| 1 | /* Convert timestamp from pg_time_t to struct pg_tm. */ |
| 2 | |
| 3 | /* |
| 4 | * This file is in the public domain, so clarified as of |
| 5 | * 1996-06-05 by Arthur David Olson. |
| 6 | * |
| 7 | * IDENTIFICATION |
| 8 | * src/timezone/localtime.c |
| 9 | */ |
| 10 | |
| 11 | /* |
| 12 | * Leap second handling from Bradley White. |
| 13 | * POSIX-style TZ environment variable handling from Guy Harris. |
| 14 | */ |
| 15 | |
| 16 | /* this file needs to build in both frontend and backend contexts */ |
| 17 | #include "c.h" |
| 18 | |
| 19 | #include <fcntl.h> |
| 20 | |
| 21 | #include "datatype/timestamp.h" |
| 22 | #include "pgtz.h" |
| 23 | |
| 24 | #include "private.h" |
| 25 | #include "tzfile.h" |
| 26 | |
| 27 | |
| 28 | #ifndef WILDABBR |
| 29 | /* |
| 30 | * Someone might make incorrect use of a time zone abbreviation: |
| 31 | * 1. They might reference tzname[0] before calling tzset (explicitly |
| 32 | * or implicitly). |
| 33 | * 2. They might reference tzname[1] before calling tzset (explicitly |
| 34 | * or implicitly). |
| 35 | * 3. They might reference tzname[1] after setting to a time zone |
| 36 | * in which Daylight Saving Time is never observed. |
| 37 | * 4. They might reference tzname[0] after setting to a time zone |
| 38 | * in which Standard Time is never observed. |
| 39 | * 5. They might reference tm.TM_ZONE after calling offtime. |
| 40 | * What's best to do in the above cases is open to debate; |
| 41 | * for now, we just set things up so that in any of the five cases |
| 42 | * WILDABBR is used. Another possibility: initialize tzname[0] to the |
| 43 | * string "tzname[0] used before set", and similarly for the other cases. |
| 44 | * And another: initialize tzname[0] to "ERA", with an explanation in the |
| 45 | * manual page of what this "time zone abbreviation" means (doing this so |
| 46 | * that tzname[0] has the "normal" length of three characters). |
| 47 | */ |
| 48 | #define WILDABBR " " |
| 49 | #endif /* !defined WILDABBR */ |
| 50 | |
| 51 | static const char wildabbr[] = WILDABBR; |
| 52 | |
| 53 | static const char gmt[] = "GMT" ; |
| 54 | |
| 55 | /* |
| 56 | * PG: We cache the result of trying to load the TZDEFRULES zone here. |
| 57 | * tzdefrules_loaded is 0 if not tried yet, +1 if good, -1 if failed. |
| 58 | */ |
| 59 | static struct state *tzdefrules_s = NULL; |
| 60 | static int tzdefrules_loaded = 0; |
| 61 | |
| 62 | /* |
| 63 | * The DST rules to use if TZ has no rules and we can't load TZDEFRULES. |
| 64 | * Default to US rules as of 2017-05-07. |
| 65 | * POSIX does not specify the default DST rules; |
| 66 | * for historical reasons, US rules are a common default. |
| 67 | */ |
| 68 | #define TZDEFRULESTRING ",M3.2.0,M11.1.0" |
| 69 | |
| 70 | /* structs ttinfo, lsinfo, state have been moved to pgtz.h */ |
| 71 | |
| 72 | enum r_type |
| 73 | { |
| 74 | JULIAN_DAY, /* Jn = Julian day */ |
| 75 | DAY_OF_YEAR, /* n = day of year */ |
| 76 | MONTH_NTH_DAY_OF_WEEK /* Mm.n.d = month, week, day of week */ |
| 77 | }; |
| 78 | |
| 79 | struct rule |
| 80 | { |
| 81 | enum r_type r_type; /* type of rule */ |
| 82 | int r_day; /* day number of rule */ |
| 83 | int r_week; /* week number of rule */ |
| 84 | int r_mon; /* month number of rule */ |
| 85 | int32 r_time; /* transition time of rule */ |
| 86 | }; |
| 87 | |
| 88 | /* |
| 89 | * Prototypes for static functions. |
| 90 | */ |
| 91 | |
| 92 | static struct pg_tm *gmtsub(pg_time_t const *, int32, struct pg_tm *); |
| 93 | static bool increment_overflow(int *, int); |
| 94 | static bool increment_overflow_time(pg_time_t *, int32); |
| 95 | static struct pg_tm *timesub(pg_time_t const *, int32, struct state const *, |
| 96 | struct pg_tm *); |
| 97 | static bool typesequiv(struct state const *, int, int); |
| 98 | |
| 99 | |
| 100 | /* |
| 101 | * Section 4.12.3 of X3.159-1989 requires that |
| 102 | * Except for the strftime function, these functions [asctime, |
| 103 | * ctime, gmtime, localtime] return values in one of two static |
| 104 | * objects: a broken-down time structure and an array of char. |
| 105 | * Thanks to Paul Eggert for noting this. |
| 106 | */ |
| 107 | |
| 108 | static struct pg_tm tm; |
| 109 | |
| 110 | /* Initialize *S to a value based on UTOFF, ISDST, and DESIGIDX. */ |
| 111 | static void |
| 112 | init_ttinfo(struct ttinfo *s, int32 utoff, bool isdst, int desigidx) |
| 113 | { |
| 114 | s->tt_utoff = utoff; |
| 115 | s->tt_isdst = isdst; |
| 116 | s->tt_desigidx = desigidx; |
| 117 | s->tt_ttisstd = false; |
| 118 | s->tt_ttisut = false; |
| 119 | } |
| 120 | |
| 121 | static int32 |
| 122 | detzcode(const char *const codep) |
| 123 | { |
| 124 | int32 result; |
| 125 | int i; |
| 126 | int32 one = 1; |
| 127 | int32 halfmaxval = one << (32 - 2); |
| 128 | int32 maxval = halfmaxval - 1 + halfmaxval; |
| 129 | int32 minval = -1 - maxval; |
| 130 | |
| 131 | result = codep[0] & 0x7f; |
| 132 | for (i = 1; i < 4; ++i) |
| 133 | result = (result << 8) | (codep[i] & 0xff); |
| 134 | |
| 135 | if (codep[0] & 0x80) |
| 136 | { |
| 137 | /* |
| 138 | * Do two's-complement negation even on non-two's-complement machines. |
| 139 | * If the result would be minval - 1, return minval. |
| 140 | */ |
| 141 | result -= !TWOS_COMPLEMENT(int32) &&result != 0; |
| 142 | result += minval; |
| 143 | } |
| 144 | return result; |
| 145 | } |
| 146 | |
| 147 | static int64 |
| 148 | detzcode64(const char *const codep) |
| 149 | { |
| 150 | uint64 result; |
| 151 | int i; |
| 152 | int64 one = 1; |
| 153 | int64 halfmaxval = one << (64 - 2); |
| 154 | int64 maxval = halfmaxval - 1 + halfmaxval; |
| 155 | int64 minval = -TWOS_COMPLEMENT(int64) -maxval; |
| 156 | |
| 157 | result = codep[0] & 0x7f; |
| 158 | for (i = 1; i < 8; ++i) |
| 159 | result = (result << 8) | (codep[i] & 0xff); |
| 160 | |
| 161 | if (codep[0] & 0x80) |
| 162 | { |
| 163 | /* |
| 164 | * Do two's-complement negation even on non-two's-complement machines. |
| 165 | * If the result would be minval - 1, return minval. |
| 166 | */ |
| 167 | result -= !TWOS_COMPLEMENT(int64) &&result != 0; |
| 168 | result += minval; |
| 169 | } |
| 170 | return result; |
| 171 | } |
| 172 | |
| 173 | static bool |
| 174 | differ_by_repeat(const pg_time_t t1, const pg_time_t t0) |
| 175 | { |
| 176 | if (TYPE_BIT(pg_time_t) -TYPE_SIGNED(pg_time_t) <SECSPERREPEAT_BITS) |
| 177 | return 0; |
| 178 | return t1 - t0 == SECSPERREPEAT; |
| 179 | } |
| 180 | |
| 181 | /* Input buffer for data read from a compiled tz file. */ |
| 182 | union input_buffer |
| 183 | { |
| 184 | /* The first part of the buffer, interpreted as a header. */ |
| 185 | struct tzhead tzhead; |
| 186 | |
| 187 | /* The entire buffer. */ |
| 188 | char buf[2 * sizeof(struct tzhead) + 2 * sizeof(struct state) |
| 189 | + 4 * TZ_MAX_TIMES]; |
| 190 | }; |
| 191 | |
| 192 | /* Local storage needed for 'tzloadbody'. */ |
| 193 | union local_storage |
| 194 | { |
| 195 | /* The results of analyzing the file's contents after it is opened. */ |
| 196 | struct file_analysis |
| 197 | { |
| 198 | /* The input buffer. */ |
| 199 | union input_buffer u; |
| 200 | |
| 201 | /* A temporary state used for parsing a TZ string in the file. */ |
| 202 | struct state st; |
| 203 | } u; |
| 204 | |
| 205 | /* We don't need the "fullname" member */ |
| 206 | }; |
| 207 | |
| 208 | /* Load tz data from the file named NAME into *SP. Read extended |
| 209 | * format if DOEXTEND. Use *LSP for temporary storage. Return 0 on |
| 210 | * success, an errno value on failure. |
| 211 | * PG: If "canonname" is not NULL, then on success the canonical spelling of |
| 212 | * given name is stored there (the buffer must be > TZ_STRLEN_MAX bytes!). |
| 213 | */ |
| 214 | static int |
| 215 | tzloadbody(char const *name, char *canonname, struct state *sp, bool doextend, |
| 216 | union local_storage *lsp) |
| 217 | { |
| 218 | int i; |
| 219 | int fid; |
| 220 | int stored; |
| 221 | ssize_t nread; |
| 222 | union input_buffer *up = &lsp->u.u; |
| 223 | int tzheadsize = sizeof(struct tzhead); |
| 224 | |
| 225 | sp->goback = sp->goahead = false; |
| 226 | |
| 227 | if (!name) |
| 228 | { |
| 229 | name = TZDEFAULT; |
| 230 | if (!name) |
| 231 | return EINVAL; |
| 232 | } |
| 233 | |
| 234 | if (name[0] == ':') |
| 235 | ++name; |
| 236 | |
| 237 | fid = pg_open_tzfile(name, canonname); |
| 238 | if (fid < 0) |
| 239 | return ENOENT; /* pg_open_tzfile may not set errno */ |
| 240 | |
| 241 | nread = read(fid, up->buf, sizeof up->buf); |
| 242 | if (nread < tzheadsize) |
| 243 | { |
| 244 | int err = nread < 0 ? errno : EINVAL; |
| 245 | |
| 246 | close(fid); |
| 247 | return err; |
| 248 | } |
| 249 | if (close(fid) < 0) |
| 250 | return errno; |
| 251 | for (stored = 4; stored <= 8; stored *= 2) |
| 252 | { |
| 253 | int32 ttisstdcnt = detzcode(up->tzhead.tzh_ttisstdcnt); |
| 254 | int32 ttisutcnt = detzcode(up->tzhead.tzh_ttisutcnt); |
| 255 | int64 prevtr = 0; |
| 256 | int32 prevcorr = 0; |
| 257 | int32 leapcnt = detzcode(up->tzhead.tzh_leapcnt); |
| 258 | int32 timecnt = detzcode(up->tzhead.tzh_timecnt); |
| 259 | int32 typecnt = detzcode(up->tzhead.tzh_typecnt); |
| 260 | int32 charcnt = detzcode(up->tzhead.tzh_charcnt); |
| 261 | char const *p = up->buf + tzheadsize; |
| 262 | |
| 263 | /* |
| 264 | * Although tzfile(5) currently requires typecnt to be nonzero, |
| 265 | * support future formats that may allow zero typecnt in files that |
| 266 | * have a TZ string and no transitions. |
| 267 | */ |
| 268 | if (!(0 <= leapcnt && leapcnt < TZ_MAX_LEAPS |
| 269 | && 0 <= typecnt && typecnt < TZ_MAX_TYPES |
| 270 | && 0 <= timecnt && timecnt < TZ_MAX_TIMES |
| 271 | && 0 <= charcnt && charcnt < TZ_MAX_CHARS |
| 272 | && (ttisstdcnt == typecnt || ttisstdcnt == 0) |
| 273 | && (ttisutcnt == typecnt || ttisutcnt == 0))) |
| 274 | return EINVAL; |
| 275 | if (nread |
| 276 | < (tzheadsize /* struct tzhead */ |
| 277 | + timecnt * stored /* ats */ |
| 278 | + timecnt /* types */ |
| 279 | + typecnt * 6 /* ttinfos */ |
| 280 | + charcnt /* chars */ |
| 281 | + leapcnt * (stored + 4) /* lsinfos */ |
| 282 | + ttisstdcnt /* ttisstds */ |
| 283 | + ttisutcnt)) /* ttisuts */ |
| 284 | return EINVAL; |
| 285 | sp->leapcnt = leapcnt; |
| 286 | sp->timecnt = timecnt; |
| 287 | sp->typecnt = typecnt; |
| 288 | sp->charcnt = charcnt; |
| 289 | |
| 290 | /* |
| 291 | * Read transitions, discarding those out of pg_time_t range. But |
| 292 | * pretend the last transition before TIME_T_MIN occurred at |
| 293 | * TIME_T_MIN. |
| 294 | */ |
| 295 | timecnt = 0; |
| 296 | for (i = 0; i < sp->timecnt; ++i) |
| 297 | { |
| 298 | int64 at |
| 299 | = stored == 4 ? detzcode(p) : detzcode64(p); |
| 300 | |
| 301 | sp->types[i] = at <= TIME_T_MAX; |
| 302 | if (sp->types[i]) |
| 303 | { |
| 304 | pg_time_t attime |
| 305 | = ((TYPE_SIGNED(pg_time_t) ? at < TIME_T_MIN : at < 0) |
| 306 | ? TIME_T_MIN : at); |
| 307 | |
| 308 | if (timecnt && attime <= sp->ats[timecnt - 1]) |
| 309 | { |
| 310 | if (attime < sp->ats[timecnt - 1]) |
| 311 | return EINVAL; |
| 312 | sp->types[i - 1] = 0; |
| 313 | timecnt--; |
| 314 | } |
| 315 | sp->ats[timecnt++] = attime; |
| 316 | } |
| 317 | p += stored; |
| 318 | } |
| 319 | |
| 320 | timecnt = 0; |
| 321 | for (i = 0; i < sp->timecnt; ++i) |
| 322 | { |
| 323 | unsigned char typ = *p++; |
| 324 | |
| 325 | if (sp->typecnt <= typ) |
| 326 | return EINVAL; |
| 327 | if (sp->types[i]) |
| 328 | sp->types[timecnt++] = typ; |
| 329 | } |
| 330 | sp->timecnt = timecnt; |
| 331 | for (i = 0; i < sp->typecnt; ++i) |
| 332 | { |
| 333 | struct ttinfo *ttisp; |
| 334 | unsigned char isdst, |
| 335 | desigidx; |
| 336 | |
| 337 | ttisp = &sp->ttis[i]; |
| 338 | ttisp->tt_utoff = detzcode(p); |
| 339 | p += 4; |
| 340 | isdst = *p++; |
| 341 | if (!(isdst < 2)) |
| 342 | return EINVAL; |
| 343 | ttisp->tt_isdst = isdst; |
| 344 | desigidx = *p++; |
| 345 | if (!(desigidx < sp->charcnt)) |
| 346 | return EINVAL; |
| 347 | ttisp->tt_desigidx = desigidx; |
| 348 | } |
| 349 | for (i = 0; i < sp->charcnt; ++i) |
| 350 | sp->chars[i] = *p++; |
| 351 | sp->chars[i] = '\0'; /* ensure '\0' at end */ |
| 352 | |
| 353 | /* Read leap seconds, discarding those out of pg_time_t range. */ |
| 354 | leapcnt = 0; |
| 355 | for (i = 0; i < sp->leapcnt; ++i) |
| 356 | { |
| 357 | int64 tr = stored == 4 ? detzcode(p) : detzcode64(p); |
| 358 | int32 corr = detzcode(p + stored); |
| 359 | |
| 360 | p += stored + 4; |
| 361 | /* Leap seconds cannot occur before the Epoch. */ |
| 362 | if (tr < 0) |
| 363 | return EINVAL; |
| 364 | if (tr <= TIME_T_MAX) |
| 365 | { |
| 366 | /* |
| 367 | * Leap seconds cannot occur more than once per UTC month, and |
| 368 | * UTC months are at least 28 days long (minus 1 second for a |
| 369 | * negative leap second). Each leap second's correction must |
| 370 | * differ from the previous one's by 1 second. |
| 371 | */ |
| 372 | if (tr - prevtr < 28 * SECSPERDAY - 1 |
| 373 | || (corr != prevcorr - 1 && corr != prevcorr + 1)) |
| 374 | return EINVAL; |
| 375 | sp->lsis[leapcnt].ls_trans = prevtr = tr; |
| 376 | sp->lsis[leapcnt].ls_corr = prevcorr = corr; |
| 377 | leapcnt++; |
| 378 | } |
| 379 | } |
| 380 | sp->leapcnt = leapcnt; |
| 381 | |
| 382 | for (i = 0; i < sp->typecnt; ++i) |
| 383 | { |
| 384 | struct ttinfo *ttisp; |
| 385 | |
| 386 | ttisp = &sp->ttis[i]; |
| 387 | if (ttisstdcnt == 0) |
| 388 | ttisp->tt_ttisstd = false; |
| 389 | else |
| 390 | { |
| 391 | if (*p != true && *p != false) |
| 392 | return EINVAL; |
| 393 | ttisp->tt_ttisstd = *p++; |
| 394 | } |
| 395 | } |
| 396 | for (i = 0; i < sp->typecnt; ++i) |
| 397 | { |
| 398 | struct ttinfo *ttisp; |
| 399 | |
| 400 | ttisp = &sp->ttis[i]; |
| 401 | if (ttisutcnt == 0) |
| 402 | ttisp->tt_ttisut = false; |
| 403 | else |
| 404 | { |
| 405 | if (*p != true && *p != false) |
| 406 | return EINVAL; |
| 407 | ttisp->tt_ttisut = *p++; |
| 408 | } |
| 409 | } |
| 410 | |
| 411 | /* |
| 412 | * If this is an old file, we're done. |
| 413 | */ |
| 414 | if (up->tzhead.tzh_version[0] == '\0') |
| 415 | break; |
| 416 | nread -= p - up->buf; |
| 417 | memmove(up->buf, p, nread); |
| 418 | } |
| 419 | if (doextend && nread > 2 && |
| 420 | up->buf[0] == '\n' && up->buf[nread - 1] == '\n' && |
| 421 | sp->typecnt + 2 <= TZ_MAX_TYPES) |
| 422 | { |
| 423 | struct state *ts = &lsp->u.st; |
| 424 | |
| 425 | up->buf[nread - 1] = '\0'; |
| 426 | if (tzparse(&up->buf[1], ts, false)) |
| 427 | { |
| 428 | /* |
| 429 | * Attempt to reuse existing abbreviations. Without this, |
| 430 | * America/Anchorage would be right on the edge after 2037 when |
| 431 | * TZ_MAX_CHARS is 50, as sp->charcnt equals 40 (for LMT AST AWT |
| 432 | * APT AHST AHDT YST AKDT AKST) and ts->charcnt equals 10 (for |
| 433 | * AKST AKDT). Reusing means sp->charcnt can stay 40 in this |
| 434 | * example. |
| 435 | */ |
| 436 | int gotabbr = 0; |
| 437 | int charcnt = sp->charcnt; |
| 438 | |
| 439 | for (i = 0; i < ts->typecnt; i++) |
| 440 | { |
| 441 | char *tsabbr = ts->chars + ts->ttis[i].tt_desigidx; |
| 442 | int j; |
| 443 | |
| 444 | for (j = 0; j < charcnt; j++) |
| 445 | if (strcmp(sp->chars + j, tsabbr) == 0) |
| 446 | { |
| 447 | ts->ttis[i].tt_desigidx = j; |
| 448 | gotabbr++; |
| 449 | break; |
| 450 | } |
| 451 | if (!(j < charcnt)) |
| 452 | { |
| 453 | int tsabbrlen = strlen(tsabbr); |
| 454 | |
| 455 | if (j + tsabbrlen < TZ_MAX_CHARS) |
| 456 | { |
| 457 | strcpy(sp->chars + j, tsabbr); |
| 458 | charcnt = j + tsabbrlen + 1; |
| 459 | ts->ttis[i].tt_desigidx = j; |
| 460 | gotabbr++; |
| 461 | } |
| 462 | } |
| 463 | } |
| 464 | if (gotabbr == ts->typecnt) |
| 465 | { |
| 466 | sp->charcnt = charcnt; |
| 467 | |
| 468 | /* |
| 469 | * Ignore any trailing, no-op transitions generated by zic as |
| 470 | * they don't help here and can run afoul of bugs in zic 2016j |
| 471 | * or earlier. |
| 472 | */ |
| 473 | while (1 < sp->timecnt |
| 474 | && (sp->types[sp->timecnt - 1] |
| 475 | == sp->types[sp->timecnt - 2])) |
| 476 | sp->timecnt--; |
| 477 | |
| 478 | for (i = 0; i < ts->timecnt; i++) |
| 479 | if (sp->timecnt == 0 |
| 480 | || sp->ats[sp->timecnt - 1] < ts->ats[i]) |
| 481 | break; |
| 482 | while (i < ts->timecnt |
| 483 | && sp->timecnt < TZ_MAX_TIMES) |
| 484 | { |
| 485 | sp->ats[sp->timecnt] = ts->ats[i]; |
| 486 | sp->types[sp->timecnt] = (sp->typecnt |
| 487 | + ts->types[i]); |
| 488 | sp->timecnt++; |
| 489 | i++; |
| 490 | } |
| 491 | for (i = 0; i < ts->typecnt; i++) |
| 492 | sp->ttis[sp->typecnt++] = ts->ttis[i]; |
| 493 | } |
| 494 | } |
| 495 | } |
| 496 | if (sp->typecnt == 0) |
| 497 | return EINVAL; |
| 498 | if (sp->timecnt > 1) |
| 499 | { |
| 500 | for (i = 1; i < sp->timecnt; ++i) |
| 501 | if (typesequiv(sp, sp->types[i], sp->types[0]) && |
| 502 | differ_by_repeat(sp->ats[i], sp->ats[0])) |
| 503 | { |
| 504 | sp->goback = true; |
| 505 | break; |
| 506 | } |
| 507 | for (i = sp->timecnt - 2; i >= 0; --i) |
| 508 | if (typesequiv(sp, sp->types[sp->timecnt - 1], |
| 509 | sp->types[i]) && |
| 510 | differ_by_repeat(sp->ats[sp->timecnt - 1], |
| 511 | sp->ats[i])) |
| 512 | { |
| 513 | sp->goahead = true; |
| 514 | break; |
| 515 | } |
| 516 | } |
| 517 | |
| 518 | /* |
| 519 | * Infer sp->defaulttype from the data. Although this default type is |
| 520 | * always zero for data from recent tzdb releases, things are trickier for |
| 521 | * data from tzdb 2018e or earlier. |
| 522 | * |
| 523 | * The first set of heuristics work around bugs in 32-bit data generated |
| 524 | * by tzdb 2013c or earlier. The workaround is for zones like |
| 525 | * Australia/Macquarie where timestamps before the first transition have a |
| 526 | * time type that is not the earliest standard-time type. See: |
| 527 | * https://mm.icann.org/pipermail/tz/2013-May/019368.html |
| 528 | */ |
| 529 | |
| 530 | /* |
| 531 | * If type 0 is unused in transitions, it's the type to use for early |
| 532 | * times. |
| 533 | */ |
| 534 | for (i = 0; i < sp->timecnt; ++i) |
| 535 | if (sp->types[i] == 0) |
| 536 | break; |
| 537 | i = i < sp->timecnt ? -1 : 0; |
| 538 | |
| 539 | /* |
| 540 | * Absent the above, if there are transition times and the first |
| 541 | * transition is to a daylight time find the standard type less than and |
| 542 | * closest to the type of the first transition. |
| 543 | */ |
| 544 | if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) |
| 545 | { |
| 546 | i = sp->types[0]; |
| 547 | while (--i >= 0) |
| 548 | if (!sp->ttis[i].tt_isdst) |
| 549 | break; |
| 550 | } |
| 551 | |
| 552 | /* |
| 553 | * The next heuristics are for data generated by tzdb 2018e or earlier, |
| 554 | * for zones like EST5EDT where the first transition is to DST. |
| 555 | */ |
| 556 | |
| 557 | /* |
| 558 | * If no result yet, find the first standard type. If there is none, punt |
| 559 | * to type zero. |
| 560 | */ |
| 561 | if (i < 0) |
| 562 | { |
| 563 | i = 0; |
| 564 | while (sp->ttis[i].tt_isdst) |
| 565 | if (++i >= sp->typecnt) |
| 566 | { |
| 567 | i = 0; |
| 568 | break; |
| 569 | } |
| 570 | } |
| 571 | |
| 572 | /* |
| 573 | * A simple 'sp->defaulttype = 0;' would suffice here if we didn't have to |
| 574 | * worry about 2018e-or-earlier data. Even simpler would be to remove the |
| 575 | * defaulttype member and just use 0 in its place. |
| 576 | */ |
| 577 | sp->defaulttype = i; |
| 578 | |
| 579 | return 0; |
| 580 | } |
| 581 | |
| 582 | /* Load tz data from the file named NAME into *SP. Read extended |
| 583 | * format if DOEXTEND. Return 0 on success, an errno value on failure. |
| 584 | * PG: If "canonname" is not NULL, then on success the canonical spelling of |
| 585 | * given name is stored there (the buffer must be > TZ_STRLEN_MAX bytes!). |
| 586 | */ |
| 587 | int |
| 588 | tzload(const char *name, char *canonname, struct state *sp, bool doextend) |
| 589 | { |
| 590 | union local_storage *lsp = malloc(sizeof *lsp); |
| 591 | |
| 592 | if (!lsp) |
| 593 | return errno; |
| 594 | else |
| 595 | { |
| 596 | int err = tzloadbody(name, canonname, sp, doextend, lsp); |
| 597 | |
| 598 | free(lsp); |
| 599 | return err; |
| 600 | } |
| 601 | } |
| 602 | |
| 603 | static bool |
| 604 | typesequiv(const struct state *sp, int a, int b) |
| 605 | { |
| 606 | bool result; |
| 607 | |
| 608 | if (sp == NULL || |
| 609 | a < 0 || a >= sp->typecnt || |
| 610 | b < 0 || b >= sp->typecnt) |
| 611 | result = false; |
| 612 | else |
| 613 | { |
| 614 | const struct ttinfo *ap = &sp->ttis[a]; |
| 615 | const struct ttinfo *bp = &sp->ttis[b]; |
| 616 | |
| 617 | result = (ap->tt_utoff == bp->tt_utoff |
| 618 | && ap->tt_isdst == bp->tt_isdst |
| 619 | && ap->tt_ttisstd == bp->tt_ttisstd |
| 620 | && ap->tt_ttisut == bp->tt_ttisut |
| 621 | && (strcmp(&sp->chars[ap->tt_desigidx], |
| 622 | &sp->chars[bp->tt_desigidx]) |
| 623 | == 0)); |
| 624 | } |
| 625 | return result; |
| 626 | } |
| 627 | |
| 628 | static const int mon_lengths[2][MONSPERYEAR] = { |
| 629 | {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, |
| 630 | {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31} |
| 631 | }; |
| 632 | |
| 633 | static const int year_lengths[2] = { |
| 634 | DAYSPERNYEAR, DAYSPERLYEAR |
| 635 | }; |
| 636 | |
| 637 | /* |
| 638 | * Given a pointer into a timezone string, scan until a character that is not |
| 639 | * a valid character in a time zone abbreviation is found. |
| 640 | * Return a pointer to that character. |
| 641 | */ |
| 642 | |
| 643 | static const char * |
| 644 | getzname(const char *strp) |
| 645 | { |
| 646 | char c; |
| 647 | |
| 648 | while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' && |
| 649 | c != '+') |
| 650 | ++strp; |
| 651 | return strp; |
| 652 | } |
| 653 | |
| 654 | /* |
| 655 | * Given a pointer into an extended timezone string, scan until the ending |
| 656 | * delimiter of the time zone abbreviation is located. |
| 657 | * Return a pointer to the delimiter. |
| 658 | * |
| 659 | * As with getzname above, the legal character set is actually quite |
| 660 | * restricted, with other characters producing undefined results. |
| 661 | * We don't do any checking here; checking is done later in common-case code. |
| 662 | */ |
| 663 | |
| 664 | static const char * |
| 665 | getqzname(const char *strp, const int delim) |
| 666 | { |
| 667 | int c; |
| 668 | |
| 669 | while ((c = *strp) != '\0' && c != delim) |
| 670 | ++strp; |
| 671 | return strp; |
| 672 | } |
| 673 | |
| 674 | /* |
| 675 | * Given a pointer into a timezone string, extract a number from that string. |
| 676 | * Check that the number is within a specified range; if it is not, return |
| 677 | * NULL. |
| 678 | * Otherwise, return a pointer to the first character not part of the number. |
| 679 | */ |
| 680 | |
| 681 | static const char * |
| 682 | getnum(const char *strp, int *const nump, const int min, const int max) |
| 683 | { |
| 684 | char c; |
| 685 | int num; |
| 686 | |
| 687 | if (strp == NULL || !is_digit(c = *strp)) |
| 688 | return NULL; |
| 689 | num = 0; |
| 690 | do |
| 691 | { |
| 692 | num = num * 10 + (c - '0'); |
| 693 | if (num > max) |
| 694 | return NULL; /* illegal value */ |
| 695 | c = *++strp; |
| 696 | } while (is_digit(c)); |
| 697 | if (num < min) |
| 698 | return NULL; /* illegal value */ |
| 699 | *nump = num; |
| 700 | return strp; |
| 701 | } |
| 702 | |
| 703 | /* |
| 704 | * Given a pointer into a timezone string, extract a number of seconds, |
| 705 | * in hh[:mm[:ss]] form, from the string. |
| 706 | * If any error occurs, return NULL. |
| 707 | * Otherwise, return a pointer to the first character not part of the number |
| 708 | * of seconds. |
| 709 | */ |
| 710 | |
| 711 | static const char * |
| 712 | getsecs(const char *strp, int32 *const secsp) |
| 713 | { |
| 714 | int num; |
| 715 | |
| 716 | /* |
| 717 | * 'HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like |
| 718 | * "M10.4.6/26", which does not conform to Posix, but which specifies the |
| 719 | * equivalent of "02:00 on the first Sunday on or after 23 Oct". |
| 720 | */ |
| 721 | strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1); |
| 722 | if (strp == NULL) |
| 723 | return NULL; |
| 724 | *secsp = num * (int32) SECSPERHOUR; |
| 725 | if (*strp == ':') |
| 726 | { |
| 727 | ++strp; |
| 728 | strp = getnum(strp, &num, 0, MINSPERHOUR - 1); |
| 729 | if (strp == NULL) |
| 730 | return NULL; |
| 731 | *secsp += num * SECSPERMIN; |
| 732 | if (*strp == ':') |
| 733 | { |
| 734 | ++strp; |
| 735 | /* 'SECSPERMIN' allows for leap seconds. */ |
| 736 | strp = getnum(strp, &num, 0, SECSPERMIN); |
| 737 | if (strp == NULL) |
| 738 | return NULL; |
| 739 | *secsp += num; |
| 740 | } |
| 741 | } |
| 742 | return strp; |
| 743 | } |
| 744 | |
| 745 | /* |
| 746 | * Given a pointer into a timezone string, extract an offset, in |
| 747 | * [+-]hh[:mm[:ss]] form, from the string. |
| 748 | * If any error occurs, return NULL. |
| 749 | * Otherwise, return a pointer to the first character not part of the time. |
| 750 | */ |
| 751 | |
| 752 | static const char * |
| 753 | getoffset(const char *strp, int32 *const offsetp) |
| 754 | { |
| 755 | bool neg = false; |
| 756 | |
| 757 | if (*strp == '-') |
| 758 | { |
| 759 | neg = true; |
| 760 | ++strp; |
| 761 | } |
| 762 | else if (*strp == '+') |
| 763 | ++strp; |
| 764 | strp = getsecs(strp, offsetp); |
| 765 | if (strp == NULL) |
| 766 | return NULL; /* illegal time */ |
| 767 | if (neg) |
| 768 | *offsetp = -*offsetp; |
| 769 | return strp; |
| 770 | } |
| 771 | |
| 772 | /* |
| 773 | * Given a pointer into a timezone string, extract a rule in the form |
| 774 | * date[/time]. See POSIX section 8 for the format of "date" and "time". |
| 775 | * If a valid rule is not found, return NULL. |
| 776 | * Otherwise, return a pointer to the first character not part of the rule. |
| 777 | */ |
| 778 | |
| 779 | static const char * |
| 780 | getrule(const char *strp, struct rule *const rulep) |
| 781 | { |
| 782 | if (*strp == 'J') |
| 783 | { |
| 784 | /* |
| 785 | * Julian day. |
| 786 | */ |
| 787 | rulep->r_type = JULIAN_DAY; |
| 788 | ++strp; |
| 789 | strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR); |
| 790 | } |
| 791 | else if (*strp == 'M') |
| 792 | { |
| 793 | /* |
| 794 | * Month, week, day. |
| 795 | */ |
| 796 | rulep->r_type = MONTH_NTH_DAY_OF_WEEK; |
| 797 | ++strp; |
| 798 | strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR); |
| 799 | if (strp == NULL) |
| 800 | return NULL; |
| 801 | if (*strp++ != '.') |
| 802 | return NULL; |
| 803 | strp = getnum(strp, &rulep->r_week, 1, 5); |
| 804 | if (strp == NULL) |
| 805 | return NULL; |
| 806 | if (*strp++ != '.') |
| 807 | return NULL; |
| 808 | strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1); |
| 809 | } |
| 810 | else if (is_digit(*strp)) |
| 811 | { |
| 812 | /* |
| 813 | * Day of year. |
| 814 | */ |
| 815 | rulep->r_type = DAY_OF_YEAR; |
| 816 | strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1); |
| 817 | } |
| 818 | else |
| 819 | return NULL; /* invalid format */ |
| 820 | if (strp == NULL) |
| 821 | return NULL; |
| 822 | if (*strp == '/') |
| 823 | { |
| 824 | /* |
| 825 | * Time specified. |
| 826 | */ |
| 827 | ++strp; |
| 828 | strp = getoffset(strp, &rulep->r_time); |
| 829 | } |
| 830 | else |
| 831 | rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */ |
| 832 | return strp; |
| 833 | } |
| 834 | |
| 835 | /* |
| 836 | * Given a year, a rule, and the offset from UT at the time that rule takes |
| 837 | * effect, calculate the year-relative time that rule takes effect. |
| 838 | */ |
| 839 | |
| 840 | static int32 |
| 841 | transtime(const int year, const struct rule *const rulep, |
| 842 | const int32 offset) |
| 843 | { |
| 844 | bool leapyear; |
| 845 | int32 value; |
| 846 | int i; |
| 847 | int d, |
| 848 | m1, |
| 849 | yy0, |
| 850 | yy1, |
| 851 | yy2, |
| 852 | dow; |
| 853 | |
| 854 | INITIALIZE(value); |
| 855 | leapyear = isleap(year); |
| 856 | switch (rulep->r_type) |
| 857 | { |
| 858 | |
| 859 | case JULIAN_DAY: |
| 860 | |
| 861 | /* |
| 862 | * Jn - Julian day, 1 == January 1, 60 == March 1 even in leap |
| 863 | * years. In non-leap years, or if the day number is 59 or less, |
| 864 | * just add SECSPERDAY times the day number-1 to the time of |
| 865 | * January 1, midnight, to get the day. |
| 866 | */ |
| 867 | value = (rulep->r_day - 1) * SECSPERDAY; |
| 868 | if (leapyear && rulep->r_day >= 60) |
| 869 | value += SECSPERDAY; |
| 870 | break; |
| 871 | |
| 872 | case DAY_OF_YEAR: |
| 873 | |
| 874 | /* |
| 875 | * n - day of year. Just add SECSPERDAY times the day number to |
| 876 | * the time of January 1, midnight, to get the day. |
| 877 | */ |
| 878 | value = rulep->r_day * SECSPERDAY; |
| 879 | break; |
| 880 | |
| 881 | case MONTH_NTH_DAY_OF_WEEK: |
| 882 | |
| 883 | /* |
| 884 | * Mm.n.d - nth "dth day" of month m. |
| 885 | */ |
| 886 | |
| 887 | /* |
| 888 | * Use Zeller's Congruence to get day-of-week of first day of |
| 889 | * month. |
| 890 | */ |
| 891 | m1 = (rulep->r_mon + 9) % 12 + 1; |
| 892 | yy0 = (rulep->r_mon <= 2) ? (year - 1) : year; |
| 893 | yy1 = yy0 / 100; |
| 894 | yy2 = yy0 % 100; |
| 895 | dow = ((26 * m1 - 2) / 10 + |
| 896 | 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7; |
| 897 | if (dow < 0) |
| 898 | dow += DAYSPERWEEK; |
| 899 | |
| 900 | /* |
| 901 | * "dow" is the day-of-week of the first day of the month. Get the |
| 902 | * day-of-month (zero-origin) of the first "dow" day of the month. |
| 903 | */ |
| 904 | d = rulep->r_day - dow; |
| 905 | if (d < 0) |
| 906 | d += DAYSPERWEEK; |
| 907 | for (i = 1; i < rulep->r_week; ++i) |
| 908 | { |
| 909 | if (d + DAYSPERWEEK >= |
| 910 | mon_lengths[(int) leapyear][rulep->r_mon - 1]) |
| 911 | break; |
| 912 | d += DAYSPERWEEK; |
| 913 | } |
| 914 | |
| 915 | /* |
| 916 | * "d" is the day-of-month (zero-origin) of the day we want. |
| 917 | */ |
| 918 | value = d * SECSPERDAY; |
| 919 | for (i = 0; i < rulep->r_mon - 1; ++i) |
| 920 | value += mon_lengths[(int) leapyear][i] * SECSPERDAY; |
| 921 | break; |
| 922 | } |
| 923 | |
| 924 | /* |
| 925 | * "value" is the year-relative time of 00:00:00 UT on the day in |
| 926 | * question. To get the year-relative time of the specified local time on |
| 927 | * that day, add the transition time and the current offset from UT. |
| 928 | */ |
| 929 | return value + rulep->r_time + offset; |
| 930 | } |
| 931 | |
| 932 | /* |
| 933 | * Given a POSIX section 8-style TZ string, fill in the rule tables as |
| 934 | * appropriate. |
| 935 | * Returns true on success, false on failure. |
| 936 | */ |
| 937 | bool |
| 938 | tzparse(const char *name, struct state *sp, bool lastditch) |
| 939 | { |
| 940 | const char *stdname; |
| 941 | const char *dstname = NULL; |
| 942 | size_t stdlen; |
| 943 | size_t dstlen; |
| 944 | size_t charcnt; |
| 945 | int32 stdoffset; |
| 946 | int32 dstoffset; |
| 947 | char *cp; |
| 948 | bool load_ok; |
| 949 | |
| 950 | stdname = name; |
| 951 | if (lastditch) |
| 952 | { |
| 953 | /* Unlike IANA, don't assume name is exactly "GMT" */ |
| 954 | stdlen = strlen(name); /* length of standard zone name */ |
| 955 | name += stdlen; |
| 956 | stdoffset = 0; |
| 957 | } |
| 958 | else |
| 959 | { |
| 960 | if (*name == '<') |
| 961 | { |
| 962 | name++; |
| 963 | stdname = name; |
| 964 | name = getqzname(name, '>'); |
| 965 | if (*name != '>') |
| 966 | return false; |
| 967 | stdlen = name - stdname; |
| 968 | name++; |
| 969 | } |
| 970 | else |
| 971 | { |
| 972 | name = getzname(name); |
| 973 | stdlen = name - stdname; |
| 974 | } |
| 975 | if (*name == '\0') /* we allow empty STD abbrev, unlike IANA */ |
| 976 | return false; |
| 977 | name = getoffset(name, &stdoffset); |
| 978 | if (name == NULL) |
| 979 | return false; |
| 980 | } |
| 981 | charcnt = stdlen + 1; |
| 982 | if (sizeof sp->chars < charcnt) |
| 983 | return false; |
| 984 | |
| 985 | /* |
| 986 | * The IANA code always tries tzload(TZDEFRULES) here. We do not want to |
| 987 | * do that; it would be bad news in the lastditch case, where we can't |
| 988 | * assume pg_open_tzfile() is sane yet. Moreover, the only reason to do |
| 989 | * it unconditionally is to absorb the TZDEFRULES zone's leap second info, |
| 990 | * which we don't want to do anyway. Without that, we only need to load |
| 991 | * TZDEFRULES if the zone name specifies DST but doesn't incorporate a |
| 992 | * POSIX-style transition date rule, which is not a common case. |
| 993 | */ |
| 994 | sp->goback = sp->goahead = false; /* simulate failed tzload() */ |
| 995 | sp->leapcnt = 0; /* intentionally assume no leap seconds */ |
| 996 | |
| 997 | if (*name != '\0') |
| 998 | { |
| 999 | if (*name == '<') |
| 1000 | { |
| 1001 | dstname = ++name; |
| 1002 | name = getqzname(name, '>'); |
| 1003 | if (*name != '>') |
| 1004 | return false; |
| 1005 | dstlen = name - dstname; |
| 1006 | name++; |
| 1007 | } |
| 1008 | else |
| 1009 | { |
| 1010 | dstname = name; |
| 1011 | name = getzname(name); |
| 1012 | dstlen = name - dstname; /* length of DST abbr. */ |
| 1013 | } |
| 1014 | if (!dstlen) |
| 1015 | return false; |
| 1016 | charcnt += dstlen + 1; |
| 1017 | if (sizeof sp->chars < charcnt) |
| 1018 | return false; |
| 1019 | if (*name != '\0' && *name != ',' && *name != ';') |
| 1020 | { |
| 1021 | name = getoffset(name, &dstoffset); |
| 1022 | if (name == NULL) |
| 1023 | return false; |
| 1024 | } |
| 1025 | else |
| 1026 | dstoffset = stdoffset - SECSPERHOUR; |
| 1027 | if (*name == '\0') |
| 1028 | { |
| 1029 | /* |
| 1030 | * The POSIX zone name does not provide a transition-date rule. |
| 1031 | * Here we must load the TZDEFRULES zone, if possible, to serve as |
| 1032 | * source data for the transition dates. Unlike the IANA code, we |
| 1033 | * try to cache the data so it's only loaded once. |
| 1034 | */ |
| 1035 | if (tzdefrules_loaded == 0) |
| 1036 | { |
| 1037 | /* Allocate on first use */ |
| 1038 | if (tzdefrules_s == NULL) |
| 1039 | tzdefrules_s = (struct state *) malloc(sizeof(struct state)); |
| 1040 | if (tzdefrules_s != NULL) |
| 1041 | { |
| 1042 | if (tzload(TZDEFRULES, NULL, tzdefrules_s, false) == 0) |
| 1043 | tzdefrules_loaded = 1; |
| 1044 | else |
| 1045 | tzdefrules_loaded = -1; |
| 1046 | /* In any case, we ignore leap-second data from the file */ |
| 1047 | tzdefrules_s->leapcnt = 0; |
| 1048 | } |
| 1049 | } |
| 1050 | load_ok = (tzdefrules_loaded > 0); |
| 1051 | if (load_ok) |
| 1052 | memcpy(sp, tzdefrules_s, sizeof(struct state)); |
| 1053 | else |
| 1054 | { |
| 1055 | /* If we can't load TZDEFRULES, fall back to hard-wired rule */ |
| 1056 | name = TZDEFRULESTRING; |
| 1057 | } |
| 1058 | } |
| 1059 | if (*name == ',' || *name == ';') |
| 1060 | { |
| 1061 | struct rule start; |
| 1062 | struct rule end; |
| 1063 | int year; |
| 1064 | int yearlim; |
| 1065 | int timecnt; |
| 1066 | pg_time_t janfirst; |
| 1067 | int32 janoffset = 0; |
| 1068 | int yearbeg; |
| 1069 | |
| 1070 | ++name; |
| 1071 | if ((name = getrule(name, &start)) == NULL) |
| 1072 | return false; |
| 1073 | if (*name++ != ',') |
| 1074 | return false; |
| 1075 | if ((name = getrule(name, &end)) == NULL) |
| 1076 | return false; |
| 1077 | if (*name != '\0') |
| 1078 | return false; |
| 1079 | sp->typecnt = 2; /* standard time and DST */ |
| 1080 | |
| 1081 | /* |
| 1082 | * Two transitions per year, from EPOCH_YEAR forward. |
| 1083 | */ |
| 1084 | init_ttinfo(&sp->ttis[0], -stdoffset, false, 0); |
| 1085 | init_ttinfo(&sp->ttis[1], -dstoffset, true, stdlen + 1); |
| 1086 | sp->defaulttype = 0; |
| 1087 | timecnt = 0; |
| 1088 | janfirst = 0; |
| 1089 | yearbeg = EPOCH_YEAR; |
| 1090 | |
| 1091 | do |
| 1092 | { |
| 1093 | int32 yearsecs |
| 1094 | = year_lengths[isleap(yearbeg - 1)] * SECSPERDAY; |
| 1095 | |
| 1096 | yearbeg--; |
| 1097 | if (increment_overflow_time(&janfirst, -yearsecs)) |
| 1098 | { |
| 1099 | janoffset = -yearsecs; |
| 1100 | break; |
| 1101 | } |
| 1102 | } while (EPOCH_YEAR - YEARSPERREPEAT / 2 < yearbeg); |
| 1103 | |
| 1104 | yearlim = yearbeg + YEARSPERREPEAT + 1; |
| 1105 | for (year = yearbeg; year < yearlim; year++) |
| 1106 | { |
| 1107 | int32 |
| 1108 | starttime = transtime(year, &start, stdoffset), |
| 1109 | endtime = transtime(year, &end, dstoffset); |
| 1110 | int32 |
| 1111 | yearsecs = (year_lengths[isleap(year)] |
| 1112 | * SECSPERDAY); |
| 1113 | bool reversed = endtime < starttime; |
| 1114 | |
| 1115 | if (reversed) |
| 1116 | { |
| 1117 | int32 swap = starttime; |
| 1118 | |
| 1119 | starttime = endtime; |
| 1120 | endtime = swap; |
| 1121 | } |
| 1122 | if (reversed |
| 1123 | || (starttime < endtime |
| 1124 | && (endtime - starttime |
| 1125 | < (yearsecs |
| 1126 | + (stdoffset - dstoffset))))) |
| 1127 | { |
| 1128 | if (TZ_MAX_TIMES - 2 < timecnt) |
| 1129 | break; |
| 1130 | sp->ats[timecnt] = janfirst; |
| 1131 | if (!increment_overflow_time |
| 1132 | (&sp->ats[timecnt], |
| 1133 | janoffset + starttime)) |
| 1134 | sp->types[timecnt++] = !reversed; |
| 1135 | sp->ats[timecnt] = janfirst; |
| 1136 | if (!increment_overflow_time |
| 1137 | (&sp->ats[timecnt], |
| 1138 | janoffset + endtime)) |
| 1139 | { |
| 1140 | sp->types[timecnt++] = reversed; |
| 1141 | yearlim = year + YEARSPERREPEAT + 1; |
| 1142 | } |
| 1143 | } |
| 1144 | if (increment_overflow_time |
| 1145 | (&janfirst, janoffset + yearsecs)) |
| 1146 | break; |
| 1147 | janoffset = 0; |
| 1148 | } |
| 1149 | sp->timecnt = timecnt; |
| 1150 | if (!timecnt) |
| 1151 | { |
| 1152 | sp->ttis[0] = sp->ttis[1]; |
| 1153 | sp->typecnt = 1; /* Perpetual DST. */ |
| 1154 | } |
| 1155 | else if (YEARSPERREPEAT < year - yearbeg) |
| 1156 | sp->goback = sp->goahead = true; |
| 1157 | } |
| 1158 | else |
| 1159 | { |
| 1160 | int32 theirstdoffset; |
| 1161 | int32 theirdstoffset; |
| 1162 | int32 theiroffset; |
| 1163 | bool isdst; |
| 1164 | int i; |
| 1165 | int j; |
| 1166 | |
| 1167 | if (*name != '\0') |
| 1168 | return false; |
| 1169 | |
| 1170 | /* |
| 1171 | * Initial values of theirstdoffset and theirdstoffset. |
| 1172 | */ |
| 1173 | theirstdoffset = 0; |
| 1174 | for (i = 0; i < sp->timecnt; ++i) |
| 1175 | { |
| 1176 | j = sp->types[i]; |
| 1177 | if (!sp->ttis[j].tt_isdst) |
| 1178 | { |
| 1179 | theirstdoffset = |
| 1180 | -sp->ttis[j].tt_utoff; |
| 1181 | break; |
| 1182 | } |
| 1183 | } |
| 1184 | theirdstoffset = 0; |
| 1185 | for (i = 0; i < sp->timecnt; ++i) |
| 1186 | { |
| 1187 | j = sp->types[i]; |
| 1188 | if (sp->ttis[j].tt_isdst) |
| 1189 | { |
| 1190 | theirdstoffset = |
| 1191 | -sp->ttis[j].tt_utoff; |
| 1192 | break; |
| 1193 | } |
| 1194 | } |
| 1195 | |
| 1196 | /* |
| 1197 | * Initially we're assumed to be in standard time. |
| 1198 | */ |
| 1199 | isdst = false; |
| 1200 | theiroffset = theirstdoffset; |
| 1201 | |
| 1202 | /* |
| 1203 | * Now juggle transition times and types tracking offsets as you |
| 1204 | * do. |
| 1205 | */ |
| 1206 | for (i = 0; i < sp->timecnt; ++i) |
| 1207 | { |
| 1208 | j = sp->types[i]; |
| 1209 | sp->types[i] = sp->ttis[j].tt_isdst; |
| 1210 | if (sp->ttis[j].tt_ttisut) |
| 1211 | { |
| 1212 | /* No adjustment to transition time */ |
| 1213 | } |
| 1214 | else |
| 1215 | { |
| 1216 | /* |
| 1217 | * If daylight saving time is in effect, and the |
| 1218 | * transition time was not specified as standard time, add |
| 1219 | * the daylight saving time offset to the transition time; |
| 1220 | * otherwise, add the standard time offset to the |
| 1221 | * transition time. |
| 1222 | */ |
| 1223 | /* |
| 1224 | * Transitions from DST to DDST will effectively disappear |
| 1225 | * since POSIX provides for only one DST offset. |
| 1226 | */ |
| 1227 | if (isdst && !sp->ttis[j].tt_ttisstd) |
| 1228 | { |
| 1229 | sp->ats[i] += dstoffset - |
| 1230 | theirdstoffset; |
| 1231 | } |
| 1232 | else |
| 1233 | { |
| 1234 | sp->ats[i] += stdoffset - |
| 1235 | theirstdoffset; |
| 1236 | } |
| 1237 | } |
| 1238 | theiroffset = -sp->ttis[j].tt_utoff; |
| 1239 | if (sp->ttis[j].tt_isdst) |
| 1240 | theirdstoffset = theiroffset; |
| 1241 | else |
| 1242 | theirstdoffset = theiroffset; |
| 1243 | } |
| 1244 | |
| 1245 | /* |
| 1246 | * Finally, fill in ttis. |
| 1247 | */ |
| 1248 | init_ttinfo(&sp->ttis[0], -stdoffset, false, 0); |
| 1249 | init_ttinfo(&sp->ttis[1], -dstoffset, true, stdlen + 1); |
| 1250 | sp->typecnt = 2; |
| 1251 | sp->defaulttype = 0; |
| 1252 | } |
| 1253 | } |
| 1254 | else |
| 1255 | { |
| 1256 | dstlen = 0; |
| 1257 | sp->typecnt = 1; /* only standard time */ |
| 1258 | sp->timecnt = 0; |
| 1259 | init_ttinfo(&sp->ttis[0], -stdoffset, false, 0); |
| 1260 | sp->defaulttype = 0; |
| 1261 | } |
| 1262 | sp->charcnt = charcnt; |
| 1263 | cp = sp->chars; |
| 1264 | memcpy(cp, stdname, stdlen); |
| 1265 | cp += stdlen; |
| 1266 | *cp++ = '\0'; |
| 1267 | if (dstlen != 0) |
| 1268 | { |
| 1269 | memcpy(cp, dstname, dstlen); |
| 1270 | *(cp + dstlen) = '\0'; |
| 1271 | } |
| 1272 | return true; |
| 1273 | } |
| 1274 | |
| 1275 | static void |
| 1276 | gmtload(struct state *const sp) |
| 1277 | { |
| 1278 | if (tzload(gmt, NULL, sp, true) != 0) |
| 1279 | tzparse(gmt, sp, true); |
| 1280 | } |
| 1281 | |
| 1282 | |
| 1283 | /* |
| 1284 | * The easy way to behave "as if no library function calls" localtime |
| 1285 | * is to not call it, so we drop its guts into "localsub", which can be |
| 1286 | * freely called. (And no, the PANS doesn't require the above behavior, |
| 1287 | * but it *is* desirable.) |
| 1288 | */ |
| 1289 | static struct pg_tm * |
| 1290 | localsub(struct state const *sp, pg_time_t const *timep, |
| 1291 | struct pg_tm *const tmp) |
| 1292 | { |
| 1293 | const struct ttinfo *ttisp; |
| 1294 | int i; |
| 1295 | struct pg_tm *result; |
| 1296 | const pg_time_t t = *timep; |
| 1297 | |
| 1298 | if (sp == NULL) |
| 1299 | return gmtsub(timep, 0, tmp); |
| 1300 | if ((sp->goback && t < sp->ats[0]) || |
| 1301 | (sp->goahead && t > sp->ats[sp->timecnt - 1])) |
| 1302 | { |
| 1303 | pg_time_t newt = t; |
| 1304 | pg_time_t seconds; |
| 1305 | pg_time_t years; |
| 1306 | |
| 1307 | if (t < sp->ats[0]) |
| 1308 | seconds = sp->ats[0] - t; |
| 1309 | else |
| 1310 | seconds = t - sp->ats[sp->timecnt - 1]; |
| 1311 | --seconds; |
| 1312 | years = (seconds / SECSPERREPEAT + 1) * YEARSPERREPEAT; |
| 1313 | seconds = years * AVGSECSPERYEAR; |
| 1314 | if (t < sp->ats[0]) |
| 1315 | newt += seconds; |
| 1316 | else |
| 1317 | newt -= seconds; |
| 1318 | if (newt < sp->ats[0] || |
| 1319 | newt > sp->ats[sp->timecnt - 1]) |
| 1320 | return NULL; /* "cannot happen" */ |
| 1321 | result = localsub(sp, &newt, tmp); |
| 1322 | if (result) |
| 1323 | { |
| 1324 | int64 newy; |
| 1325 | |
| 1326 | newy = result->tm_year; |
| 1327 | if (t < sp->ats[0]) |
| 1328 | newy -= years; |
| 1329 | else |
| 1330 | newy += years; |
| 1331 | if (!(INT_MIN <= newy && newy <= INT_MAX)) |
| 1332 | return NULL; |
| 1333 | result->tm_year = newy; |
| 1334 | } |
| 1335 | return result; |
| 1336 | } |
| 1337 | if (sp->timecnt == 0 || t < sp->ats[0]) |
| 1338 | { |
| 1339 | i = sp->defaulttype; |
| 1340 | } |
| 1341 | else |
| 1342 | { |
| 1343 | int lo = 1; |
| 1344 | int hi = sp->timecnt; |
| 1345 | |
| 1346 | while (lo < hi) |
| 1347 | { |
| 1348 | int mid = (lo + hi) >> 1; |
| 1349 | |
| 1350 | if (t < sp->ats[mid]) |
| 1351 | hi = mid; |
| 1352 | else |
| 1353 | lo = mid + 1; |
| 1354 | } |
| 1355 | i = (int) sp->types[lo - 1]; |
| 1356 | } |
| 1357 | ttisp = &sp->ttis[i]; |
| 1358 | |
| 1359 | /* |
| 1360 | * To get (wrong) behavior that's compatible with System V Release 2.0 |
| 1361 | * you'd replace the statement below with t += ttisp->tt_utoff; |
| 1362 | * timesub(&t, 0L, sp, tmp); |
| 1363 | */ |
| 1364 | result = timesub(&t, ttisp->tt_utoff, sp, tmp); |
| 1365 | if (result) |
| 1366 | { |
| 1367 | result->tm_isdst = ttisp->tt_isdst; |
| 1368 | result->tm_zone = unconstify(char *, &sp->chars[ttisp->tt_desigidx]); |
| 1369 | } |
| 1370 | return result; |
| 1371 | } |
| 1372 | |
| 1373 | |
| 1374 | struct pg_tm * |
| 1375 | pg_localtime(const pg_time_t *timep, const pg_tz *tz) |
| 1376 | { |
| 1377 | return localsub(&tz->state, timep, &tm); |
| 1378 | } |
| 1379 | |
| 1380 | |
| 1381 | /* |
| 1382 | * gmtsub is to gmtime as localsub is to localtime. |
| 1383 | * |
| 1384 | * Except we have a private "struct state" for GMT, so no sp is passed in. |
| 1385 | */ |
| 1386 | |
| 1387 | static struct pg_tm * |
| 1388 | gmtsub(pg_time_t const *timep, int32 offset, |
| 1389 | struct pg_tm *tmp) |
| 1390 | { |
| 1391 | struct pg_tm *result; |
| 1392 | |
| 1393 | /* GMT timezone state data is kept here */ |
| 1394 | static struct state *gmtptr = NULL; |
| 1395 | |
| 1396 | if (gmtptr == NULL) |
| 1397 | { |
| 1398 | /* Allocate on first use */ |
| 1399 | gmtptr = (struct state *) malloc(sizeof(struct state)); |
| 1400 | if (gmtptr == NULL) |
| 1401 | return NULL; /* errno should be set by malloc */ |
| 1402 | gmtload(gmtptr); |
| 1403 | } |
| 1404 | |
| 1405 | result = timesub(timep, offset, gmtptr, tmp); |
| 1406 | |
| 1407 | /* |
| 1408 | * Could get fancy here and deliver something such as "+xx" or "-xx" if |
| 1409 | * offset is non-zero, but this is no time for a treasure hunt. |
| 1410 | */ |
| 1411 | if (offset != 0) |
| 1412 | tmp->tm_zone = wildabbr; |
| 1413 | else |
| 1414 | tmp->tm_zone = gmtptr->chars; |
| 1415 | |
| 1416 | return result; |
| 1417 | } |
| 1418 | |
| 1419 | struct pg_tm * |
| 1420 | pg_gmtime(const pg_time_t *timep) |
| 1421 | { |
| 1422 | return gmtsub(timep, 0, &tm); |
| 1423 | } |
| 1424 | |
| 1425 | /* |
| 1426 | * Return the number of leap years through the end of the given year |
| 1427 | * where, to make the math easy, the answer for year zero is defined as zero. |
| 1428 | */ |
| 1429 | |
| 1430 | static int |
| 1431 | leaps_thru_end_of_nonneg(int y) |
| 1432 | { |
| 1433 | return y / 4 - y / 100 + y / 400; |
| 1434 | } |
| 1435 | |
| 1436 | static int |
| 1437 | leaps_thru_end_of(const int y) |
| 1438 | { |
| 1439 | return (y < 0 |
| 1440 | ? -1 - leaps_thru_end_of_nonneg(-1 - y) |
| 1441 | : leaps_thru_end_of_nonneg(y)); |
| 1442 | } |
| 1443 | |
| 1444 | static struct pg_tm * |
| 1445 | timesub(const pg_time_t *timep, int32 offset, |
| 1446 | const struct state *sp, struct pg_tm *tmp) |
| 1447 | { |
| 1448 | const struct lsinfo *lp; |
| 1449 | pg_time_t tdays; |
| 1450 | int idays; /* unsigned would be so 2003 */ |
| 1451 | int64 rem; |
| 1452 | int y; |
| 1453 | const int *ip; |
| 1454 | int64 corr; |
| 1455 | bool hit; |
| 1456 | int i; |
| 1457 | |
| 1458 | corr = 0; |
| 1459 | hit = false; |
| 1460 | i = (sp == NULL) ? 0 : sp->leapcnt; |
| 1461 | while (--i >= 0) |
| 1462 | { |
| 1463 | lp = &sp->lsis[i]; |
| 1464 | if (*timep >= lp->ls_trans) |
| 1465 | { |
| 1466 | corr = lp->ls_corr; |
| 1467 | hit = (*timep == lp->ls_trans |
| 1468 | && (i == 0 ? 0 : lp[-1].ls_corr) < corr); |
| 1469 | break; |
| 1470 | } |
| 1471 | } |
| 1472 | y = EPOCH_YEAR; |
| 1473 | tdays = *timep / SECSPERDAY; |
| 1474 | rem = *timep % SECSPERDAY; |
| 1475 | while (tdays < 0 || tdays >= year_lengths[isleap(y)]) |
| 1476 | { |
| 1477 | int newy; |
| 1478 | pg_time_t tdelta; |
| 1479 | int idelta; |
| 1480 | int leapdays; |
| 1481 | |
| 1482 | tdelta = tdays / DAYSPERLYEAR; |
| 1483 | if (!((!TYPE_SIGNED(pg_time_t) ||INT_MIN <= tdelta) |
| 1484 | && tdelta <= INT_MAX)) |
| 1485 | goto out_of_range; |
| 1486 | idelta = tdelta; |
| 1487 | if (idelta == 0) |
| 1488 | idelta = (tdays < 0) ? -1 : 1; |
| 1489 | newy = y; |
| 1490 | if (increment_overflow(&newy, idelta)) |
| 1491 | goto out_of_range; |
| 1492 | leapdays = leaps_thru_end_of(newy - 1) - |
| 1493 | leaps_thru_end_of(y - 1); |
| 1494 | tdays -= ((pg_time_t) newy - y) * DAYSPERNYEAR; |
| 1495 | tdays -= leapdays; |
| 1496 | y = newy; |
| 1497 | } |
| 1498 | |
| 1499 | /* |
| 1500 | * Given the range, we can now fearlessly cast... |
| 1501 | */ |
| 1502 | idays = tdays; |
| 1503 | rem += offset - corr; |
| 1504 | while (rem < 0) |
| 1505 | { |
| 1506 | rem += SECSPERDAY; |
| 1507 | --idays; |
| 1508 | } |
| 1509 | while (rem >= SECSPERDAY) |
| 1510 | { |
| 1511 | rem -= SECSPERDAY; |
| 1512 | ++idays; |
| 1513 | } |
| 1514 | while (idays < 0) |
| 1515 | { |
| 1516 | if (increment_overflow(&y, -1)) |
| 1517 | goto out_of_range; |
| 1518 | idays += year_lengths[isleap(y)]; |
| 1519 | } |
| 1520 | while (idays >= year_lengths[isleap(y)]) |
| 1521 | { |
| 1522 | idays -= year_lengths[isleap(y)]; |
| 1523 | if (increment_overflow(&y, 1)) |
| 1524 | goto out_of_range; |
| 1525 | } |
| 1526 | tmp->tm_year = y; |
| 1527 | if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE)) |
| 1528 | goto out_of_range; |
| 1529 | tmp->tm_yday = idays; |
| 1530 | |
| 1531 | /* |
| 1532 | * The "extra" mods below avoid overflow problems. |
| 1533 | */ |
| 1534 | tmp->tm_wday = EPOCH_WDAY + |
| 1535 | ((y - EPOCH_YEAR) % DAYSPERWEEK) * |
| 1536 | (DAYSPERNYEAR % DAYSPERWEEK) + |
| 1537 | leaps_thru_end_of(y - 1) - |
| 1538 | leaps_thru_end_of(EPOCH_YEAR - 1) + |
| 1539 | idays; |
| 1540 | tmp->tm_wday %= DAYSPERWEEK; |
| 1541 | if (tmp->tm_wday < 0) |
| 1542 | tmp->tm_wday += DAYSPERWEEK; |
| 1543 | tmp->tm_hour = (int) (rem / SECSPERHOUR); |
| 1544 | rem %= SECSPERHOUR; |
| 1545 | tmp->tm_min = (int) (rem / SECSPERMIN); |
| 1546 | |
| 1547 | /* |
| 1548 | * A positive leap second requires a special representation. This uses |
| 1549 | * "... ??:59:60" et seq. |
| 1550 | */ |
| 1551 | tmp->tm_sec = (int) (rem % SECSPERMIN) + hit; |
| 1552 | ip = mon_lengths[isleap(y)]; |
| 1553 | for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon)) |
| 1554 | idays -= ip[tmp->tm_mon]; |
| 1555 | tmp->tm_mday = (int) (idays + 1); |
| 1556 | tmp->tm_isdst = 0; |
| 1557 | tmp->tm_gmtoff = offset; |
| 1558 | return tmp; |
| 1559 | |
| 1560 | out_of_range: |
| 1561 | errno = EOVERFLOW; |
| 1562 | return NULL; |
| 1563 | } |
| 1564 | |
| 1565 | /* |
| 1566 | * Normalize logic courtesy Paul Eggert. |
| 1567 | */ |
| 1568 | |
| 1569 | static bool |
| 1570 | increment_overflow(int *ip, int j) |
| 1571 | { |
| 1572 | int const i = *ip; |
| 1573 | |
| 1574 | /*---------- |
| 1575 | * If i >= 0 there can only be overflow if i + j > INT_MAX |
| 1576 | * or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow. |
| 1577 | * If i < 0 there can only be overflow if i + j < INT_MIN |
| 1578 | * or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow. |
| 1579 | *---------- |
| 1580 | */ |
| 1581 | if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i)) |
| 1582 | return true; |
| 1583 | *ip += j; |
| 1584 | return false; |
| 1585 | } |
| 1586 | |
| 1587 | static bool |
| 1588 | increment_overflow_time(pg_time_t *tp, int32 j) |
| 1589 | { |
| 1590 | /*---------- |
| 1591 | * This is like |
| 1592 | * 'if (! (TIME_T_MIN <= *tp + j && *tp + j <= TIME_T_MAX)) ...', |
| 1593 | * except that it does the right thing even if *tp + j would overflow. |
| 1594 | *---------- |
| 1595 | */ |
| 1596 | if (!(j < 0 |
| 1597 | ? (TYPE_SIGNED(pg_time_t) ? TIME_T_MIN - j <= *tp : -1 - j < *tp) |
| 1598 | : *tp <= TIME_T_MAX - j)) |
| 1599 | return true; |
| 1600 | *tp += j; |
| 1601 | return false; |
| 1602 | } |
| 1603 | |
| 1604 | /* |
| 1605 | * Find the next DST transition time in the given zone after the given time |
| 1606 | * |
| 1607 | * *timep and *tz are input arguments, the other parameters are output values. |
| 1608 | * |
| 1609 | * When the function result is 1, *boundary is set to the pg_time_t |
| 1610 | * representation of the next DST transition time after *timep, |
| 1611 | * *before_gmtoff and *before_isdst are set to the GMT offset and isdst |
| 1612 | * state prevailing just before that boundary (in particular, the state |
| 1613 | * prevailing at *timep), and *after_gmtoff and *after_isdst are set to |
| 1614 | * the state prevailing just after that boundary. |
| 1615 | * |
| 1616 | * When the function result is 0, there is no known DST transition |
| 1617 | * after *timep, but *before_gmtoff and *before_isdst indicate the GMT |
| 1618 | * offset and isdst state prevailing at *timep. (This would occur in |
| 1619 | * DST-less time zones, or if a zone has permanently ceased using DST.) |
| 1620 | * |
| 1621 | * A function result of -1 indicates failure (this case does not actually |
| 1622 | * occur in our current implementation). |
| 1623 | */ |
| 1624 | int |
| 1625 | pg_next_dst_boundary(const pg_time_t *timep, |
| 1626 | long int *before_gmtoff, |
| 1627 | int *before_isdst, |
| 1628 | pg_time_t *boundary, |
| 1629 | long int *after_gmtoff, |
| 1630 | int *after_isdst, |
| 1631 | const pg_tz *tz) |
| 1632 | { |
| 1633 | const struct state *sp; |
| 1634 | const struct ttinfo *ttisp; |
| 1635 | int i; |
| 1636 | int j; |
| 1637 | const pg_time_t t = *timep; |
| 1638 | |
| 1639 | sp = &tz->state; |
| 1640 | if (sp->timecnt == 0) |
| 1641 | { |
| 1642 | /* non-DST zone, use lowest-numbered standard type */ |
| 1643 | i = 0; |
| 1644 | while (sp->ttis[i].tt_isdst) |
| 1645 | if (++i >= sp->typecnt) |
| 1646 | { |
| 1647 | i = 0; |
| 1648 | break; |
| 1649 | } |
| 1650 | ttisp = &sp->ttis[i]; |
| 1651 | *before_gmtoff = ttisp->tt_utoff; |
| 1652 | *before_isdst = ttisp->tt_isdst; |
| 1653 | return 0; |
| 1654 | } |
| 1655 | if ((sp->goback && t < sp->ats[0]) || |
| 1656 | (sp->goahead && t > sp->ats[sp->timecnt - 1])) |
| 1657 | { |
| 1658 | /* For values outside the transition table, extrapolate */ |
| 1659 | pg_time_t newt = t; |
| 1660 | pg_time_t seconds; |
| 1661 | pg_time_t tcycles; |
| 1662 | int64 icycles; |
| 1663 | int result; |
| 1664 | |
| 1665 | if (t < sp->ats[0]) |
| 1666 | seconds = sp->ats[0] - t; |
| 1667 | else |
| 1668 | seconds = t - sp->ats[sp->timecnt - 1]; |
| 1669 | --seconds; |
| 1670 | tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR; |
| 1671 | ++tcycles; |
| 1672 | icycles = tcycles; |
| 1673 | if (tcycles - icycles >= 1 || icycles - tcycles >= 1) |
| 1674 | return -1; |
| 1675 | seconds = icycles; |
| 1676 | seconds *= YEARSPERREPEAT; |
| 1677 | seconds *= AVGSECSPERYEAR; |
| 1678 | if (t < sp->ats[0]) |
| 1679 | newt += seconds; |
| 1680 | else |
| 1681 | newt -= seconds; |
| 1682 | if (newt < sp->ats[0] || |
| 1683 | newt > sp->ats[sp->timecnt - 1]) |
| 1684 | return -1; /* "cannot happen" */ |
| 1685 | |
| 1686 | result = pg_next_dst_boundary(&newt, before_gmtoff, |
| 1687 | before_isdst, |
| 1688 | boundary, |
| 1689 | after_gmtoff, |
| 1690 | after_isdst, |
| 1691 | tz); |
| 1692 | if (t < sp->ats[0]) |
| 1693 | *boundary -= seconds; |
| 1694 | else |
| 1695 | *boundary += seconds; |
| 1696 | return result; |
| 1697 | } |
| 1698 | |
| 1699 | if (t >= sp->ats[sp->timecnt - 1]) |
| 1700 | { |
| 1701 | /* No known transition > t, so use last known segment's type */ |
| 1702 | i = sp->types[sp->timecnt - 1]; |
| 1703 | ttisp = &sp->ttis[i]; |
| 1704 | *before_gmtoff = ttisp->tt_utoff; |
| 1705 | *before_isdst = ttisp->tt_isdst; |
| 1706 | return 0; |
| 1707 | } |
| 1708 | if (t < sp->ats[0]) |
| 1709 | { |
| 1710 | /* For "before", use lowest-numbered standard type */ |
| 1711 | i = 0; |
| 1712 | while (sp->ttis[i].tt_isdst) |
| 1713 | if (++i >= sp->typecnt) |
| 1714 | { |
| 1715 | i = 0; |
| 1716 | break; |
| 1717 | } |
| 1718 | ttisp = &sp->ttis[i]; |
| 1719 | *before_gmtoff = ttisp->tt_utoff; |
| 1720 | *before_isdst = ttisp->tt_isdst; |
| 1721 | *boundary = sp->ats[0]; |
| 1722 | /* And for "after", use the first segment's type */ |
| 1723 | i = sp->types[0]; |
| 1724 | ttisp = &sp->ttis[i]; |
| 1725 | *after_gmtoff = ttisp->tt_utoff; |
| 1726 | *after_isdst = ttisp->tt_isdst; |
| 1727 | return 1; |
| 1728 | } |
| 1729 | /* Else search to find the boundary following t */ |
| 1730 | { |
| 1731 | int lo = 1; |
| 1732 | int hi = sp->timecnt - 1; |
| 1733 | |
| 1734 | while (lo < hi) |
| 1735 | { |
| 1736 | int mid = (lo + hi) >> 1; |
| 1737 | |
| 1738 | if (t < sp->ats[mid]) |
| 1739 | hi = mid; |
| 1740 | else |
| 1741 | lo = mid + 1; |
| 1742 | } |
| 1743 | i = lo; |
| 1744 | } |
| 1745 | j = sp->types[i - 1]; |
| 1746 | ttisp = &sp->ttis[j]; |
| 1747 | *before_gmtoff = ttisp->tt_utoff; |
| 1748 | *before_isdst = ttisp->tt_isdst; |
| 1749 | *boundary = sp->ats[i]; |
| 1750 | j = sp->types[i]; |
| 1751 | ttisp = &sp->ttis[j]; |
| 1752 | *after_gmtoff = ttisp->tt_utoff; |
| 1753 | *after_isdst = ttisp->tt_isdst; |
| 1754 | return 1; |
| 1755 | } |
| 1756 | |
| 1757 | /* |
| 1758 | * Identify a timezone abbreviation's meaning in the given zone |
| 1759 | * |
| 1760 | * Determine the GMT offset and DST flag associated with the abbreviation. |
| 1761 | * This is generally used only when the abbreviation has actually changed |
| 1762 | * meaning over time; therefore, we also take a UTC cutoff time, and return |
| 1763 | * the meaning in use at or most recently before that time, or the meaning |
| 1764 | * in first use after that time if the abbrev was never used before that. |
| 1765 | * |
| 1766 | * On success, returns true and sets *gmtoff and *isdst. If the abbreviation |
| 1767 | * was never used at all in this zone, returns false. |
| 1768 | * |
| 1769 | * Note: abbrev is matched case-sensitively; it should be all-upper-case. |
| 1770 | */ |
| 1771 | bool |
| 1772 | pg_interpret_timezone_abbrev(const char *abbrev, |
| 1773 | const pg_time_t *timep, |
| 1774 | long int *gmtoff, |
| 1775 | int *isdst, |
| 1776 | const pg_tz *tz) |
| 1777 | { |
| 1778 | const struct state *sp; |
| 1779 | const char *abbrs; |
| 1780 | const struct ttinfo *ttisp; |
| 1781 | int abbrind; |
| 1782 | int cutoff; |
| 1783 | int i; |
| 1784 | const pg_time_t t = *timep; |
| 1785 | |
| 1786 | sp = &tz->state; |
| 1787 | |
| 1788 | /* |
| 1789 | * Locate the abbreviation in the zone's abbreviation list. We assume |
| 1790 | * there are not duplicates in the list. |
| 1791 | */ |
| 1792 | abbrs = sp->chars; |
| 1793 | abbrind = 0; |
| 1794 | while (abbrind < sp->charcnt) |
| 1795 | { |
| 1796 | if (strcmp(abbrev, abbrs + abbrind) == 0) |
| 1797 | break; |
| 1798 | while (abbrs[abbrind] != '\0') |
| 1799 | abbrind++; |
| 1800 | abbrind++; |
| 1801 | } |
| 1802 | if (abbrind >= sp->charcnt) |
| 1803 | return false; /* not there! */ |
| 1804 | |
| 1805 | /* |
| 1806 | * Unlike pg_next_dst_boundary, we needn't sweat about extrapolation |
| 1807 | * (goback/goahead zones). Finding the newest or oldest meaning of the |
| 1808 | * abbreviation should get us what we want, since extrapolation would just |
| 1809 | * be repeating the newest or oldest meanings. |
| 1810 | * |
| 1811 | * Use binary search to locate the first transition > cutoff time. |
| 1812 | */ |
| 1813 | { |
| 1814 | int lo = 0; |
| 1815 | int hi = sp->timecnt; |
| 1816 | |
| 1817 | while (lo < hi) |
| 1818 | { |
| 1819 | int mid = (lo + hi) >> 1; |
| 1820 | |
| 1821 | if (t < sp->ats[mid]) |
| 1822 | hi = mid; |
| 1823 | else |
| 1824 | lo = mid + 1; |
| 1825 | } |
| 1826 | cutoff = lo; |
| 1827 | } |
| 1828 | |
| 1829 | /* |
| 1830 | * Scan backwards to find the latest interval using the given abbrev |
| 1831 | * before the cutoff time. |
| 1832 | */ |
| 1833 | for (i = cutoff - 1; i >= 0; i--) |
| 1834 | { |
| 1835 | ttisp = &sp->ttis[sp->types[i]]; |
| 1836 | if (ttisp->tt_desigidx == abbrind) |
| 1837 | { |
| 1838 | *gmtoff = ttisp->tt_utoff; |
| 1839 | *isdst = ttisp->tt_isdst; |
| 1840 | return true; |
| 1841 | } |
| 1842 | } |
| 1843 | |
| 1844 | /* |
| 1845 | * Not there, so scan forwards to find the first one after. |
| 1846 | */ |
| 1847 | for (i = cutoff; i < sp->timecnt; i++) |
| 1848 | { |
| 1849 | ttisp = &sp->ttis[sp->types[i]]; |
| 1850 | if (ttisp->tt_desigidx == abbrind) |
| 1851 | { |
| 1852 | *gmtoff = ttisp->tt_utoff; |
| 1853 | *isdst = ttisp->tt_isdst; |
| 1854 | return true; |
| 1855 | } |
| 1856 | } |
| 1857 | |
| 1858 | return false; /* hm, not actually used in any interval? */ |
| 1859 | } |
| 1860 | |
| 1861 | /* |
| 1862 | * If the given timezone uses only one GMT offset, store that offset |
| 1863 | * into *gmtoff and return true, else return false. |
| 1864 | */ |
| 1865 | bool |
| 1866 | pg_get_timezone_offset(const pg_tz *tz, long int *gmtoff) |
| 1867 | { |
| 1868 | /* |
| 1869 | * The zone could have more than one ttinfo, if it's historically used |
| 1870 | * more than one abbreviation. We return true as long as they all have |
| 1871 | * the same gmtoff. |
| 1872 | */ |
| 1873 | const struct state *sp; |
| 1874 | int i; |
| 1875 | |
| 1876 | sp = &tz->state; |
| 1877 | for (i = 1; i < sp->typecnt; i++) |
| 1878 | { |
| 1879 | if (sp->ttis[i].tt_utoff != sp->ttis[0].tt_utoff) |
| 1880 | return false; |
| 1881 | } |
| 1882 | *gmtoff = sp->ttis[0].tt_utoff; |
| 1883 | return true; |
| 1884 | } |
| 1885 | |
| 1886 | /* |
| 1887 | * Return the name of the current timezone |
| 1888 | */ |
| 1889 | const char * |
| 1890 | pg_get_timezone_name(pg_tz *tz) |
| 1891 | { |
| 1892 | if (tz) |
| 1893 | return tz->TZname; |
| 1894 | return NULL; |
| 1895 | } |
| 1896 | |
| 1897 | /* |
| 1898 | * Check whether timezone is acceptable. |
| 1899 | * |
| 1900 | * What we are doing here is checking for leap-second-aware timekeeping. |
| 1901 | * We need to reject such TZ settings because they'll wreak havoc with our |
| 1902 | * date/time arithmetic. |
| 1903 | */ |
| 1904 | bool |
| 1905 | pg_tz_acceptable(pg_tz *tz) |
| 1906 | { |
| 1907 | struct pg_tm *tt; |
| 1908 | pg_time_t time2000; |
| 1909 | |
| 1910 | /* |
| 1911 | * To detect leap-second timekeeping, run pg_localtime for what should be |
| 1912 | * GMT midnight, 2000-01-01. Insist that the tm_sec value be zero; any |
| 1913 | * other result has to be due to leap seconds. |
| 1914 | */ |
| 1915 | time2000 = (POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY; |
| 1916 | tt = pg_localtime(&time2000, tz); |
| 1917 | if (!tt || tt->tm_sec != 0) |
| 1918 | return false; |
| 1919 | |
| 1920 | return true; |
| 1921 | } |
| 1922 | |