |
| 1745 | } |
| 1746 | } |
| 1747 | |
| 1748 | // Create an image for our texture data |
| 1749 | void setupTextureImage() |
| 1750 | { |
| 1751 | // Load the image data |
| 1752 | sf::Image imageData; |
| 1753 | |
| 1754 | if (!imageData.loadFromFile("resources/logo.png" )) |
| 1755 | { |
| 1756 | vulkanAvailable = false; |
| 1757 | return; |
| 1758 | } |
| 1759 | |
| 1760 | // Create a staging buffer to transfer the data with |
| 1761 | VkDeviceSize imageSize = imageData.getSize().x * imageData.getSize().y * 4; |
| 1762 | |
| 1763 | VkBuffer stagingBuffer; |
| 1764 | VkDeviceMemory stagingBufferMemory; |
| 1765 | createBuffer(imageSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory); |
| 1766 | |
| 1767 | void* ptr; |
| 1768 | |
| 1769 | // Map the buffer into our address space |
| 1770 | if (vkMapMemory(device, stagingBufferMemory, 0, imageSize, 0, &ptr) != VK_SUCCESS) |
| 1771 | { |
| 1772 | vkFreeMemory(device, stagingBufferMemory, 0); |
| 1773 | vkDestroyBuffer(device, stagingBuffer, 0); |
| 1774 | |
| 1775 | vulkanAvailable = false; |
| 1776 | return; |
| 1777 | } |
| 1778 | |
| 1779 | // Copy the image data into the buffer |
| 1780 | std::memcpy(ptr, imageData.getPixelsPtr(), static_cast<size_t>(imageSize)); |
| 1781 | |
| 1782 | // Unmap the buffer |
| 1783 | vkUnmapMemory(device, stagingBufferMemory); |
| 1784 | |
| 1785 | // Create a GPU local image |
| 1786 | if (!createImage( |
| 1787 | imageData.getSize().x, |
| 1788 | imageData.getSize().y, |
| 1789 | VK_FORMAT_R8G8B8A8_UNORM, |
| 1790 | VK_IMAGE_TILING_OPTIMAL, |
| 1791 | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT, |
| 1792 | VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, |
| 1793 | textureImage, |
| 1794 | textureImageMemory |
| 1795 | )) |
| 1796 | { |
| 1797 | vkFreeMemory(device, stagingBufferMemory, 0); |
| 1798 | vkDestroyBuffer(device, stagingBuffer, 0); |
| 1799 | |
| 1800 | vulkanAvailable = false; |
| 1801 | return; |
| 1802 | } |
| 1803 | |
| 1804 | // Create a command buffer |
| 1805 | VkCommandBufferAllocateInfo commandBufferAllocateInfo = VkCommandBufferAllocateInfo(); |
| 1806 | commandBufferAllocateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; |
| 1807 | commandBufferAllocateInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; |
| 1808 | commandBufferAllocateInfo.commandPool = commandPool; |
| 1809 | commandBufferAllocateInfo.commandBufferCount = 1; |
| 1810 | |
| 1811 | VkCommandBuffer commandBuffer; |
| 1812 | |
| 1813 | if (vkAllocateCommandBuffers(device, &commandBufferAllocateInfo, &commandBuffer) != VK_SUCCESS) |
| 1814 | { |
| 1815 | vkFreeMemory(device, stagingBufferMemory, 0); |
| 1816 | vkDestroyBuffer(device, stagingBuffer, 0); |
| 1817 | |
| 1818 | vulkanAvailable = false; |
| 1819 | return; |
| 1820 | } |
| 1821 | |
| 1822 | // Begin the command buffer |
| 1823 | VkCommandBufferBeginInfo commandBufferBeginInfo = VkCommandBufferBeginInfo(); |
| 1824 | commandBufferBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; |
| 1825 | commandBufferBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; |
| 1826 | |
| 1827 | VkSubmitInfo submitInfo = VkSubmitInfo(); |
| 1828 | submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; |
| 1829 | submitInfo.commandBufferCount = 1; |
| 1830 | submitInfo.pCommandBuffers = &commandBuffer; |
| 1831 | |
| 1832 | if (vkBeginCommandBuffer(commandBuffer, &commandBufferBeginInfo) != VK_SUCCESS) |
| 1833 | { |
| 1834 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
| 1835 | |
| 1836 | vkFreeMemory(device, stagingBufferMemory, 0); |
| 1837 | vkDestroyBuffer(device, stagingBuffer, 0); |
| 1838 | |
| 1839 | vulkanAvailable = false; |
| 1840 | return; |
| 1841 | } |
| 1842 | |
| 1843 | // Submit a barrier to transition the image layout to transfer destionation optimal |
| 1844 | VkImageMemoryBarrier barrier = VkImageMemoryBarrier(); |
| 1845 | barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; |
| 1846 | barrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED; |
| 1847 | barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; |
| 1848 | barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; |
| 1849 | barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; |
| 1850 | barrier.image = textureImage; |
| 1851 | barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
| 1852 | barrier.subresourceRange.baseMipLevel = 0; |
| 1853 | barrier.subresourceRange.levelCount = 1; |
| 1854 | barrier.subresourceRange.baseArrayLayer = 0; |
| 1855 | barrier.subresourceRange.layerCount = 1; |
| 1856 | barrier.srcAccessMask = 0; |
| 1857 | barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; |
| 1858 | |
| 1859 | vkCmdPipelineBarrier(commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, 0, 0, 0, 1, &barrier); |
| 1860 | |
| 1861 | if (vkEndCommandBuffer(commandBuffer) != VK_SUCCESS) |
| 1862 | { |
| 1863 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
| 1864 | |
| 1865 | vkFreeMemory(device, stagingBufferMemory, 0); |
| 1866 | vkDestroyBuffer(device, stagingBuffer, 0); |
| 1867 | |
| 1868 | vulkanAvailable = false; |
| 1869 | return; |
| 1870 | } |
| 1871 | |
| 1872 | if (vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE) != VK_SUCCESS) |
| 1873 | { |
| 1874 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
| 1875 | |
| 1876 | vkFreeMemory(device, stagingBufferMemory, 0); |
| 1877 | vkDestroyBuffer(device, stagingBuffer, 0); |
| 1878 | |
| 1879 | vulkanAvailable = false; |
| 1880 | return; |
| 1881 | } |
| 1882 | |
| 1883 | // Ensure the command buffer has been processed |
| 1884 | if (vkQueueWaitIdle(queue) != VK_SUCCESS) |
| 1885 | { |
| 1886 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
| 1887 | |
| 1888 | vkFreeMemory(device, stagingBufferMemory, 0); |
| 1889 | vkDestroyBuffer(device, stagingBuffer, 0); |
| 1890 | |
| 1891 | vulkanAvailable = false; |
| 1892 | return; |
| 1893 | } |
| 1894 | |
| 1895 | // Begin the command buffer |
| 1896 | if (vkBeginCommandBuffer(commandBuffer, &commandBufferBeginInfo) != VK_SUCCESS) |
| 1897 | { |
| 1898 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
| 1899 | |
| 1900 | vkFreeMemory(device, stagingBufferMemory, 0); |
| 1901 | vkDestroyBuffer(device, stagingBuffer, 0); |
| 1902 | |
| 1903 | vulkanAvailable = false; |
| 1904 | return; |
| 1905 | } |
| 1906 | |
| 1907 | // Copy the staging buffer contents into the image |
| 1908 | VkBufferImageCopy bufferImageCopy = VkBufferImageCopy(); |
| 1909 | bufferImageCopy.bufferOffset = 0; |
| 1910 | bufferImageCopy.bufferRowLength = 0; |
| 1911 | bufferImageCopy.bufferImageHeight = 0; |
| 1912 | bufferImageCopy.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
| 1913 | bufferImageCopy.imageSubresource.mipLevel = 0; |
| 1914 | bufferImageCopy.imageSubresource.baseArrayLayer = 0; |
| 1915 | bufferImageCopy.imageSubresource.layerCount = 1; |
| 1916 | bufferImageCopy.imageOffset.x = 0; |
| 1917 | bufferImageCopy.imageOffset.y = 0; |
| 1918 | bufferImageCopy.imageOffset.z = 0; |
| 1919 | bufferImageCopy.imageExtent.width = imageData.getSize().x; |
| 1920 | bufferImageCopy.imageExtent.height = imageData.getSize().y; |
| 1921 | bufferImageCopy.imageExtent.depth = 1; |
| 1922 | |
| 1923 | vkCmdCopyBufferToImage(commandBuffer, stagingBuffer, textureImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &bufferImageCopy); |
| 1924 | |
| 1925 | // End and submit the command buffer |
| 1926 | if (vkEndCommandBuffer(commandBuffer) != VK_SUCCESS) |
| 1927 | { |
| 1928 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
| 1929 | |
| 1930 | vkFreeMemory(device, stagingBufferMemory, 0); |
| 1931 | vkDestroyBuffer(device, stagingBuffer, 0); |
| 1932 | |
| 1933 | vulkanAvailable = false; |
| 1934 | return; |
| 1935 | } |
| 1936 | |
| 1937 | if (vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE) != VK_SUCCESS) |
| 1938 | { |
| 1939 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
| 1940 | |
| 1941 | vkFreeMemory(device, stagingBufferMemory, 0); |
| 1942 | vkDestroyBuffer(device, stagingBuffer, 0); |
| 1943 | |
| 1944 | vulkanAvailable = false; |
| 1945 | return; |
| 1946 | } |
| 1947 | |
| 1948 | // Ensure the command buffer has been processed |
| 1949 | if (vkQueueWaitIdle(queue) != VK_SUCCESS) |
| 1950 | { |
| 1951 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
| 1952 | |
| 1953 | vkFreeMemory(device, stagingBufferMemory, 0); |
| 1954 | vkDestroyBuffer(device, stagingBuffer, 0); |
| 1955 | |
| 1956 | vulkanAvailable = false; |
| 1957 | return; |
| 1958 | } |
| 1959 | |
| 1960 | // Begin the command buffer |
| 1961 | if (vkBeginCommandBuffer(commandBuffer, &commandBufferBeginInfo) != VK_SUCCESS) |
| 1962 | { |
| 1963 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
| 1964 | |
| 1965 | vkFreeMemory(device, stagingBufferMemory, 0); |
| 1966 | vkDestroyBuffer(device, stagingBuffer, 0); |
| 1967 | |
| 1968 | vulkanAvailable = false; |
| 1969 | return; |
| 1970 | } |
| 1971 | |
| 1972 | // Submit a barrier to transition the image layout from transfer destionation optimal to shader read-only optimal |
| 1973 | barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; |
| 1974 | barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; |
| 1975 | barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; |
| 1976 | barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT; |
| 1977 | |
| 1978 | vkCmdPipelineBarrier(commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, 0, 0, 0, 0, 1, &barrier); |
| 1979 | |
| 1980 | // End and submit the command buffer |
| 1981 | if (vkEndCommandBuffer(commandBuffer) != VK_SUCCESS) |
| 1982 | { |
| 1983 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
| 1984 | |
| 1985 | vkFreeMemory(device, stagingBufferMemory, 0); |
| 1986 | vkDestroyBuffer(device, stagingBuffer, 0); |
| 1987 | |
| 1988 | vulkanAvailable = false; |
| 1989 | return; |
| 1990 | } |
| 1991 | |
| 1992 | if (vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE) != VK_SUCCESS) |
| 1993 | { |
| 1994 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
| 1995 | |
| 1996 | vkFreeMemory(device, stagingBufferMemory, 0); |
| 1997 | vkDestroyBuffer(device, stagingBuffer, 0); |
| 1998 | |
| 1999 | vulkanAvailable = false; |
| 2000 | return; |
| 2001 | } |
| 2002 | |
| 2003 | // Ensure the command buffer has been processed |
| 2004 | if (vkQueueWaitIdle(queue) != VK_SUCCESS) |
| 2005 | { |
| 2006 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
| 2007 | |
| 2008 | vkFreeMemory(device, stagingBufferMemory, 0); |
| 2009 | vkDestroyBuffer(device, stagingBuffer, 0); |
| 2010 | |
| 2011 | vulkanAvailable = false; |
| 2012 | return; |
| 2013 | } |
| 2014 | |
| 2015 | // Free the command buffer |
| 2016 | vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); |
| 2017 | |
| 2018 | vkFreeMemory(device, stagingBufferMemory, 0); |
| 2019 | vkDestroyBuffer(device, stagingBuffer, 0); |
| 2020 | } |
| 2021 | |
| 2022 | // Create an image view for our texture |
| 2023 | void setupTextureImageView() |
| 2024 | { |
| 2025 | VkImageViewCreateInfo imageViewCreateInfo = VkImageViewCreateInfo(); |
| 2026 | imageViewCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; |
| 2027 | imageViewCreateInfo.image = textureImage; |
| 2028 | imageViewCreateInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; |
| 2029 | imageViewCreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM; |
| 2030 | imageViewCreateInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
| 2031 | imageViewCreateInfo.subresourceRange.baseMipLevel = 0; |
| 2032 | imageViewCreateInfo.subresourceRange.levelCount = 1; |
| 2033 | imageViewCreateInfo.subresourceRange.baseArrayLayer = 0; |
| 2034 | imageViewCreateInfo.subresourceRange.layerCount = 1; |
| 2035 | |
| 2036 | // Create our texture image view |
| 2037 | if (vkCreateImageView(device, &imageViewCreateInfo, 0, &textureImageView) != VK_SUCCESS) |
| 2038 | { |
| 2039 | vulkanAvailable = false; |
| 2040 | return; |
| 2041 | } |
| 2042 | } |
| 2043 | |
| 2044 | // Create a sampler for our texture |
| 2045 | void setupTextureSampler() |
| 2046 | { |
| 2047 | // Sampler parameters: linear min/mag filtering, 4x anisotropic |
| 2048 | VkSamplerCreateInfo samplerCreateInfo = VkSamplerCreateInfo(); |
| 2049 | samplerCreateInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO; |
| 2050 | samplerCreateInfo.magFilter = VK_FILTER_LINEAR; |
| 2051 | samplerCreateInfo.minFilter = VK_FILTER_LINEAR; |
| 2052 | samplerCreateInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT; |
| 2053 | samplerCreateInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT; |
| 2054 | samplerCreateInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT; |
| 2055 | samplerCreateInfo.anisotropyEnable = VK_TRUE; |
| 2056 | samplerCreateInfo.maxAnisotropy = 4; |
| 2057 | samplerCreateInfo.borderColor = VK_BORDER_COLOR_INT_OPAQUE_BLACK; |
| 2058 | samplerCreateInfo.unnormalizedCoordinates = VK_FALSE; |
| 2059 | samplerCreateInfo.compareEnable = VK_FALSE; |
| 2060 | samplerCreateInfo.compareOp = VK_COMPARE_OP_ALWAYS; |
| 2061 | samplerCreateInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; |
| 2062 | samplerCreateInfo.mipLodBias = 0.0f; |
| 2063 | samplerCreateInfo.minLod = 0.0f; |
| 2064 | samplerCreateInfo.maxLod = 0.0f; |
| 2065 | |
| 2066 | // Create our sampler |
| 2067 | if (vkCreateSampler(device, &samplerCreateInfo, 0, &textureSampler) != VK_SUCCESS) |
| 2068 | { |
| 2069 | vulkanAvailable = false; |
| 2070 | return; |
| 2071 | } |
| 2072 | } |
| 2073 | |
| 2074 | // Set up our descriptor pool |
| 2075 | void setupDescriptorPool() |
| 2076 | { |
| 2077 | // We need to allocate as many descriptor sets as we have frames in flight |
| 2078 | VkDescriptorPoolSize descriptorPoolSizes[2]; |
| 2079 | |
| 2080 | descriptorPoolSizes[0] = VkDescriptorPoolSize(); |
| 2081 | descriptorPoolSizes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; |
| 2082 | descriptorPoolSizes[0].descriptorCount = static_cast<uint32_t>(swapchainImages.size()); |
| 2083 | |
| 2084 | descriptorPoolSizes[1] = VkDescriptorPoolSize(); |
| 2085 | descriptorPoolSizes[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; |
| 2086 | descriptorPoolSizes[1].descriptorCount = static_cast<uint32_t>(swapchainImages.size()); |
| 2087 | |
| 2088 | VkDescriptorPoolCreateInfo descriptorPoolCreateInfo = VkDescriptorPoolCreateInfo(); |
| 2089 | descriptorPoolCreateInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO; |
| 2090 | descriptorPoolCreateInfo.poolSizeCount = 2; |
| 2091 | descriptorPoolCreateInfo.pPoolSizes = descriptorPoolSizes; |
| 2092 | descriptorPoolCreateInfo.maxSets = static_cast<uint32_t>(swapchainImages.size()); |
| 2093 | |
| 2094 | // Create the descriptor pool |
| 2095 | if (vkCreateDescriptorPool(device, &descriptorPoolCreateInfo, 0, &descriptorPool) != VK_SUCCESS) |
| 2096 | { |
| 2097 | vulkanAvailable = false; |
| 2098 | return; |
| 2099 | } |
| 2100 | } |
| 2101 | |
| 2102 | // Set up our descriptor sets |
| 2103 | void setupDescriptorSets() |
| 2104 | { |
| 2105 | // Allocate a descriptor set for each frame in flight |
| 2106 | std::vector<VkDescriptorSetLayout> descriptorSetLayouts(swapchainImages.size(), descriptorSetLayout); |
| 2107 | |
| 2108 | VkDescriptorSetAllocateInfo descriptorSetAllocateInfo = VkDescriptorSetAllocateInfo(); |
| 2109 | descriptorSetAllocateInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; |
| 2110 | descriptorSetAllocateInfo.descriptorPool = descriptorPool; |
| 2111 | descriptorSetAllocateInfo.descriptorSetCount = static_cast<uint32_t>(swapchainImages.size()); |
| 2112 | descriptorSetAllocateInfo.pSetLayouts = &descriptorSetLayouts[0]; |
| 2113 | |
| 2114 | descriptorSets.resize(swapchainImages.size()); |
| 2115 | |
| 2116 | if (vkAllocateDescriptorSets(device, &descriptorSetAllocateInfo, &descriptorSets[0]) != VK_SUCCESS) |
| 2117 | { |
| 2118 | descriptorSets.clear(); |
| 2119 | |
| 2120 | vulkanAvailable = false; |
| 2121 | return; |
| 2122 | } |
| 2123 | |
| 2124 | // For every descriptor set, set up the bindings to our uniform buffer and texture sampler |
| 2125 | for (std::size_t i = 0; i < descriptorSets.size(); i++) |
| 2126 | { |
| 2127 | VkWriteDescriptorSet writeDescriptorSets[2]; |
| 2128 | |
| 2129 | // Uniform buffer binding information |
| 2130 | VkDescriptorBufferInfo descriptorBufferInfo = VkDescriptorBufferInfo(); |
| 2131 | descriptorBufferInfo.buffer = uniformBuffers[i]; |
| 2132 | descriptorBufferInfo.offset = 0; |
| 2133 | descriptorBufferInfo.range = sizeof(Matrix) * 3; |
| 2134 | |
| 2135 | writeDescriptorSets[0] = VkWriteDescriptorSet(); |
| 2136 | writeDescriptorSets[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; |
| 2137 | writeDescriptorSets[0].dstSet = descriptorSets[i]; |
| 2138 | writeDescriptorSets[0].dstBinding = 0; |
| 2139 | writeDescriptorSets[0].dstArrayElement = 0; |
| 2140 | writeDescriptorSets[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; |
| 2141 | writeDescriptorSets[0].descriptorCount = 1; |
| 2142 | writeDescriptorSets[0].pBufferInfo = &descriptorBufferInfo; |
| 2143 | |
| 2144 | // Texture sampler binding information |
| 2145 | VkDescriptorImageInfo descriptorImageInfo = VkDescriptorImageInfo(); |
| 2146 | descriptorImageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; |
| 2147 | descriptorImageInfo.imageView = textureImageView; |
| 2148 | descriptorImageInfo.sampler = textureSampler; |
| 2149 | |
| 2150 | writeDescriptorSets[1] = VkWriteDescriptorSet(); |
| 2151 | writeDescriptorSets[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; |
| 2152 | writeDescriptorSets[1].dstSet = descriptorSets[i]; |
| 2153 | writeDescriptorSets[1].dstBinding = 1; |
| 2154 | writeDescriptorSets[1].dstArrayElement = 0; |
| 2155 | writeDescriptorSets[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; |
| 2156 | writeDescriptorSets[1].descriptorCount = 1; |
| 2157 | writeDescriptorSets[1].pImageInfo = &descriptorImageInfo; |
| 2158 | |
| 2159 | // Update the desciptor set |
| 2160 | vkUpdateDescriptorSets(device, 2, writeDescriptorSets, 0, 0); |
| 2161 | } |
| 2162 | } |
| 2163 | |
| 2164 | // Set up the command buffers we use for drawing each frame |
| 2165 | void setupCommandBuffers() |
| 2166 | { |
| 2167 | // We need a command buffer for every frame in flight |
| 2168 | commandBuffers.resize(swapchainFramebuffers.size()); |
| 2169 | |
| 2170 | // These are primary command buffers |
| 2171 | VkCommandBufferAllocateInfo commandBufferAllocateInfo = VkCommandBufferAllocateInfo(); |
| 2172 | commandBufferAllocateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; |
| 2173 | commandBufferAllocateInfo.commandPool = commandPool; |
| 2174 | commandBufferAllocateInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; |
| 2175 | commandBufferAllocateInfo.commandBufferCount = static_cast<uint32_t>(commandBuffers.size()); |
| 2176 | |
| 2177 | // Allocate the command buffers from our command pool |
| 2178 | if (vkAllocateCommandBuffers(device, &commandBufferAllocateInfo, &commandBuffers[0]) != VK_SUCCESS) |
| 2179 | { |
| 2180 | commandBuffers.clear(); |
| 2181 | vulkanAvailable = false; |
| 2182 | return; |
| 2183 | } |
| 2184 | } |
| 2185 | |
| 2186 | // Set up the commands we need to issue to draw a frame |
| 2187 | void setupDraw() |
| 2188 | { |
| 2189 | // Set up our clear colors |
| 2190 | VkClearValue clearColors[2]; |
| 2191 | |
| 2192 | // Clear color buffer to opaque black |
| 2193 | clearColors[0] = VkClearValue(); |
| 2194 | clearColors[0].color.float32[0] = 0.0f; |
| 2195 | clearColors[0].color.float32[1] = 0.0f; |
| 2196 | clearColors[0].color.float32[2] = 0.0f; |
| 2197 | clearColors[0].color.float32[3] = 0.0f; |
| 2198 | |
| 2199 | // Clear depth to 1.0f |
| 2200 | clearColors[1] = VkClearValue(); |
| 2201 | clearColors[1].depthStencil.depth = 1.0f; |
| 2202 | clearColors[1].depthStencil.stencil = 0; |
| 2203 | |
| 2204 | VkRenderPassBeginInfo renderPassBeginInfo = VkRenderPassBeginInfo(); |
| 2205 | renderPassBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; |
| 2206 | renderPassBeginInfo.renderPass = renderPass; |
| 2207 | renderPassBeginInfo.renderArea.offset.x = 0; |
| 2208 | renderPassBeginInfo.renderArea.offset.y = 0; |
| 2209 | renderPassBeginInfo.renderArea.extent = swapchainExtent; |
| 2210 | renderPassBeginInfo.clearValueCount = 2; |
| 2211 | renderPassBeginInfo.pClearValues = clearColors; |
| 2212 | |
| 2213 | // Simultaneous use: this command buffer can be resubmitted to a queue before a previous submission is completed |
| 2214 | VkCommandBufferBeginInfo commandBufferBeginInfo = VkCommandBufferBeginInfo(); |
| 2215 | commandBufferBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; |
| 2216 | commandBufferBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT; |
| 2217 | |
| 2218 | // Set up the command buffers for each frame in flight |
| 2219 | for (std::size_t i = 0; i < commandBuffers.size(); i++) |
| 2220 | { |
| 2221 | // Begin the command buffer |
| 2222 | if (vkBeginCommandBuffer(commandBuffers[i], &commandBufferBeginInfo) != VK_SUCCESS) |
| 2223 | { |
| 2224 | vulkanAvailable = false; |
| 2225 | return; |
| 2226 | } |
| 2227 | |
| 2228 | // Begin the renderpass |
| 2229 | renderPassBeginInfo.framebuffer = swapchainFramebuffers[i]; |
| 2230 | |
| 2231 | vkCmdBeginRenderPass(commandBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); |
| 2232 | |
| 2233 | // Bind our graphics pipeline |
| 2234 | vkCmdBindPipeline(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline); |
| 2235 | |
| 2236 | // Bind our vertex buffer |
| 2237 | VkDeviceSize offset = 0; |
| 2238 | |
| 2239 | vkCmdBindVertexBuffers(commandBuffers[i], 0, 1, &vertexBuffer, &offset); |
| 2240 | |
| 2241 | // Bind our index buffer |
| 2242 | vkCmdBindIndexBuffer(commandBuffers[i], indexBuffer, 0, VK_INDEX_TYPE_UINT16); |
| 2243 | |
| 2244 | // Bind our descriptor sets |
| 2245 | vkCmdBindDescriptorSets(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets[i], 0, 0); |
| 2246 | |
| 2247 | // Draw our primitives |
| 2248 | vkCmdDrawIndexed(commandBuffers[i], 36, 1, 0, 0, 0); |
| 2249 | |
| 2250 | // End the renderpass |
| 2251 | vkCmdEndRenderPass(commandBuffers[i]); |
| 2252 | |
| 2253 | // End the command buffer |
| 2254 | if (vkEndCommandBuffer(commandBuffers[i]) != VK_SUCCESS) |
| 2255 | { |
| 2256 | vulkanAvailable = false; |
| 2257 | return; |
| 2258 | } |
| 2259 | } |
| 2260 | } |
| 2261 | |
| 2262 | // Set up the semaphores we use to synchronize frames among each other |
| 2263 | void setupSemaphores() |
| 2264 | { |
| 2265 | VkSemaphoreCreateInfo semaphoreCreateInfo = VkSemaphoreCreateInfo(); |
| 2266 | semaphoreCreateInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; |
| 2267 | |
| 2268 | // Create a semaphore to track when an swapchain image is available for each frame in flight |
| 2269 | for (int i = 0; i < maxFramesInFlight; i++) |
| 2270 | { |
| 2271 | imageAvailableSemaphores.push_back(0); |
| 2272 | |
| 2273 | if (vkCreateSemaphore(device, &semaphoreCreateInfo, 0, &imageAvailableSemaphores[i]) != VK_SUCCESS) |
| 2274 | { |
| 2275 | imageAvailableSemaphores.pop_back(); |
| 2276 | vulkanAvailable = false; |
| 2277 | return; |
| 2278 | } |
| 2279 | } |
| 2280 | |
| 2281 | // Create a semaphore to track when rendering is complete for each frame in flight |
| 2282 | for (int i = 0; i < maxFramesInFlight; i++) |
| 2283 | { |
| 2284 | renderFinishedSemaphores.push_back(0); |
| 2285 | |
| 2286 | if (vkCreateSemaphore(device, &semaphoreCreateInfo, 0, &renderFinishedSemaphores[i]) != VK_SUCCESS) |
| 2287 | { |
| 2288 | renderFinishedSemaphores.pop_back(); |
| 2289 | vulkanAvailable = false; |
| 2290 | return; |
| 2291 | } |
| 2292 | } |
| 2293 | } |
| 2294 | |
| 2295 | // Set up the fences we use to synchronize frames among each other |
| 2296 | void setupFences() |
| 2297 | { |
| 2298 | // Create the fences in the signaled state |
| 2299 | VkFenceCreateInfo fenceCreateInfo = VkFenceCreateInfo(); |
| 2300 | fenceCreateInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; |
| 2301 | fenceCreateInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT; |
| 2302 | |
| 2303 | // Create a fence to track when queue submission is complete for each frame in flight |
| 2304 | for (int i = 0; i < maxFramesInFlight; i++) |
| 2305 | { |
| 2306 | fences.push_back(0); |
| 2307 | |
| 2308 | if (vkCreateFence(device, &fenceCreateInfo, 0, &fences[i]) != VK_SUCCESS) |
| 2309 | { |
| 2310 | fences.pop_back(); |
| 2311 | vulkanAvailable = false; |
| 2312 | return; |
| 2313 | } |
| 2314 | } |
| 2315 | } |
| 2316 | |
| 2317 | // Update the matrices in our uniform buffer every frame |
| 2318 | void updateUniformBuffer(float elapsed) |
| 2319 | { |
| 2320 | const float pi = 3.14159265359f; |
| 2321 | |
| 2322 | // Construct the model matrix |
| 2323 | Matrix model = { |
| 2324 | 1.0f, 0.0f, 0.0f, 0.0f, |
| 2325 | 0.0f, 1.0f, 0.0f, 0.0f, |
| 2326 | 0.0f, 0.0f, 1.0f, 0.0f, |
| 2327 | 0.0f, 0.0f, 0.0f, 1.0f |
| 2328 | }; |
| 2329 | |
| 2330 | matrixRotateX(model, elapsed * 59.0f * pi / 180.f); |
| 2331 | matrixRotateY(model, elapsed * 83.0f * pi / 180.f); |
| 2332 | matrixRotateZ(model, elapsed * 109.0f * pi / 180.f); |
| 2333 | |
| 2334 | // Translate the model based on the mouse position |
| 2335 | float x = clamp( sf::Mouse::getPosition(window).x * 2.f / window.getSize().x - 1.f, -1.0f, 1.0f) * 2.0f; |
| 2336 | float y = clamp(-sf::Mouse::getPosition(window).y * 2.f / window.getSize().y + 1.f, -1.0f, 1.0f) * 1.5f; |
| 2337 | |
| 2338 | model[3][0] -= x; |
| 2339 | model[3][2] += y; |
| 2340 | |
| 2341 | // Construct the view matrix |
| 2342 | const Vec3 eye = {0.0f, 4.0f, 0.0f}; |
| 2343 | const Vec3 center = {0.0f, 0.0f, 0.0f}; |
| 2344 | const Vec3 up = {0.0f, 0.0f, 1.0f}; |
| 2345 | |
| 2346 | Matrix view; |
| 2347 | |
| 2348 | matrixLookAt(view, eye, center, up); |
| 2349 | |
| 2350 | // Construct the projection matrix |
| 2351 | const float fov = 45.0f; |
| 2352 | const float aspect = static_cast<float>(swapchainExtent.width) / static_cast<float>(swapchainExtent.height); |
| 2353 | const float nearPlane = 0.1f; |
| 2354 | const float farPlane = 10.0f; |
| 2355 | |
| 2356 | Matrix projection; |
| 2357 | |
| 2358 | matrixPerspective(projection, fov * pi / 180.f, aspect, nearPlane, farPlane); |
| 2359 | |
| 2360 | char* ptr; |
| 2361 | |
| 2362 | // Map the current frame's uniform buffer into our address space |
| 2363 | if (vkMapMemory(device, uniformBuffersMemory[currentFrame], 0, sizeof(Matrix) * 3, 0, reinterpret_cast<void**>(&ptr)) != VK_SUCCESS) |
| 2364 | { |
| 2365 | vulkanAvailable = false; |
| 2366 | return; |
| 2367 | } |
| 2368 | |
| 2369 | // Copy the matrix data into the current frame's uniform buffer |
| 2370 | std::memcpy(ptr + sizeof(Matrix) * 0, model, sizeof(Matrix)); |
| 2371 | std::memcpy(ptr + sizeof(Matrix) * 1, view, sizeof(Matrix)); |
| 2372 | std::memcpy(ptr + sizeof(Matrix) * 2, projection, sizeof(Matrix)); |
| 2373 | |
| 2374 | // Unmap the buffer |
| 2375 | vkUnmapMemory(device, uniformBuffersMemory[currentFrame]); |
| 2376 | } |
| 2377 | |
| 2378 | void draw() |
| 2379 | { |
| 2380 | uint32_t imageIndex = 0; |
| 2381 | |
| 2382 | // If the objects we need to submit this frame are still pending, wait here |
| 2383 | vkWaitForFences(device, 1, &fences[currentFrame], VK_TRUE, std::numeric_limits<uint64_t>::max()); |
| 2384 | |
| 2385 | { |
| 2386 | // Get the next image in the swapchain |
| 2387 | VkResult result = vkAcquireNextImageKHR(device, swapchain, std::numeric_limits<uint64_t>::max(), imageAvailableSemaphores[currentFrame], VK_NULL_HANDLE, &imageIndex); |
| 2388 | |
| 2389 | // Check if we need to re-create the swapchain (e.g. if the window was resized) |
| 2390 | if (result == VK_ERROR_OUT_OF_DATE_KHR) |
| 2391 | { |
| 2392 | recreateSwapchain(); |
| 2393 | swapchainOutOfDate = false; |
| 2394 | return; |
| 2395 | } |
| 2396 | |
| 2397 | if ((result != VK_SUCCESS) && (result != VK_TIMEOUT) && (result != VK_NOT_READY) && (result != VK_SUBOPTIMAL_KHR)) |
| 2398 | { |
| 2399 | vulkanAvailable = false; |
| 2400 | return; |
| 2401 | } |
| 2402 | } |
| 2403 | |
| 2404 | // Wait for the swapchain image to be available in the color attachment stage before submitting the queue |
| 2405 | VkPipelineStageFlags waitStages = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; |
| 2406 | |
| 2407 | // Signal the render finished semaphore once the queue has been processed |
| 2408 | VkSubmitInfo submitInfo = VkSubmitInfo(); |
| 2409 | submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; |
| 2410 | submitInfo.waitSemaphoreCount = 1; |
| 2411 | submitInfo.pWaitSemaphores = &imageAvailableSemaphores[currentFrame]; |
| 2412 | submitInfo.pWaitDstStageMask = &waitStages; |
| 2413 | submitInfo.commandBufferCount = 1; |
| 2414 | submitInfo.pCommandBuffers = &commandBuffers[imageIndex]; |
| 2415 | submitInfo.signalSemaphoreCount = 1; |
| 2416 | submitInfo.pSignalSemaphores = &renderFinishedSemaphores[currentFrame]; |
| 2417 | |
| 2418 | vkResetFences(device, 1, &fences[currentFrame]); |
| 2419 | |
| 2420 | if (vkQueueSubmit(queue, 1, &submitInfo, fences[currentFrame]) != VK_SUCCESS) |
| 2421 | { |
| 2422 | vulkanAvailable = false; |
| 2423 | return; |
| 2424 | } |
| 2425 | |
| 2426 | // Wait for rendering to complete before presenting |
| 2427 | VkPresentInfoKHR presentInfo = VkPresentInfoKHR(); |
| 2428 | presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR; |
| 2429 | presentInfo.waitSemaphoreCount = 1; |
| 2430 | presentInfo.pWaitSemaphores = &renderFinishedSemaphores[currentFrame]; |
| 2431 | presentInfo.swapchainCount = 1; |
| 2432 | presentInfo.pSwapchains = &swapchain; |
| 2433 | presentInfo.pImageIndices = &imageIndex; |
| 2434 | |
| 2435 | { |
| 2436 | // Queue presentation |
| 2437 | VkResult result = vkQueuePresentKHR(queue, &presentInfo); |
| 2438 | |
| 2439 | // Check if we need to re-create the swapchain (e.g. if the window was resized) |
| 2440 | if ((result == VK_ERROR_OUT_OF_DATE_KHR) || (result == VK_SUBOPTIMAL_KHR) || swapchainOutOfDate) |
| 2441 | { |
| 2442 | recreateSwapchain(); |
| 2443 | swapchainOutOfDate = false; |
| 2444 | } |
| 2445 | else if (result != VK_SUCCESS) |
| 2446 | { |
| 2447 | vulkanAvailable = false; |
| 2448 | return; |
| 2449 | } |
| 2450 | } |
| 2451 | |
| 2452 | // Make sure to use the next frame's objects next frame |
| 2453 | currentFrame = (currentFrame + 1) % maxFramesInFlight; |
| 2454 | } |
| 2455 | |
| 2456 | void run() |
| 2457 | { |
| 2458 | sf::Clock clock; |
| 2459 | |
| 2460 | // Start game loop |
| 2461 | while (window.isOpen()) |
| 2462 | { |
| 2463 | // Process events |
| 2464 | sf::Event event; |
| 2465 | while (window.pollEvent(event)) |
| 2466 | { |
| 2467 | // Close window: exit |
| 2468 | if (event.type == sf::Event::Closed) |
| 2469 | window.close(); |
| 2470 | |
| 2471 | // Escape key: exit |
| 2472 | if ((event.type == sf::Event::KeyPressed) && (event.key.code == sf::Keyboard::Escape)) |
| 2473 | window.close(); |
| 2474 | |
| 2475 | // Re-create the swapchain when the window is resized |
| 2476 | if (event.type == sf::Event::Resized) |
| 2477 | swapchainOutOfDate = true; |
| 2478 | } |
| 2479 | |
| 2480 | if (vulkanAvailable) |
| 2481 | { |
| 2482 | // Update the uniform buffer (matrices) |
| 2483 | updateUniformBuffer(clock.getElapsedTime().asSeconds()); |
| 2484 | |
| 2485 | // Render the frame |
| 2486 | draw(); |
| 2487 | } |
| 2488 | } |
| 2489 | } |
| 2490 | |
| 2491 | private: |
| 2492 | sf::WindowBase window; |
| 2493 | |
| 2494 | bool vulkanAvailable; |
| 2495 | |
| 2496 | const int maxFramesInFlight; |
| 2497 | int currentFrame; |
| 2498 | bool swapchainOutOfDate; |
| 2499 | |
| 2500 | VkInstance instance; |
| 2501 | VkDebugReportCallbackEXT debugReportCallback; |
| 2502 | VkSurfaceKHR surface; |
| 2503 | VkPhysicalDevice gpu; |
| 2504 | int queueFamilyIndex; |
| 2505 | VkDevice device; |
| 2506 | VkQueue queue; |
| 2507 | VkSurfaceFormatKHR swapchainFormat; |
| 2508 | VkExtent2D swapchainExtent; |
| 2509 | VkSwapchainKHR swapchain; |
| 2510 | std::vector<VkImage> swapchainImages; |
| 2511 | std::vector<VkImageView> swapchainImageViews; |
| 2512 | VkFormat depthFormat; |
| 2513 | VkImage depthImage; |
| 2514 | VkDeviceMemory depthImageMemory; |
| 2515 | VkImageView depthImageView; |
| 2516 | VkShaderModule vertexShaderModule; |
| 2517 | VkShaderModule fragmentShaderModule; |
| 2518 | VkPipelineShaderStageCreateInfo shaderStages[2]; |
| 2519 | VkDescriptorSetLayout descriptorSetLayout; |
| 2520 | VkPipelineLayout pipelineLayout; |
| 2521 | VkRenderPass renderPass; |
| 2522 | VkPipeline graphicsPipeline; |
| 2523 | std::vector<VkFramebuffer> swapchainFramebuffers; |
| 2524 | VkCommandPool commandPool; |
| 2525 | VkBuffer vertexBuffer; |
| 2526 | VkDeviceMemory vertexBufferMemory; |
| 2527 | VkBuffer indexBuffer; |
| 2528 | VkDeviceMemory indexBufferMemory; |
| 2529 | std::vector<VkBuffer> uniformBuffers; |
| 2530 | std::vector<VkDeviceMemory> uniformBuffersMemory; |
| 2531 | VkImage textureImage; |
| 2532 | VkDeviceMemory textureImageMemory; |
| 2533 | VkImageView textureImageView; |
| 2534 | VkSampler textureSampler; |
| 2535 | VkDescriptorPool descriptorPool; |
| 2536 | std::vector<VkDescriptorSet> descriptorSets; |
| 2537 | std::vector<VkCommandBuffer> commandBuffers; |
| 2538 | std::vector<VkSemaphore> imageAvailableSemaphores; |
| 2539 | std::vector<VkSemaphore> renderFinishedSemaphores; |
| 2540 | std::vector<VkFence> fences; |
| 2541 | }; |
| 2542 | |
| 2543 | |
| 2544 | //////////////////////////////////////////////////////////// |
| 2545 | /// Entry point of application |
| 2546 | /// |
| 2547 | /// \return Application exit code |
| 2548 | /// |
| 2549 | //////////////////////////////////////////////////////////// |
| 2550 | int main() |
| 2551 | { |
| 2552 | VulkanExample example; |
| 2553 | |
| 2554 | example.run(); |
| 2555 | |
| 2556 | return EXIT_SUCCESS; |
| 2557 | } |
| 2558 | |