| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * typcache.c |
| 4 | * POSTGRES type cache code |
| 5 | * |
| 6 | * The type cache exists to speed lookup of certain information about data |
| 7 | * types that is not directly available from a type's pg_type row. For |
| 8 | * example, we use a type's default btree opclass, or the default hash |
| 9 | * opclass if no btree opclass exists, to determine which operators should |
| 10 | * be used for grouping and sorting the type (GROUP BY, ORDER BY ASC/DESC). |
| 11 | * |
| 12 | * Several seemingly-odd choices have been made to support use of the type |
| 13 | * cache by generic array and record handling routines, such as array_eq(), |
| 14 | * record_cmp(), and hash_array(). Because those routines are used as index |
| 15 | * support operations, they cannot leak memory. To allow them to execute |
| 16 | * efficiently, all information that they would like to re-use across calls |
| 17 | * is kept in the type cache. |
| 18 | * |
| 19 | * Once created, a type cache entry lives as long as the backend does, so |
| 20 | * there is no need for a call to release a cache entry. If the type is |
| 21 | * dropped, the cache entry simply becomes wasted storage. This is not |
| 22 | * expected to happen often, and assuming that typcache entries are good |
| 23 | * permanently allows caching pointers to them in long-lived places. |
| 24 | * |
| 25 | * We have some provisions for updating cache entries if the stored data |
| 26 | * becomes obsolete. Information dependent on opclasses is cleared if we |
| 27 | * detect updates to pg_opclass. We also support clearing the tuple |
| 28 | * descriptor and operator/function parts of a rowtype's cache entry, |
| 29 | * since those may need to change as a consequence of ALTER TABLE. |
| 30 | * Domain constraint changes are also tracked properly. |
| 31 | * |
| 32 | * |
| 33 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 34 | * Portions Copyright (c) 1994, Regents of the University of California |
| 35 | * |
| 36 | * IDENTIFICATION |
| 37 | * src/backend/utils/cache/typcache.c |
| 38 | * |
| 39 | *------------------------------------------------------------------------- |
| 40 | */ |
| 41 | #include "postgres.h" |
| 42 | |
| 43 | #include <limits.h> |
| 44 | |
| 45 | #include "access/hash.h" |
| 46 | #include "access/htup_details.h" |
| 47 | #include "access/nbtree.h" |
| 48 | #include "access/parallel.h" |
| 49 | #include "access/relation.h" |
| 50 | #include "access/session.h" |
| 51 | #include "access/table.h" |
| 52 | #include "catalog/indexing.h" |
| 53 | #include "catalog/pg_am.h" |
| 54 | #include "catalog/pg_constraint.h" |
| 55 | #include "catalog/pg_enum.h" |
| 56 | #include "catalog/pg_operator.h" |
| 57 | #include "catalog/pg_range.h" |
| 58 | #include "catalog/pg_type.h" |
| 59 | #include "commands/defrem.h" |
| 60 | #include "executor/executor.h" |
| 61 | #include "lib/dshash.h" |
| 62 | #include "optimizer/optimizer.h" |
| 63 | #include "storage/lwlock.h" |
| 64 | #include "utils/builtins.h" |
| 65 | #include "utils/catcache.h" |
| 66 | #include "utils/fmgroids.h" |
| 67 | #include "utils/inval.h" |
| 68 | #include "utils/lsyscache.h" |
| 69 | #include "utils/memutils.h" |
| 70 | #include "utils/rel.h" |
| 71 | #include "utils/snapmgr.h" |
| 72 | #include "utils/syscache.h" |
| 73 | #include "utils/typcache.h" |
| 74 | |
| 75 | |
| 76 | /* The main type cache hashtable searched by lookup_type_cache */ |
| 77 | static HTAB *TypeCacheHash = NULL; |
| 78 | |
| 79 | /* List of type cache entries for domain types */ |
| 80 | static TypeCacheEntry *firstDomainTypeEntry = NULL; |
| 81 | |
| 82 | /* Private flag bits in the TypeCacheEntry.flags field */ |
| 83 | #define TCFLAGS_CHECKED_BTREE_OPCLASS 0x000001 |
| 84 | #define TCFLAGS_CHECKED_HASH_OPCLASS 0x000002 |
| 85 | #define TCFLAGS_CHECKED_EQ_OPR 0x000004 |
| 86 | #define TCFLAGS_CHECKED_LT_OPR 0x000008 |
| 87 | #define TCFLAGS_CHECKED_GT_OPR 0x000010 |
| 88 | #define TCFLAGS_CHECKED_CMP_PROC 0x000020 |
| 89 | #define TCFLAGS_CHECKED_HASH_PROC 0x000040 |
| 90 | #define TCFLAGS_CHECKED_HASH_EXTENDED_PROC 0x000080 |
| 91 | #define TCFLAGS_CHECKED_ELEM_PROPERTIES 0x000100 |
| 92 | #define TCFLAGS_HAVE_ELEM_EQUALITY 0x000200 |
| 93 | #define TCFLAGS_HAVE_ELEM_COMPARE 0x000400 |
| 94 | #define TCFLAGS_HAVE_ELEM_HASHING 0x000800 |
| 95 | #define TCFLAGS_HAVE_ELEM_EXTENDED_HASHING 0x001000 |
| 96 | #define TCFLAGS_CHECKED_FIELD_PROPERTIES 0x002000 |
| 97 | #define TCFLAGS_HAVE_FIELD_EQUALITY 0x004000 |
| 98 | #define TCFLAGS_HAVE_FIELD_COMPARE 0x008000 |
| 99 | #define TCFLAGS_CHECKED_DOMAIN_CONSTRAINTS 0x010000 |
| 100 | #define TCFLAGS_DOMAIN_BASE_IS_COMPOSITE 0x020000 |
| 101 | |
| 102 | /* |
| 103 | * Data stored about a domain type's constraints. Note that we do not create |
| 104 | * this struct for the common case of a constraint-less domain; we just set |
| 105 | * domainData to NULL to indicate that. |
| 106 | * |
| 107 | * Within a DomainConstraintCache, we store expression plan trees, but the |
| 108 | * check_exprstate fields of the DomainConstraintState nodes are just NULL. |
| 109 | * When needed, expression evaluation nodes are built by flat-copying the |
| 110 | * DomainConstraintState nodes and applying ExecInitExpr to check_expr. |
| 111 | * Such a node tree is not part of the DomainConstraintCache, but is |
| 112 | * considered to belong to a DomainConstraintRef. |
| 113 | */ |
| 114 | struct DomainConstraintCache |
| 115 | { |
| 116 | List *constraints; /* list of DomainConstraintState nodes */ |
| 117 | MemoryContext dccContext; /* memory context holding all associated data */ |
| 118 | long dccRefCount; /* number of references to this struct */ |
| 119 | }; |
| 120 | |
| 121 | /* Private information to support comparisons of enum values */ |
| 122 | typedef struct |
| 123 | { |
| 124 | Oid enum_oid; /* OID of one enum value */ |
| 125 | float4 sort_order; /* its sort position */ |
| 126 | } EnumItem; |
| 127 | |
| 128 | typedef struct TypeCacheEnumData |
| 129 | { |
| 130 | Oid bitmap_base; /* OID corresponding to bit 0 of bitmapset */ |
| 131 | Bitmapset *sorted_values; /* Set of OIDs known to be in order */ |
| 132 | int num_values; /* total number of values in enum */ |
| 133 | EnumItem enum_values[FLEXIBLE_ARRAY_MEMBER]; |
| 134 | } TypeCacheEnumData; |
| 135 | |
| 136 | /* |
| 137 | * We use a separate table for storing the definitions of non-anonymous |
| 138 | * record types. Once defined, a record type will be remembered for the |
| 139 | * life of the backend. Subsequent uses of the "same" record type (where |
| 140 | * sameness means equalTupleDescs) will refer to the existing table entry. |
| 141 | * |
| 142 | * Stored record types are remembered in a linear array of TupleDescs, |
| 143 | * which can be indexed quickly with the assigned typmod. There is also |
| 144 | * a hash table to speed searches for matching TupleDescs. |
| 145 | */ |
| 146 | |
| 147 | typedef struct RecordCacheEntry |
| 148 | { |
| 149 | TupleDesc tupdesc; |
| 150 | } RecordCacheEntry; |
| 151 | |
| 152 | /* |
| 153 | * To deal with non-anonymous record types that are exchanged by backends |
| 154 | * involved in a parallel query, we also need a shared version of the above. |
| 155 | */ |
| 156 | struct SharedRecordTypmodRegistry |
| 157 | { |
| 158 | /* A hash table for finding a matching TupleDesc. */ |
| 159 | dshash_table_handle record_table_handle; |
| 160 | /* A hash table for finding a TupleDesc by typmod. */ |
| 161 | dshash_table_handle typmod_table_handle; |
| 162 | /* A source of new record typmod numbers. */ |
| 163 | pg_atomic_uint32 next_typmod; |
| 164 | }; |
| 165 | |
| 166 | /* |
| 167 | * When using shared tuple descriptors as hash table keys we need a way to be |
| 168 | * able to search for an equal shared TupleDesc using a backend-local |
| 169 | * TupleDesc. So we use this type which can hold either, and hash and compare |
| 170 | * functions that know how to handle both. |
| 171 | */ |
| 172 | typedef struct SharedRecordTableKey |
| 173 | { |
| 174 | union |
| 175 | { |
| 176 | TupleDesc local_tupdesc; |
| 177 | dsa_pointer shared_tupdesc; |
| 178 | } u; |
| 179 | bool shared; |
| 180 | } SharedRecordTableKey; |
| 181 | |
| 182 | /* |
| 183 | * The shared version of RecordCacheEntry. This lets us look up a typmod |
| 184 | * using a TupleDesc which may be in local or shared memory. |
| 185 | */ |
| 186 | typedef struct SharedRecordTableEntry |
| 187 | { |
| 188 | SharedRecordTableKey key; |
| 189 | } SharedRecordTableEntry; |
| 190 | |
| 191 | /* |
| 192 | * An entry in SharedRecordTypmodRegistry's typmod table. This lets us look |
| 193 | * up a TupleDesc in shared memory using a typmod. |
| 194 | */ |
| 195 | typedef struct SharedTypmodTableEntry |
| 196 | { |
| 197 | uint32 typmod; |
| 198 | dsa_pointer shared_tupdesc; |
| 199 | } SharedTypmodTableEntry; |
| 200 | |
| 201 | /* |
| 202 | * A comparator function for SharedRecordTableKey. |
| 203 | */ |
| 204 | static int |
| 205 | shared_record_table_compare(const void *a, const void *b, size_t size, |
| 206 | void *arg) |
| 207 | { |
| 208 | dsa_area *area = (dsa_area *) arg; |
| 209 | SharedRecordTableKey *k1 = (SharedRecordTableKey *) a; |
| 210 | SharedRecordTableKey *k2 = (SharedRecordTableKey *) b; |
| 211 | TupleDesc t1; |
| 212 | TupleDesc t2; |
| 213 | |
| 214 | if (k1->shared) |
| 215 | t1 = (TupleDesc) dsa_get_address(area, k1->u.shared_tupdesc); |
| 216 | else |
| 217 | t1 = k1->u.local_tupdesc; |
| 218 | |
| 219 | if (k2->shared) |
| 220 | t2 = (TupleDesc) dsa_get_address(area, k2->u.shared_tupdesc); |
| 221 | else |
| 222 | t2 = k2->u.local_tupdesc; |
| 223 | |
| 224 | return equalTupleDescs(t1, t2) ? 0 : 1; |
| 225 | } |
| 226 | |
| 227 | /* |
| 228 | * A hash function for SharedRecordTableKey. |
| 229 | */ |
| 230 | static uint32 |
| 231 | shared_record_table_hash(const void *a, size_t size, void *arg) |
| 232 | { |
| 233 | dsa_area *area = (dsa_area *) arg; |
| 234 | SharedRecordTableKey *k = (SharedRecordTableKey *) a; |
| 235 | TupleDesc t; |
| 236 | |
| 237 | if (k->shared) |
| 238 | t = (TupleDesc) dsa_get_address(area, k->u.shared_tupdesc); |
| 239 | else |
| 240 | t = k->u.local_tupdesc; |
| 241 | |
| 242 | return hashTupleDesc(t); |
| 243 | } |
| 244 | |
| 245 | /* Parameters for SharedRecordTypmodRegistry's TupleDesc table. */ |
| 246 | static const dshash_parameters srtr_record_table_params = { |
| 247 | sizeof(SharedRecordTableKey), /* unused */ |
| 248 | sizeof(SharedRecordTableEntry), |
| 249 | shared_record_table_compare, |
| 250 | shared_record_table_hash, |
| 251 | LWTRANCHE_SESSION_RECORD_TABLE |
| 252 | }; |
| 253 | |
| 254 | /* Parameters for SharedRecordTypmodRegistry's typmod hash table. */ |
| 255 | static const dshash_parameters srtr_typmod_table_params = { |
| 256 | sizeof(uint32), |
| 257 | sizeof(SharedTypmodTableEntry), |
| 258 | dshash_memcmp, |
| 259 | dshash_memhash, |
| 260 | LWTRANCHE_SESSION_TYPMOD_TABLE |
| 261 | }; |
| 262 | |
| 263 | /* hashtable for recognizing registered record types */ |
| 264 | static HTAB *RecordCacheHash = NULL; |
| 265 | |
| 266 | /* arrays of info about registered record types, indexed by assigned typmod */ |
| 267 | static TupleDesc *RecordCacheArray = NULL; |
| 268 | static uint64 *RecordIdentifierArray = NULL; |
| 269 | static int32 RecordCacheArrayLen = 0; /* allocated length of above arrays */ |
| 270 | static int32 NextRecordTypmod = 0; /* number of entries used */ |
| 271 | |
| 272 | /* |
| 273 | * Process-wide counter for generating unique tupledesc identifiers. |
| 274 | * Zero and one (INVALID_TUPLEDESC_IDENTIFIER) aren't allowed to be chosen |
| 275 | * as identifiers, so we start the counter at INVALID_TUPLEDESC_IDENTIFIER. |
| 276 | */ |
| 277 | static uint64 tupledesc_id_counter = INVALID_TUPLEDESC_IDENTIFIER; |
| 278 | |
| 279 | static void load_typcache_tupdesc(TypeCacheEntry *typentry); |
| 280 | static void load_rangetype_info(TypeCacheEntry *typentry); |
| 281 | static void load_domaintype_info(TypeCacheEntry *typentry); |
| 282 | static int dcs_cmp(const void *a, const void *b); |
| 283 | static void decr_dcc_refcount(DomainConstraintCache *dcc); |
| 284 | static void dccref_deletion_callback(void *arg); |
| 285 | static List *prep_domain_constraints(List *constraints, MemoryContext execctx); |
| 286 | static bool array_element_has_equality(TypeCacheEntry *typentry); |
| 287 | static bool array_element_has_compare(TypeCacheEntry *typentry); |
| 288 | static bool array_element_has_hashing(TypeCacheEntry *typentry); |
| 289 | static bool array_element_has_extended_hashing(TypeCacheEntry *typentry); |
| 290 | static void cache_array_element_properties(TypeCacheEntry *typentry); |
| 291 | static bool record_fields_have_equality(TypeCacheEntry *typentry); |
| 292 | static bool record_fields_have_compare(TypeCacheEntry *typentry); |
| 293 | static void cache_record_field_properties(TypeCacheEntry *typentry); |
| 294 | static bool range_element_has_hashing(TypeCacheEntry *typentry); |
| 295 | static bool range_element_has_extended_hashing(TypeCacheEntry *typentry); |
| 296 | static void cache_range_element_properties(TypeCacheEntry *typentry); |
| 297 | static void TypeCacheRelCallback(Datum arg, Oid relid); |
| 298 | static void TypeCacheOpcCallback(Datum arg, int cacheid, uint32 hashvalue); |
| 299 | static void TypeCacheConstrCallback(Datum arg, int cacheid, uint32 hashvalue); |
| 300 | static void load_enum_cache_data(TypeCacheEntry *tcache); |
| 301 | static EnumItem *find_enumitem(TypeCacheEnumData *enumdata, Oid arg); |
| 302 | static int enum_oid_cmp(const void *left, const void *right); |
| 303 | static void shared_record_typmod_registry_detach(dsm_segment *segment, |
| 304 | Datum datum); |
| 305 | static TupleDesc find_or_make_matching_shared_tupledesc(TupleDesc tupdesc); |
| 306 | static dsa_pointer share_tupledesc(dsa_area *area, TupleDesc tupdesc, |
| 307 | uint32 typmod); |
| 308 | |
| 309 | |
| 310 | /* |
| 311 | * lookup_type_cache |
| 312 | * |
| 313 | * Fetch the type cache entry for the specified datatype, and make sure that |
| 314 | * all the fields requested by bits in 'flags' are valid. |
| 315 | * |
| 316 | * The result is never NULL --- we will ereport() if the passed type OID is |
| 317 | * invalid. Note however that we may fail to find one or more of the |
| 318 | * values requested by 'flags'; the caller needs to check whether the fields |
| 319 | * are InvalidOid or not. |
| 320 | */ |
| 321 | TypeCacheEntry * |
| 322 | lookup_type_cache(Oid type_id, int flags) |
| 323 | { |
| 324 | TypeCacheEntry *typentry; |
| 325 | bool found; |
| 326 | |
| 327 | if (TypeCacheHash == NULL) |
| 328 | { |
| 329 | /* First time through: initialize the hash table */ |
| 330 | HASHCTL ctl; |
| 331 | |
| 332 | MemSet(&ctl, 0, sizeof(ctl)); |
| 333 | ctl.keysize = sizeof(Oid); |
| 334 | ctl.entrysize = sizeof(TypeCacheEntry); |
| 335 | TypeCacheHash = hash_create("Type information cache" , 64, |
| 336 | &ctl, HASH_ELEM | HASH_BLOBS); |
| 337 | |
| 338 | /* Also set up callbacks for SI invalidations */ |
| 339 | CacheRegisterRelcacheCallback(TypeCacheRelCallback, (Datum) 0); |
| 340 | CacheRegisterSyscacheCallback(CLAOID, TypeCacheOpcCallback, (Datum) 0); |
| 341 | CacheRegisterSyscacheCallback(CONSTROID, TypeCacheConstrCallback, (Datum) 0); |
| 342 | CacheRegisterSyscacheCallback(TYPEOID, TypeCacheConstrCallback, (Datum) 0); |
| 343 | |
| 344 | /* Also make sure CacheMemoryContext exists */ |
| 345 | if (!CacheMemoryContext) |
| 346 | CreateCacheMemoryContext(); |
| 347 | } |
| 348 | |
| 349 | /* Try to look up an existing entry */ |
| 350 | typentry = (TypeCacheEntry *) hash_search(TypeCacheHash, |
| 351 | (void *) &type_id, |
| 352 | HASH_FIND, NULL); |
| 353 | if (typentry == NULL) |
| 354 | { |
| 355 | /* |
| 356 | * If we didn't find one, we want to make one. But first look up the |
| 357 | * pg_type row, just to make sure we don't make a cache entry for an |
| 358 | * invalid type OID. If the type OID is not valid, present a |
| 359 | * user-facing error, since some code paths such as domain_in() allow |
| 360 | * this function to be reached with a user-supplied OID. |
| 361 | */ |
| 362 | HeapTuple tp; |
| 363 | Form_pg_type typtup; |
| 364 | |
| 365 | tp = SearchSysCache1(TYPEOID, ObjectIdGetDatum(type_id)); |
| 366 | if (!HeapTupleIsValid(tp)) |
| 367 | ereport(ERROR, |
| 368 | (errcode(ERRCODE_UNDEFINED_OBJECT), |
| 369 | errmsg("type with OID %u does not exist" , type_id))); |
| 370 | typtup = (Form_pg_type) GETSTRUCT(tp); |
| 371 | if (!typtup->typisdefined) |
| 372 | ereport(ERROR, |
| 373 | (errcode(ERRCODE_UNDEFINED_OBJECT), |
| 374 | errmsg("type \"%s\" is only a shell" , |
| 375 | NameStr(typtup->typname)))); |
| 376 | |
| 377 | /* Now make the typcache entry */ |
| 378 | typentry = (TypeCacheEntry *) hash_search(TypeCacheHash, |
| 379 | (void *) &type_id, |
| 380 | HASH_ENTER, &found); |
| 381 | Assert(!found); /* it wasn't there a moment ago */ |
| 382 | |
| 383 | MemSet(typentry, 0, sizeof(TypeCacheEntry)); |
| 384 | typentry->type_id = type_id; |
| 385 | typentry->typlen = typtup->typlen; |
| 386 | typentry->typbyval = typtup->typbyval; |
| 387 | typentry->typalign = typtup->typalign; |
| 388 | typentry->typstorage = typtup->typstorage; |
| 389 | typentry->typtype = typtup->typtype; |
| 390 | typentry->typrelid = typtup->typrelid; |
| 391 | typentry->typelem = typtup->typelem; |
| 392 | typentry->typcollation = typtup->typcollation; |
| 393 | |
| 394 | /* If it's a domain, immediately thread it into the domain cache list */ |
| 395 | if (typentry->typtype == TYPTYPE_DOMAIN) |
| 396 | { |
| 397 | typentry->nextDomain = firstDomainTypeEntry; |
| 398 | firstDomainTypeEntry = typentry; |
| 399 | } |
| 400 | |
| 401 | ReleaseSysCache(tp); |
| 402 | } |
| 403 | |
| 404 | /* |
| 405 | * Look up opclasses if we haven't already and any dependent info is |
| 406 | * requested. |
| 407 | */ |
| 408 | if ((flags & (TYPECACHE_EQ_OPR | TYPECACHE_LT_OPR | TYPECACHE_GT_OPR | |
| 409 | TYPECACHE_CMP_PROC | |
| 410 | TYPECACHE_EQ_OPR_FINFO | TYPECACHE_CMP_PROC_FINFO | |
| 411 | TYPECACHE_BTREE_OPFAMILY)) && |
| 412 | !(typentry->flags & TCFLAGS_CHECKED_BTREE_OPCLASS)) |
| 413 | { |
| 414 | Oid opclass; |
| 415 | |
| 416 | opclass = GetDefaultOpClass(type_id, BTREE_AM_OID); |
| 417 | if (OidIsValid(opclass)) |
| 418 | { |
| 419 | typentry->btree_opf = get_opclass_family(opclass); |
| 420 | typentry->btree_opintype = get_opclass_input_type(opclass); |
| 421 | } |
| 422 | else |
| 423 | { |
| 424 | typentry->btree_opf = typentry->btree_opintype = InvalidOid; |
| 425 | } |
| 426 | |
| 427 | /* |
| 428 | * Reset information derived from btree opclass. Note in particular |
| 429 | * that we'll redetermine the eq_opr even if we previously found one; |
| 430 | * this matters in case a btree opclass has been added to a type that |
| 431 | * previously had only a hash opclass. |
| 432 | */ |
| 433 | typentry->flags &= ~(TCFLAGS_CHECKED_EQ_OPR | |
| 434 | TCFLAGS_CHECKED_LT_OPR | |
| 435 | TCFLAGS_CHECKED_GT_OPR | |
| 436 | TCFLAGS_CHECKED_CMP_PROC); |
| 437 | typentry->flags |= TCFLAGS_CHECKED_BTREE_OPCLASS; |
| 438 | } |
| 439 | |
| 440 | /* |
| 441 | * If we need to look up equality operator, and there's no btree opclass, |
| 442 | * force lookup of hash opclass. |
| 443 | */ |
| 444 | if ((flags & (TYPECACHE_EQ_OPR | TYPECACHE_EQ_OPR_FINFO)) && |
| 445 | !(typentry->flags & TCFLAGS_CHECKED_EQ_OPR) && |
| 446 | typentry->btree_opf == InvalidOid) |
| 447 | flags |= TYPECACHE_HASH_OPFAMILY; |
| 448 | |
| 449 | if ((flags & (TYPECACHE_HASH_PROC | TYPECACHE_HASH_PROC_FINFO | |
| 450 | TYPECACHE_HASH_EXTENDED_PROC | |
| 451 | TYPECACHE_HASH_EXTENDED_PROC_FINFO | |
| 452 | TYPECACHE_HASH_OPFAMILY)) && |
| 453 | !(typentry->flags & TCFLAGS_CHECKED_HASH_OPCLASS)) |
| 454 | { |
| 455 | Oid opclass; |
| 456 | |
| 457 | opclass = GetDefaultOpClass(type_id, HASH_AM_OID); |
| 458 | if (OidIsValid(opclass)) |
| 459 | { |
| 460 | typentry->hash_opf = get_opclass_family(opclass); |
| 461 | typentry->hash_opintype = get_opclass_input_type(opclass); |
| 462 | } |
| 463 | else |
| 464 | { |
| 465 | typentry->hash_opf = typentry->hash_opintype = InvalidOid; |
| 466 | } |
| 467 | |
| 468 | /* |
| 469 | * Reset information derived from hash opclass. We do *not* reset the |
| 470 | * eq_opr; if we already found one from the btree opclass, that |
| 471 | * decision is still good. |
| 472 | */ |
| 473 | typentry->flags &= ~(TCFLAGS_CHECKED_HASH_PROC | |
| 474 | TCFLAGS_CHECKED_HASH_EXTENDED_PROC); |
| 475 | typentry->flags |= TCFLAGS_CHECKED_HASH_OPCLASS; |
| 476 | } |
| 477 | |
| 478 | /* |
| 479 | * Look for requested operators and functions, if we haven't already. |
| 480 | */ |
| 481 | if ((flags & (TYPECACHE_EQ_OPR | TYPECACHE_EQ_OPR_FINFO)) && |
| 482 | !(typentry->flags & TCFLAGS_CHECKED_EQ_OPR)) |
| 483 | { |
| 484 | Oid eq_opr = InvalidOid; |
| 485 | |
| 486 | if (typentry->btree_opf != InvalidOid) |
| 487 | eq_opr = get_opfamily_member(typentry->btree_opf, |
| 488 | typentry->btree_opintype, |
| 489 | typentry->btree_opintype, |
| 490 | BTEqualStrategyNumber); |
| 491 | if (eq_opr == InvalidOid && |
| 492 | typentry->hash_opf != InvalidOid) |
| 493 | eq_opr = get_opfamily_member(typentry->hash_opf, |
| 494 | typentry->hash_opintype, |
| 495 | typentry->hash_opintype, |
| 496 | HTEqualStrategyNumber); |
| 497 | |
| 498 | /* |
| 499 | * If the proposed equality operator is array_eq or record_eq, check |
| 500 | * to see if the element type or column types support equality. If |
| 501 | * not, array_eq or record_eq would fail at runtime, so we don't want |
| 502 | * to report that the type has equality. (We can omit similar |
| 503 | * checking for ranges because ranges can't be created in the first |
| 504 | * place unless their subtypes support equality.) |
| 505 | */ |
| 506 | if (eq_opr == ARRAY_EQ_OP && |
| 507 | !array_element_has_equality(typentry)) |
| 508 | eq_opr = InvalidOid; |
| 509 | else if (eq_opr == RECORD_EQ_OP && |
| 510 | !record_fields_have_equality(typentry)) |
| 511 | eq_opr = InvalidOid; |
| 512 | |
| 513 | /* Force update of eq_opr_finfo only if we're changing state */ |
| 514 | if (typentry->eq_opr != eq_opr) |
| 515 | typentry->eq_opr_finfo.fn_oid = InvalidOid; |
| 516 | |
| 517 | typentry->eq_opr = eq_opr; |
| 518 | |
| 519 | /* |
| 520 | * Reset info about hash functions whenever we pick up new info about |
| 521 | * equality operator. This is so we can ensure that the hash |
| 522 | * functions match the operator. |
| 523 | */ |
| 524 | typentry->flags &= ~(TCFLAGS_CHECKED_HASH_PROC | |
| 525 | TCFLAGS_CHECKED_HASH_EXTENDED_PROC); |
| 526 | typentry->flags |= TCFLAGS_CHECKED_EQ_OPR; |
| 527 | } |
| 528 | if ((flags & TYPECACHE_LT_OPR) && |
| 529 | !(typentry->flags & TCFLAGS_CHECKED_LT_OPR)) |
| 530 | { |
| 531 | Oid lt_opr = InvalidOid; |
| 532 | |
| 533 | if (typentry->btree_opf != InvalidOid) |
| 534 | lt_opr = get_opfamily_member(typentry->btree_opf, |
| 535 | typentry->btree_opintype, |
| 536 | typentry->btree_opintype, |
| 537 | BTLessStrategyNumber); |
| 538 | |
| 539 | /* |
| 540 | * As above, make sure array_cmp or record_cmp will succeed; but again |
| 541 | * we need no special check for ranges. |
| 542 | */ |
| 543 | if (lt_opr == ARRAY_LT_OP && |
| 544 | !array_element_has_compare(typentry)) |
| 545 | lt_opr = InvalidOid; |
| 546 | else if (lt_opr == RECORD_LT_OP && |
| 547 | !record_fields_have_compare(typentry)) |
| 548 | lt_opr = InvalidOid; |
| 549 | |
| 550 | typentry->lt_opr = lt_opr; |
| 551 | typentry->flags |= TCFLAGS_CHECKED_LT_OPR; |
| 552 | } |
| 553 | if ((flags & TYPECACHE_GT_OPR) && |
| 554 | !(typentry->flags & TCFLAGS_CHECKED_GT_OPR)) |
| 555 | { |
| 556 | Oid gt_opr = InvalidOid; |
| 557 | |
| 558 | if (typentry->btree_opf != InvalidOid) |
| 559 | gt_opr = get_opfamily_member(typentry->btree_opf, |
| 560 | typentry->btree_opintype, |
| 561 | typentry->btree_opintype, |
| 562 | BTGreaterStrategyNumber); |
| 563 | |
| 564 | /* |
| 565 | * As above, make sure array_cmp or record_cmp will succeed; but again |
| 566 | * we need no special check for ranges. |
| 567 | */ |
| 568 | if (gt_opr == ARRAY_GT_OP && |
| 569 | !array_element_has_compare(typentry)) |
| 570 | gt_opr = InvalidOid; |
| 571 | else if (gt_opr == RECORD_GT_OP && |
| 572 | !record_fields_have_compare(typentry)) |
| 573 | gt_opr = InvalidOid; |
| 574 | |
| 575 | typentry->gt_opr = gt_opr; |
| 576 | typentry->flags |= TCFLAGS_CHECKED_GT_OPR; |
| 577 | } |
| 578 | if ((flags & (TYPECACHE_CMP_PROC | TYPECACHE_CMP_PROC_FINFO)) && |
| 579 | !(typentry->flags & TCFLAGS_CHECKED_CMP_PROC)) |
| 580 | { |
| 581 | Oid cmp_proc = InvalidOid; |
| 582 | |
| 583 | if (typentry->btree_opf != InvalidOid) |
| 584 | cmp_proc = get_opfamily_proc(typentry->btree_opf, |
| 585 | typentry->btree_opintype, |
| 586 | typentry->btree_opintype, |
| 587 | BTORDER_PROC); |
| 588 | |
| 589 | /* |
| 590 | * As above, make sure array_cmp or record_cmp will succeed; but again |
| 591 | * we need no special check for ranges. |
| 592 | */ |
| 593 | if (cmp_proc == F_BTARRAYCMP && |
| 594 | !array_element_has_compare(typentry)) |
| 595 | cmp_proc = InvalidOid; |
| 596 | else if (cmp_proc == F_BTRECORDCMP && |
| 597 | !record_fields_have_compare(typentry)) |
| 598 | cmp_proc = InvalidOid; |
| 599 | |
| 600 | /* Force update of cmp_proc_finfo only if we're changing state */ |
| 601 | if (typentry->cmp_proc != cmp_proc) |
| 602 | typentry->cmp_proc_finfo.fn_oid = InvalidOid; |
| 603 | |
| 604 | typentry->cmp_proc = cmp_proc; |
| 605 | typentry->flags |= TCFLAGS_CHECKED_CMP_PROC; |
| 606 | } |
| 607 | if ((flags & (TYPECACHE_HASH_PROC | TYPECACHE_HASH_PROC_FINFO)) && |
| 608 | !(typentry->flags & TCFLAGS_CHECKED_HASH_PROC)) |
| 609 | { |
| 610 | Oid hash_proc = InvalidOid; |
| 611 | |
| 612 | /* |
| 613 | * We insist that the eq_opr, if one has been determined, match the |
| 614 | * hash opclass; else report there is no hash function. |
| 615 | */ |
| 616 | if (typentry->hash_opf != InvalidOid && |
| 617 | (!OidIsValid(typentry->eq_opr) || |
| 618 | typentry->eq_opr == get_opfamily_member(typentry->hash_opf, |
| 619 | typentry->hash_opintype, |
| 620 | typentry->hash_opintype, |
| 621 | HTEqualStrategyNumber))) |
| 622 | hash_proc = get_opfamily_proc(typentry->hash_opf, |
| 623 | typentry->hash_opintype, |
| 624 | typentry->hash_opintype, |
| 625 | HASHSTANDARD_PROC); |
| 626 | |
| 627 | /* |
| 628 | * As above, make sure hash_array will succeed. We don't currently |
| 629 | * support hashing for composite types, but when we do, we'll need |
| 630 | * more logic here to check that case too. |
| 631 | */ |
| 632 | if (hash_proc == F_HASH_ARRAY && |
| 633 | !array_element_has_hashing(typentry)) |
| 634 | hash_proc = InvalidOid; |
| 635 | |
| 636 | /* |
| 637 | * Likewise for hash_range. |
| 638 | */ |
| 639 | if (hash_proc == F_HASH_RANGE && |
| 640 | !range_element_has_hashing(typentry)) |
| 641 | hash_proc = InvalidOid; |
| 642 | |
| 643 | /* Force update of hash_proc_finfo only if we're changing state */ |
| 644 | if (typentry->hash_proc != hash_proc) |
| 645 | typentry->hash_proc_finfo.fn_oid = InvalidOid; |
| 646 | |
| 647 | typentry->hash_proc = hash_proc; |
| 648 | typentry->flags |= TCFLAGS_CHECKED_HASH_PROC; |
| 649 | } |
| 650 | if ((flags & (TYPECACHE_HASH_EXTENDED_PROC | |
| 651 | TYPECACHE_HASH_EXTENDED_PROC_FINFO)) && |
| 652 | !(typentry->flags & TCFLAGS_CHECKED_HASH_EXTENDED_PROC)) |
| 653 | { |
| 654 | Oid hash_extended_proc = InvalidOid; |
| 655 | |
| 656 | /* |
| 657 | * We insist that the eq_opr, if one has been determined, match the |
| 658 | * hash opclass; else report there is no hash function. |
| 659 | */ |
| 660 | if (typentry->hash_opf != InvalidOid && |
| 661 | (!OidIsValid(typentry->eq_opr) || |
| 662 | typentry->eq_opr == get_opfamily_member(typentry->hash_opf, |
| 663 | typentry->hash_opintype, |
| 664 | typentry->hash_opintype, |
| 665 | HTEqualStrategyNumber))) |
| 666 | hash_extended_proc = get_opfamily_proc(typentry->hash_opf, |
| 667 | typentry->hash_opintype, |
| 668 | typentry->hash_opintype, |
| 669 | HASHEXTENDED_PROC); |
| 670 | |
| 671 | /* |
| 672 | * As above, make sure hash_array_extended will succeed. We don't |
| 673 | * currently support hashing for composite types, but when we do, |
| 674 | * we'll need more logic here to check that case too. |
| 675 | */ |
| 676 | if (hash_extended_proc == F_HASH_ARRAY_EXTENDED && |
| 677 | !array_element_has_extended_hashing(typentry)) |
| 678 | hash_extended_proc = InvalidOid; |
| 679 | |
| 680 | /* |
| 681 | * Likewise for hash_range_extended. |
| 682 | */ |
| 683 | if (hash_extended_proc == F_HASH_RANGE_EXTENDED && |
| 684 | !range_element_has_extended_hashing(typentry)) |
| 685 | hash_extended_proc = InvalidOid; |
| 686 | |
| 687 | /* Force update of proc finfo only if we're changing state */ |
| 688 | if (typentry->hash_extended_proc != hash_extended_proc) |
| 689 | typentry->hash_extended_proc_finfo.fn_oid = InvalidOid; |
| 690 | |
| 691 | typentry->hash_extended_proc = hash_extended_proc; |
| 692 | typentry->flags |= TCFLAGS_CHECKED_HASH_EXTENDED_PROC; |
| 693 | } |
| 694 | |
| 695 | /* |
| 696 | * Set up fmgr lookup info as requested |
| 697 | * |
| 698 | * Note: we tell fmgr the finfo structures live in CacheMemoryContext, |
| 699 | * which is not quite right (they're really in the hash table's private |
| 700 | * memory context) but this will do for our purposes. |
| 701 | * |
| 702 | * Note: the code above avoids invalidating the finfo structs unless the |
| 703 | * referenced operator/function OID actually changes. This is to prevent |
| 704 | * unnecessary leakage of any subsidiary data attached to an finfo, since |
| 705 | * that would cause session-lifespan memory leaks. |
| 706 | */ |
| 707 | if ((flags & TYPECACHE_EQ_OPR_FINFO) && |
| 708 | typentry->eq_opr_finfo.fn_oid == InvalidOid && |
| 709 | typentry->eq_opr != InvalidOid) |
| 710 | { |
| 711 | Oid eq_opr_func; |
| 712 | |
| 713 | eq_opr_func = get_opcode(typentry->eq_opr); |
| 714 | if (eq_opr_func != InvalidOid) |
| 715 | fmgr_info_cxt(eq_opr_func, &typentry->eq_opr_finfo, |
| 716 | CacheMemoryContext); |
| 717 | } |
| 718 | if ((flags & TYPECACHE_CMP_PROC_FINFO) && |
| 719 | typentry->cmp_proc_finfo.fn_oid == InvalidOid && |
| 720 | typentry->cmp_proc != InvalidOid) |
| 721 | { |
| 722 | fmgr_info_cxt(typentry->cmp_proc, &typentry->cmp_proc_finfo, |
| 723 | CacheMemoryContext); |
| 724 | } |
| 725 | if ((flags & TYPECACHE_HASH_PROC_FINFO) && |
| 726 | typentry->hash_proc_finfo.fn_oid == InvalidOid && |
| 727 | typentry->hash_proc != InvalidOid) |
| 728 | { |
| 729 | fmgr_info_cxt(typentry->hash_proc, &typentry->hash_proc_finfo, |
| 730 | CacheMemoryContext); |
| 731 | } |
| 732 | if ((flags & TYPECACHE_HASH_EXTENDED_PROC_FINFO) && |
| 733 | typentry->hash_extended_proc_finfo.fn_oid == InvalidOid && |
| 734 | typentry->hash_extended_proc != InvalidOid) |
| 735 | { |
| 736 | fmgr_info_cxt(typentry->hash_extended_proc, |
| 737 | &typentry->hash_extended_proc_finfo, |
| 738 | CacheMemoryContext); |
| 739 | } |
| 740 | |
| 741 | /* |
| 742 | * If it's a composite type (row type), get tupdesc if requested |
| 743 | */ |
| 744 | if ((flags & TYPECACHE_TUPDESC) && |
| 745 | typentry->tupDesc == NULL && |
| 746 | typentry->typtype == TYPTYPE_COMPOSITE) |
| 747 | { |
| 748 | load_typcache_tupdesc(typentry); |
| 749 | } |
| 750 | |
| 751 | /* |
| 752 | * If requested, get information about a range type |
| 753 | */ |
| 754 | if ((flags & TYPECACHE_RANGE_INFO) && |
| 755 | typentry->rngelemtype == NULL && |
| 756 | typentry->typtype == TYPTYPE_RANGE) |
| 757 | { |
| 758 | load_rangetype_info(typentry); |
| 759 | } |
| 760 | |
| 761 | /* |
| 762 | * If requested, get information about a domain type |
| 763 | */ |
| 764 | if ((flags & TYPECACHE_DOMAIN_BASE_INFO) && |
| 765 | typentry->domainBaseType == InvalidOid && |
| 766 | typentry->typtype == TYPTYPE_DOMAIN) |
| 767 | { |
| 768 | typentry->domainBaseTypmod = -1; |
| 769 | typentry->domainBaseType = |
| 770 | getBaseTypeAndTypmod(type_id, &typentry->domainBaseTypmod); |
| 771 | } |
| 772 | if ((flags & TYPECACHE_DOMAIN_CONSTR_INFO) && |
| 773 | (typentry->flags & TCFLAGS_CHECKED_DOMAIN_CONSTRAINTS) == 0 && |
| 774 | typentry->typtype == TYPTYPE_DOMAIN) |
| 775 | { |
| 776 | load_domaintype_info(typentry); |
| 777 | } |
| 778 | |
| 779 | return typentry; |
| 780 | } |
| 781 | |
| 782 | /* |
| 783 | * load_typcache_tupdesc --- helper routine to set up composite type's tupDesc |
| 784 | */ |
| 785 | static void |
| 786 | load_typcache_tupdesc(TypeCacheEntry *typentry) |
| 787 | { |
| 788 | Relation rel; |
| 789 | |
| 790 | if (!OidIsValid(typentry->typrelid)) /* should not happen */ |
| 791 | elog(ERROR, "invalid typrelid for composite type %u" , |
| 792 | typentry->type_id); |
| 793 | rel = relation_open(typentry->typrelid, AccessShareLock); |
| 794 | Assert(rel->rd_rel->reltype == typentry->type_id); |
| 795 | |
| 796 | /* |
| 797 | * Link to the tupdesc and increment its refcount (we assert it's a |
| 798 | * refcounted descriptor). We don't use IncrTupleDescRefCount() for this, |
| 799 | * because the reference mustn't be entered in the current resource owner; |
| 800 | * it can outlive the current query. |
| 801 | */ |
| 802 | typentry->tupDesc = RelationGetDescr(rel); |
| 803 | |
| 804 | Assert(typentry->tupDesc->tdrefcount > 0); |
| 805 | typentry->tupDesc->tdrefcount++; |
| 806 | |
| 807 | /* |
| 808 | * In future, we could take some pains to not change tupDesc_identifier if |
| 809 | * the tupdesc didn't really change; but for now it's not worth it. |
| 810 | */ |
| 811 | typentry->tupDesc_identifier = ++tupledesc_id_counter; |
| 812 | |
| 813 | relation_close(rel, AccessShareLock); |
| 814 | } |
| 815 | |
| 816 | /* |
| 817 | * load_rangetype_info --- helper routine to set up range type information |
| 818 | */ |
| 819 | static void |
| 820 | load_rangetype_info(TypeCacheEntry *typentry) |
| 821 | { |
| 822 | Form_pg_range pg_range; |
| 823 | HeapTuple tup; |
| 824 | Oid subtypeOid; |
| 825 | Oid opclassOid; |
| 826 | Oid canonicalOid; |
| 827 | Oid subdiffOid; |
| 828 | Oid opfamilyOid; |
| 829 | Oid opcintype; |
| 830 | Oid cmpFnOid; |
| 831 | |
| 832 | /* get information from pg_range */ |
| 833 | tup = SearchSysCache1(RANGETYPE, ObjectIdGetDatum(typentry->type_id)); |
| 834 | /* should not fail, since we already checked typtype ... */ |
| 835 | if (!HeapTupleIsValid(tup)) |
| 836 | elog(ERROR, "cache lookup failed for range type %u" , |
| 837 | typentry->type_id); |
| 838 | pg_range = (Form_pg_range) GETSTRUCT(tup); |
| 839 | |
| 840 | subtypeOid = pg_range->rngsubtype; |
| 841 | typentry->rng_collation = pg_range->rngcollation; |
| 842 | opclassOid = pg_range->rngsubopc; |
| 843 | canonicalOid = pg_range->rngcanonical; |
| 844 | subdiffOid = pg_range->rngsubdiff; |
| 845 | |
| 846 | ReleaseSysCache(tup); |
| 847 | |
| 848 | /* get opclass properties and look up the comparison function */ |
| 849 | opfamilyOid = get_opclass_family(opclassOid); |
| 850 | opcintype = get_opclass_input_type(opclassOid); |
| 851 | |
| 852 | cmpFnOid = get_opfamily_proc(opfamilyOid, opcintype, opcintype, |
| 853 | BTORDER_PROC); |
| 854 | if (!RegProcedureIsValid(cmpFnOid)) |
| 855 | elog(ERROR, "missing support function %d(%u,%u) in opfamily %u" , |
| 856 | BTORDER_PROC, opcintype, opcintype, opfamilyOid); |
| 857 | |
| 858 | /* set up cached fmgrinfo structs */ |
| 859 | fmgr_info_cxt(cmpFnOid, &typentry->rng_cmp_proc_finfo, |
| 860 | CacheMemoryContext); |
| 861 | if (OidIsValid(canonicalOid)) |
| 862 | fmgr_info_cxt(canonicalOid, &typentry->rng_canonical_finfo, |
| 863 | CacheMemoryContext); |
| 864 | if (OidIsValid(subdiffOid)) |
| 865 | fmgr_info_cxt(subdiffOid, &typentry->rng_subdiff_finfo, |
| 866 | CacheMemoryContext); |
| 867 | |
| 868 | /* Lastly, set up link to the element type --- this marks data valid */ |
| 869 | typentry->rngelemtype = lookup_type_cache(subtypeOid, 0); |
| 870 | } |
| 871 | |
| 872 | |
| 873 | /* |
| 874 | * load_domaintype_info --- helper routine to set up domain constraint info |
| 875 | * |
| 876 | * Note: we assume we're called in a relatively short-lived context, so it's |
| 877 | * okay to leak data into the current context while scanning pg_constraint. |
| 878 | * We build the new DomainConstraintCache data in a context underneath |
| 879 | * CurrentMemoryContext, and reparent it under CacheMemoryContext when |
| 880 | * complete. |
| 881 | */ |
| 882 | static void |
| 883 | load_domaintype_info(TypeCacheEntry *typentry) |
| 884 | { |
| 885 | Oid typeOid = typentry->type_id; |
| 886 | DomainConstraintCache *dcc; |
| 887 | bool notNull = false; |
| 888 | DomainConstraintState **ccons; |
| 889 | int cconslen; |
| 890 | Relation conRel; |
| 891 | MemoryContext oldcxt; |
| 892 | |
| 893 | /* |
| 894 | * If we're here, any existing constraint info is stale, so release it. |
| 895 | * For safety, be sure to null the link before trying to delete the data. |
| 896 | */ |
| 897 | if (typentry->domainData) |
| 898 | { |
| 899 | dcc = typentry->domainData; |
| 900 | typentry->domainData = NULL; |
| 901 | decr_dcc_refcount(dcc); |
| 902 | } |
| 903 | |
| 904 | /* |
| 905 | * We try to optimize the common case of no domain constraints, so don't |
| 906 | * create the dcc object and context until we find a constraint. Likewise |
| 907 | * for the temp sorting array. |
| 908 | */ |
| 909 | dcc = NULL; |
| 910 | ccons = NULL; |
| 911 | cconslen = 0; |
| 912 | |
| 913 | /* |
| 914 | * Scan pg_constraint for relevant constraints. We want to find |
| 915 | * constraints for not just this domain, but any ancestor domains, so the |
| 916 | * outer loop crawls up the domain stack. |
| 917 | */ |
| 918 | conRel = table_open(ConstraintRelationId, AccessShareLock); |
| 919 | |
| 920 | for (;;) |
| 921 | { |
| 922 | HeapTuple tup; |
| 923 | HeapTuple conTup; |
| 924 | Form_pg_type typTup; |
| 925 | int nccons = 0; |
| 926 | ScanKeyData key[1]; |
| 927 | SysScanDesc scan; |
| 928 | |
| 929 | tup = SearchSysCache1(TYPEOID, ObjectIdGetDatum(typeOid)); |
| 930 | if (!HeapTupleIsValid(tup)) |
| 931 | elog(ERROR, "cache lookup failed for type %u" , typeOid); |
| 932 | typTup = (Form_pg_type) GETSTRUCT(tup); |
| 933 | |
| 934 | if (typTup->typtype != TYPTYPE_DOMAIN) |
| 935 | { |
| 936 | /* Not a domain, so done */ |
| 937 | ReleaseSysCache(tup); |
| 938 | break; |
| 939 | } |
| 940 | |
| 941 | /* Test for NOT NULL Constraint */ |
| 942 | if (typTup->typnotnull) |
| 943 | notNull = true; |
| 944 | |
| 945 | /* Look for CHECK Constraints on this domain */ |
| 946 | ScanKeyInit(&key[0], |
| 947 | Anum_pg_constraint_contypid, |
| 948 | BTEqualStrategyNumber, F_OIDEQ, |
| 949 | ObjectIdGetDatum(typeOid)); |
| 950 | |
| 951 | scan = systable_beginscan(conRel, ConstraintTypidIndexId, true, |
| 952 | NULL, 1, key); |
| 953 | |
| 954 | while (HeapTupleIsValid(conTup = systable_getnext(scan))) |
| 955 | { |
| 956 | Form_pg_constraint c = (Form_pg_constraint) GETSTRUCT(conTup); |
| 957 | Datum val; |
| 958 | bool isNull; |
| 959 | char *constring; |
| 960 | Expr *check_expr; |
| 961 | DomainConstraintState *r; |
| 962 | |
| 963 | /* Ignore non-CHECK constraints (presently, shouldn't be any) */ |
| 964 | if (c->contype != CONSTRAINT_CHECK) |
| 965 | continue; |
| 966 | |
| 967 | /* Not expecting conbin to be NULL, but we'll test for it anyway */ |
| 968 | val = fastgetattr(conTup, Anum_pg_constraint_conbin, |
| 969 | conRel->rd_att, &isNull); |
| 970 | if (isNull) |
| 971 | elog(ERROR, "domain \"%s\" constraint \"%s\" has NULL conbin" , |
| 972 | NameStr(typTup->typname), NameStr(c->conname)); |
| 973 | |
| 974 | /* Convert conbin to C string in caller context */ |
| 975 | constring = TextDatumGetCString(val); |
| 976 | |
| 977 | /* Create the DomainConstraintCache object and context if needed */ |
| 978 | if (dcc == NULL) |
| 979 | { |
| 980 | MemoryContext cxt; |
| 981 | |
| 982 | cxt = AllocSetContextCreate(CurrentMemoryContext, |
| 983 | "Domain constraints" , |
| 984 | ALLOCSET_SMALL_SIZES); |
| 985 | dcc = (DomainConstraintCache *) |
| 986 | MemoryContextAlloc(cxt, sizeof(DomainConstraintCache)); |
| 987 | dcc->constraints = NIL; |
| 988 | dcc->dccContext = cxt; |
| 989 | dcc->dccRefCount = 0; |
| 990 | } |
| 991 | |
| 992 | /* Create node trees in DomainConstraintCache's context */ |
| 993 | oldcxt = MemoryContextSwitchTo(dcc->dccContext); |
| 994 | |
| 995 | check_expr = (Expr *) stringToNode(constring); |
| 996 | |
| 997 | /* |
| 998 | * Plan the expression, since ExecInitExpr will expect that. |
| 999 | * |
| 1000 | * Note: caching the result of expression_planner() is not very |
| 1001 | * good practice. Ideally we'd use a CachedExpression here so |
| 1002 | * that we would react promptly to, eg, changes in inlined |
| 1003 | * functions. However, because we don't support mutable domain |
| 1004 | * CHECK constraints, it's not really clear that it's worth the |
| 1005 | * extra overhead to do that. |
| 1006 | */ |
| 1007 | check_expr = expression_planner(check_expr); |
| 1008 | |
| 1009 | r = makeNode(DomainConstraintState); |
| 1010 | r->constrainttype = DOM_CONSTRAINT_CHECK; |
| 1011 | r->name = pstrdup(NameStr(c->conname)); |
| 1012 | r->check_expr = check_expr; |
| 1013 | r->check_exprstate = NULL; |
| 1014 | |
| 1015 | MemoryContextSwitchTo(oldcxt); |
| 1016 | |
| 1017 | /* Accumulate constraints in an array, for sorting below */ |
| 1018 | if (ccons == NULL) |
| 1019 | { |
| 1020 | cconslen = 8; |
| 1021 | ccons = (DomainConstraintState **) |
| 1022 | palloc(cconslen * sizeof(DomainConstraintState *)); |
| 1023 | } |
| 1024 | else if (nccons >= cconslen) |
| 1025 | { |
| 1026 | cconslen *= 2; |
| 1027 | ccons = (DomainConstraintState **) |
| 1028 | repalloc(ccons, cconslen * sizeof(DomainConstraintState *)); |
| 1029 | } |
| 1030 | ccons[nccons++] = r; |
| 1031 | } |
| 1032 | |
| 1033 | systable_endscan(scan); |
| 1034 | |
| 1035 | if (nccons > 0) |
| 1036 | { |
| 1037 | /* |
| 1038 | * Sort the items for this domain, so that CHECKs are applied in a |
| 1039 | * deterministic order. |
| 1040 | */ |
| 1041 | if (nccons > 1) |
| 1042 | qsort(ccons, nccons, sizeof(DomainConstraintState *), dcs_cmp); |
| 1043 | |
| 1044 | /* |
| 1045 | * Now attach them to the overall list. Use lcons() here because |
| 1046 | * constraints of parent domains should be applied earlier. |
| 1047 | */ |
| 1048 | oldcxt = MemoryContextSwitchTo(dcc->dccContext); |
| 1049 | while (nccons > 0) |
| 1050 | dcc->constraints = lcons(ccons[--nccons], dcc->constraints); |
| 1051 | MemoryContextSwitchTo(oldcxt); |
| 1052 | } |
| 1053 | |
| 1054 | /* loop to next domain in stack */ |
| 1055 | typeOid = typTup->typbasetype; |
| 1056 | ReleaseSysCache(tup); |
| 1057 | } |
| 1058 | |
| 1059 | table_close(conRel, AccessShareLock); |
| 1060 | |
| 1061 | /* |
| 1062 | * Only need to add one NOT NULL check regardless of how many domains in |
| 1063 | * the stack request it. |
| 1064 | */ |
| 1065 | if (notNull) |
| 1066 | { |
| 1067 | DomainConstraintState *r; |
| 1068 | |
| 1069 | /* Create the DomainConstraintCache object and context if needed */ |
| 1070 | if (dcc == NULL) |
| 1071 | { |
| 1072 | MemoryContext cxt; |
| 1073 | |
| 1074 | cxt = AllocSetContextCreate(CurrentMemoryContext, |
| 1075 | "Domain constraints" , |
| 1076 | ALLOCSET_SMALL_SIZES); |
| 1077 | dcc = (DomainConstraintCache *) |
| 1078 | MemoryContextAlloc(cxt, sizeof(DomainConstraintCache)); |
| 1079 | dcc->constraints = NIL; |
| 1080 | dcc->dccContext = cxt; |
| 1081 | dcc->dccRefCount = 0; |
| 1082 | } |
| 1083 | |
| 1084 | /* Create node trees in DomainConstraintCache's context */ |
| 1085 | oldcxt = MemoryContextSwitchTo(dcc->dccContext); |
| 1086 | |
| 1087 | r = makeNode(DomainConstraintState); |
| 1088 | |
| 1089 | r->constrainttype = DOM_CONSTRAINT_NOTNULL; |
| 1090 | r->name = pstrdup("NOT NULL" ); |
| 1091 | r->check_expr = NULL; |
| 1092 | r->check_exprstate = NULL; |
| 1093 | |
| 1094 | /* lcons to apply the nullness check FIRST */ |
| 1095 | dcc->constraints = lcons(r, dcc->constraints); |
| 1096 | |
| 1097 | MemoryContextSwitchTo(oldcxt); |
| 1098 | } |
| 1099 | |
| 1100 | /* |
| 1101 | * If we made a constraint object, move it into CacheMemoryContext and |
| 1102 | * attach it to the typcache entry. |
| 1103 | */ |
| 1104 | if (dcc) |
| 1105 | { |
| 1106 | MemoryContextSetParent(dcc->dccContext, CacheMemoryContext); |
| 1107 | typentry->domainData = dcc; |
| 1108 | dcc->dccRefCount++; /* count the typcache's reference */ |
| 1109 | } |
| 1110 | |
| 1111 | /* Either way, the typcache entry's domain data is now valid. */ |
| 1112 | typentry->flags |= TCFLAGS_CHECKED_DOMAIN_CONSTRAINTS; |
| 1113 | } |
| 1114 | |
| 1115 | /* |
| 1116 | * qsort comparator to sort DomainConstraintState pointers by name |
| 1117 | */ |
| 1118 | static int |
| 1119 | dcs_cmp(const void *a, const void *b) |
| 1120 | { |
| 1121 | const DomainConstraintState *const *ca = (const DomainConstraintState *const *) a; |
| 1122 | const DomainConstraintState *const *cb = (const DomainConstraintState *const *) b; |
| 1123 | |
| 1124 | return strcmp((*ca)->name, (*cb)->name); |
| 1125 | } |
| 1126 | |
| 1127 | /* |
| 1128 | * decr_dcc_refcount --- decrement a DomainConstraintCache's refcount, |
| 1129 | * and free it if no references remain |
| 1130 | */ |
| 1131 | static void |
| 1132 | decr_dcc_refcount(DomainConstraintCache *dcc) |
| 1133 | { |
| 1134 | Assert(dcc->dccRefCount > 0); |
| 1135 | if (--(dcc->dccRefCount) <= 0) |
| 1136 | MemoryContextDelete(dcc->dccContext); |
| 1137 | } |
| 1138 | |
| 1139 | /* |
| 1140 | * Context reset/delete callback for a DomainConstraintRef |
| 1141 | */ |
| 1142 | static void |
| 1143 | dccref_deletion_callback(void *arg) |
| 1144 | { |
| 1145 | DomainConstraintRef *ref = (DomainConstraintRef *) arg; |
| 1146 | DomainConstraintCache *dcc = ref->dcc; |
| 1147 | |
| 1148 | /* Paranoia --- be sure link is nulled before trying to release */ |
| 1149 | if (dcc) |
| 1150 | { |
| 1151 | ref->constraints = NIL; |
| 1152 | ref->dcc = NULL; |
| 1153 | decr_dcc_refcount(dcc); |
| 1154 | } |
| 1155 | } |
| 1156 | |
| 1157 | /* |
| 1158 | * prep_domain_constraints --- prepare domain constraints for execution |
| 1159 | * |
| 1160 | * The expression trees stored in the DomainConstraintCache's list are |
| 1161 | * converted to executable expression state trees stored in execctx. |
| 1162 | */ |
| 1163 | static List * |
| 1164 | prep_domain_constraints(List *constraints, MemoryContext execctx) |
| 1165 | { |
| 1166 | List *result = NIL; |
| 1167 | MemoryContext oldcxt; |
| 1168 | ListCell *lc; |
| 1169 | |
| 1170 | oldcxt = MemoryContextSwitchTo(execctx); |
| 1171 | |
| 1172 | foreach(lc, constraints) |
| 1173 | { |
| 1174 | DomainConstraintState *r = (DomainConstraintState *) lfirst(lc); |
| 1175 | DomainConstraintState *newr; |
| 1176 | |
| 1177 | newr = makeNode(DomainConstraintState); |
| 1178 | newr->constrainttype = r->constrainttype; |
| 1179 | newr->name = r->name; |
| 1180 | newr->check_expr = r->check_expr; |
| 1181 | newr->check_exprstate = ExecInitExpr(r->check_expr, NULL); |
| 1182 | |
| 1183 | result = lappend(result, newr); |
| 1184 | } |
| 1185 | |
| 1186 | MemoryContextSwitchTo(oldcxt); |
| 1187 | |
| 1188 | return result; |
| 1189 | } |
| 1190 | |
| 1191 | /* |
| 1192 | * InitDomainConstraintRef --- initialize a DomainConstraintRef struct |
| 1193 | * |
| 1194 | * Caller must tell us the MemoryContext in which the DomainConstraintRef |
| 1195 | * lives. The ref will be cleaned up when that context is reset/deleted. |
| 1196 | * |
| 1197 | * Caller must also tell us whether it wants check_exprstate fields to be |
| 1198 | * computed in the DomainConstraintState nodes attached to this ref. |
| 1199 | * If it doesn't, we need not make a copy of the DomainConstraintState list. |
| 1200 | */ |
| 1201 | void |
| 1202 | InitDomainConstraintRef(Oid type_id, DomainConstraintRef *ref, |
| 1203 | MemoryContext refctx, bool need_exprstate) |
| 1204 | { |
| 1205 | /* Look up the typcache entry --- we assume it survives indefinitely */ |
| 1206 | ref->tcache = lookup_type_cache(type_id, TYPECACHE_DOMAIN_CONSTR_INFO); |
| 1207 | ref->need_exprstate = need_exprstate; |
| 1208 | /* For safety, establish the callback before acquiring a refcount */ |
| 1209 | ref->refctx = refctx; |
| 1210 | ref->dcc = NULL; |
| 1211 | ref->callback.func = dccref_deletion_callback; |
| 1212 | ref->callback.arg = (void *) ref; |
| 1213 | MemoryContextRegisterResetCallback(refctx, &ref->callback); |
| 1214 | /* Acquire refcount if there are constraints, and set up exported list */ |
| 1215 | if (ref->tcache->domainData) |
| 1216 | { |
| 1217 | ref->dcc = ref->tcache->domainData; |
| 1218 | ref->dcc->dccRefCount++; |
| 1219 | if (ref->need_exprstate) |
| 1220 | ref->constraints = prep_domain_constraints(ref->dcc->constraints, |
| 1221 | ref->refctx); |
| 1222 | else |
| 1223 | ref->constraints = ref->dcc->constraints; |
| 1224 | } |
| 1225 | else |
| 1226 | ref->constraints = NIL; |
| 1227 | } |
| 1228 | |
| 1229 | /* |
| 1230 | * UpdateDomainConstraintRef --- recheck validity of domain constraint info |
| 1231 | * |
| 1232 | * If the domain's constraint set changed, ref->constraints is updated to |
| 1233 | * point at a new list of cached constraints. |
| 1234 | * |
| 1235 | * In the normal case where nothing happened to the domain, this is cheap |
| 1236 | * enough that it's reasonable (and expected) to check before *each* use |
| 1237 | * of the constraint info. |
| 1238 | */ |
| 1239 | void |
| 1240 | UpdateDomainConstraintRef(DomainConstraintRef *ref) |
| 1241 | { |
| 1242 | TypeCacheEntry *typentry = ref->tcache; |
| 1243 | |
| 1244 | /* Make sure typcache entry's data is up to date */ |
| 1245 | if ((typentry->flags & TCFLAGS_CHECKED_DOMAIN_CONSTRAINTS) == 0 && |
| 1246 | typentry->typtype == TYPTYPE_DOMAIN) |
| 1247 | load_domaintype_info(typentry); |
| 1248 | |
| 1249 | /* Transfer to ref object if there's new info, adjusting refcounts */ |
| 1250 | if (ref->dcc != typentry->domainData) |
| 1251 | { |
| 1252 | /* Paranoia --- be sure link is nulled before trying to release */ |
| 1253 | DomainConstraintCache *dcc = ref->dcc; |
| 1254 | |
| 1255 | if (dcc) |
| 1256 | { |
| 1257 | /* |
| 1258 | * Note: we just leak the previous list of executable domain |
| 1259 | * constraints. Alternatively, we could keep those in a child |
| 1260 | * context of ref->refctx and free that context at this point. |
| 1261 | * However, in practice this code path will be taken so seldom |
| 1262 | * that the extra bookkeeping for a child context doesn't seem |
| 1263 | * worthwhile; we'll just allow a leak for the lifespan of refctx. |
| 1264 | */ |
| 1265 | ref->constraints = NIL; |
| 1266 | ref->dcc = NULL; |
| 1267 | decr_dcc_refcount(dcc); |
| 1268 | } |
| 1269 | dcc = typentry->domainData; |
| 1270 | if (dcc) |
| 1271 | { |
| 1272 | ref->dcc = dcc; |
| 1273 | dcc->dccRefCount++; |
| 1274 | if (ref->need_exprstate) |
| 1275 | ref->constraints = prep_domain_constraints(dcc->constraints, |
| 1276 | ref->refctx); |
| 1277 | else |
| 1278 | ref->constraints = dcc->constraints; |
| 1279 | } |
| 1280 | } |
| 1281 | } |
| 1282 | |
| 1283 | /* |
| 1284 | * DomainHasConstraints --- utility routine to check if a domain has constraints |
| 1285 | * |
| 1286 | * This is defined to return false, not fail, if type is not a domain. |
| 1287 | */ |
| 1288 | bool |
| 1289 | DomainHasConstraints(Oid type_id) |
| 1290 | { |
| 1291 | TypeCacheEntry *typentry; |
| 1292 | |
| 1293 | /* |
| 1294 | * Note: a side effect is to cause the typcache's domain data to become |
| 1295 | * valid. This is fine since we'll likely need it soon if there is any. |
| 1296 | */ |
| 1297 | typentry = lookup_type_cache(type_id, TYPECACHE_DOMAIN_CONSTR_INFO); |
| 1298 | |
| 1299 | return (typentry->domainData != NULL); |
| 1300 | } |
| 1301 | |
| 1302 | |
| 1303 | /* |
| 1304 | * array_element_has_equality and friends are helper routines to check |
| 1305 | * whether we should believe that array_eq and related functions will work |
| 1306 | * on the given array type or composite type. |
| 1307 | * |
| 1308 | * The logic above may call these repeatedly on the same type entry, so we |
| 1309 | * make use of the typentry->flags field to cache the results once known. |
| 1310 | * Also, we assume that we'll probably want all these facts about the type |
| 1311 | * if we want any, so we cache them all using only one lookup of the |
| 1312 | * component datatype(s). |
| 1313 | */ |
| 1314 | |
| 1315 | static bool |
| 1316 | array_element_has_equality(TypeCacheEntry *typentry) |
| 1317 | { |
| 1318 | if (!(typentry->flags & TCFLAGS_CHECKED_ELEM_PROPERTIES)) |
| 1319 | cache_array_element_properties(typentry); |
| 1320 | return (typentry->flags & TCFLAGS_HAVE_ELEM_EQUALITY) != 0; |
| 1321 | } |
| 1322 | |
| 1323 | static bool |
| 1324 | array_element_has_compare(TypeCacheEntry *typentry) |
| 1325 | { |
| 1326 | if (!(typentry->flags & TCFLAGS_CHECKED_ELEM_PROPERTIES)) |
| 1327 | cache_array_element_properties(typentry); |
| 1328 | return (typentry->flags & TCFLAGS_HAVE_ELEM_COMPARE) != 0; |
| 1329 | } |
| 1330 | |
| 1331 | static bool |
| 1332 | array_element_has_hashing(TypeCacheEntry *typentry) |
| 1333 | { |
| 1334 | if (!(typentry->flags & TCFLAGS_CHECKED_ELEM_PROPERTIES)) |
| 1335 | cache_array_element_properties(typentry); |
| 1336 | return (typentry->flags & TCFLAGS_HAVE_ELEM_HASHING) != 0; |
| 1337 | } |
| 1338 | |
| 1339 | static bool |
| 1340 | array_element_has_extended_hashing(TypeCacheEntry *typentry) |
| 1341 | { |
| 1342 | if (!(typentry->flags & TCFLAGS_CHECKED_ELEM_PROPERTIES)) |
| 1343 | cache_array_element_properties(typentry); |
| 1344 | return (typentry->flags & TCFLAGS_HAVE_ELEM_EXTENDED_HASHING) != 0; |
| 1345 | } |
| 1346 | |
| 1347 | static void |
| 1348 | cache_array_element_properties(TypeCacheEntry *typentry) |
| 1349 | { |
| 1350 | Oid elem_type = get_base_element_type(typentry->type_id); |
| 1351 | |
| 1352 | if (OidIsValid(elem_type)) |
| 1353 | { |
| 1354 | TypeCacheEntry *elementry; |
| 1355 | |
| 1356 | elementry = lookup_type_cache(elem_type, |
| 1357 | TYPECACHE_EQ_OPR | |
| 1358 | TYPECACHE_CMP_PROC | |
| 1359 | TYPECACHE_HASH_PROC | |
| 1360 | TYPECACHE_HASH_EXTENDED_PROC); |
| 1361 | if (OidIsValid(elementry->eq_opr)) |
| 1362 | typentry->flags |= TCFLAGS_HAVE_ELEM_EQUALITY; |
| 1363 | if (OidIsValid(elementry->cmp_proc)) |
| 1364 | typentry->flags |= TCFLAGS_HAVE_ELEM_COMPARE; |
| 1365 | if (OidIsValid(elementry->hash_proc)) |
| 1366 | typentry->flags |= TCFLAGS_HAVE_ELEM_HASHING; |
| 1367 | if (OidIsValid(elementry->hash_extended_proc)) |
| 1368 | typentry->flags |= TCFLAGS_HAVE_ELEM_EXTENDED_HASHING; |
| 1369 | } |
| 1370 | typentry->flags |= TCFLAGS_CHECKED_ELEM_PROPERTIES; |
| 1371 | } |
| 1372 | |
| 1373 | /* |
| 1374 | * Likewise, some helper functions for composite types. |
| 1375 | */ |
| 1376 | |
| 1377 | static bool |
| 1378 | record_fields_have_equality(TypeCacheEntry *typentry) |
| 1379 | { |
| 1380 | if (!(typentry->flags & TCFLAGS_CHECKED_FIELD_PROPERTIES)) |
| 1381 | cache_record_field_properties(typentry); |
| 1382 | return (typentry->flags & TCFLAGS_HAVE_FIELD_EQUALITY) != 0; |
| 1383 | } |
| 1384 | |
| 1385 | static bool |
| 1386 | record_fields_have_compare(TypeCacheEntry *typentry) |
| 1387 | { |
| 1388 | if (!(typentry->flags & TCFLAGS_CHECKED_FIELD_PROPERTIES)) |
| 1389 | cache_record_field_properties(typentry); |
| 1390 | return (typentry->flags & TCFLAGS_HAVE_FIELD_COMPARE) != 0; |
| 1391 | } |
| 1392 | |
| 1393 | static void |
| 1394 | cache_record_field_properties(TypeCacheEntry *typentry) |
| 1395 | { |
| 1396 | /* |
| 1397 | * For type RECORD, we can't really tell what will work, since we don't |
| 1398 | * have access here to the specific anonymous type. Just assume that |
| 1399 | * everything will (we may get a failure at runtime ...) |
| 1400 | */ |
| 1401 | if (typentry->type_id == RECORDOID) |
| 1402 | typentry->flags |= (TCFLAGS_HAVE_FIELD_EQUALITY | |
| 1403 | TCFLAGS_HAVE_FIELD_COMPARE); |
| 1404 | else if (typentry->typtype == TYPTYPE_COMPOSITE) |
| 1405 | { |
| 1406 | TupleDesc tupdesc; |
| 1407 | int newflags; |
| 1408 | int i; |
| 1409 | |
| 1410 | /* Fetch composite type's tupdesc if we don't have it already */ |
| 1411 | if (typentry->tupDesc == NULL) |
| 1412 | load_typcache_tupdesc(typentry); |
| 1413 | tupdesc = typentry->tupDesc; |
| 1414 | |
| 1415 | /* Must bump the refcount while we do additional catalog lookups */ |
| 1416 | IncrTupleDescRefCount(tupdesc); |
| 1417 | |
| 1418 | /* Have each property if all non-dropped fields have the property */ |
| 1419 | newflags = (TCFLAGS_HAVE_FIELD_EQUALITY | |
| 1420 | TCFLAGS_HAVE_FIELD_COMPARE); |
| 1421 | for (i = 0; i < tupdesc->natts; i++) |
| 1422 | { |
| 1423 | TypeCacheEntry *fieldentry; |
| 1424 | Form_pg_attribute attr = TupleDescAttr(tupdesc, i); |
| 1425 | |
| 1426 | if (attr->attisdropped) |
| 1427 | continue; |
| 1428 | |
| 1429 | fieldentry = lookup_type_cache(attr->atttypid, |
| 1430 | TYPECACHE_EQ_OPR | |
| 1431 | TYPECACHE_CMP_PROC); |
| 1432 | if (!OidIsValid(fieldentry->eq_opr)) |
| 1433 | newflags &= ~TCFLAGS_HAVE_FIELD_EQUALITY; |
| 1434 | if (!OidIsValid(fieldentry->cmp_proc)) |
| 1435 | newflags &= ~TCFLAGS_HAVE_FIELD_COMPARE; |
| 1436 | |
| 1437 | /* We can drop out of the loop once we disprove all bits */ |
| 1438 | if (newflags == 0) |
| 1439 | break; |
| 1440 | } |
| 1441 | typentry->flags |= newflags; |
| 1442 | |
| 1443 | DecrTupleDescRefCount(tupdesc); |
| 1444 | } |
| 1445 | else if (typentry->typtype == TYPTYPE_DOMAIN) |
| 1446 | { |
| 1447 | /* If it's domain over composite, copy base type's properties */ |
| 1448 | TypeCacheEntry *baseentry; |
| 1449 | |
| 1450 | /* load up basetype info if we didn't already */ |
| 1451 | if (typentry->domainBaseType == InvalidOid) |
| 1452 | { |
| 1453 | typentry->domainBaseTypmod = -1; |
| 1454 | typentry->domainBaseType = |
| 1455 | getBaseTypeAndTypmod(typentry->type_id, |
| 1456 | &typentry->domainBaseTypmod); |
| 1457 | } |
| 1458 | baseentry = lookup_type_cache(typentry->domainBaseType, |
| 1459 | TYPECACHE_EQ_OPR | |
| 1460 | TYPECACHE_CMP_PROC); |
| 1461 | if (baseentry->typtype == TYPTYPE_COMPOSITE) |
| 1462 | { |
| 1463 | typentry->flags |= TCFLAGS_DOMAIN_BASE_IS_COMPOSITE; |
| 1464 | typentry->flags |= baseentry->flags & (TCFLAGS_HAVE_FIELD_EQUALITY | |
| 1465 | TCFLAGS_HAVE_FIELD_COMPARE); |
| 1466 | } |
| 1467 | } |
| 1468 | typentry->flags |= TCFLAGS_CHECKED_FIELD_PROPERTIES; |
| 1469 | } |
| 1470 | |
| 1471 | /* |
| 1472 | * Likewise, some helper functions for range types. |
| 1473 | * |
| 1474 | * We can borrow the flag bits for array element properties to use for range |
| 1475 | * element properties, since those flag bits otherwise have no use in a |
| 1476 | * range type's typcache entry. |
| 1477 | */ |
| 1478 | |
| 1479 | static bool |
| 1480 | range_element_has_hashing(TypeCacheEntry *typentry) |
| 1481 | { |
| 1482 | if (!(typentry->flags & TCFLAGS_CHECKED_ELEM_PROPERTIES)) |
| 1483 | cache_range_element_properties(typentry); |
| 1484 | return (typentry->flags & TCFLAGS_HAVE_ELEM_HASHING) != 0; |
| 1485 | } |
| 1486 | |
| 1487 | static bool |
| 1488 | range_element_has_extended_hashing(TypeCacheEntry *typentry) |
| 1489 | { |
| 1490 | if (!(typentry->flags & TCFLAGS_CHECKED_ELEM_PROPERTIES)) |
| 1491 | cache_range_element_properties(typentry); |
| 1492 | return (typentry->flags & TCFLAGS_HAVE_ELEM_EXTENDED_HASHING) != 0; |
| 1493 | } |
| 1494 | |
| 1495 | static void |
| 1496 | cache_range_element_properties(TypeCacheEntry *typentry) |
| 1497 | { |
| 1498 | /* load up subtype link if we didn't already */ |
| 1499 | if (typentry->rngelemtype == NULL && |
| 1500 | typentry->typtype == TYPTYPE_RANGE) |
| 1501 | load_rangetype_info(typentry); |
| 1502 | |
| 1503 | if (typentry->rngelemtype != NULL) |
| 1504 | { |
| 1505 | TypeCacheEntry *elementry; |
| 1506 | |
| 1507 | /* might need to calculate subtype's hash function properties */ |
| 1508 | elementry = lookup_type_cache(typentry->rngelemtype->type_id, |
| 1509 | TYPECACHE_HASH_PROC | |
| 1510 | TYPECACHE_HASH_EXTENDED_PROC); |
| 1511 | if (OidIsValid(elementry->hash_proc)) |
| 1512 | typentry->flags |= TCFLAGS_HAVE_ELEM_HASHING; |
| 1513 | if (OidIsValid(elementry->hash_extended_proc)) |
| 1514 | typentry->flags |= TCFLAGS_HAVE_ELEM_EXTENDED_HASHING; |
| 1515 | } |
| 1516 | typentry->flags |= TCFLAGS_CHECKED_ELEM_PROPERTIES; |
| 1517 | } |
| 1518 | |
| 1519 | /* |
| 1520 | * Make sure that RecordCacheArray and RecordIdentifierArray are large enough |
| 1521 | * to store 'typmod'. |
| 1522 | */ |
| 1523 | static void |
| 1524 | ensure_record_cache_typmod_slot_exists(int32 typmod) |
| 1525 | { |
| 1526 | if (RecordCacheArray == NULL) |
| 1527 | { |
| 1528 | RecordCacheArray = (TupleDesc *) |
| 1529 | MemoryContextAllocZero(CacheMemoryContext, 64 * sizeof(TupleDesc)); |
| 1530 | RecordIdentifierArray = (uint64 *) |
| 1531 | MemoryContextAllocZero(CacheMemoryContext, 64 * sizeof(uint64)); |
| 1532 | RecordCacheArrayLen = 64; |
| 1533 | } |
| 1534 | |
| 1535 | if (typmod >= RecordCacheArrayLen) |
| 1536 | { |
| 1537 | int32 newlen = RecordCacheArrayLen * 2; |
| 1538 | |
| 1539 | while (typmod >= newlen) |
| 1540 | newlen *= 2; |
| 1541 | |
| 1542 | RecordCacheArray = (TupleDesc *) repalloc(RecordCacheArray, |
| 1543 | newlen * sizeof(TupleDesc)); |
| 1544 | memset(RecordCacheArray + RecordCacheArrayLen, 0, |
| 1545 | (newlen - RecordCacheArrayLen) * sizeof(TupleDesc)); |
| 1546 | RecordIdentifierArray = (uint64 *) repalloc(RecordIdentifierArray, |
| 1547 | newlen * sizeof(uint64)); |
| 1548 | memset(RecordIdentifierArray + RecordCacheArrayLen, 0, |
| 1549 | (newlen - RecordCacheArrayLen) * sizeof(uint64)); |
| 1550 | RecordCacheArrayLen = newlen; |
| 1551 | } |
| 1552 | } |
| 1553 | |
| 1554 | /* |
| 1555 | * lookup_rowtype_tupdesc_internal --- internal routine to lookup a rowtype |
| 1556 | * |
| 1557 | * Same API as lookup_rowtype_tupdesc_noerror, but the returned tupdesc |
| 1558 | * hasn't had its refcount bumped. |
| 1559 | */ |
| 1560 | static TupleDesc |
| 1561 | lookup_rowtype_tupdesc_internal(Oid type_id, int32 typmod, bool noError) |
| 1562 | { |
| 1563 | if (type_id != RECORDOID) |
| 1564 | { |
| 1565 | /* |
| 1566 | * It's a named composite type, so use the regular typcache. |
| 1567 | */ |
| 1568 | TypeCacheEntry *typentry; |
| 1569 | |
| 1570 | typentry = lookup_type_cache(type_id, TYPECACHE_TUPDESC); |
| 1571 | if (typentry->tupDesc == NULL && !noError) |
| 1572 | ereport(ERROR, |
| 1573 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 1574 | errmsg("type %s is not composite" , |
| 1575 | format_type_be(type_id)))); |
| 1576 | return typentry->tupDesc; |
| 1577 | } |
| 1578 | else |
| 1579 | { |
| 1580 | /* |
| 1581 | * It's a transient record type, so look in our record-type table. |
| 1582 | */ |
| 1583 | if (typmod >= 0) |
| 1584 | { |
| 1585 | /* It is already in our local cache? */ |
| 1586 | if (typmod < RecordCacheArrayLen && |
| 1587 | RecordCacheArray[typmod] != NULL) |
| 1588 | return RecordCacheArray[typmod]; |
| 1589 | |
| 1590 | /* Are we attached to a shared record typmod registry? */ |
| 1591 | if (CurrentSession->shared_typmod_registry != NULL) |
| 1592 | { |
| 1593 | SharedTypmodTableEntry *entry; |
| 1594 | |
| 1595 | /* Try to find it in the shared typmod index. */ |
| 1596 | entry = dshash_find(CurrentSession->shared_typmod_table, |
| 1597 | &typmod, false); |
| 1598 | if (entry != NULL) |
| 1599 | { |
| 1600 | TupleDesc tupdesc; |
| 1601 | |
| 1602 | tupdesc = (TupleDesc) |
| 1603 | dsa_get_address(CurrentSession->area, |
| 1604 | entry->shared_tupdesc); |
| 1605 | Assert(typmod == tupdesc->tdtypmod); |
| 1606 | |
| 1607 | /* We may need to extend the local RecordCacheArray. */ |
| 1608 | ensure_record_cache_typmod_slot_exists(typmod); |
| 1609 | |
| 1610 | /* |
| 1611 | * Our local array can now point directly to the TupleDesc |
| 1612 | * in shared memory, which is non-reference-counted. |
| 1613 | */ |
| 1614 | RecordCacheArray[typmod] = tupdesc; |
| 1615 | Assert(tupdesc->tdrefcount == -1); |
| 1616 | |
| 1617 | /* |
| 1618 | * We don't share tupdesc identifiers across processes, so |
| 1619 | * assign one locally. |
| 1620 | */ |
| 1621 | RecordIdentifierArray[typmod] = ++tupledesc_id_counter; |
| 1622 | |
| 1623 | dshash_release_lock(CurrentSession->shared_typmod_table, |
| 1624 | entry); |
| 1625 | |
| 1626 | return RecordCacheArray[typmod]; |
| 1627 | } |
| 1628 | } |
| 1629 | } |
| 1630 | |
| 1631 | if (!noError) |
| 1632 | ereport(ERROR, |
| 1633 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 1634 | errmsg("record type has not been registered" ))); |
| 1635 | return NULL; |
| 1636 | } |
| 1637 | } |
| 1638 | |
| 1639 | /* |
| 1640 | * lookup_rowtype_tupdesc |
| 1641 | * |
| 1642 | * Given a typeid/typmod that should describe a known composite type, |
| 1643 | * return the tuple descriptor for the type. Will ereport on failure. |
| 1644 | * (Use ereport because this is reachable with user-specified OIDs, |
| 1645 | * for example from record_in().) |
| 1646 | * |
| 1647 | * Note: on success, we increment the refcount of the returned TupleDesc, |
| 1648 | * and log the reference in CurrentResourceOwner. Caller should call |
| 1649 | * ReleaseTupleDesc or DecrTupleDescRefCount when done using the tupdesc. |
| 1650 | */ |
| 1651 | TupleDesc |
| 1652 | lookup_rowtype_tupdesc(Oid type_id, int32 typmod) |
| 1653 | { |
| 1654 | TupleDesc tupDesc; |
| 1655 | |
| 1656 | tupDesc = lookup_rowtype_tupdesc_internal(type_id, typmod, false); |
| 1657 | PinTupleDesc(tupDesc); |
| 1658 | return tupDesc; |
| 1659 | } |
| 1660 | |
| 1661 | /* |
| 1662 | * lookup_rowtype_tupdesc_noerror |
| 1663 | * |
| 1664 | * As above, but if the type is not a known composite type and noError |
| 1665 | * is true, returns NULL instead of ereport'ing. (Note that if a bogus |
| 1666 | * type_id is passed, you'll get an ereport anyway.) |
| 1667 | */ |
| 1668 | TupleDesc |
| 1669 | lookup_rowtype_tupdesc_noerror(Oid type_id, int32 typmod, bool noError) |
| 1670 | { |
| 1671 | TupleDesc tupDesc; |
| 1672 | |
| 1673 | tupDesc = lookup_rowtype_tupdesc_internal(type_id, typmod, noError); |
| 1674 | if (tupDesc != NULL) |
| 1675 | PinTupleDesc(tupDesc); |
| 1676 | return tupDesc; |
| 1677 | } |
| 1678 | |
| 1679 | /* |
| 1680 | * lookup_rowtype_tupdesc_copy |
| 1681 | * |
| 1682 | * Like lookup_rowtype_tupdesc(), but the returned TupleDesc has been |
| 1683 | * copied into the CurrentMemoryContext and is not reference-counted. |
| 1684 | */ |
| 1685 | TupleDesc |
| 1686 | lookup_rowtype_tupdesc_copy(Oid type_id, int32 typmod) |
| 1687 | { |
| 1688 | TupleDesc tmp; |
| 1689 | |
| 1690 | tmp = lookup_rowtype_tupdesc_internal(type_id, typmod, false); |
| 1691 | return CreateTupleDescCopyConstr(tmp); |
| 1692 | } |
| 1693 | |
| 1694 | /* |
| 1695 | * lookup_rowtype_tupdesc_domain |
| 1696 | * |
| 1697 | * Same as lookup_rowtype_tupdesc_noerror(), except that the type can also be |
| 1698 | * a domain over a named composite type; so this is effectively equivalent to |
| 1699 | * lookup_rowtype_tupdesc_noerror(getBaseType(type_id), typmod, noError) |
| 1700 | * except for being a tad faster. |
| 1701 | * |
| 1702 | * Note: the reason we don't fold the look-through-domain behavior into plain |
| 1703 | * lookup_rowtype_tupdesc() is that we want callers to know they might be |
| 1704 | * dealing with a domain. Otherwise they might construct a tuple that should |
| 1705 | * be of the domain type, but not apply domain constraints. |
| 1706 | */ |
| 1707 | TupleDesc |
| 1708 | lookup_rowtype_tupdesc_domain(Oid type_id, int32 typmod, bool noError) |
| 1709 | { |
| 1710 | TupleDesc tupDesc; |
| 1711 | |
| 1712 | if (type_id != RECORDOID) |
| 1713 | { |
| 1714 | /* |
| 1715 | * Check for domain or named composite type. We might as well load |
| 1716 | * whichever data is needed. |
| 1717 | */ |
| 1718 | TypeCacheEntry *typentry; |
| 1719 | |
| 1720 | typentry = lookup_type_cache(type_id, |
| 1721 | TYPECACHE_TUPDESC | |
| 1722 | TYPECACHE_DOMAIN_BASE_INFO); |
| 1723 | if (typentry->typtype == TYPTYPE_DOMAIN) |
| 1724 | return lookup_rowtype_tupdesc_noerror(typentry->domainBaseType, |
| 1725 | typentry->domainBaseTypmod, |
| 1726 | noError); |
| 1727 | if (typentry->tupDesc == NULL && !noError) |
| 1728 | ereport(ERROR, |
| 1729 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 1730 | errmsg("type %s is not composite" , |
| 1731 | format_type_be(type_id)))); |
| 1732 | tupDesc = typentry->tupDesc; |
| 1733 | } |
| 1734 | else |
| 1735 | tupDesc = lookup_rowtype_tupdesc_internal(type_id, typmod, noError); |
| 1736 | if (tupDesc != NULL) |
| 1737 | PinTupleDesc(tupDesc); |
| 1738 | return tupDesc; |
| 1739 | } |
| 1740 | |
| 1741 | /* |
| 1742 | * Hash function for the hash table of RecordCacheEntry. |
| 1743 | */ |
| 1744 | static uint32 |
| 1745 | record_type_typmod_hash(const void *data, size_t size) |
| 1746 | { |
| 1747 | RecordCacheEntry *entry = (RecordCacheEntry *) data; |
| 1748 | |
| 1749 | return hashTupleDesc(entry->tupdesc); |
| 1750 | } |
| 1751 | |
| 1752 | /* |
| 1753 | * Match function for the hash table of RecordCacheEntry. |
| 1754 | */ |
| 1755 | static int |
| 1756 | record_type_typmod_compare(const void *a, const void *b, size_t size) |
| 1757 | { |
| 1758 | RecordCacheEntry *left = (RecordCacheEntry *) a; |
| 1759 | RecordCacheEntry *right = (RecordCacheEntry *) b; |
| 1760 | |
| 1761 | return equalTupleDescs(left->tupdesc, right->tupdesc) ? 0 : 1; |
| 1762 | } |
| 1763 | |
| 1764 | /* |
| 1765 | * assign_record_type_typmod |
| 1766 | * |
| 1767 | * Given a tuple descriptor for a RECORD type, find or create a cache entry |
| 1768 | * for the type, and set the tupdesc's tdtypmod field to a value that will |
| 1769 | * identify this cache entry to lookup_rowtype_tupdesc. |
| 1770 | */ |
| 1771 | void |
| 1772 | assign_record_type_typmod(TupleDesc tupDesc) |
| 1773 | { |
| 1774 | RecordCacheEntry *recentry; |
| 1775 | TupleDesc entDesc; |
| 1776 | bool found; |
| 1777 | MemoryContext oldcxt; |
| 1778 | |
| 1779 | Assert(tupDesc->tdtypeid == RECORDOID); |
| 1780 | |
| 1781 | if (RecordCacheHash == NULL) |
| 1782 | { |
| 1783 | /* First time through: initialize the hash table */ |
| 1784 | HASHCTL ctl; |
| 1785 | |
| 1786 | MemSet(&ctl, 0, sizeof(ctl)); |
| 1787 | ctl.keysize = sizeof(TupleDesc); /* just the pointer */ |
| 1788 | ctl.entrysize = sizeof(RecordCacheEntry); |
| 1789 | ctl.hash = record_type_typmod_hash; |
| 1790 | ctl.match = record_type_typmod_compare; |
| 1791 | RecordCacheHash = hash_create("Record information cache" , 64, |
| 1792 | &ctl, |
| 1793 | HASH_ELEM | HASH_FUNCTION | HASH_COMPARE); |
| 1794 | |
| 1795 | /* Also make sure CacheMemoryContext exists */ |
| 1796 | if (!CacheMemoryContext) |
| 1797 | CreateCacheMemoryContext(); |
| 1798 | } |
| 1799 | |
| 1800 | /* Find or create a hashtable entry for this tuple descriptor */ |
| 1801 | recentry = (RecordCacheEntry *) hash_search(RecordCacheHash, |
| 1802 | (void *) &tupDesc, |
| 1803 | HASH_ENTER, &found); |
| 1804 | if (found && recentry->tupdesc != NULL) |
| 1805 | { |
| 1806 | tupDesc->tdtypmod = recentry->tupdesc->tdtypmod; |
| 1807 | return; |
| 1808 | } |
| 1809 | |
| 1810 | /* Not present, so need to manufacture an entry */ |
| 1811 | recentry->tupdesc = NULL; |
| 1812 | oldcxt = MemoryContextSwitchTo(CacheMemoryContext); |
| 1813 | |
| 1814 | /* Look in the SharedRecordTypmodRegistry, if attached */ |
| 1815 | entDesc = find_or_make_matching_shared_tupledesc(tupDesc); |
| 1816 | if (entDesc == NULL) |
| 1817 | { |
| 1818 | /* Reference-counted local cache only. */ |
| 1819 | entDesc = CreateTupleDescCopy(tupDesc); |
| 1820 | entDesc->tdrefcount = 1; |
| 1821 | entDesc->tdtypmod = NextRecordTypmod++; |
| 1822 | } |
| 1823 | ensure_record_cache_typmod_slot_exists(entDesc->tdtypmod); |
| 1824 | RecordCacheArray[entDesc->tdtypmod] = entDesc; |
| 1825 | recentry->tupdesc = entDesc; |
| 1826 | |
| 1827 | /* Assign a unique tupdesc identifier, too. */ |
| 1828 | RecordIdentifierArray[entDesc->tdtypmod] = ++tupledesc_id_counter; |
| 1829 | |
| 1830 | /* Update the caller's tuple descriptor. */ |
| 1831 | tupDesc->tdtypmod = entDesc->tdtypmod; |
| 1832 | |
| 1833 | MemoryContextSwitchTo(oldcxt); |
| 1834 | } |
| 1835 | |
| 1836 | /* |
| 1837 | * assign_record_type_identifier |
| 1838 | * |
| 1839 | * Get an identifier, which will be unique over the lifespan of this backend |
| 1840 | * process, for the current tuple descriptor of the specified composite type. |
| 1841 | * For named composite types, the value is guaranteed to change if the type's |
| 1842 | * definition does. For registered RECORD types, the value will not change |
| 1843 | * once assigned, since the registered type won't either. If an anonymous |
| 1844 | * RECORD type is specified, we return a new identifier on each call. |
| 1845 | */ |
| 1846 | uint64 |
| 1847 | assign_record_type_identifier(Oid type_id, int32 typmod) |
| 1848 | { |
| 1849 | if (type_id != RECORDOID) |
| 1850 | { |
| 1851 | /* |
| 1852 | * It's a named composite type, so use the regular typcache. |
| 1853 | */ |
| 1854 | TypeCacheEntry *typentry; |
| 1855 | |
| 1856 | typentry = lookup_type_cache(type_id, TYPECACHE_TUPDESC); |
| 1857 | if (typentry->tupDesc == NULL) |
| 1858 | ereport(ERROR, |
| 1859 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 1860 | errmsg("type %s is not composite" , |
| 1861 | format_type_be(type_id)))); |
| 1862 | Assert(typentry->tupDesc_identifier != 0); |
| 1863 | return typentry->tupDesc_identifier; |
| 1864 | } |
| 1865 | else |
| 1866 | { |
| 1867 | /* |
| 1868 | * It's a transient record type, so look in our record-type table. |
| 1869 | */ |
| 1870 | if (typmod >= 0 && typmod < RecordCacheArrayLen && |
| 1871 | RecordCacheArray[typmod] != NULL) |
| 1872 | { |
| 1873 | Assert(RecordIdentifierArray[typmod] != 0); |
| 1874 | return RecordIdentifierArray[typmod]; |
| 1875 | } |
| 1876 | |
| 1877 | /* For anonymous or unrecognized record type, generate a new ID */ |
| 1878 | return ++tupledesc_id_counter; |
| 1879 | } |
| 1880 | } |
| 1881 | |
| 1882 | /* |
| 1883 | * Return the amount of shmem required to hold a SharedRecordTypmodRegistry. |
| 1884 | * This exists only to avoid exposing private innards of |
| 1885 | * SharedRecordTypmodRegistry in a header. |
| 1886 | */ |
| 1887 | size_t |
| 1888 | SharedRecordTypmodRegistryEstimate(void) |
| 1889 | { |
| 1890 | return sizeof(SharedRecordTypmodRegistry); |
| 1891 | } |
| 1892 | |
| 1893 | /* |
| 1894 | * Initialize 'registry' in a pre-existing shared memory region, which must be |
| 1895 | * maximally aligned and have space for SharedRecordTypmodRegistryEstimate() |
| 1896 | * bytes. |
| 1897 | * |
| 1898 | * 'area' will be used to allocate shared memory space as required for the |
| 1899 | * typemod registration. The current process, expected to be a leader process |
| 1900 | * in a parallel query, will be attached automatically and its current record |
| 1901 | * types will be loaded into *registry. While attached, all calls to |
| 1902 | * assign_record_type_typmod will use the shared registry. Worker backends |
| 1903 | * will need to attach explicitly. |
| 1904 | * |
| 1905 | * Note that this function takes 'area' and 'segment' as arguments rather than |
| 1906 | * accessing them via CurrentSession, because they aren't installed there |
| 1907 | * until after this function runs. |
| 1908 | */ |
| 1909 | void |
| 1910 | SharedRecordTypmodRegistryInit(SharedRecordTypmodRegistry *registry, |
| 1911 | dsm_segment *segment, |
| 1912 | dsa_area *area) |
| 1913 | { |
| 1914 | MemoryContext old_context; |
| 1915 | dshash_table *record_table; |
| 1916 | dshash_table *typmod_table; |
| 1917 | int32 typmod; |
| 1918 | |
| 1919 | Assert(!IsParallelWorker()); |
| 1920 | |
| 1921 | /* We can't already be attached to a shared registry. */ |
| 1922 | Assert(CurrentSession->shared_typmod_registry == NULL); |
| 1923 | Assert(CurrentSession->shared_record_table == NULL); |
| 1924 | Assert(CurrentSession->shared_typmod_table == NULL); |
| 1925 | |
| 1926 | old_context = MemoryContextSwitchTo(TopMemoryContext); |
| 1927 | |
| 1928 | /* Create the hash table of tuple descriptors indexed by themselves. */ |
| 1929 | record_table = dshash_create(area, &srtr_record_table_params, area); |
| 1930 | |
| 1931 | /* Create the hash table of tuple descriptors indexed by typmod. */ |
| 1932 | typmod_table = dshash_create(area, &srtr_typmod_table_params, NULL); |
| 1933 | |
| 1934 | MemoryContextSwitchTo(old_context); |
| 1935 | |
| 1936 | /* Initialize the SharedRecordTypmodRegistry. */ |
| 1937 | registry->record_table_handle = dshash_get_hash_table_handle(record_table); |
| 1938 | registry->typmod_table_handle = dshash_get_hash_table_handle(typmod_table); |
| 1939 | pg_atomic_init_u32(®istry->next_typmod, NextRecordTypmod); |
| 1940 | |
| 1941 | /* |
| 1942 | * Copy all entries from this backend's private registry into the shared |
| 1943 | * registry. |
| 1944 | */ |
| 1945 | for (typmod = 0; typmod < NextRecordTypmod; ++typmod) |
| 1946 | { |
| 1947 | SharedTypmodTableEntry *typmod_table_entry; |
| 1948 | SharedRecordTableEntry *record_table_entry; |
| 1949 | SharedRecordTableKey record_table_key; |
| 1950 | dsa_pointer shared_dp; |
| 1951 | TupleDesc tupdesc; |
| 1952 | bool found; |
| 1953 | |
| 1954 | tupdesc = RecordCacheArray[typmod]; |
| 1955 | if (tupdesc == NULL) |
| 1956 | continue; |
| 1957 | |
| 1958 | /* Copy the TupleDesc into shared memory. */ |
| 1959 | shared_dp = share_tupledesc(area, tupdesc, typmod); |
| 1960 | |
| 1961 | /* Insert into the typmod table. */ |
| 1962 | typmod_table_entry = dshash_find_or_insert(typmod_table, |
| 1963 | &tupdesc->tdtypmod, |
| 1964 | &found); |
| 1965 | if (found) |
| 1966 | elog(ERROR, "cannot create duplicate shared record typmod" ); |
| 1967 | typmod_table_entry->typmod = tupdesc->tdtypmod; |
| 1968 | typmod_table_entry->shared_tupdesc = shared_dp; |
| 1969 | dshash_release_lock(typmod_table, typmod_table_entry); |
| 1970 | |
| 1971 | /* Insert into the record table. */ |
| 1972 | record_table_key.shared = false; |
| 1973 | record_table_key.u.local_tupdesc = tupdesc; |
| 1974 | record_table_entry = dshash_find_or_insert(record_table, |
| 1975 | &record_table_key, |
| 1976 | &found); |
| 1977 | if (!found) |
| 1978 | { |
| 1979 | record_table_entry->key.shared = true; |
| 1980 | record_table_entry->key.u.shared_tupdesc = shared_dp; |
| 1981 | } |
| 1982 | dshash_release_lock(record_table, record_table_entry); |
| 1983 | } |
| 1984 | |
| 1985 | /* |
| 1986 | * Set up the global state that will tell assign_record_type_typmod and |
| 1987 | * lookup_rowtype_tupdesc_internal about the shared registry. |
| 1988 | */ |
| 1989 | CurrentSession->shared_record_table = record_table; |
| 1990 | CurrentSession->shared_typmod_table = typmod_table; |
| 1991 | CurrentSession->shared_typmod_registry = registry; |
| 1992 | |
| 1993 | /* |
| 1994 | * We install a detach hook in the leader, but only to handle cleanup on |
| 1995 | * failure during GetSessionDsmHandle(). Once GetSessionDsmHandle() pins |
| 1996 | * the memory, the leader process will use a shared registry until it |
| 1997 | * exits. |
| 1998 | */ |
| 1999 | on_dsm_detach(segment, shared_record_typmod_registry_detach, (Datum) 0); |
| 2000 | } |
| 2001 | |
| 2002 | /* |
| 2003 | * Attach to 'registry', which must have been initialized already by another |
| 2004 | * backend. Future calls to assign_record_type_typmod and |
| 2005 | * lookup_rowtype_tupdesc_internal will use the shared registry until the |
| 2006 | * current session is detached. |
| 2007 | */ |
| 2008 | void |
| 2009 | SharedRecordTypmodRegistryAttach(SharedRecordTypmodRegistry *registry) |
| 2010 | { |
| 2011 | MemoryContext old_context; |
| 2012 | dshash_table *record_table; |
| 2013 | dshash_table *typmod_table; |
| 2014 | |
| 2015 | Assert(IsParallelWorker()); |
| 2016 | |
| 2017 | /* We can't already be attached to a shared registry. */ |
| 2018 | Assert(CurrentSession != NULL); |
| 2019 | Assert(CurrentSession->segment != NULL); |
| 2020 | Assert(CurrentSession->area != NULL); |
| 2021 | Assert(CurrentSession->shared_typmod_registry == NULL); |
| 2022 | Assert(CurrentSession->shared_record_table == NULL); |
| 2023 | Assert(CurrentSession->shared_typmod_table == NULL); |
| 2024 | |
| 2025 | /* |
| 2026 | * We can't already have typmods in our local cache, because they'd clash |
| 2027 | * with those imported by SharedRecordTypmodRegistryInit. This should be |
| 2028 | * a freshly started parallel worker. If we ever support worker |
| 2029 | * recycling, a worker would need to zap its local cache in between |
| 2030 | * servicing different queries, in order to be able to call this and |
| 2031 | * synchronize typmods with a new leader; but that's problematic because |
| 2032 | * we can't be very sure that record-typmod-related state hasn't escaped |
| 2033 | * to anywhere else in the process. |
| 2034 | */ |
| 2035 | Assert(NextRecordTypmod == 0); |
| 2036 | |
| 2037 | old_context = MemoryContextSwitchTo(TopMemoryContext); |
| 2038 | |
| 2039 | /* Attach to the two hash tables. */ |
| 2040 | record_table = dshash_attach(CurrentSession->area, |
| 2041 | &srtr_record_table_params, |
| 2042 | registry->record_table_handle, |
| 2043 | CurrentSession->area); |
| 2044 | typmod_table = dshash_attach(CurrentSession->area, |
| 2045 | &srtr_typmod_table_params, |
| 2046 | registry->typmod_table_handle, |
| 2047 | NULL); |
| 2048 | |
| 2049 | MemoryContextSwitchTo(old_context); |
| 2050 | |
| 2051 | /* |
| 2052 | * Set up detach hook to run at worker exit. Currently this is the same |
| 2053 | * as the leader's detach hook, but in future they might need to be |
| 2054 | * different. |
| 2055 | */ |
| 2056 | on_dsm_detach(CurrentSession->segment, |
| 2057 | shared_record_typmod_registry_detach, |
| 2058 | PointerGetDatum(registry)); |
| 2059 | |
| 2060 | /* |
| 2061 | * Set up the session state that will tell assign_record_type_typmod and |
| 2062 | * lookup_rowtype_tupdesc_internal about the shared registry. |
| 2063 | */ |
| 2064 | CurrentSession->shared_typmod_registry = registry; |
| 2065 | CurrentSession->shared_record_table = record_table; |
| 2066 | CurrentSession->shared_typmod_table = typmod_table; |
| 2067 | } |
| 2068 | |
| 2069 | /* |
| 2070 | * TypeCacheRelCallback |
| 2071 | * Relcache inval callback function |
| 2072 | * |
| 2073 | * Delete the cached tuple descriptor (if any) for the given rel's composite |
| 2074 | * type, or for all composite types if relid == InvalidOid. Also reset |
| 2075 | * whatever info we have cached about the composite type's comparability. |
| 2076 | * |
| 2077 | * This is called when a relcache invalidation event occurs for the given |
| 2078 | * relid. We must scan the whole typcache hash since we don't know the |
| 2079 | * type OID corresponding to the relid. We could do a direct search if this |
| 2080 | * were a syscache-flush callback on pg_type, but then we would need all |
| 2081 | * ALTER-TABLE-like commands that could modify a rowtype to issue syscache |
| 2082 | * invals against the rel's pg_type OID. The extra SI signaling could very |
| 2083 | * well cost more than we'd save, since in most usages there are not very |
| 2084 | * many entries in a backend's typcache. The risk of bugs-of-omission seems |
| 2085 | * high, too. |
| 2086 | * |
| 2087 | * Another possibility, with only localized impact, is to maintain a second |
| 2088 | * hashtable that indexes composite-type typcache entries by their typrelid. |
| 2089 | * But it's still not clear it's worth the trouble. |
| 2090 | */ |
| 2091 | static void |
| 2092 | TypeCacheRelCallback(Datum arg, Oid relid) |
| 2093 | { |
| 2094 | HASH_SEQ_STATUS status; |
| 2095 | TypeCacheEntry *typentry; |
| 2096 | |
| 2097 | /* TypeCacheHash must exist, else this callback wouldn't be registered */ |
| 2098 | hash_seq_init(&status, TypeCacheHash); |
| 2099 | while ((typentry = (TypeCacheEntry *) hash_seq_search(&status)) != NULL) |
| 2100 | { |
| 2101 | if (typentry->typtype == TYPTYPE_COMPOSITE) |
| 2102 | { |
| 2103 | /* Skip if no match, unless we're zapping all composite types */ |
| 2104 | if (relid != typentry->typrelid && relid != InvalidOid) |
| 2105 | continue; |
| 2106 | |
| 2107 | /* Delete tupdesc if we have it */ |
| 2108 | if (typentry->tupDesc != NULL) |
| 2109 | { |
| 2110 | /* |
| 2111 | * Release our refcount, and free the tupdesc if none remain. |
| 2112 | * (Can't use DecrTupleDescRefCount because this reference is |
| 2113 | * not logged in current resource owner.) |
| 2114 | */ |
| 2115 | Assert(typentry->tupDesc->tdrefcount > 0); |
| 2116 | if (--typentry->tupDesc->tdrefcount == 0) |
| 2117 | FreeTupleDesc(typentry->tupDesc); |
| 2118 | typentry->tupDesc = NULL; |
| 2119 | |
| 2120 | /* |
| 2121 | * Also clear tupDesc_identifier, so that anything watching |
| 2122 | * that will realize that the tupdesc has possibly changed. |
| 2123 | * (Alternatively, we could specify that to detect possible |
| 2124 | * tupdesc change, one must check for tupDesc != NULL as well |
| 2125 | * as tupDesc_identifier being the same as what was previously |
| 2126 | * seen. That seems error-prone.) |
| 2127 | */ |
| 2128 | typentry->tupDesc_identifier = 0; |
| 2129 | } |
| 2130 | |
| 2131 | /* Reset equality/comparison/hashing validity information */ |
| 2132 | typentry->flags = 0; |
| 2133 | } |
| 2134 | else if (typentry->typtype == TYPTYPE_DOMAIN) |
| 2135 | { |
| 2136 | /* |
| 2137 | * If it's domain over composite, reset flags. (We don't bother |
| 2138 | * trying to determine whether the specific base type needs a |
| 2139 | * reset.) Note that if we haven't determined whether the base |
| 2140 | * type is composite, we don't need to reset anything. |
| 2141 | */ |
| 2142 | if (typentry->flags & TCFLAGS_DOMAIN_BASE_IS_COMPOSITE) |
| 2143 | typentry->flags = 0; |
| 2144 | } |
| 2145 | } |
| 2146 | } |
| 2147 | |
| 2148 | /* |
| 2149 | * TypeCacheOpcCallback |
| 2150 | * Syscache inval callback function |
| 2151 | * |
| 2152 | * This is called when a syscache invalidation event occurs for any pg_opclass |
| 2153 | * row. In principle we could probably just invalidate data dependent on the |
| 2154 | * particular opclass, but since updates on pg_opclass are rare in production |
| 2155 | * it doesn't seem worth a lot of complication: we just mark all cached data |
| 2156 | * invalid. |
| 2157 | * |
| 2158 | * Note that we don't bother watching for updates on pg_amop or pg_amproc. |
| 2159 | * This should be safe because ALTER OPERATOR FAMILY ADD/DROP OPERATOR/FUNCTION |
| 2160 | * is not allowed to be used to add/drop the primary operators and functions |
| 2161 | * of an opclass, only cross-type members of a family; and the latter sorts |
| 2162 | * of members are not going to get cached here. |
| 2163 | */ |
| 2164 | static void |
| 2165 | TypeCacheOpcCallback(Datum arg, int cacheid, uint32 hashvalue) |
| 2166 | { |
| 2167 | HASH_SEQ_STATUS status; |
| 2168 | TypeCacheEntry *typentry; |
| 2169 | |
| 2170 | /* TypeCacheHash must exist, else this callback wouldn't be registered */ |
| 2171 | hash_seq_init(&status, TypeCacheHash); |
| 2172 | while ((typentry = (TypeCacheEntry *) hash_seq_search(&status)) != NULL) |
| 2173 | { |
| 2174 | /* Reset equality/comparison/hashing validity information */ |
| 2175 | typentry->flags = 0; |
| 2176 | } |
| 2177 | } |
| 2178 | |
| 2179 | /* |
| 2180 | * TypeCacheConstrCallback |
| 2181 | * Syscache inval callback function |
| 2182 | * |
| 2183 | * This is called when a syscache invalidation event occurs for any |
| 2184 | * pg_constraint or pg_type row. We flush information about domain |
| 2185 | * constraints when this happens. |
| 2186 | * |
| 2187 | * It's slightly annoying that we can't tell whether the inval event was for a |
| 2188 | * domain constraint/type record or not; there's usually more update traffic |
| 2189 | * for table constraints/types than domain constraints, so we'll do a lot of |
| 2190 | * useless flushes. Still, this is better than the old no-caching-at-all |
| 2191 | * approach to domain constraints. |
| 2192 | */ |
| 2193 | static void |
| 2194 | TypeCacheConstrCallback(Datum arg, int cacheid, uint32 hashvalue) |
| 2195 | { |
| 2196 | TypeCacheEntry *typentry; |
| 2197 | |
| 2198 | /* |
| 2199 | * Because this is called very frequently, and typically very few of the |
| 2200 | * typcache entries are for domains, we don't use hash_seq_search here. |
| 2201 | * Instead we thread all the domain-type entries together so that we can |
| 2202 | * visit them cheaply. |
| 2203 | */ |
| 2204 | for (typentry = firstDomainTypeEntry; |
| 2205 | typentry != NULL; |
| 2206 | typentry = typentry->nextDomain) |
| 2207 | { |
| 2208 | /* Reset domain constraint validity information */ |
| 2209 | typentry->flags &= ~TCFLAGS_CHECKED_DOMAIN_CONSTRAINTS; |
| 2210 | } |
| 2211 | } |
| 2212 | |
| 2213 | |
| 2214 | /* |
| 2215 | * Check if given OID is part of the subset that's sortable by comparisons |
| 2216 | */ |
| 2217 | static inline bool |
| 2218 | enum_known_sorted(TypeCacheEnumData *enumdata, Oid arg) |
| 2219 | { |
| 2220 | Oid offset; |
| 2221 | |
| 2222 | if (arg < enumdata->bitmap_base) |
| 2223 | return false; |
| 2224 | offset = arg - enumdata->bitmap_base; |
| 2225 | if (offset > (Oid) INT_MAX) |
| 2226 | return false; |
| 2227 | return bms_is_member((int) offset, enumdata->sorted_values); |
| 2228 | } |
| 2229 | |
| 2230 | |
| 2231 | /* |
| 2232 | * compare_values_of_enum |
| 2233 | * Compare two members of an enum type. |
| 2234 | * Return <0, 0, or >0 according as arg1 <, =, or > arg2. |
| 2235 | * |
| 2236 | * Note: currently, the enumData cache is refreshed only if we are asked |
| 2237 | * to compare an enum value that is not already in the cache. This is okay |
| 2238 | * because there is no support for re-ordering existing values, so comparisons |
| 2239 | * of previously cached values will return the right answer even if other |
| 2240 | * values have been added since we last loaded the cache. |
| 2241 | * |
| 2242 | * Note: the enum logic has a special-case rule about even-numbered versus |
| 2243 | * odd-numbered OIDs, but we take no account of that rule here; this |
| 2244 | * routine shouldn't even get called when that rule applies. |
| 2245 | */ |
| 2246 | int |
| 2247 | compare_values_of_enum(TypeCacheEntry *tcache, Oid arg1, Oid arg2) |
| 2248 | { |
| 2249 | TypeCacheEnumData *enumdata; |
| 2250 | EnumItem *item1; |
| 2251 | EnumItem *item2; |
| 2252 | |
| 2253 | /* |
| 2254 | * Equal OIDs are certainly equal --- this case was probably handled by |
| 2255 | * our caller, but we may as well check. |
| 2256 | */ |
| 2257 | if (arg1 == arg2) |
| 2258 | return 0; |
| 2259 | |
| 2260 | /* Load up the cache if first time through */ |
| 2261 | if (tcache->enumData == NULL) |
| 2262 | load_enum_cache_data(tcache); |
| 2263 | enumdata = tcache->enumData; |
| 2264 | |
| 2265 | /* |
| 2266 | * If both OIDs are known-sorted, we can just compare them directly. |
| 2267 | */ |
| 2268 | if (enum_known_sorted(enumdata, arg1) && |
| 2269 | enum_known_sorted(enumdata, arg2)) |
| 2270 | { |
| 2271 | if (arg1 < arg2) |
| 2272 | return -1; |
| 2273 | else |
| 2274 | return 1; |
| 2275 | } |
| 2276 | |
| 2277 | /* |
| 2278 | * Slow path: we have to identify their actual sort-order positions. |
| 2279 | */ |
| 2280 | item1 = find_enumitem(enumdata, arg1); |
| 2281 | item2 = find_enumitem(enumdata, arg2); |
| 2282 | |
| 2283 | if (item1 == NULL || item2 == NULL) |
| 2284 | { |
| 2285 | /* |
| 2286 | * We couldn't find one or both values. That means the enum has |
| 2287 | * changed under us, so re-initialize the cache and try again. We |
| 2288 | * don't bother retrying the known-sorted case in this path. |
| 2289 | */ |
| 2290 | load_enum_cache_data(tcache); |
| 2291 | enumdata = tcache->enumData; |
| 2292 | |
| 2293 | item1 = find_enumitem(enumdata, arg1); |
| 2294 | item2 = find_enumitem(enumdata, arg2); |
| 2295 | |
| 2296 | /* |
| 2297 | * If we still can't find the values, complain: we must have corrupt |
| 2298 | * data. |
| 2299 | */ |
| 2300 | if (item1 == NULL) |
| 2301 | elog(ERROR, "enum value %u not found in cache for enum %s" , |
| 2302 | arg1, format_type_be(tcache->type_id)); |
| 2303 | if (item2 == NULL) |
| 2304 | elog(ERROR, "enum value %u not found in cache for enum %s" , |
| 2305 | arg2, format_type_be(tcache->type_id)); |
| 2306 | } |
| 2307 | |
| 2308 | if (item1->sort_order < item2->sort_order) |
| 2309 | return -1; |
| 2310 | else if (item1->sort_order > item2->sort_order) |
| 2311 | return 1; |
| 2312 | else |
| 2313 | return 0; |
| 2314 | } |
| 2315 | |
| 2316 | /* |
| 2317 | * Load (or re-load) the enumData member of the typcache entry. |
| 2318 | */ |
| 2319 | static void |
| 2320 | load_enum_cache_data(TypeCacheEntry *tcache) |
| 2321 | { |
| 2322 | TypeCacheEnumData *enumdata; |
| 2323 | Relation enum_rel; |
| 2324 | SysScanDesc enum_scan; |
| 2325 | HeapTuple enum_tuple; |
| 2326 | ScanKeyData skey; |
| 2327 | EnumItem *items; |
| 2328 | int numitems; |
| 2329 | int maxitems; |
| 2330 | Oid bitmap_base; |
| 2331 | Bitmapset *bitmap; |
| 2332 | MemoryContext oldcxt; |
| 2333 | int bm_size, |
| 2334 | start_pos; |
| 2335 | |
| 2336 | /* Check that this is actually an enum */ |
| 2337 | if (tcache->typtype != TYPTYPE_ENUM) |
| 2338 | ereport(ERROR, |
| 2339 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 2340 | errmsg("%s is not an enum" , |
| 2341 | format_type_be(tcache->type_id)))); |
| 2342 | |
| 2343 | /* |
| 2344 | * Read all the information for members of the enum type. We collect the |
| 2345 | * info in working memory in the caller's context, and then transfer it to |
| 2346 | * permanent memory in CacheMemoryContext. This minimizes the risk of |
| 2347 | * leaking memory from CacheMemoryContext in the event of an error partway |
| 2348 | * through. |
| 2349 | */ |
| 2350 | maxitems = 64; |
| 2351 | items = (EnumItem *) palloc(sizeof(EnumItem) * maxitems); |
| 2352 | numitems = 0; |
| 2353 | |
| 2354 | /* Scan pg_enum for the members of the target enum type. */ |
| 2355 | ScanKeyInit(&skey, |
| 2356 | Anum_pg_enum_enumtypid, |
| 2357 | BTEqualStrategyNumber, F_OIDEQ, |
| 2358 | ObjectIdGetDatum(tcache->type_id)); |
| 2359 | |
| 2360 | enum_rel = table_open(EnumRelationId, AccessShareLock); |
| 2361 | enum_scan = systable_beginscan(enum_rel, |
| 2362 | EnumTypIdLabelIndexId, |
| 2363 | true, NULL, |
| 2364 | 1, &skey); |
| 2365 | |
| 2366 | while (HeapTupleIsValid(enum_tuple = systable_getnext(enum_scan))) |
| 2367 | { |
| 2368 | Form_pg_enum en = (Form_pg_enum) GETSTRUCT(enum_tuple); |
| 2369 | |
| 2370 | if (numitems >= maxitems) |
| 2371 | { |
| 2372 | maxitems *= 2; |
| 2373 | items = (EnumItem *) repalloc(items, sizeof(EnumItem) * maxitems); |
| 2374 | } |
| 2375 | items[numitems].enum_oid = en->oid; |
| 2376 | items[numitems].sort_order = en->enumsortorder; |
| 2377 | numitems++; |
| 2378 | } |
| 2379 | |
| 2380 | systable_endscan(enum_scan); |
| 2381 | table_close(enum_rel, AccessShareLock); |
| 2382 | |
| 2383 | /* Sort the items into OID order */ |
| 2384 | qsort(items, numitems, sizeof(EnumItem), enum_oid_cmp); |
| 2385 | |
| 2386 | /* |
| 2387 | * Here, we create a bitmap listing a subset of the enum's OIDs that are |
| 2388 | * known to be in order and can thus be compared with just OID comparison. |
| 2389 | * |
| 2390 | * The point of this is that the enum's initial OIDs were certainly in |
| 2391 | * order, so there is some subset that can be compared via OID comparison; |
| 2392 | * and we'd rather not do binary searches unnecessarily. |
| 2393 | * |
| 2394 | * This is somewhat heuristic, and might identify a subset of OIDs that |
| 2395 | * isn't exactly what the type started with. That's okay as long as the |
| 2396 | * subset is correctly sorted. |
| 2397 | */ |
| 2398 | bitmap_base = InvalidOid; |
| 2399 | bitmap = NULL; |
| 2400 | bm_size = 1; /* only save sets of at least 2 OIDs */ |
| 2401 | |
| 2402 | for (start_pos = 0; start_pos < numitems - 1; start_pos++) |
| 2403 | { |
| 2404 | /* |
| 2405 | * Identify longest sorted subsequence starting at start_pos |
| 2406 | */ |
| 2407 | Bitmapset *this_bitmap = bms_make_singleton(0); |
| 2408 | int this_bm_size = 1; |
| 2409 | Oid start_oid = items[start_pos].enum_oid; |
| 2410 | float4 prev_order = items[start_pos].sort_order; |
| 2411 | int i; |
| 2412 | |
| 2413 | for (i = start_pos + 1; i < numitems; i++) |
| 2414 | { |
| 2415 | Oid offset; |
| 2416 | |
| 2417 | offset = items[i].enum_oid - start_oid; |
| 2418 | /* quit if bitmap would be too large; cutoff is arbitrary */ |
| 2419 | if (offset >= 8192) |
| 2420 | break; |
| 2421 | /* include the item if it's in-order */ |
| 2422 | if (items[i].sort_order > prev_order) |
| 2423 | { |
| 2424 | prev_order = items[i].sort_order; |
| 2425 | this_bitmap = bms_add_member(this_bitmap, (int) offset); |
| 2426 | this_bm_size++; |
| 2427 | } |
| 2428 | } |
| 2429 | |
| 2430 | /* Remember it if larger than previous best */ |
| 2431 | if (this_bm_size > bm_size) |
| 2432 | { |
| 2433 | bms_free(bitmap); |
| 2434 | bitmap_base = start_oid; |
| 2435 | bitmap = this_bitmap; |
| 2436 | bm_size = this_bm_size; |
| 2437 | } |
| 2438 | else |
| 2439 | bms_free(this_bitmap); |
| 2440 | |
| 2441 | /* |
| 2442 | * Done if it's not possible to find a longer sequence in the rest of |
| 2443 | * the list. In typical cases this will happen on the first |
| 2444 | * iteration, which is why we create the bitmaps on the fly instead of |
| 2445 | * doing a second pass over the list. |
| 2446 | */ |
| 2447 | if (bm_size >= (numitems - start_pos - 1)) |
| 2448 | break; |
| 2449 | } |
| 2450 | |
| 2451 | /* OK, copy the data into CacheMemoryContext */ |
| 2452 | oldcxt = MemoryContextSwitchTo(CacheMemoryContext); |
| 2453 | enumdata = (TypeCacheEnumData *) |
| 2454 | palloc(offsetof(TypeCacheEnumData, enum_values) + |
| 2455 | numitems * sizeof(EnumItem)); |
| 2456 | enumdata->bitmap_base = bitmap_base; |
| 2457 | enumdata->sorted_values = bms_copy(bitmap); |
| 2458 | enumdata->num_values = numitems; |
| 2459 | memcpy(enumdata->enum_values, items, numitems * sizeof(EnumItem)); |
| 2460 | MemoryContextSwitchTo(oldcxt); |
| 2461 | |
| 2462 | pfree(items); |
| 2463 | bms_free(bitmap); |
| 2464 | |
| 2465 | /* And link the finished cache struct into the typcache */ |
| 2466 | if (tcache->enumData != NULL) |
| 2467 | pfree(tcache->enumData); |
| 2468 | tcache->enumData = enumdata; |
| 2469 | } |
| 2470 | |
| 2471 | /* |
| 2472 | * Locate the EnumItem with the given OID, if present |
| 2473 | */ |
| 2474 | static EnumItem * |
| 2475 | find_enumitem(TypeCacheEnumData *enumdata, Oid arg) |
| 2476 | { |
| 2477 | EnumItem srch; |
| 2478 | |
| 2479 | /* On some versions of Solaris, bsearch of zero items dumps core */ |
| 2480 | if (enumdata->num_values <= 0) |
| 2481 | return NULL; |
| 2482 | |
| 2483 | srch.enum_oid = arg; |
| 2484 | return bsearch(&srch, enumdata->enum_values, enumdata->num_values, |
| 2485 | sizeof(EnumItem), enum_oid_cmp); |
| 2486 | } |
| 2487 | |
| 2488 | /* |
| 2489 | * qsort comparison function for OID-ordered EnumItems |
| 2490 | */ |
| 2491 | static int |
| 2492 | enum_oid_cmp(const void *left, const void *right) |
| 2493 | { |
| 2494 | const EnumItem *l = (const EnumItem *) left; |
| 2495 | const EnumItem *r = (const EnumItem *) right; |
| 2496 | |
| 2497 | if (l->enum_oid < r->enum_oid) |
| 2498 | return -1; |
| 2499 | else if (l->enum_oid > r->enum_oid) |
| 2500 | return 1; |
| 2501 | else |
| 2502 | return 0; |
| 2503 | } |
| 2504 | |
| 2505 | /* |
| 2506 | * Copy 'tupdesc' into newly allocated shared memory in 'area', set its typmod |
| 2507 | * to the given value and return a dsa_pointer. |
| 2508 | */ |
| 2509 | static dsa_pointer |
| 2510 | share_tupledesc(dsa_area *area, TupleDesc tupdesc, uint32 typmod) |
| 2511 | { |
| 2512 | dsa_pointer shared_dp; |
| 2513 | TupleDesc shared; |
| 2514 | |
| 2515 | shared_dp = dsa_allocate(area, TupleDescSize(tupdesc)); |
| 2516 | shared = (TupleDesc) dsa_get_address(area, shared_dp); |
| 2517 | TupleDescCopy(shared, tupdesc); |
| 2518 | shared->tdtypmod = typmod; |
| 2519 | |
| 2520 | return shared_dp; |
| 2521 | } |
| 2522 | |
| 2523 | /* |
| 2524 | * If we are attached to a SharedRecordTypmodRegistry, use it to find or |
| 2525 | * create a shared TupleDesc that matches 'tupdesc'. Otherwise return NULL. |
| 2526 | * Tuple descriptors returned by this function are not reference counted, and |
| 2527 | * will exist at least as long as the current backend remained attached to the |
| 2528 | * current session. |
| 2529 | */ |
| 2530 | static TupleDesc |
| 2531 | find_or_make_matching_shared_tupledesc(TupleDesc tupdesc) |
| 2532 | { |
| 2533 | TupleDesc result; |
| 2534 | SharedRecordTableKey key; |
| 2535 | SharedRecordTableEntry *record_table_entry; |
| 2536 | SharedTypmodTableEntry *typmod_table_entry; |
| 2537 | dsa_pointer shared_dp; |
| 2538 | bool found; |
| 2539 | uint32 typmod; |
| 2540 | |
| 2541 | /* If not even attached, nothing to do. */ |
| 2542 | if (CurrentSession->shared_typmod_registry == NULL) |
| 2543 | return NULL; |
| 2544 | |
| 2545 | /* Try to find a matching tuple descriptor in the record table. */ |
| 2546 | key.shared = false; |
| 2547 | key.u.local_tupdesc = tupdesc; |
| 2548 | record_table_entry = (SharedRecordTableEntry *) |
| 2549 | dshash_find(CurrentSession->shared_record_table, &key, false); |
| 2550 | if (record_table_entry) |
| 2551 | { |
| 2552 | Assert(record_table_entry->key.shared); |
| 2553 | dshash_release_lock(CurrentSession->shared_record_table, |
| 2554 | record_table_entry); |
| 2555 | result = (TupleDesc) |
| 2556 | dsa_get_address(CurrentSession->area, |
| 2557 | record_table_entry->key.u.shared_tupdesc); |
| 2558 | Assert(result->tdrefcount == -1); |
| 2559 | |
| 2560 | return result; |
| 2561 | } |
| 2562 | |
| 2563 | /* Allocate a new typmod number. This will be wasted if we error out. */ |
| 2564 | typmod = (int) |
| 2565 | pg_atomic_fetch_add_u32(&CurrentSession->shared_typmod_registry->next_typmod, |
| 2566 | 1); |
| 2567 | |
| 2568 | /* Copy the TupleDesc into shared memory. */ |
| 2569 | shared_dp = share_tupledesc(CurrentSession->area, tupdesc, typmod); |
| 2570 | |
| 2571 | /* |
| 2572 | * Create an entry in the typmod table so that others will understand this |
| 2573 | * typmod number. |
| 2574 | */ |
| 2575 | PG_TRY(); |
| 2576 | { |
| 2577 | typmod_table_entry = (SharedTypmodTableEntry *) |
| 2578 | dshash_find_or_insert(CurrentSession->shared_typmod_table, |
| 2579 | &typmod, &found); |
| 2580 | if (found) |
| 2581 | elog(ERROR, "cannot create duplicate shared record typmod" ); |
| 2582 | } |
| 2583 | PG_CATCH(); |
| 2584 | { |
| 2585 | dsa_free(CurrentSession->area, shared_dp); |
| 2586 | PG_RE_THROW(); |
| 2587 | } |
| 2588 | PG_END_TRY(); |
| 2589 | typmod_table_entry->typmod = typmod; |
| 2590 | typmod_table_entry->shared_tupdesc = shared_dp; |
| 2591 | dshash_release_lock(CurrentSession->shared_typmod_table, |
| 2592 | typmod_table_entry); |
| 2593 | |
| 2594 | /* |
| 2595 | * Finally create an entry in the record table so others with matching |
| 2596 | * tuple descriptors can reuse the typmod. |
| 2597 | */ |
| 2598 | record_table_entry = (SharedRecordTableEntry *) |
| 2599 | dshash_find_or_insert(CurrentSession->shared_record_table, &key, |
| 2600 | &found); |
| 2601 | if (found) |
| 2602 | { |
| 2603 | /* |
| 2604 | * Someone concurrently inserted a matching tuple descriptor since the |
| 2605 | * first time we checked. Use that one instead. |
| 2606 | */ |
| 2607 | dshash_release_lock(CurrentSession->shared_record_table, |
| 2608 | record_table_entry); |
| 2609 | |
| 2610 | /* Might as well free up the space used by the one we created. */ |
| 2611 | found = dshash_delete_key(CurrentSession->shared_typmod_table, |
| 2612 | &typmod); |
| 2613 | Assert(found); |
| 2614 | dsa_free(CurrentSession->area, shared_dp); |
| 2615 | |
| 2616 | /* Return the one we found. */ |
| 2617 | Assert(record_table_entry->key.shared); |
| 2618 | result = (TupleDesc) |
| 2619 | dsa_get_address(CurrentSession->area, |
| 2620 | record_table_entry->key.shared); |
| 2621 | Assert(result->tdrefcount == -1); |
| 2622 | |
| 2623 | return result; |
| 2624 | } |
| 2625 | |
| 2626 | /* Store it and return it. */ |
| 2627 | record_table_entry->key.shared = true; |
| 2628 | record_table_entry->key.u.shared_tupdesc = shared_dp; |
| 2629 | dshash_release_lock(CurrentSession->shared_record_table, |
| 2630 | record_table_entry); |
| 2631 | result = (TupleDesc) |
| 2632 | dsa_get_address(CurrentSession->area, shared_dp); |
| 2633 | Assert(result->tdrefcount == -1); |
| 2634 | |
| 2635 | return result; |
| 2636 | } |
| 2637 | |
| 2638 | /* |
| 2639 | * On-DSM-detach hook to forget about the current shared record typmod |
| 2640 | * infrastructure. This is currently used by both leader and workers. |
| 2641 | */ |
| 2642 | static void |
| 2643 | shared_record_typmod_registry_detach(dsm_segment *segment, Datum datum) |
| 2644 | { |
| 2645 | /* Be cautious here: maybe we didn't finish initializing. */ |
| 2646 | if (CurrentSession->shared_record_table != NULL) |
| 2647 | { |
| 2648 | dshash_detach(CurrentSession->shared_record_table); |
| 2649 | CurrentSession->shared_record_table = NULL; |
| 2650 | } |
| 2651 | if (CurrentSession->shared_typmod_table != NULL) |
| 2652 | { |
| 2653 | dshash_detach(CurrentSession->shared_typmod_table); |
| 2654 | CurrentSession->shared_typmod_table = NULL; |
| 2655 | } |
| 2656 | CurrentSession->shared_typmod_registry = NULL; |
| 2657 | } |
| 2658 | |