| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * reorderbuffer.c |
| 4 | * PostgreSQL logical replay/reorder buffer management |
| 5 | * |
| 6 | * |
| 7 | * Copyright (c) 2012-2019, PostgreSQL Global Development Group |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/replication/reorderbuffer.c |
| 12 | * |
| 13 | * NOTES |
| 14 | * This module gets handed individual pieces of transactions in the order |
| 15 | * they are written to the WAL and is responsible to reassemble them into |
| 16 | * toplevel transaction sized pieces. When a transaction is completely |
| 17 | * reassembled - signalled by reading the transaction commit record - it |
| 18 | * will then call the output plugin (cf. ReorderBufferCommit()) with the |
| 19 | * individual changes. The output plugins rely on snapshots built by |
| 20 | * snapbuild.c which hands them to us. |
| 21 | * |
| 22 | * Transactions and subtransactions/savepoints in postgres are not |
| 23 | * immediately linked to each other from outside the performing |
| 24 | * backend. Only at commit/abort (or special xact_assignment records) they |
| 25 | * are linked together. Which means that we will have to splice together a |
| 26 | * toplevel transaction from its subtransactions. To do that efficiently we |
| 27 | * build a binary heap indexed by the smallest current lsn of the individual |
| 28 | * subtransactions' changestreams. As the individual streams are inherently |
| 29 | * ordered by LSN - since that is where we build them from - the transaction |
| 30 | * can easily be reassembled by always using the subtransaction with the |
| 31 | * smallest current LSN from the heap. |
| 32 | * |
| 33 | * In order to cope with large transactions - which can be several times as |
| 34 | * big as the available memory - this module supports spooling the contents |
| 35 | * of a large transactions to disk. When the transaction is replayed the |
| 36 | * contents of individual (sub-)transactions will be read from disk in |
| 37 | * chunks. |
| 38 | * |
| 39 | * This module also has to deal with reassembling toast records from the |
| 40 | * individual chunks stored in WAL. When a new (or initial) version of a |
| 41 | * tuple is stored in WAL it will always be preceded by the toast chunks |
| 42 | * emitted for the columns stored out of line. Within a single toplevel |
| 43 | * transaction there will be no other data carrying records between a row's |
| 44 | * toast chunks and the row data itself. See ReorderBufferToast* for |
| 45 | * details. |
| 46 | * |
| 47 | * ReorderBuffer uses two special memory context types - SlabContext for |
| 48 | * allocations of fixed-length structures (changes and transactions), and |
| 49 | * GenerationContext for the variable-length transaction data (allocated |
| 50 | * and freed in groups with similar lifespan). |
| 51 | * |
| 52 | * ------------------------------------------------------------------------- |
| 53 | */ |
| 54 | #include "postgres.h" |
| 55 | |
| 56 | #include <unistd.h> |
| 57 | #include <sys/stat.h> |
| 58 | |
| 59 | #include "access/heapam.h" |
| 60 | #include "access/rewriteheap.h" |
| 61 | #include "access/transam.h" |
| 62 | #include "access/tuptoaster.h" |
| 63 | #include "access/xact.h" |
| 64 | #include "access/xlog_internal.h" |
| 65 | #include "catalog/catalog.h" |
| 66 | #include "lib/binaryheap.h" |
| 67 | #include "miscadmin.h" |
| 68 | #include "pgstat.h" |
| 69 | #include "replication/logical.h" |
| 70 | #include "replication/reorderbuffer.h" |
| 71 | #include "replication/slot.h" |
| 72 | #include "replication/snapbuild.h" /* just for SnapBuildSnapDecRefcount */ |
| 73 | #include "storage/bufmgr.h" |
| 74 | #include "storage/fd.h" |
| 75 | #include "storage/sinval.h" |
| 76 | #include "utils/builtins.h" |
| 77 | #include "utils/combocid.h" |
| 78 | #include "utils/memdebug.h" |
| 79 | #include "utils/memutils.h" |
| 80 | #include "utils/rel.h" |
| 81 | #include "utils/relfilenodemap.h" |
| 82 | |
| 83 | |
| 84 | /* entry for a hash table we use to map from xid to our transaction state */ |
| 85 | typedef struct ReorderBufferTXNByIdEnt |
| 86 | { |
| 87 | TransactionId xid; |
| 88 | ReorderBufferTXN *txn; |
| 89 | } ReorderBufferTXNByIdEnt; |
| 90 | |
| 91 | /* data structures for (relfilenode, ctid) => (cmin, cmax) mapping */ |
| 92 | typedef struct ReorderBufferTupleCidKey |
| 93 | { |
| 94 | RelFileNode relnode; |
| 95 | ItemPointerData tid; |
| 96 | } ReorderBufferTupleCidKey; |
| 97 | |
| 98 | typedef struct ReorderBufferTupleCidEnt |
| 99 | { |
| 100 | ReorderBufferTupleCidKey key; |
| 101 | CommandId cmin; |
| 102 | CommandId cmax; |
| 103 | CommandId combocid; /* just for debugging */ |
| 104 | } ReorderBufferTupleCidEnt; |
| 105 | |
| 106 | /* k-way in-order change iteration support structures */ |
| 107 | typedef struct ReorderBufferIterTXNEntry |
| 108 | { |
| 109 | XLogRecPtr lsn; |
| 110 | ReorderBufferChange *change; |
| 111 | ReorderBufferTXN *txn; |
| 112 | int fd; |
| 113 | XLogSegNo segno; |
| 114 | } ReorderBufferIterTXNEntry; |
| 115 | |
| 116 | typedef struct ReorderBufferIterTXNState |
| 117 | { |
| 118 | binaryheap *heap; |
| 119 | Size nr_txns; |
| 120 | dlist_head old_change; |
| 121 | ReorderBufferIterTXNEntry entries[FLEXIBLE_ARRAY_MEMBER]; |
| 122 | } ReorderBufferIterTXNState; |
| 123 | |
| 124 | /* toast datastructures */ |
| 125 | typedef struct ReorderBufferToastEnt |
| 126 | { |
| 127 | Oid chunk_id; /* toast_table.chunk_id */ |
| 128 | int32 last_chunk_seq; /* toast_table.chunk_seq of the last chunk we |
| 129 | * have seen */ |
| 130 | Size num_chunks; /* number of chunks we've already seen */ |
| 131 | Size size; /* combined size of chunks seen */ |
| 132 | dlist_head chunks; /* linked list of chunks */ |
| 133 | struct varlena *reconstructed; /* reconstructed varlena now pointed to in |
| 134 | * main tup */ |
| 135 | } ReorderBufferToastEnt; |
| 136 | |
| 137 | /* Disk serialization support datastructures */ |
| 138 | typedef struct ReorderBufferDiskChange |
| 139 | { |
| 140 | Size size; |
| 141 | ReorderBufferChange change; |
| 142 | /* data follows */ |
| 143 | } ReorderBufferDiskChange; |
| 144 | |
| 145 | /* |
| 146 | * Maximum number of changes kept in memory, per transaction. After that, |
| 147 | * changes are spooled to disk. |
| 148 | * |
| 149 | * The current value should be sufficient to decode the entire transaction |
| 150 | * without hitting disk in OLTP workloads, while starting to spool to disk in |
| 151 | * other workloads reasonably fast. |
| 152 | * |
| 153 | * At some point in the future it probably makes sense to have a more elaborate |
| 154 | * resource management here, but it's not entirely clear what that would look |
| 155 | * like. |
| 156 | */ |
| 157 | static const Size max_changes_in_memory = 4096; |
| 158 | |
| 159 | /* --------------------------------------- |
| 160 | * primary reorderbuffer support routines |
| 161 | * --------------------------------------- |
| 162 | */ |
| 163 | static ReorderBufferTXN *ReorderBufferGetTXN(ReorderBuffer *rb); |
| 164 | static void ReorderBufferReturnTXN(ReorderBuffer *rb, ReorderBufferTXN *txn); |
| 165 | static ReorderBufferTXN *ReorderBufferTXNByXid(ReorderBuffer *rb, |
| 166 | TransactionId xid, bool create, bool *is_new, |
| 167 | XLogRecPtr lsn, bool create_as_top); |
| 168 | static void ReorderBufferTransferSnapToParent(ReorderBufferTXN *txn, |
| 169 | ReorderBufferTXN *subtxn); |
| 170 | |
| 171 | static void AssertTXNLsnOrder(ReorderBuffer *rb); |
| 172 | |
| 173 | /* --------------------------------------- |
| 174 | * support functions for lsn-order iterating over the ->changes of a |
| 175 | * transaction and its subtransactions |
| 176 | * |
| 177 | * used for iteration over the k-way heap merge of a transaction and its |
| 178 | * subtransactions |
| 179 | * --------------------------------------- |
| 180 | */ |
| 181 | static ReorderBufferIterTXNState *ReorderBufferIterTXNInit(ReorderBuffer *rb, ReorderBufferTXN *txn); |
| 182 | static ReorderBufferChange *ReorderBufferIterTXNNext(ReorderBuffer *rb, ReorderBufferIterTXNState *state); |
| 183 | static void ReorderBufferIterTXNFinish(ReorderBuffer *rb, |
| 184 | ReorderBufferIterTXNState *state); |
| 185 | static void ReorderBufferExecuteInvalidations(ReorderBuffer *rb, ReorderBufferTXN *txn); |
| 186 | |
| 187 | /* |
| 188 | * --------------------------------------- |
| 189 | * Disk serialization support functions |
| 190 | * --------------------------------------- |
| 191 | */ |
| 192 | static void ReorderBufferCheckSerializeTXN(ReorderBuffer *rb, ReorderBufferTXN *txn); |
| 193 | static void ReorderBufferSerializeTXN(ReorderBuffer *rb, ReorderBufferTXN *txn); |
| 194 | static void ReorderBufferSerializeChange(ReorderBuffer *rb, ReorderBufferTXN *txn, |
| 195 | int fd, ReorderBufferChange *change); |
| 196 | static Size ReorderBufferRestoreChanges(ReorderBuffer *rb, ReorderBufferTXN *txn, |
| 197 | int *fd, XLogSegNo *segno); |
| 198 | static void ReorderBufferRestoreChange(ReorderBuffer *rb, ReorderBufferTXN *txn, |
| 199 | char *change); |
| 200 | static void ReorderBufferRestoreCleanup(ReorderBuffer *rb, ReorderBufferTXN *txn); |
| 201 | static void ReorderBufferCleanupSerializedTXNs(const char *slotname); |
| 202 | static void ReorderBufferSerializedPath(char *path, ReplicationSlot *slot, |
| 203 | TransactionId xid, XLogSegNo segno); |
| 204 | |
| 205 | static void ReorderBufferFreeSnap(ReorderBuffer *rb, Snapshot snap); |
| 206 | static Snapshot ReorderBufferCopySnap(ReorderBuffer *rb, Snapshot orig_snap, |
| 207 | ReorderBufferTXN *txn, CommandId cid); |
| 208 | |
| 209 | /* --------------------------------------- |
| 210 | * toast reassembly support |
| 211 | * --------------------------------------- |
| 212 | */ |
| 213 | static void ReorderBufferToastInitHash(ReorderBuffer *rb, ReorderBufferTXN *txn); |
| 214 | static void ReorderBufferToastReset(ReorderBuffer *rb, ReorderBufferTXN *txn); |
| 215 | static void ReorderBufferToastReplace(ReorderBuffer *rb, ReorderBufferTXN *txn, |
| 216 | Relation relation, ReorderBufferChange *change); |
| 217 | static void ReorderBufferToastAppendChunk(ReorderBuffer *rb, ReorderBufferTXN *txn, |
| 218 | Relation relation, ReorderBufferChange *change); |
| 219 | |
| 220 | |
| 221 | /* |
| 222 | * Allocate a new ReorderBuffer and clean out any old serialized state from |
| 223 | * prior ReorderBuffer instances for the same slot. |
| 224 | */ |
| 225 | ReorderBuffer * |
| 226 | ReorderBufferAllocate(void) |
| 227 | { |
| 228 | ReorderBuffer *buffer; |
| 229 | HASHCTL hash_ctl; |
| 230 | MemoryContext new_ctx; |
| 231 | |
| 232 | Assert(MyReplicationSlot != NULL); |
| 233 | |
| 234 | /* allocate memory in own context, to have better accountability */ |
| 235 | new_ctx = AllocSetContextCreate(CurrentMemoryContext, |
| 236 | "ReorderBuffer" , |
| 237 | ALLOCSET_DEFAULT_SIZES); |
| 238 | |
| 239 | buffer = |
| 240 | (ReorderBuffer *) MemoryContextAlloc(new_ctx, sizeof(ReorderBuffer)); |
| 241 | |
| 242 | memset(&hash_ctl, 0, sizeof(hash_ctl)); |
| 243 | |
| 244 | buffer->context = new_ctx; |
| 245 | |
| 246 | buffer->change_context = SlabContextCreate(new_ctx, |
| 247 | "Change" , |
| 248 | SLAB_DEFAULT_BLOCK_SIZE, |
| 249 | sizeof(ReorderBufferChange)); |
| 250 | |
| 251 | buffer->txn_context = SlabContextCreate(new_ctx, |
| 252 | "TXN" , |
| 253 | SLAB_DEFAULT_BLOCK_SIZE, |
| 254 | sizeof(ReorderBufferTXN)); |
| 255 | |
| 256 | buffer->tup_context = GenerationContextCreate(new_ctx, |
| 257 | "Tuples" , |
| 258 | SLAB_LARGE_BLOCK_SIZE); |
| 259 | |
| 260 | hash_ctl.keysize = sizeof(TransactionId); |
| 261 | hash_ctl.entrysize = sizeof(ReorderBufferTXNByIdEnt); |
| 262 | hash_ctl.hcxt = buffer->context; |
| 263 | |
| 264 | buffer->by_txn = hash_create("ReorderBufferByXid" , 1000, &hash_ctl, |
| 265 | HASH_ELEM | HASH_BLOBS | HASH_CONTEXT); |
| 266 | |
| 267 | buffer->by_txn_last_xid = InvalidTransactionId; |
| 268 | buffer->by_txn_last_txn = NULL; |
| 269 | |
| 270 | buffer->outbuf = NULL; |
| 271 | buffer->outbufsize = 0; |
| 272 | |
| 273 | buffer->current_restart_decoding_lsn = InvalidXLogRecPtr; |
| 274 | |
| 275 | dlist_init(&buffer->toplevel_by_lsn); |
| 276 | dlist_init(&buffer->txns_by_base_snapshot_lsn); |
| 277 | |
| 278 | /* |
| 279 | * Ensure there's no stale data from prior uses of this slot, in case some |
| 280 | * prior exit avoided calling ReorderBufferFree. Failure to do this can |
| 281 | * produce duplicated txns, and it's very cheap if there's nothing there. |
| 282 | */ |
| 283 | ReorderBufferCleanupSerializedTXNs(NameStr(MyReplicationSlot->data.name)); |
| 284 | |
| 285 | return buffer; |
| 286 | } |
| 287 | |
| 288 | /* |
| 289 | * Free a ReorderBuffer |
| 290 | */ |
| 291 | void |
| 292 | ReorderBufferFree(ReorderBuffer *rb) |
| 293 | { |
| 294 | MemoryContext context = rb->context; |
| 295 | |
| 296 | /* |
| 297 | * We free separately allocated data by entirely scrapping reorderbuffer's |
| 298 | * memory context. |
| 299 | */ |
| 300 | MemoryContextDelete(context); |
| 301 | |
| 302 | /* Free disk space used by unconsumed reorder buffers */ |
| 303 | ReorderBufferCleanupSerializedTXNs(NameStr(MyReplicationSlot->data.name)); |
| 304 | } |
| 305 | |
| 306 | /* |
| 307 | * Get an unused, possibly preallocated, ReorderBufferTXN. |
| 308 | */ |
| 309 | static ReorderBufferTXN * |
| 310 | ReorderBufferGetTXN(ReorderBuffer *rb) |
| 311 | { |
| 312 | ReorderBufferTXN *txn; |
| 313 | |
| 314 | txn = (ReorderBufferTXN *) |
| 315 | MemoryContextAlloc(rb->txn_context, sizeof(ReorderBufferTXN)); |
| 316 | |
| 317 | memset(txn, 0, sizeof(ReorderBufferTXN)); |
| 318 | |
| 319 | dlist_init(&txn->changes); |
| 320 | dlist_init(&txn->tuplecids); |
| 321 | dlist_init(&txn->subtxns); |
| 322 | |
| 323 | return txn; |
| 324 | } |
| 325 | |
| 326 | /* |
| 327 | * Free a ReorderBufferTXN. |
| 328 | */ |
| 329 | static void |
| 330 | ReorderBufferReturnTXN(ReorderBuffer *rb, ReorderBufferTXN *txn) |
| 331 | { |
| 332 | /* clean the lookup cache if we were cached (quite likely) */ |
| 333 | if (rb->by_txn_last_xid == txn->xid) |
| 334 | { |
| 335 | rb->by_txn_last_xid = InvalidTransactionId; |
| 336 | rb->by_txn_last_txn = NULL; |
| 337 | } |
| 338 | |
| 339 | /* free data that's contained */ |
| 340 | |
| 341 | if (txn->tuplecid_hash != NULL) |
| 342 | { |
| 343 | hash_destroy(txn->tuplecid_hash); |
| 344 | txn->tuplecid_hash = NULL; |
| 345 | } |
| 346 | |
| 347 | if (txn->invalidations) |
| 348 | { |
| 349 | pfree(txn->invalidations); |
| 350 | txn->invalidations = NULL; |
| 351 | } |
| 352 | |
| 353 | pfree(txn); |
| 354 | } |
| 355 | |
| 356 | /* |
| 357 | * Get an fresh ReorderBufferChange. |
| 358 | */ |
| 359 | ReorderBufferChange * |
| 360 | ReorderBufferGetChange(ReorderBuffer *rb) |
| 361 | { |
| 362 | ReorderBufferChange *change; |
| 363 | |
| 364 | change = (ReorderBufferChange *) |
| 365 | MemoryContextAlloc(rb->change_context, sizeof(ReorderBufferChange)); |
| 366 | |
| 367 | memset(change, 0, sizeof(ReorderBufferChange)); |
| 368 | return change; |
| 369 | } |
| 370 | |
| 371 | /* |
| 372 | * Free an ReorderBufferChange. |
| 373 | */ |
| 374 | void |
| 375 | ReorderBufferReturnChange(ReorderBuffer *rb, ReorderBufferChange *change) |
| 376 | { |
| 377 | /* free contained data */ |
| 378 | switch (change->action) |
| 379 | { |
| 380 | case REORDER_BUFFER_CHANGE_INSERT: |
| 381 | case REORDER_BUFFER_CHANGE_UPDATE: |
| 382 | case REORDER_BUFFER_CHANGE_DELETE: |
| 383 | case REORDER_BUFFER_CHANGE_INTERNAL_SPEC_INSERT: |
| 384 | if (change->data.tp.newtuple) |
| 385 | { |
| 386 | ReorderBufferReturnTupleBuf(rb, change->data.tp.newtuple); |
| 387 | change->data.tp.newtuple = NULL; |
| 388 | } |
| 389 | |
| 390 | if (change->data.tp.oldtuple) |
| 391 | { |
| 392 | ReorderBufferReturnTupleBuf(rb, change->data.tp.oldtuple); |
| 393 | change->data.tp.oldtuple = NULL; |
| 394 | } |
| 395 | break; |
| 396 | case REORDER_BUFFER_CHANGE_MESSAGE: |
| 397 | if (change->data.msg.prefix != NULL) |
| 398 | pfree(change->data.msg.prefix); |
| 399 | change->data.msg.prefix = NULL; |
| 400 | if (change->data.msg.message != NULL) |
| 401 | pfree(change->data.msg.message); |
| 402 | change->data.msg.message = NULL; |
| 403 | break; |
| 404 | case REORDER_BUFFER_CHANGE_INTERNAL_SNAPSHOT: |
| 405 | if (change->data.snapshot) |
| 406 | { |
| 407 | ReorderBufferFreeSnap(rb, change->data.snapshot); |
| 408 | change->data.snapshot = NULL; |
| 409 | } |
| 410 | break; |
| 411 | /* no data in addition to the struct itself */ |
| 412 | case REORDER_BUFFER_CHANGE_TRUNCATE: |
| 413 | if (change->data.truncate.relids != NULL) |
| 414 | { |
| 415 | ReorderBufferReturnRelids(rb, change->data.truncate.relids); |
| 416 | change->data.truncate.relids = NULL; |
| 417 | } |
| 418 | break; |
| 419 | case REORDER_BUFFER_CHANGE_INTERNAL_SPEC_CONFIRM: |
| 420 | case REORDER_BUFFER_CHANGE_INTERNAL_COMMAND_ID: |
| 421 | case REORDER_BUFFER_CHANGE_INTERNAL_TUPLECID: |
| 422 | break; |
| 423 | } |
| 424 | |
| 425 | pfree(change); |
| 426 | } |
| 427 | |
| 428 | /* |
| 429 | * Get a fresh ReorderBufferTupleBuf fitting at least a tuple of size |
| 430 | * tuple_len (excluding header overhead). |
| 431 | */ |
| 432 | ReorderBufferTupleBuf * |
| 433 | ReorderBufferGetTupleBuf(ReorderBuffer *rb, Size tuple_len) |
| 434 | { |
| 435 | ReorderBufferTupleBuf *tuple; |
| 436 | Size alloc_len; |
| 437 | |
| 438 | alloc_len = tuple_len + SizeofHeapTupleHeader; |
| 439 | |
| 440 | tuple = (ReorderBufferTupleBuf *) |
| 441 | MemoryContextAlloc(rb->tup_context, |
| 442 | sizeof(ReorderBufferTupleBuf) + |
| 443 | MAXIMUM_ALIGNOF + alloc_len); |
| 444 | tuple->alloc_tuple_size = alloc_len; |
| 445 | tuple->tuple.t_data = ReorderBufferTupleBufData(tuple); |
| 446 | |
| 447 | return tuple; |
| 448 | } |
| 449 | |
| 450 | /* |
| 451 | * Free an ReorderBufferTupleBuf. |
| 452 | */ |
| 453 | void |
| 454 | ReorderBufferReturnTupleBuf(ReorderBuffer *rb, ReorderBufferTupleBuf *tuple) |
| 455 | { |
| 456 | pfree(tuple); |
| 457 | } |
| 458 | |
| 459 | /* |
| 460 | * Get an array for relids of truncated relations. |
| 461 | * |
| 462 | * We use the global memory context (for the whole reorder buffer), because |
| 463 | * none of the existing ones seems like a good match (some are SLAB, so we |
| 464 | * can't use those, and tup_context is meant for tuple data, not relids). We |
| 465 | * could add yet another context, but it seems like an overkill - TRUNCATE is |
| 466 | * not particularly common operation, so it does not seem worth it. |
| 467 | */ |
| 468 | Oid * |
| 469 | ReorderBufferGetRelids(ReorderBuffer *rb, int nrelids) |
| 470 | { |
| 471 | Oid *relids; |
| 472 | Size alloc_len; |
| 473 | |
| 474 | alloc_len = sizeof(Oid) * nrelids; |
| 475 | |
| 476 | relids = (Oid *) MemoryContextAlloc(rb->context, alloc_len); |
| 477 | |
| 478 | return relids; |
| 479 | } |
| 480 | |
| 481 | /* |
| 482 | * Free an array of relids. |
| 483 | */ |
| 484 | void |
| 485 | ReorderBufferReturnRelids(ReorderBuffer *rb, Oid *relids) |
| 486 | { |
| 487 | pfree(relids); |
| 488 | } |
| 489 | |
| 490 | /* |
| 491 | * Return the ReorderBufferTXN from the given buffer, specified by Xid. |
| 492 | * If create is true, and a transaction doesn't already exist, create it |
| 493 | * (with the given LSN, and as top transaction if that's specified); |
| 494 | * when this happens, is_new is set to true. |
| 495 | */ |
| 496 | static ReorderBufferTXN * |
| 497 | ReorderBufferTXNByXid(ReorderBuffer *rb, TransactionId xid, bool create, |
| 498 | bool *is_new, XLogRecPtr lsn, bool create_as_top) |
| 499 | { |
| 500 | ReorderBufferTXN *txn; |
| 501 | ReorderBufferTXNByIdEnt *ent; |
| 502 | bool found; |
| 503 | |
| 504 | Assert(TransactionIdIsValid(xid)); |
| 505 | |
| 506 | /* |
| 507 | * Check the one-entry lookup cache first |
| 508 | */ |
| 509 | if (TransactionIdIsValid(rb->by_txn_last_xid) && |
| 510 | rb->by_txn_last_xid == xid) |
| 511 | { |
| 512 | txn = rb->by_txn_last_txn; |
| 513 | |
| 514 | if (txn != NULL) |
| 515 | { |
| 516 | /* found it, and it's valid */ |
| 517 | if (is_new) |
| 518 | *is_new = false; |
| 519 | return txn; |
| 520 | } |
| 521 | |
| 522 | /* |
| 523 | * cached as non-existent, and asked not to create? Then nothing else |
| 524 | * to do. |
| 525 | */ |
| 526 | if (!create) |
| 527 | return NULL; |
| 528 | /* otherwise fall through to create it */ |
| 529 | } |
| 530 | |
| 531 | /* |
| 532 | * If the cache wasn't hit or it yielded an "does-not-exist" and we want |
| 533 | * to create an entry. |
| 534 | */ |
| 535 | |
| 536 | /* search the lookup table */ |
| 537 | ent = (ReorderBufferTXNByIdEnt *) |
| 538 | hash_search(rb->by_txn, |
| 539 | (void *) &xid, |
| 540 | create ? HASH_ENTER : HASH_FIND, |
| 541 | &found); |
| 542 | if (found) |
| 543 | txn = ent->txn; |
| 544 | else if (create) |
| 545 | { |
| 546 | /* initialize the new entry, if creation was requested */ |
| 547 | Assert(ent != NULL); |
| 548 | Assert(lsn != InvalidXLogRecPtr); |
| 549 | |
| 550 | ent->txn = ReorderBufferGetTXN(rb); |
| 551 | ent->txn->xid = xid; |
| 552 | txn = ent->txn; |
| 553 | txn->first_lsn = lsn; |
| 554 | txn->restart_decoding_lsn = rb->current_restart_decoding_lsn; |
| 555 | |
| 556 | if (create_as_top) |
| 557 | { |
| 558 | dlist_push_tail(&rb->toplevel_by_lsn, &txn->node); |
| 559 | AssertTXNLsnOrder(rb); |
| 560 | } |
| 561 | } |
| 562 | else |
| 563 | txn = NULL; /* not found and not asked to create */ |
| 564 | |
| 565 | /* update cache */ |
| 566 | rb->by_txn_last_xid = xid; |
| 567 | rb->by_txn_last_txn = txn; |
| 568 | |
| 569 | if (is_new) |
| 570 | *is_new = !found; |
| 571 | |
| 572 | Assert(!create || txn != NULL); |
| 573 | return txn; |
| 574 | } |
| 575 | |
| 576 | /* |
| 577 | * Queue a change into a transaction so it can be replayed upon commit. |
| 578 | */ |
| 579 | void |
| 580 | ReorderBufferQueueChange(ReorderBuffer *rb, TransactionId xid, XLogRecPtr lsn, |
| 581 | ReorderBufferChange *change) |
| 582 | { |
| 583 | ReorderBufferTXN *txn; |
| 584 | |
| 585 | txn = ReorderBufferTXNByXid(rb, xid, true, NULL, lsn, true); |
| 586 | |
| 587 | change->lsn = lsn; |
| 588 | Assert(InvalidXLogRecPtr != lsn); |
| 589 | dlist_push_tail(&txn->changes, &change->node); |
| 590 | txn->nentries++; |
| 591 | txn->nentries_mem++; |
| 592 | |
| 593 | ReorderBufferCheckSerializeTXN(rb, txn); |
| 594 | } |
| 595 | |
| 596 | /* |
| 597 | * Queue message into a transaction so it can be processed upon commit. |
| 598 | */ |
| 599 | void |
| 600 | ReorderBufferQueueMessage(ReorderBuffer *rb, TransactionId xid, |
| 601 | Snapshot snapshot, XLogRecPtr lsn, |
| 602 | bool transactional, const char *prefix, |
| 603 | Size message_size, const char *message) |
| 604 | { |
| 605 | if (transactional) |
| 606 | { |
| 607 | MemoryContext oldcontext; |
| 608 | ReorderBufferChange *change; |
| 609 | |
| 610 | Assert(xid != InvalidTransactionId); |
| 611 | |
| 612 | oldcontext = MemoryContextSwitchTo(rb->context); |
| 613 | |
| 614 | change = ReorderBufferGetChange(rb); |
| 615 | change->action = REORDER_BUFFER_CHANGE_MESSAGE; |
| 616 | change->data.msg.prefix = pstrdup(prefix); |
| 617 | change->data.msg.message_size = message_size; |
| 618 | change->data.msg.message = palloc(message_size); |
| 619 | memcpy(change->data.msg.message, message, message_size); |
| 620 | |
| 621 | ReorderBufferQueueChange(rb, xid, lsn, change); |
| 622 | |
| 623 | MemoryContextSwitchTo(oldcontext); |
| 624 | } |
| 625 | else |
| 626 | { |
| 627 | ReorderBufferTXN *txn = NULL; |
| 628 | volatile Snapshot snapshot_now = snapshot; |
| 629 | |
| 630 | if (xid != InvalidTransactionId) |
| 631 | txn = ReorderBufferTXNByXid(rb, xid, true, NULL, lsn, true); |
| 632 | |
| 633 | /* setup snapshot to allow catalog access */ |
| 634 | SetupHistoricSnapshot(snapshot_now, NULL); |
| 635 | PG_TRY(); |
| 636 | { |
| 637 | rb->message(rb, txn, lsn, false, prefix, message_size, message); |
| 638 | |
| 639 | TeardownHistoricSnapshot(false); |
| 640 | } |
| 641 | PG_CATCH(); |
| 642 | { |
| 643 | TeardownHistoricSnapshot(true); |
| 644 | PG_RE_THROW(); |
| 645 | } |
| 646 | PG_END_TRY(); |
| 647 | } |
| 648 | } |
| 649 | |
| 650 | /* |
| 651 | * AssertTXNLsnOrder |
| 652 | * Verify LSN ordering of transaction lists in the reorderbuffer |
| 653 | * |
| 654 | * Other LSN-related invariants are checked too. |
| 655 | * |
| 656 | * No-op if assertions are not in use. |
| 657 | */ |
| 658 | static void |
| 659 | AssertTXNLsnOrder(ReorderBuffer *rb) |
| 660 | { |
| 661 | #ifdef USE_ASSERT_CHECKING |
| 662 | dlist_iter iter; |
| 663 | XLogRecPtr prev_first_lsn = InvalidXLogRecPtr; |
| 664 | XLogRecPtr prev_base_snap_lsn = InvalidXLogRecPtr; |
| 665 | |
| 666 | dlist_foreach(iter, &rb->toplevel_by_lsn) |
| 667 | { |
| 668 | ReorderBufferTXN *cur_txn = dlist_container(ReorderBufferTXN, node, |
| 669 | iter.cur); |
| 670 | |
| 671 | /* start LSN must be set */ |
| 672 | Assert(cur_txn->first_lsn != InvalidXLogRecPtr); |
| 673 | |
| 674 | /* If there is an end LSN, it must be higher than start LSN */ |
| 675 | if (cur_txn->end_lsn != InvalidXLogRecPtr) |
| 676 | Assert(cur_txn->first_lsn <= cur_txn->end_lsn); |
| 677 | |
| 678 | /* Current initial LSN must be strictly higher than previous */ |
| 679 | if (prev_first_lsn != InvalidXLogRecPtr) |
| 680 | Assert(prev_first_lsn < cur_txn->first_lsn); |
| 681 | |
| 682 | /* known-as-subtxn txns must not be listed */ |
| 683 | Assert(!cur_txn->is_known_as_subxact); |
| 684 | |
| 685 | prev_first_lsn = cur_txn->first_lsn; |
| 686 | } |
| 687 | |
| 688 | dlist_foreach(iter, &rb->txns_by_base_snapshot_lsn) |
| 689 | { |
| 690 | ReorderBufferTXN *cur_txn = dlist_container(ReorderBufferTXN, |
| 691 | base_snapshot_node, |
| 692 | iter.cur); |
| 693 | |
| 694 | /* base snapshot (and its LSN) must be set */ |
| 695 | Assert(cur_txn->base_snapshot != NULL); |
| 696 | Assert(cur_txn->base_snapshot_lsn != InvalidXLogRecPtr); |
| 697 | |
| 698 | /* current LSN must be strictly higher than previous */ |
| 699 | if (prev_base_snap_lsn != InvalidXLogRecPtr) |
| 700 | Assert(prev_base_snap_lsn < cur_txn->base_snapshot_lsn); |
| 701 | |
| 702 | /* known-as-subtxn txns must not be listed */ |
| 703 | Assert(!cur_txn->is_known_as_subxact); |
| 704 | |
| 705 | prev_base_snap_lsn = cur_txn->base_snapshot_lsn; |
| 706 | } |
| 707 | #endif |
| 708 | } |
| 709 | |
| 710 | /* |
| 711 | * ReorderBufferGetOldestTXN |
| 712 | * Return oldest transaction in reorderbuffer |
| 713 | */ |
| 714 | ReorderBufferTXN * |
| 715 | ReorderBufferGetOldestTXN(ReorderBuffer *rb) |
| 716 | { |
| 717 | ReorderBufferTXN *txn; |
| 718 | |
| 719 | AssertTXNLsnOrder(rb); |
| 720 | |
| 721 | if (dlist_is_empty(&rb->toplevel_by_lsn)) |
| 722 | return NULL; |
| 723 | |
| 724 | txn = dlist_head_element(ReorderBufferTXN, node, &rb->toplevel_by_lsn); |
| 725 | |
| 726 | Assert(!txn->is_known_as_subxact); |
| 727 | Assert(txn->first_lsn != InvalidXLogRecPtr); |
| 728 | return txn; |
| 729 | } |
| 730 | |
| 731 | /* |
| 732 | * ReorderBufferGetOldestXmin |
| 733 | * Return oldest Xmin in reorderbuffer |
| 734 | * |
| 735 | * Returns oldest possibly running Xid from the point of view of snapshots |
| 736 | * used in the transactions kept by reorderbuffer, or InvalidTransactionId if |
| 737 | * there are none. |
| 738 | * |
| 739 | * Since snapshots are assigned monotonically, this equals the Xmin of the |
| 740 | * base snapshot with minimal base_snapshot_lsn. |
| 741 | */ |
| 742 | TransactionId |
| 743 | ReorderBufferGetOldestXmin(ReorderBuffer *rb) |
| 744 | { |
| 745 | ReorderBufferTXN *txn; |
| 746 | |
| 747 | AssertTXNLsnOrder(rb); |
| 748 | |
| 749 | if (dlist_is_empty(&rb->txns_by_base_snapshot_lsn)) |
| 750 | return InvalidTransactionId; |
| 751 | |
| 752 | txn = dlist_head_element(ReorderBufferTXN, base_snapshot_node, |
| 753 | &rb->txns_by_base_snapshot_lsn); |
| 754 | return txn->base_snapshot->xmin; |
| 755 | } |
| 756 | |
| 757 | void |
| 758 | ReorderBufferSetRestartPoint(ReorderBuffer *rb, XLogRecPtr ptr) |
| 759 | { |
| 760 | rb->current_restart_decoding_lsn = ptr; |
| 761 | } |
| 762 | |
| 763 | /* |
| 764 | * ReorderBufferAssignChild |
| 765 | * |
| 766 | * Make note that we know that subxid is a subtransaction of xid, seen as of |
| 767 | * the given lsn. |
| 768 | */ |
| 769 | void |
| 770 | ReorderBufferAssignChild(ReorderBuffer *rb, TransactionId xid, |
| 771 | TransactionId subxid, XLogRecPtr lsn) |
| 772 | { |
| 773 | ReorderBufferTXN *txn; |
| 774 | ReorderBufferTXN *subtxn; |
| 775 | bool new_top; |
| 776 | bool new_sub; |
| 777 | |
| 778 | txn = ReorderBufferTXNByXid(rb, xid, true, &new_top, lsn, true); |
| 779 | subtxn = ReorderBufferTXNByXid(rb, subxid, true, &new_sub, lsn, false); |
| 780 | |
| 781 | if (new_top && !new_sub) |
| 782 | elog(ERROR, "subtransaction logged without previous top-level txn record" ); |
| 783 | |
| 784 | if (!new_sub) |
| 785 | { |
| 786 | if (subtxn->is_known_as_subxact) |
| 787 | { |
| 788 | /* already associated, nothing to do */ |
| 789 | return; |
| 790 | } |
| 791 | else |
| 792 | { |
| 793 | /* |
| 794 | * We already saw this transaction, but initially added it to the |
| 795 | * list of top-level txns. Now that we know it's not top-level, |
| 796 | * remove it from there. |
| 797 | */ |
| 798 | dlist_delete(&subtxn->node); |
| 799 | } |
| 800 | } |
| 801 | |
| 802 | subtxn->is_known_as_subxact = true; |
| 803 | subtxn->toplevel_xid = xid; |
| 804 | Assert(subtxn->nsubtxns == 0); |
| 805 | |
| 806 | /* add to subtransaction list */ |
| 807 | dlist_push_tail(&txn->subtxns, &subtxn->node); |
| 808 | txn->nsubtxns++; |
| 809 | |
| 810 | /* Possibly transfer the subtxn's snapshot to its top-level txn. */ |
| 811 | ReorderBufferTransferSnapToParent(txn, subtxn); |
| 812 | |
| 813 | /* Verify LSN-ordering invariant */ |
| 814 | AssertTXNLsnOrder(rb); |
| 815 | } |
| 816 | |
| 817 | /* |
| 818 | * ReorderBufferTransferSnapToParent |
| 819 | * Transfer base snapshot from subtxn to top-level txn, if needed |
| 820 | * |
| 821 | * This is done if the top-level txn doesn't have a base snapshot, or if the |
| 822 | * subtxn's base snapshot has an earlier LSN than the top-level txn's base |
| 823 | * snapshot's LSN. This can happen if there are no changes in the toplevel |
| 824 | * txn but there are some in the subtxn, or the first change in subtxn has |
| 825 | * earlier LSN than first change in the top-level txn and we learned about |
| 826 | * their kinship only now. |
| 827 | * |
| 828 | * The subtransaction's snapshot is cleared regardless of the transfer |
| 829 | * happening, since it's not needed anymore in either case. |
| 830 | * |
| 831 | * We do this as soon as we become aware of their kinship, to avoid queueing |
| 832 | * extra snapshots to txns known-as-subtxns -- only top-level txns will |
| 833 | * receive further snapshots. |
| 834 | */ |
| 835 | static void |
| 836 | ReorderBufferTransferSnapToParent(ReorderBufferTXN *txn, |
| 837 | ReorderBufferTXN *subtxn) |
| 838 | { |
| 839 | Assert(subtxn->toplevel_xid == txn->xid); |
| 840 | |
| 841 | if (subtxn->base_snapshot != NULL) |
| 842 | { |
| 843 | if (txn->base_snapshot == NULL || |
| 844 | subtxn->base_snapshot_lsn < txn->base_snapshot_lsn) |
| 845 | { |
| 846 | /* |
| 847 | * If the toplevel transaction already has a base snapshot but |
| 848 | * it's newer than the subxact's, purge it. |
| 849 | */ |
| 850 | if (txn->base_snapshot != NULL) |
| 851 | { |
| 852 | SnapBuildSnapDecRefcount(txn->base_snapshot); |
| 853 | dlist_delete(&txn->base_snapshot_node); |
| 854 | } |
| 855 | |
| 856 | /* |
| 857 | * The snapshot is now the top transaction's; transfer it, and |
| 858 | * adjust the list position of the top transaction in the list by |
| 859 | * moving it to where the subtransaction is. |
| 860 | */ |
| 861 | txn->base_snapshot = subtxn->base_snapshot; |
| 862 | txn->base_snapshot_lsn = subtxn->base_snapshot_lsn; |
| 863 | dlist_insert_before(&subtxn->base_snapshot_node, |
| 864 | &txn->base_snapshot_node); |
| 865 | |
| 866 | /* |
| 867 | * The subtransaction doesn't have a snapshot anymore (so it |
| 868 | * mustn't be in the list.) |
| 869 | */ |
| 870 | subtxn->base_snapshot = NULL; |
| 871 | subtxn->base_snapshot_lsn = InvalidXLogRecPtr; |
| 872 | dlist_delete(&subtxn->base_snapshot_node); |
| 873 | } |
| 874 | else |
| 875 | { |
| 876 | /* Base snap of toplevel is fine, so subxact's is not needed */ |
| 877 | SnapBuildSnapDecRefcount(subtxn->base_snapshot); |
| 878 | dlist_delete(&subtxn->base_snapshot_node); |
| 879 | subtxn->base_snapshot = NULL; |
| 880 | subtxn->base_snapshot_lsn = InvalidXLogRecPtr; |
| 881 | } |
| 882 | } |
| 883 | } |
| 884 | |
| 885 | /* |
| 886 | * Associate a subtransaction with its toplevel transaction at commit |
| 887 | * time. There may be no further changes added after this. |
| 888 | */ |
| 889 | void |
| 890 | ReorderBufferCommitChild(ReorderBuffer *rb, TransactionId xid, |
| 891 | TransactionId subxid, XLogRecPtr commit_lsn, |
| 892 | XLogRecPtr end_lsn) |
| 893 | { |
| 894 | ReorderBufferTXN *subtxn; |
| 895 | |
| 896 | subtxn = ReorderBufferTXNByXid(rb, subxid, false, NULL, |
| 897 | InvalidXLogRecPtr, false); |
| 898 | |
| 899 | /* |
| 900 | * No need to do anything if that subtxn didn't contain any changes |
| 901 | */ |
| 902 | if (!subtxn) |
| 903 | return; |
| 904 | |
| 905 | subtxn->final_lsn = commit_lsn; |
| 906 | subtxn->end_lsn = end_lsn; |
| 907 | |
| 908 | /* |
| 909 | * Assign this subxact as a child of the toplevel xact (no-op if already |
| 910 | * done.) |
| 911 | */ |
| 912 | ReorderBufferAssignChild(rb, xid, subxid, InvalidXLogRecPtr); |
| 913 | } |
| 914 | |
| 915 | |
| 916 | /* |
| 917 | * Support for efficiently iterating over a transaction's and its |
| 918 | * subtransactions' changes. |
| 919 | * |
| 920 | * We do by doing a k-way merge between transactions/subtransactions. For that |
| 921 | * we model the current heads of the different transactions as a binary heap |
| 922 | * so we easily know which (sub-)transaction has the change with the smallest |
| 923 | * lsn next. |
| 924 | * |
| 925 | * We assume the changes in individual transactions are already sorted by LSN. |
| 926 | */ |
| 927 | |
| 928 | /* |
| 929 | * Binary heap comparison function. |
| 930 | */ |
| 931 | static int |
| 932 | ReorderBufferIterCompare(Datum a, Datum b, void *arg) |
| 933 | { |
| 934 | ReorderBufferIterTXNState *state = (ReorderBufferIterTXNState *) arg; |
| 935 | XLogRecPtr pos_a = state->entries[DatumGetInt32(a)].lsn; |
| 936 | XLogRecPtr pos_b = state->entries[DatumGetInt32(b)].lsn; |
| 937 | |
| 938 | if (pos_a < pos_b) |
| 939 | return 1; |
| 940 | else if (pos_a == pos_b) |
| 941 | return 0; |
| 942 | return -1; |
| 943 | } |
| 944 | |
| 945 | /* |
| 946 | * Allocate & initialize an iterator which iterates in lsn order over a |
| 947 | * transaction and all its subtransactions. |
| 948 | */ |
| 949 | static ReorderBufferIterTXNState * |
| 950 | ReorderBufferIterTXNInit(ReorderBuffer *rb, ReorderBufferTXN *txn) |
| 951 | { |
| 952 | Size nr_txns = 0; |
| 953 | ReorderBufferIterTXNState *state; |
| 954 | dlist_iter cur_txn_i; |
| 955 | int32 off; |
| 956 | |
| 957 | /* |
| 958 | * Calculate the size of our heap: one element for every transaction that |
| 959 | * contains changes. (Besides the transactions already in the reorder |
| 960 | * buffer, we count the one we were directly passed.) |
| 961 | */ |
| 962 | if (txn->nentries > 0) |
| 963 | nr_txns++; |
| 964 | |
| 965 | dlist_foreach(cur_txn_i, &txn->subtxns) |
| 966 | { |
| 967 | ReorderBufferTXN *cur_txn; |
| 968 | |
| 969 | cur_txn = dlist_container(ReorderBufferTXN, node, cur_txn_i.cur); |
| 970 | |
| 971 | if (cur_txn->nentries > 0) |
| 972 | nr_txns++; |
| 973 | } |
| 974 | |
| 975 | /* |
| 976 | * TODO: Consider adding fastpath for the rather common nr_txns=1 case, no |
| 977 | * need to allocate/build a heap then. |
| 978 | */ |
| 979 | |
| 980 | /* allocate iteration state */ |
| 981 | state = (ReorderBufferIterTXNState *) |
| 982 | MemoryContextAllocZero(rb->context, |
| 983 | sizeof(ReorderBufferIterTXNState) + |
| 984 | sizeof(ReorderBufferIterTXNEntry) * nr_txns); |
| 985 | |
| 986 | state->nr_txns = nr_txns; |
| 987 | dlist_init(&state->old_change); |
| 988 | |
| 989 | for (off = 0; off < state->nr_txns; off++) |
| 990 | { |
| 991 | state->entries[off].fd = -1; |
| 992 | state->entries[off].segno = 0; |
| 993 | } |
| 994 | |
| 995 | /* allocate heap */ |
| 996 | state->heap = binaryheap_allocate(state->nr_txns, |
| 997 | ReorderBufferIterCompare, |
| 998 | state); |
| 999 | |
| 1000 | /* |
| 1001 | * Now insert items into the binary heap, in an unordered fashion. (We |
| 1002 | * will run a heap assembly step at the end; this is more efficient.) |
| 1003 | */ |
| 1004 | |
| 1005 | off = 0; |
| 1006 | |
| 1007 | /* add toplevel transaction if it contains changes */ |
| 1008 | if (txn->nentries > 0) |
| 1009 | { |
| 1010 | ReorderBufferChange *cur_change; |
| 1011 | |
| 1012 | if (txn->serialized) |
| 1013 | { |
| 1014 | /* serialize remaining changes */ |
| 1015 | ReorderBufferSerializeTXN(rb, txn); |
| 1016 | ReorderBufferRestoreChanges(rb, txn, &state->entries[off].fd, |
| 1017 | &state->entries[off].segno); |
| 1018 | } |
| 1019 | |
| 1020 | cur_change = dlist_head_element(ReorderBufferChange, node, |
| 1021 | &txn->changes); |
| 1022 | |
| 1023 | state->entries[off].lsn = cur_change->lsn; |
| 1024 | state->entries[off].change = cur_change; |
| 1025 | state->entries[off].txn = txn; |
| 1026 | |
| 1027 | binaryheap_add_unordered(state->heap, Int32GetDatum(off++)); |
| 1028 | } |
| 1029 | |
| 1030 | /* add subtransactions if they contain changes */ |
| 1031 | dlist_foreach(cur_txn_i, &txn->subtxns) |
| 1032 | { |
| 1033 | ReorderBufferTXN *cur_txn; |
| 1034 | |
| 1035 | cur_txn = dlist_container(ReorderBufferTXN, node, cur_txn_i.cur); |
| 1036 | |
| 1037 | if (cur_txn->nentries > 0) |
| 1038 | { |
| 1039 | ReorderBufferChange *cur_change; |
| 1040 | |
| 1041 | if (cur_txn->serialized) |
| 1042 | { |
| 1043 | /* serialize remaining changes */ |
| 1044 | ReorderBufferSerializeTXN(rb, cur_txn); |
| 1045 | ReorderBufferRestoreChanges(rb, cur_txn, |
| 1046 | &state->entries[off].fd, |
| 1047 | &state->entries[off].segno); |
| 1048 | } |
| 1049 | cur_change = dlist_head_element(ReorderBufferChange, node, |
| 1050 | &cur_txn->changes); |
| 1051 | |
| 1052 | state->entries[off].lsn = cur_change->lsn; |
| 1053 | state->entries[off].change = cur_change; |
| 1054 | state->entries[off].txn = cur_txn; |
| 1055 | |
| 1056 | binaryheap_add_unordered(state->heap, Int32GetDatum(off++)); |
| 1057 | } |
| 1058 | } |
| 1059 | |
| 1060 | /* assemble a valid binary heap */ |
| 1061 | binaryheap_build(state->heap); |
| 1062 | |
| 1063 | return state; |
| 1064 | } |
| 1065 | |
| 1066 | /* |
| 1067 | * Return the next change when iterating over a transaction and its |
| 1068 | * subtransactions. |
| 1069 | * |
| 1070 | * Returns NULL when no further changes exist. |
| 1071 | */ |
| 1072 | static ReorderBufferChange * |
| 1073 | ReorderBufferIterTXNNext(ReorderBuffer *rb, ReorderBufferIterTXNState *state) |
| 1074 | { |
| 1075 | ReorderBufferChange *change; |
| 1076 | ReorderBufferIterTXNEntry *entry; |
| 1077 | int32 off; |
| 1078 | |
| 1079 | /* nothing there anymore */ |
| 1080 | if (state->heap->bh_size == 0) |
| 1081 | return NULL; |
| 1082 | |
| 1083 | off = DatumGetInt32(binaryheap_first(state->heap)); |
| 1084 | entry = &state->entries[off]; |
| 1085 | |
| 1086 | /* free memory we might have "leaked" in the previous *Next call */ |
| 1087 | if (!dlist_is_empty(&state->old_change)) |
| 1088 | { |
| 1089 | change = dlist_container(ReorderBufferChange, node, |
| 1090 | dlist_pop_head_node(&state->old_change)); |
| 1091 | ReorderBufferReturnChange(rb, change); |
| 1092 | Assert(dlist_is_empty(&state->old_change)); |
| 1093 | } |
| 1094 | |
| 1095 | change = entry->change; |
| 1096 | |
| 1097 | /* |
| 1098 | * update heap with information about which transaction has the next |
| 1099 | * relevant change in LSN order |
| 1100 | */ |
| 1101 | |
| 1102 | /* there are in-memory changes */ |
| 1103 | if (dlist_has_next(&entry->txn->changes, &entry->change->node)) |
| 1104 | { |
| 1105 | dlist_node *next = dlist_next_node(&entry->txn->changes, &change->node); |
| 1106 | ReorderBufferChange *next_change = |
| 1107 | dlist_container(ReorderBufferChange, node, next); |
| 1108 | |
| 1109 | /* txn stays the same */ |
| 1110 | state->entries[off].lsn = next_change->lsn; |
| 1111 | state->entries[off].change = next_change; |
| 1112 | |
| 1113 | binaryheap_replace_first(state->heap, Int32GetDatum(off)); |
| 1114 | return change; |
| 1115 | } |
| 1116 | |
| 1117 | /* try to load changes from disk */ |
| 1118 | if (entry->txn->nentries != entry->txn->nentries_mem) |
| 1119 | { |
| 1120 | /* |
| 1121 | * Ugly: restoring changes will reuse *Change records, thus delete the |
| 1122 | * current one from the per-tx list and only free in the next call. |
| 1123 | */ |
| 1124 | dlist_delete(&change->node); |
| 1125 | dlist_push_tail(&state->old_change, &change->node); |
| 1126 | |
| 1127 | if (ReorderBufferRestoreChanges(rb, entry->txn, &entry->fd, |
| 1128 | &state->entries[off].segno)) |
| 1129 | { |
| 1130 | /* successfully restored changes from disk */ |
| 1131 | ReorderBufferChange *next_change = |
| 1132 | dlist_head_element(ReorderBufferChange, node, |
| 1133 | &entry->txn->changes); |
| 1134 | |
| 1135 | elog(DEBUG2, "restored %u/%u changes from disk" , |
| 1136 | (uint32) entry->txn->nentries_mem, |
| 1137 | (uint32) entry->txn->nentries); |
| 1138 | |
| 1139 | Assert(entry->txn->nentries_mem); |
| 1140 | /* txn stays the same */ |
| 1141 | state->entries[off].lsn = next_change->lsn; |
| 1142 | state->entries[off].change = next_change; |
| 1143 | binaryheap_replace_first(state->heap, Int32GetDatum(off)); |
| 1144 | |
| 1145 | return change; |
| 1146 | } |
| 1147 | } |
| 1148 | |
| 1149 | /* ok, no changes there anymore, remove */ |
| 1150 | binaryheap_remove_first(state->heap); |
| 1151 | |
| 1152 | return change; |
| 1153 | } |
| 1154 | |
| 1155 | /* |
| 1156 | * Deallocate the iterator |
| 1157 | */ |
| 1158 | static void |
| 1159 | ReorderBufferIterTXNFinish(ReorderBuffer *rb, |
| 1160 | ReorderBufferIterTXNState *state) |
| 1161 | { |
| 1162 | int32 off; |
| 1163 | |
| 1164 | for (off = 0; off < state->nr_txns; off++) |
| 1165 | { |
| 1166 | if (state->entries[off].fd != -1) |
| 1167 | CloseTransientFile(state->entries[off].fd); |
| 1168 | } |
| 1169 | |
| 1170 | /* free memory we might have "leaked" in the last *Next call */ |
| 1171 | if (!dlist_is_empty(&state->old_change)) |
| 1172 | { |
| 1173 | ReorderBufferChange *change; |
| 1174 | |
| 1175 | change = dlist_container(ReorderBufferChange, node, |
| 1176 | dlist_pop_head_node(&state->old_change)); |
| 1177 | ReorderBufferReturnChange(rb, change); |
| 1178 | Assert(dlist_is_empty(&state->old_change)); |
| 1179 | } |
| 1180 | |
| 1181 | binaryheap_free(state->heap); |
| 1182 | pfree(state); |
| 1183 | } |
| 1184 | |
| 1185 | /* |
| 1186 | * Cleanup the contents of a transaction, usually after the transaction |
| 1187 | * committed or aborted. |
| 1188 | */ |
| 1189 | static void |
| 1190 | ReorderBufferCleanupTXN(ReorderBuffer *rb, ReorderBufferTXN *txn) |
| 1191 | { |
| 1192 | bool found; |
| 1193 | dlist_mutable_iter iter; |
| 1194 | |
| 1195 | /* cleanup subtransactions & their changes */ |
| 1196 | dlist_foreach_modify(iter, &txn->subtxns) |
| 1197 | { |
| 1198 | ReorderBufferTXN *subtxn; |
| 1199 | |
| 1200 | subtxn = dlist_container(ReorderBufferTXN, node, iter.cur); |
| 1201 | |
| 1202 | /* |
| 1203 | * Subtransactions are always associated to the toplevel TXN, even if |
| 1204 | * they originally were happening inside another subtxn, so we won't |
| 1205 | * ever recurse more than one level deep here. |
| 1206 | */ |
| 1207 | Assert(subtxn->is_known_as_subxact); |
| 1208 | Assert(subtxn->nsubtxns == 0); |
| 1209 | |
| 1210 | ReorderBufferCleanupTXN(rb, subtxn); |
| 1211 | } |
| 1212 | |
| 1213 | /* cleanup changes in the toplevel txn */ |
| 1214 | dlist_foreach_modify(iter, &txn->changes) |
| 1215 | { |
| 1216 | ReorderBufferChange *change; |
| 1217 | |
| 1218 | change = dlist_container(ReorderBufferChange, node, iter.cur); |
| 1219 | |
| 1220 | ReorderBufferReturnChange(rb, change); |
| 1221 | } |
| 1222 | |
| 1223 | /* |
| 1224 | * Cleanup the tuplecids we stored for decoding catalog snapshot access. |
| 1225 | * They are always stored in the toplevel transaction. |
| 1226 | */ |
| 1227 | dlist_foreach_modify(iter, &txn->tuplecids) |
| 1228 | { |
| 1229 | ReorderBufferChange *change; |
| 1230 | |
| 1231 | change = dlist_container(ReorderBufferChange, node, iter.cur); |
| 1232 | Assert(change->action == REORDER_BUFFER_CHANGE_INTERNAL_TUPLECID); |
| 1233 | ReorderBufferReturnChange(rb, change); |
| 1234 | } |
| 1235 | |
| 1236 | /* |
| 1237 | * Cleanup the base snapshot, if set. |
| 1238 | */ |
| 1239 | if (txn->base_snapshot != NULL) |
| 1240 | { |
| 1241 | SnapBuildSnapDecRefcount(txn->base_snapshot); |
| 1242 | dlist_delete(&txn->base_snapshot_node); |
| 1243 | } |
| 1244 | |
| 1245 | /* |
| 1246 | * Remove TXN from its containing list. |
| 1247 | * |
| 1248 | * Note: if txn->is_known_as_subxact, we are deleting the TXN from its |
| 1249 | * parent's list of known subxacts; this leaves the parent's nsubxacts |
| 1250 | * count too high, but we don't care. Otherwise, we are deleting the TXN |
| 1251 | * from the LSN-ordered list of toplevel TXNs. |
| 1252 | */ |
| 1253 | dlist_delete(&txn->node); |
| 1254 | |
| 1255 | /* now remove reference from buffer */ |
| 1256 | hash_search(rb->by_txn, |
| 1257 | (void *) &txn->xid, |
| 1258 | HASH_REMOVE, |
| 1259 | &found); |
| 1260 | Assert(found); |
| 1261 | |
| 1262 | /* remove entries spilled to disk */ |
| 1263 | if (txn->serialized) |
| 1264 | ReorderBufferRestoreCleanup(rb, txn); |
| 1265 | |
| 1266 | /* deallocate */ |
| 1267 | ReorderBufferReturnTXN(rb, txn); |
| 1268 | } |
| 1269 | |
| 1270 | /* |
| 1271 | * Build a hash with a (relfilenode, ctid) -> (cmin, cmax) mapping for use by |
| 1272 | * HeapTupleSatisfiesHistoricMVCC. |
| 1273 | */ |
| 1274 | static void |
| 1275 | ReorderBufferBuildTupleCidHash(ReorderBuffer *rb, ReorderBufferTXN *txn) |
| 1276 | { |
| 1277 | dlist_iter iter; |
| 1278 | HASHCTL hash_ctl; |
| 1279 | |
| 1280 | if (!txn->has_catalog_changes || dlist_is_empty(&txn->tuplecids)) |
| 1281 | return; |
| 1282 | |
| 1283 | memset(&hash_ctl, 0, sizeof(hash_ctl)); |
| 1284 | |
| 1285 | hash_ctl.keysize = sizeof(ReorderBufferTupleCidKey); |
| 1286 | hash_ctl.entrysize = sizeof(ReorderBufferTupleCidEnt); |
| 1287 | hash_ctl.hcxt = rb->context; |
| 1288 | |
| 1289 | /* |
| 1290 | * create the hash with the exact number of to-be-stored tuplecids from |
| 1291 | * the start |
| 1292 | */ |
| 1293 | txn->tuplecid_hash = |
| 1294 | hash_create("ReorderBufferTupleCid" , txn->ntuplecids, &hash_ctl, |
| 1295 | HASH_ELEM | HASH_BLOBS | HASH_CONTEXT); |
| 1296 | |
| 1297 | dlist_foreach(iter, &txn->tuplecids) |
| 1298 | { |
| 1299 | ReorderBufferTupleCidKey key; |
| 1300 | ReorderBufferTupleCidEnt *ent; |
| 1301 | bool found; |
| 1302 | ReorderBufferChange *change; |
| 1303 | |
| 1304 | change = dlist_container(ReorderBufferChange, node, iter.cur); |
| 1305 | |
| 1306 | Assert(change->action == REORDER_BUFFER_CHANGE_INTERNAL_TUPLECID); |
| 1307 | |
| 1308 | /* be careful about padding */ |
| 1309 | memset(&key, 0, sizeof(ReorderBufferTupleCidKey)); |
| 1310 | |
| 1311 | key.relnode = change->data.tuplecid.node; |
| 1312 | |
| 1313 | ItemPointerCopy(&change->data.tuplecid.tid, |
| 1314 | &key.tid); |
| 1315 | |
| 1316 | ent = (ReorderBufferTupleCidEnt *) |
| 1317 | hash_search(txn->tuplecid_hash, |
| 1318 | (void *) &key, |
| 1319 | HASH_ENTER | HASH_FIND, |
| 1320 | &found); |
| 1321 | if (!found) |
| 1322 | { |
| 1323 | ent->cmin = change->data.tuplecid.cmin; |
| 1324 | ent->cmax = change->data.tuplecid.cmax; |
| 1325 | ent->combocid = change->data.tuplecid.combocid; |
| 1326 | } |
| 1327 | else |
| 1328 | { |
| 1329 | /* |
| 1330 | * Maybe we already saw this tuple before in this transaction, but |
| 1331 | * if so it must have the same cmin. |
| 1332 | */ |
| 1333 | Assert(ent->cmin == change->data.tuplecid.cmin); |
| 1334 | |
| 1335 | /* |
| 1336 | * cmax may be initially invalid, but once set it can only grow, |
| 1337 | * and never become invalid again. |
| 1338 | */ |
| 1339 | Assert((ent->cmax == InvalidCommandId) || |
| 1340 | ((change->data.tuplecid.cmax != InvalidCommandId) && |
| 1341 | (change->data.tuplecid.cmax > ent->cmax))); |
| 1342 | ent->cmax = change->data.tuplecid.cmax; |
| 1343 | } |
| 1344 | } |
| 1345 | } |
| 1346 | |
| 1347 | /* |
| 1348 | * Copy a provided snapshot so we can modify it privately. This is needed so |
| 1349 | * that catalog modifying transactions can look into intermediate catalog |
| 1350 | * states. |
| 1351 | */ |
| 1352 | static Snapshot |
| 1353 | ReorderBufferCopySnap(ReorderBuffer *rb, Snapshot orig_snap, |
| 1354 | ReorderBufferTXN *txn, CommandId cid) |
| 1355 | { |
| 1356 | Snapshot snap; |
| 1357 | dlist_iter iter; |
| 1358 | int i = 0; |
| 1359 | Size size; |
| 1360 | |
| 1361 | size = sizeof(SnapshotData) + |
| 1362 | sizeof(TransactionId) * orig_snap->xcnt + |
| 1363 | sizeof(TransactionId) * (txn->nsubtxns + 1); |
| 1364 | |
| 1365 | snap = MemoryContextAllocZero(rb->context, size); |
| 1366 | memcpy(snap, orig_snap, sizeof(SnapshotData)); |
| 1367 | |
| 1368 | snap->copied = true; |
| 1369 | snap->active_count = 1; /* mark as active so nobody frees it */ |
| 1370 | snap->regd_count = 0; |
| 1371 | snap->xip = (TransactionId *) (snap + 1); |
| 1372 | |
| 1373 | memcpy(snap->xip, orig_snap->xip, sizeof(TransactionId) * snap->xcnt); |
| 1374 | |
| 1375 | /* |
| 1376 | * snap->subxip contains all txids that belong to our transaction which we |
| 1377 | * need to check via cmin/cmax. That's why we store the toplevel |
| 1378 | * transaction in there as well. |
| 1379 | */ |
| 1380 | snap->subxip = snap->xip + snap->xcnt; |
| 1381 | snap->subxip[i++] = txn->xid; |
| 1382 | |
| 1383 | /* |
| 1384 | * nsubxcnt isn't decreased when subtransactions abort, so count manually. |
| 1385 | * Since it's an upper boundary it is safe to use it for the allocation |
| 1386 | * above. |
| 1387 | */ |
| 1388 | snap->subxcnt = 1; |
| 1389 | |
| 1390 | dlist_foreach(iter, &txn->subtxns) |
| 1391 | { |
| 1392 | ReorderBufferTXN *sub_txn; |
| 1393 | |
| 1394 | sub_txn = dlist_container(ReorderBufferTXN, node, iter.cur); |
| 1395 | snap->subxip[i++] = sub_txn->xid; |
| 1396 | snap->subxcnt++; |
| 1397 | } |
| 1398 | |
| 1399 | /* sort so we can bsearch() later */ |
| 1400 | qsort(snap->subxip, snap->subxcnt, sizeof(TransactionId), xidComparator); |
| 1401 | |
| 1402 | /* store the specified current CommandId */ |
| 1403 | snap->curcid = cid; |
| 1404 | |
| 1405 | return snap; |
| 1406 | } |
| 1407 | |
| 1408 | /* |
| 1409 | * Free a previously ReorderBufferCopySnap'ed snapshot |
| 1410 | */ |
| 1411 | static void |
| 1412 | ReorderBufferFreeSnap(ReorderBuffer *rb, Snapshot snap) |
| 1413 | { |
| 1414 | if (snap->copied) |
| 1415 | pfree(snap); |
| 1416 | else |
| 1417 | SnapBuildSnapDecRefcount(snap); |
| 1418 | } |
| 1419 | |
| 1420 | /* |
| 1421 | * Perform the replay of a transaction and its non-aborted subtransactions. |
| 1422 | * |
| 1423 | * Subtransactions previously have to be processed by |
| 1424 | * ReorderBufferCommitChild(), even if previously assigned to the toplevel |
| 1425 | * transaction with ReorderBufferAssignChild. |
| 1426 | * |
| 1427 | * We currently can only decode a transaction's contents when its commit |
| 1428 | * record is read because that's the only place where we know about cache |
| 1429 | * invalidations. Thus, once a toplevel commit is read, we iterate over the top |
| 1430 | * and subtransactions (using a k-way merge) and replay the changes in lsn |
| 1431 | * order. |
| 1432 | */ |
| 1433 | void |
| 1434 | ReorderBufferCommit(ReorderBuffer *rb, TransactionId xid, |
| 1435 | XLogRecPtr commit_lsn, XLogRecPtr end_lsn, |
| 1436 | TimestampTz commit_time, |
| 1437 | RepOriginId origin_id, XLogRecPtr origin_lsn) |
| 1438 | { |
| 1439 | ReorderBufferTXN *txn; |
| 1440 | volatile Snapshot snapshot_now; |
| 1441 | volatile CommandId command_id = FirstCommandId; |
| 1442 | bool using_subtxn; |
| 1443 | ReorderBufferIterTXNState *volatile iterstate = NULL; |
| 1444 | |
| 1445 | txn = ReorderBufferTXNByXid(rb, xid, false, NULL, InvalidXLogRecPtr, |
| 1446 | false); |
| 1447 | |
| 1448 | /* unknown transaction, nothing to replay */ |
| 1449 | if (txn == NULL) |
| 1450 | return; |
| 1451 | |
| 1452 | txn->final_lsn = commit_lsn; |
| 1453 | txn->end_lsn = end_lsn; |
| 1454 | txn->commit_time = commit_time; |
| 1455 | txn->origin_id = origin_id; |
| 1456 | txn->origin_lsn = origin_lsn; |
| 1457 | |
| 1458 | /* |
| 1459 | * If this transaction has no snapshot, it didn't make any changes to the |
| 1460 | * database, so there's nothing to decode. Note that |
| 1461 | * ReorderBufferCommitChild will have transferred any snapshots from |
| 1462 | * subtransactions if there were any. |
| 1463 | */ |
| 1464 | if (txn->base_snapshot == NULL) |
| 1465 | { |
| 1466 | Assert(txn->ninvalidations == 0); |
| 1467 | ReorderBufferCleanupTXN(rb, txn); |
| 1468 | return; |
| 1469 | } |
| 1470 | |
| 1471 | snapshot_now = txn->base_snapshot; |
| 1472 | |
| 1473 | /* build data to be able to lookup the CommandIds of catalog tuples */ |
| 1474 | ReorderBufferBuildTupleCidHash(rb, txn); |
| 1475 | |
| 1476 | /* setup the initial snapshot */ |
| 1477 | SetupHistoricSnapshot(snapshot_now, txn->tuplecid_hash); |
| 1478 | |
| 1479 | /* |
| 1480 | * Decoding needs access to syscaches et al., which in turn use |
| 1481 | * heavyweight locks and such. Thus we need to have enough state around to |
| 1482 | * keep track of those. The easiest way is to simply use a transaction |
| 1483 | * internally. That also allows us to easily enforce that nothing writes |
| 1484 | * to the database by checking for xid assignments. |
| 1485 | * |
| 1486 | * When we're called via the SQL SRF there's already a transaction |
| 1487 | * started, so start an explicit subtransaction there. |
| 1488 | */ |
| 1489 | using_subtxn = IsTransactionOrTransactionBlock(); |
| 1490 | |
| 1491 | PG_TRY(); |
| 1492 | { |
| 1493 | ReorderBufferChange *change; |
| 1494 | ReorderBufferChange *specinsert = NULL; |
| 1495 | |
| 1496 | if (using_subtxn) |
| 1497 | BeginInternalSubTransaction("replay" ); |
| 1498 | else |
| 1499 | StartTransactionCommand(); |
| 1500 | |
| 1501 | rb->begin(rb, txn); |
| 1502 | |
| 1503 | iterstate = ReorderBufferIterTXNInit(rb, txn); |
| 1504 | while ((change = ReorderBufferIterTXNNext(rb, iterstate)) != NULL) |
| 1505 | { |
| 1506 | Relation relation = NULL; |
| 1507 | Oid reloid; |
| 1508 | |
| 1509 | switch (change->action) |
| 1510 | { |
| 1511 | case REORDER_BUFFER_CHANGE_INTERNAL_SPEC_CONFIRM: |
| 1512 | |
| 1513 | /* |
| 1514 | * Confirmation for speculative insertion arrived. Simply |
| 1515 | * use as a normal record. It'll be cleaned up at the end |
| 1516 | * of INSERT processing. |
| 1517 | */ |
| 1518 | if (specinsert == NULL) |
| 1519 | elog(ERROR, "invalid ordering of speculative insertion changes" ); |
| 1520 | Assert(specinsert->data.tp.oldtuple == NULL); |
| 1521 | change = specinsert; |
| 1522 | change->action = REORDER_BUFFER_CHANGE_INSERT; |
| 1523 | |
| 1524 | /* intentionally fall through */ |
| 1525 | case REORDER_BUFFER_CHANGE_INSERT: |
| 1526 | case REORDER_BUFFER_CHANGE_UPDATE: |
| 1527 | case REORDER_BUFFER_CHANGE_DELETE: |
| 1528 | Assert(snapshot_now); |
| 1529 | |
| 1530 | reloid = RelidByRelfilenode(change->data.tp.relnode.spcNode, |
| 1531 | change->data.tp.relnode.relNode); |
| 1532 | |
| 1533 | /* |
| 1534 | * Mapped catalog tuple without data, emitted while |
| 1535 | * catalog table was in the process of being rewritten. We |
| 1536 | * can fail to look up the relfilenode, because the |
| 1537 | * relmapper has no "historic" view, in contrast to normal |
| 1538 | * the normal catalog during decoding. Thus repeated |
| 1539 | * rewrites can cause a lookup failure. That's OK because |
| 1540 | * we do not decode catalog changes anyway. Normally such |
| 1541 | * tuples would be skipped over below, but we can't |
| 1542 | * identify whether the table should be logically logged |
| 1543 | * without mapping the relfilenode to the oid. |
| 1544 | */ |
| 1545 | if (reloid == InvalidOid && |
| 1546 | change->data.tp.newtuple == NULL && |
| 1547 | change->data.tp.oldtuple == NULL) |
| 1548 | goto change_done; |
| 1549 | else if (reloid == InvalidOid) |
| 1550 | elog(ERROR, "could not map filenode \"%s\" to relation OID" , |
| 1551 | relpathperm(change->data.tp.relnode, |
| 1552 | MAIN_FORKNUM)); |
| 1553 | |
| 1554 | relation = RelationIdGetRelation(reloid); |
| 1555 | |
| 1556 | if (!RelationIsValid(relation)) |
| 1557 | elog(ERROR, "could not open relation with OID %u (for filenode \"%s\")" , |
| 1558 | reloid, |
| 1559 | relpathperm(change->data.tp.relnode, |
| 1560 | MAIN_FORKNUM)); |
| 1561 | |
| 1562 | if (!RelationIsLogicallyLogged(relation)) |
| 1563 | goto change_done; |
| 1564 | |
| 1565 | /* |
| 1566 | * Ignore temporary heaps created during DDL unless the |
| 1567 | * plugin has asked for them. |
| 1568 | */ |
| 1569 | if (relation->rd_rel->relrewrite && !rb->output_rewrites) |
| 1570 | goto change_done; |
| 1571 | |
| 1572 | /* |
| 1573 | * For now ignore sequence changes entirely. Most of the |
| 1574 | * time they don't log changes using records we |
| 1575 | * understand, so it doesn't make sense to handle the few |
| 1576 | * cases we do. |
| 1577 | */ |
| 1578 | if (relation->rd_rel->relkind == RELKIND_SEQUENCE) |
| 1579 | goto change_done; |
| 1580 | |
| 1581 | /* user-triggered change */ |
| 1582 | if (!IsToastRelation(relation)) |
| 1583 | { |
| 1584 | ReorderBufferToastReplace(rb, txn, relation, change); |
| 1585 | rb->apply_change(rb, txn, relation, change); |
| 1586 | |
| 1587 | /* |
| 1588 | * Only clear reassembled toast chunks if we're sure |
| 1589 | * they're not required anymore. The creator of the |
| 1590 | * tuple tells us. |
| 1591 | */ |
| 1592 | if (change->data.tp.clear_toast_afterwards) |
| 1593 | ReorderBufferToastReset(rb, txn); |
| 1594 | } |
| 1595 | /* we're not interested in toast deletions */ |
| 1596 | else if (change->action == REORDER_BUFFER_CHANGE_INSERT) |
| 1597 | { |
| 1598 | /* |
| 1599 | * Need to reassemble the full toasted Datum in |
| 1600 | * memory, to ensure the chunks don't get reused till |
| 1601 | * we're done remove it from the list of this |
| 1602 | * transaction's changes. Otherwise it will get |
| 1603 | * freed/reused while restoring spooled data from |
| 1604 | * disk. |
| 1605 | */ |
| 1606 | Assert(change->data.tp.newtuple != NULL); |
| 1607 | |
| 1608 | dlist_delete(&change->node); |
| 1609 | ReorderBufferToastAppendChunk(rb, txn, relation, |
| 1610 | change); |
| 1611 | } |
| 1612 | |
| 1613 | change_done: |
| 1614 | |
| 1615 | /* |
| 1616 | * Either speculative insertion was confirmed, or it was |
| 1617 | * unsuccessful and the record isn't needed anymore. |
| 1618 | */ |
| 1619 | if (specinsert != NULL) |
| 1620 | { |
| 1621 | ReorderBufferReturnChange(rb, specinsert); |
| 1622 | specinsert = NULL; |
| 1623 | } |
| 1624 | |
| 1625 | if (relation != NULL) |
| 1626 | { |
| 1627 | RelationClose(relation); |
| 1628 | relation = NULL; |
| 1629 | } |
| 1630 | break; |
| 1631 | |
| 1632 | case REORDER_BUFFER_CHANGE_INTERNAL_SPEC_INSERT: |
| 1633 | |
| 1634 | /* |
| 1635 | * Speculative insertions are dealt with by delaying the |
| 1636 | * processing of the insert until the confirmation record |
| 1637 | * arrives. For that we simply unlink the record from the |
| 1638 | * chain, so it does not get freed/reused while restoring |
| 1639 | * spooled data from disk. |
| 1640 | * |
| 1641 | * This is safe in the face of concurrent catalog changes |
| 1642 | * because the relevant relation can't be changed between |
| 1643 | * speculative insertion and confirmation due to |
| 1644 | * CheckTableNotInUse() and locking. |
| 1645 | */ |
| 1646 | |
| 1647 | /* clear out a pending (and thus failed) speculation */ |
| 1648 | if (specinsert != NULL) |
| 1649 | { |
| 1650 | ReorderBufferReturnChange(rb, specinsert); |
| 1651 | specinsert = NULL; |
| 1652 | } |
| 1653 | |
| 1654 | /* and memorize the pending insertion */ |
| 1655 | dlist_delete(&change->node); |
| 1656 | specinsert = change; |
| 1657 | break; |
| 1658 | |
| 1659 | case REORDER_BUFFER_CHANGE_TRUNCATE: |
| 1660 | { |
| 1661 | int i; |
| 1662 | int nrelids = change->data.truncate.nrelids; |
| 1663 | int nrelations = 0; |
| 1664 | Relation *relations; |
| 1665 | |
| 1666 | relations = palloc0(nrelids * sizeof(Relation)); |
| 1667 | for (i = 0; i < nrelids; i++) |
| 1668 | { |
| 1669 | Oid relid = change->data.truncate.relids[i]; |
| 1670 | Relation relation; |
| 1671 | |
| 1672 | relation = RelationIdGetRelation(relid); |
| 1673 | |
| 1674 | if (!RelationIsValid(relation)) |
| 1675 | elog(ERROR, "could not open relation with OID %u" , relid); |
| 1676 | |
| 1677 | if (!RelationIsLogicallyLogged(relation)) |
| 1678 | continue; |
| 1679 | |
| 1680 | relations[nrelations++] = relation; |
| 1681 | } |
| 1682 | |
| 1683 | rb->apply_truncate(rb, txn, nrelations, relations, change); |
| 1684 | |
| 1685 | for (i = 0; i < nrelations; i++) |
| 1686 | RelationClose(relations[i]); |
| 1687 | |
| 1688 | break; |
| 1689 | } |
| 1690 | |
| 1691 | case REORDER_BUFFER_CHANGE_MESSAGE: |
| 1692 | rb->message(rb, txn, change->lsn, true, |
| 1693 | change->data.msg.prefix, |
| 1694 | change->data.msg.message_size, |
| 1695 | change->data.msg.message); |
| 1696 | break; |
| 1697 | |
| 1698 | case REORDER_BUFFER_CHANGE_INTERNAL_SNAPSHOT: |
| 1699 | /* get rid of the old */ |
| 1700 | TeardownHistoricSnapshot(false); |
| 1701 | |
| 1702 | if (snapshot_now->copied) |
| 1703 | { |
| 1704 | ReorderBufferFreeSnap(rb, snapshot_now); |
| 1705 | snapshot_now = |
| 1706 | ReorderBufferCopySnap(rb, change->data.snapshot, |
| 1707 | txn, command_id); |
| 1708 | } |
| 1709 | |
| 1710 | /* |
| 1711 | * Restored from disk, need to be careful not to double |
| 1712 | * free. We could introduce refcounting for that, but for |
| 1713 | * now this seems infrequent enough not to care. |
| 1714 | */ |
| 1715 | else if (change->data.snapshot->copied) |
| 1716 | { |
| 1717 | snapshot_now = |
| 1718 | ReorderBufferCopySnap(rb, change->data.snapshot, |
| 1719 | txn, command_id); |
| 1720 | } |
| 1721 | else |
| 1722 | { |
| 1723 | snapshot_now = change->data.snapshot; |
| 1724 | } |
| 1725 | |
| 1726 | |
| 1727 | /* and continue with the new one */ |
| 1728 | SetupHistoricSnapshot(snapshot_now, txn->tuplecid_hash); |
| 1729 | break; |
| 1730 | |
| 1731 | case REORDER_BUFFER_CHANGE_INTERNAL_COMMAND_ID: |
| 1732 | Assert(change->data.command_id != InvalidCommandId); |
| 1733 | |
| 1734 | if (command_id < change->data.command_id) |
| 1735 | { |
| 1736 | command_id = change->data.command_id; |
| 1737 | |
| 1738 | if (!snapshot_now->copied) |
| 1739 | { |
| 1740 | /* we don't use the global one anymore */ |
| 1741 | snapshot_now = ReorderBufferCopySnap(rb, snapshot_now, |
| 1742 | txn, command_id); |
| 1743 | } |
| 1744 | |
| 1745 | snapshot_now->curcid = command_id; |
| 1746 | |
| 1747 | TeardownHistoricSnapshot(false); |
| 1748 | SetupHistoricSnapshot(snapshot_now, txn->tuplecid_hash); |
| 1749 | |
| 1750 | /* |
| 1751 | * Every time the CommandId is incremented, we could |
| 1752 | * see new catalog contents, so execute all |
| 1753 | * invalidations. |
| 1754 | */ |
| 1755 | ReorderBufferExecuteInvalidations(rb, txn); |
| 1756 | } |
| 1757 | |
| 1758 | break; |
| 1759 | |
| 1760 | case REORDER_BUFFER_CHANGE_INTERNAL_TUPLECID: |
| 1761 | elog(ERROR, "tuplecid value in changequeue" ); |
| 1762 | break; |
| 1763 | } |
| 1764 | } |
| 1765 | |
| 1766 | /* |
| 1767 | * There's a speculative insertion remaining, just clean in up, it |
| 1768 | * can't have been successful, otherwise we'd gotten a confirmation |
| 1769 | * record. |
| 1770 | */ |
| 1771 | if (specinsert) |
| 1772 | { |
| 1773 | ReorderBufferReturnChange(rb, specinsert); |
| 1774 | specinsert = NULL; |
| 1775 | } |
| 1776 | |
| 1777 | /* clean up the iterator */ |
| 1778 | ReorderBufferIterTXNFinish(rb, iterstate); |
| 1779 | iterstate = NULL; |
| 1780 | |
| 1781 | /* call commit callback */ |
| 1782 | rb->commit(rb, txn, commit_lsn); |
| 1783 | |
| 1784 | /* this is just a sanity check against bad output plugin behaviour */ |
| 1785 | if (GetCurrentTransactionIdIfAny() != InvalidTransactionId) |
| 1786 | elog(ERROR, "output plugin used XID %u" , |
| 1787 | GetCurrentTransactionId()); |
| 1788 | |
| 1789 | /* cleanup */ |
| 1790 | TeardownHistoricSnapshot(false); |
| 1791 | |
| 1792 | /* |
| 1793 | * Aborting the current (sub-)transaction as a whole has the right |
| 1794 | * semantics. We want all locks acquired in here to be released, not |
| 1795 | * reassigned to the parent and we do not want any database access |
| 1796 | * have persistent effects. |
| 1797 | */ |
| 1798 | AbortCurrentTransaction(); |
| 1799 | |
| 1800 | /* make sure there's no cache pollution */ |
| 1801 | ReorderBufferExecuteInvalidations(rb, txn); |
| 1802 | |
| 1803 | if (using_subtxn) |
| 1804 | RollbackAndReleaseCurrentSubTransaction(); |
| 1805 | |
| 1806 | if (snapshot_now->copied) |
| 1807 | ReorderBufferFreeSnap(rb, snapshot_now); |
| 1808 | |
| 1809 | /* remove potential on-disk data, and deallocate */ |
| 1810 | ReorderBufferCleanupTXN(rb, txn); |
| 1811 | } |
| 1812 | PG_CATCH(); |
| 1813 | { |
| 1814 | /* TODO: Encapsulate cleanup from the PG_TRY and PG_CATCH blocks */ |
| 1815 | if (iterstate) |
| 1816 | ReorderBufferIterTXNFinish(rb, iterstate); |
| 1817 | |
| 1818 | TeardownHistoricSnapshot(true); |
| 1819 | |
| 1820 | /* |
| 1821 | * Force cache invalidation to happen outside of a valid transaction |
| 1822 | * to prevent catalog access as we just caught an error. |
| 1823 | */ |
| 1824 | AbortCurrentTransaction(); |
| 1825 | |
| 1826 | /* make sure there's no cache pollution */ |
| 1827 | ReorderBufferExecuteInvalidations(rb, txn); |
| 1828 | |
| 1829 | if (using_subtxn) |
| 1830 | RollbackAndReleaseCurrentSubTransaction(); |
| 1831 | |
| 1832 | if (snapshot_now->copied) |
| 1833 | ReorderBufferFreeSnap(rb, snapshot_now); |
| 1834 | |
| 1835 | /* remove potential on-disk data, and deallocate */ |
| 1836 | ReorderBufferCleanupTXN(rb, txn); |
| 1837 | |
| 1838 | PG_RE_THROW(); |
| 1839 | } |
| 1840 | PG_END_TRY(); |
| 1841 | } |
| 1842 | |
| 1843 | /* |
| 1844 | * Abort a transaction that possibly has previous changes. Needs to be first |
| 1845 | * called for subtransactions and then for the toplevel xid. |
| 1846 | * |
| 1847 | * NB: Transactions handled here have to have actively aborted (i.e. have |
| 1848 | * produced an abort record). Implicitly aborted transactions are handled via |
| 1849 | * ReorderBufferAbortOld(); transactions we're just not interested in, but |
| 1850 | * which have committed are handled in ReorderBufferForget(). |
| 1851 | * |
| 1852 | * This function purges this transaction and its contents from memory and |
| 1853 | * disk. |
| 1854 | */ |
| 1855 | void |
| 1856 | ReorderBufferAbort(ReorderBuffer *rb, TransactionId xid, XLogRecPtr lsn) |
| 1857 | { |
| 1858 | ReorderBufferTXN *txn; |
| 1859 | |
| 1860 | txn = ReorderBufferTXNByXid(rb, xid, false, NULL, InvalidXLogRecPtr, |
| 1861 | false); |
| 1862 | |
| 1863 | /* unknown, nothing to remove */ |
| 1864 | if (txn == NULL) |
| 1865 | return; |
| 1866 | |
| 1867 | /* cosmetic... */ |
| 1868 | txn->final_lsn = lsn; |
| 1869 | |
| 1870 | /* remove potential on-disk data, and deallocate */ |
| 1871 | ReorderBufferCleanupTXN(rb, txn); |
| 1872 | } |
| 1873 | |
| 1874 | /* |
| 1875 | * Abort all transactions that aren't actually running anymore because the |
| 1876 | * server restarted. |
| 1877 | * |
| 1878 | * NB: These really have to be transactions that have aborted due to a server |
| 1879 | * crash/immediate restart, as we don't deal with invalidations here. |
| 1880 | */ |
| 1881 | void |
| 1882 | ReorderBufferAbortOld(ReorderBuffer *rb, TransactionId oldestRunningXid) |
| 1883 | { |
| 1884 | dlist_mutable_iter it; |
| 1885 | |
| 1886 | /* |
| 1887 | * Iterate through all (potential) toplevel TXNs and abort all that are |
| 1888 | * older than what possibly can be running. Once we've found the first |
| 1889 | * that is alive we stop, there might be some that acquired an xid earlier |
| 1890 | * but started writing later, but it's unlikely and they will be cleaned |
| 1891 | * up in a later call to this function. |
| 1892 | */ |
| 1893 | dlist_foreach_modify(it, &rb->toplevel_by_lsn) |
| 1894 | { |
| 1895 | ReorderBufferTXN *txn; |
| 1896 | |
| 1897 | txn = dlist_container(ReorderBufferTXN, node, it.cur); |
| 1898 | |
| 1899 | if (TransactionIdPrecedes(txn->xid, oldestRunningXid)) |
| 1900 | { |
| 1901 | /* |
| 1902 | * We set final_lsn on a transaction when we decode its commit or |
| 1903 | * abort record, but we never see those records for crashed |
| 1904 | * transactions. To ensure cleanup of these transactions, set |
| 1905 | * final_lsn to that of their last change; this causes |
| 1906 | * ReorderBufferRestoreCleanup to do the right thing. |
| 1907 | */ |
| 1908 | if (txn->serialized && txn->final_lsn == 0) |
| 1909 | { |
| 1910 | ReorderBufferChange *last = |
| 1911 | dlist_tail_element(ReorderBufferChange, node, &txn->changes); |
| 1912 | |
| 1913 | txn->final_lsn = last->lsn; |
| 1914 | } |
| 1915 | |
| 1916 | elog(DEBUG2, "aborting old transaction %u" , txn->xid); |
| 1917 | |
| 1918 | /* remove potential on-disk data, and deallocate this tx */ |
| 1919 | ReorderBufferCleanupTXN(rb, txn); |
| 1920 | } |
| 1921 | else |
| 1922 | return; |
| 1923 | } |
| 1924 | } |
| 1925 | |
| 1926 | /* |
| 1927 | * Forget the contents of a transaction if we aren't interested in its |
| 1928 | * contents. Needs to be first called for subtransactions and then for the |
| 1929 | * toplevel xid. |
| 1930 | * |
| 1931 | * This is significantly different to ReorderBufferAbort() because |
| 1932 | * transactions that have committed need to be treated differently from aborted |
| 1933 | * ones since they may have modified the catalog. |
| 1934 | * |
| 1935 | * Note that this is only allowed to be called in the moment a transaction |
| 1936 | * commit has just been read, not earlier; otherwise later records referring |
| 1937 | * to this xid might re-create the transaction incompletely. |
| 1938 | */ |
| 1939 | void |
| 1940 | ReorderBufferForget(ReorderBuffer *rb, TransactionId xid, XLogRecPtr lsn) |
| 1941 | { |
| 1942 | ReorderBufferTXN *txn; |
| 1943 | |
| 1944 | txn = ReorderBufferTXNByXid(rb, xid, false, NULL, InvalidXLogRecPtr, |
| 1945 | false); |
| 1946 | |
| 1947 | /* unknown, nothing to forget */ |
| 1948 | if (txn == NULL) |
| 1949 | return; |
| 1950 | |
| 1951 | /* cosmetic... */ |
| 1952 | txn->final_lsn = lsn; |
| 1953 | |
| 1954 | /* |
| 1955 | * Process cache invalidation messages if there are any. Even if we're not |
| 1956 | * interested in the transaction's contents, it could have manipulated the |
| 1957 | * catalog and we need to update the caches according to that. |
| 1958 | */ |
| 1959 | if (txn->base_snapshot != NULL && txn->ninvalidations > 0) |
| 1960 | ReorderBufferImmediateInvalidation(rb, txn->ninvalidations, |
| 1961 | txn->invalidations); |
| 1962 | else |
| 1963 | Assert(txn->ninvalidations == 0); |
| 1964 | |
| 1965 | /* remove potential on-disk data, and deallocate */ |
| 1966 | ReorderBufferCleanupTXN(rb, txn); |
| 1967 | } |
| 1968 | |
| 1969 | /* |
| 1970 | * Execute invalidations happening outside the context of a decoded |
| 1971 | * transaction. That currently happens either for xid-less commits |
| 1972 | * (cf. RecordTransactionCommit()) or for invalidations in uninteresting |
| 1973 | * transactions (via ReorderBufferForget()). |
| 1974 | */ |
| 1975 | void |
| 1976 | ReorderBufferImmediateInvalidation(ReorderBuffer *rb, uint32 ninvalidations, |
| 1977 | SharedInvalidationMessage *invalidations) |
| 1978 | { |
| 1979 | bool use_subtxn = IsTransactionOrTransactionBlock(); |
| 1980 | int i; |
| 1981 | |
| 1982 | if (use_subtxn) |
| 1983 | BeginInternalSubTransaction("replay" ); |
| 1984 | |
| 1985 | /* |
| 1986 | * Force invalidations to happen outside of a valid transaction - that way |
| 1987 | * entries will just be marked as invalid without accessing the catalog. |
| 1988 | * That's advantageous because we don't need to setup the full state |
| 1989 | * necessary for catalog access. |
| 1990 | */ |
| 1991 | if (use_subtxn) |
| 1992 | AbortCurrentTransaction(); |
| 1993 | |
| 1994 | for (i = 0; i < ninvalidations; i++) |
| 1995 | LocalExecuteInvalidationMessage(&invalidations[i]); |
| 1996 | |
| 1997 | if (use_subtxn) |
| 1998 | RollbackAndReleaseCurrentSubTransaction(); |
| 1999 | } |
| 2000 | |
| 2001 | /* |
| 2002 | * Tell reorderbuffer about an xid seen in the WAL stream. Has to be called at |
| 2003 | * least once for every xid in XLogRecord->xl_xid (other places in records |
| 2004 | * may, but do not have to be passed through here). |
| 2005 | * |
| 2006 | * Reorderbuffer keeps some datastructures about transactions in LSN order, |
| 2007 | * for efficiency. To do that it has to know about when transactions are seen |
| 2008 | * first in the WAL. As many types of records are not actually interesting for |
| 2009 | * logical decoding, they do not necessarily pass though here. |
| 2010 | */ |
| 2011 | void |
| 2012 | ReorderBufferProcessXid(ReorderBuffer *rb, TransactionId xid, XLogRecPtr lsn) |
| 2013 | { |
| 2014 | /* many records won't have an xid assigned, centralize check here */ |
| 2015 | if (xid != InvalidTransactionId) |
| 2016 | ReorderBufferTXNByXid(rb, xid, true, NULL, lsn, true); |
| 2017 | } |
| 2018 | |
| 2019 | /* |
| 2020 | * Add a new snapshot to this transaction that may only used after lsn 'lsn' |
| 2021 | * because the previous snapshot doesn't describe the catalog correctly for |
| 2022 | * following rows. |
| 2023 | */ |
| 2024 | void |
| 2025 | ReorderBufferAddSnapshot(ReorderBuffer *rb, TransactionId xid, |
| 2026 | XLogRecPtr lsn, Snapshot snap) |
| 2027 | { |
| 2028 | ReorderBufferChange *change = ReorderBufferGetChange(rb); |
| 2029 | |
| 2030 | change->data.snapshot = snap; |
| 2031 | change->action = REORDER_BUFFER_CHANGE_INTERNAL_SNAPSHOT; |
| 2032 | |
| 2033 | ReorderBufferQueueChange(rb, xid, lsn, change); |
| 2034 | } |
| 2035 | |
| 2036 | /* |
| 2037 | * Set up the transaction's base snapshot. |
| 2038 | * |
| 2039 | * If we know that xid is a subtransaction, set the base snapshot on the |
| 2040 | * top-level transaction instead. |
| 2041 | */ |
| 2042 | void |
| 2043 | ReorderBufferSetBaseSnapshot(ReorderBuffer *rb, TransactionId xid, |
| 2044 | XLogRecPtr lsn, Snapshot snap) |
| 2045 | { |
| 2046 | ReorderBufferTXN *txn; |
| 2047 | bool is_new; |
| 2048 | |
| 2049 | AssertArg(snap != NULL); |
| 2050 | |
| 2051 | /* |
| 2052 | * Fetch the transaction to operate on. If we know it's a subtransaction, |
| 2053 | * operate on its top-level transaction instead. |
| 2054 | */ |
| 2055 | txn = ReorderBufferTXNByXid(rb, xid, true, &is_new, lsn, true); |
| 2056 | if (txn->is_known_as_subxact) |
| 2057 | txn = ReorderBufferTXNByXid(rb, txn->toplevel_xid, false, |
| 2058 | NULL, InvalidXLogRecPtr, false); |
| 2059 | Assert(txn->base_snapshot == NULL); |
| 2060 | |
| 2061 | txn->base_snapshot = snap; |
| 2062 | txn->base_snapshot_lsn = lsn; |
| 2063 | dlist_push_tail(&rb->txns_by_base_snapshot_lsn, &txn->base_snapshot_node); |
| 2064 | |
| 2065 | AssertTXNLsnOrder(rb); |
| 2066 | } |
| 2067 | |
| 2068 | /* |
| 2069 | * Access the catalog with this CommandId at this point in the changestream. |
| 2070 | * |
| 2071 | * May only be called for command ids > 1 |
| 2072 | */ |
| 2073 | void |
| 2074 | ReorderBufferAddNewCommandId(ReorderBuffer *rb, TransactionId xid, |
| 2075 | XLogRecPtr lsn, CommandId cid) |
| 2076 | { |
| 2077 | ReorderBufferChange *change = ReorderBufferGetChange(rb); |
| 2078 | |
| 2079 | change->data.command_id = cid; |
| 2080 | change->action = REORDER_BUFFER_CHANGE_INTERNAL_COMMAND_ID; |
| 2081 | |
| 2082 | ReorderBufferQueueChange(rb, xid, lsn, change); |
| 2083 | } |
| 2084 | |
| 2085 | |
| 2086 | /* |
| 2087 | * Add new (relfilenode, tid) -> (cmin, cmax) mappings. |
| 2088 | */ |
| 2089 | void |
| 2090 | ReorderBufferAddNewTupleCids(ReorderBuffer *rb, TransactionId xid, |
| 2091 | XLogRecPtr lsn, RelFileNode node, |
| 2092 | ItemPointerData tid, CommandId cmin, |
| 2093 | CommandId cmax, CommandId combocid) |
| 2094 | { |
| 2095 | ReorderBufferChange *change = ReorderBufferGetChange(rb); |
| 2096 | ReorderBufferTXN *txn; |
| 2097 | |
| 2098 | txn = ReorderBufferTXNByXid(rb, xid, true, NULL, lsn, true); |
| 2099 | |
| 2100 | change->data.tuplecid.node = node; |
| 2101 | change->data.tuplecid.tid = tid; |
| 2102 | change->data.tuplecid.cmin = cmin; |
| 2103 | change->data.tuplecid.cmax = cmax; |
| 2104 | change->data.tuplecid.combocid = combocid; |
| 2105 | change->lsn = lsn; |
| 2106 | change->action = REORDER_BUFFER_CHANGE_INTERNAL_TUPLECID; |
| 2107 | |
| 2108 | dlist_push_tail(&txn->tuplecids, &change->node); |
| 2109 | txn->ntuplecids++; |
| 2110 | } |
| 2111 | |
| 2112 | /* |
| 2113 | * Setup the invalidation of the toplevel transaction. |
| 2114 | * |
| 2115 | * This needs to be done before ReorderBufferCommit is called! |
| 2116 | */ |
| 2117 | void |
| 2118 | ReorderBufferAddInvalidations(ReorderBuffer *rb, TransactionId xid, |
| 2119 | XLogRecPtr lsn, Size nmsgs, |
| 2120 | SharedInvalidationMessage *msgs) |
| 2121 | { |
| 2122 | ReorderBufferTXN *txn; |
| 2123 | |
| 2124 | txn = ReorderBufferTXNByXid(rb, xid, true, NULL, lsn, true); |
| 2125 | |
| 2126 | if (txn->ninvalidations != 0) |
| 2127 | elog(ERROR, "only ever add one set of invalidations" ); |
| 2128 | |
| 2129 | Assert(nmsgs > 0); |
| 2130 | |
| 2131 | txn->ninvalidations = nmsgs; |
| 2132 | txn->invalidations = (SharedInvalidationMessage *) |
| 2133 | MemoryContextAlloc(rb->context, |
| 2134 | sizeof(SharedInvalidationMessage) * nmsgs); |
| 2135 | memcpy(txn->invalidations, msgs, |
| 2136 | sizeof(SharedInvalidationMessage) * nmsgs); |
| 2137 | } |
| 2138 | |
| 2139 | /* |
| 2140 | * Apply all invalidations we know. Possibly we only need parts at this point |
| 2141 | * in the changestream but we don't know which those are. |
| 2142 | */ |
| 2143 | static void |
| 2144 | ReorderBufferExecuteInvalidations(ReorderBuffer *rb, ReorderBufferTXN *txn) |
| 2145 | { |
| 2146 | int i; |
| 2147 | |
| 2148 | for (i = 0; i < txn->ninvalidations; i++) |
| 2149 | LocalExecuteInvalidationMessage(&txn->invalidations[i]); |
| 2150 | } |
| 2151 | |
| 2152 | /* |
| 2153 | * Mark a transaction as containing catalog changes |
| 2154 | */ |
| 2155 | void |
| 2156 | ReorderBufferXidSetCatalogChanges(ReorderBuffer *rb, TransactionId xid, |
| 2157 | XLogRecPtr lsn) |
| 2158 | { |
| 2159 | ReorderBufferTXN *txn; |
| 2160 | |
| 2161 | txn = ReorderBufferTXNByXid(rb, xid, true, NULL, lsn, true); |
| 2162 | |
| 2163 | txn->has_catalog_changes = true; |
| 2164 | } |
| 2165 | |
| 2166 | /* |
| 2167 | * Query whether a transaction is already *known* to contain catalog |
| 2168 | * changes. This can be wrong until directly before the commit! |
| 2169 | */ |
| 2170 | bool |
| 2171 | ReorderBufferXidHasCatalogChanges(ReorderBuffer *rb, TransactionId xid) |
| 2172 | { |
| 2173 | ReorderBufferTXN *txn; |
| 2174 | |
| 2175 | txn = ReorderBufferTXNByXid(rb, xid, false, NULL, InvalidXLogRecPtr, |
| 2176 | false); |
| 2177 | if (txn == NULL) |
| 2178 | return false; |
| 2179 | |
| 2180 | return txn->has_catalog_changes; |
| 2181 | } |
| 2182 | |
| 2183 | /* |
| 2184 | * ReorderBufferXidHasBaseSnapshot |
| 2185 | * Have we already set the base snapshot for the given txn/subtxn? |
| 2186 | */ |
| 2187 | bool |
| 2188 | ReorderBufferXidHasBaseSnapshot(ReorderBuffer *rb, TransactionId xid) |
| 2189 | { |
| 2190 | ReorderBufferTXN *txn; |
| 2191 | |
| 2192 | txn = ReorderBufferTXNByXid(rb, xid, false, |
| 2193 | NULL, InvalidXLogRecPtr, false); |
| 2194 | |
| 2195 | /* transaction isn't known yet, ergo no snapshot */ |
| 2196 | if (txn == NULL) |
| 2197 | return false; |
| 2198 | |
| 2199 | /* a known subtxn? operate on top-level txn instead */ |
| 2200 | if (txn->is_known_as_subxact) |
| 2201 | txn = ReorderBufferTXNByXid(rb, txn->toplevel_xid, false, |
| 2202 | NULL, InvalidXLogRecPtr, false); |
| 2203 | |
| 2204 | return txn->base_snapshot != NULL; |
| 2205 | } |
| 2206 | |
| 2207 | |
| 2208 | /* |
| 2209 | * --------------------------------------- |
| 2210 | * Disk serialization support |
| 2211 | * --------------------------------------- |
| 2212 | */ |
| 2213 | |
| 2214 | /* |
| 2215 | * Ensure the IO buffer is >= sz. |
| 2216 | */ |
| 2217 | static void |
| 2218 | ReorderBufferSerializeReserve(ReorderBuffer *rb, Size sz) |
| 2219 | { |
| 2220 | if (!rb->outbufsize) |
| 2221 | { |
| 2222 | rb->outbuf = MemoryContextAlloc(rb->context, sz); |
| 2223 | rb->outbufsize = sz; |
| 2224 | } |
| 2225 | else if (rb->outbufsize < sz) |
| 2226 | { |
| 2227 | rb->outbuf = repalloc(rb->outbuf, sz); |
| 2228 | rb->outbufsize = sz; |
| 2229 | } |
| 2230 | } |
| 2231 | |
| 2232 | /* |
| 2233 | * Check whether the transaction tx should spill its data to disk. |
| 2234 | */ |
| 2235 | static void |
| 2236 | ReorderBufferCheckSerializeTXN(ReorderBuffer *rb, ReorderBufferTXN *txn) |
| 2237 | { |
| 2238 | /* |
| 2239 | * TODO: improve accounting so we cheaply can take subtransactions into |
| 2240 | * account here. |
| 2241 | */ |
| 2242 | if (txn->nentries_mem >= max_changes_in_memory) |
| 2243 | { |
| 2244 | ReorderBufferSerializeTXN(rb, txn); |
| 2245 | Assert(txn->nentries_mem == 0); |
| 2246 | } |
| 2247 | } |
| 2248 | |
| 2249 | /* |
| 2250 | * Spill data of a large transaction (and its subtransactions) to disk. |
| 2251 | */ |
| 2252 | static void |
| 2253 | ReorderBufferSerializeTXN(ReorderBuffer *rb, ReorderBufferTXN *txn) |
| 2254 | { |
| 2255 | dlist_iter subtxn_i; |
| 2256 | dlist_mutable_iter change_i; |
| 2257 | int fd = -1; |
| 2258 | XLogSegNo curOpenSegNo = 0; |
| 2259 | Size spilled = 0; |
| 2260 | |
| 2261 | elog(DEBUG2, "spill %u changes in XID %u to disk" , |
| 2262 | (uint32) txn->nentries_mem, txn->xid); |
| 2263 | |
| 2264 | /* do the same to all child TXs */ |
| 2265 | dlist_foreach(subtxn_i, &txn->subtxns) |
| 2266 | { |
| 2267 | ReorderBufferTXN *subtxn; |
| 2268 | |
| 2269 | subtxn = dlist_container(ReorderBufferTXN, node, subtxn_i.cur); |
| 2270 | ReorderBufferSerializeTXN(rb, subtxn); |
| 2271 | } |
| 2272 | |
| 2273 | /* serialize changestream */ |
| 2274 | dlist_foreach_modify(change_i, &txn->changes) |
| 2275 | { |
| 2276 | ReorderBufferChange *change; |
| 2277 | |
| 2278 | change = dlist_container(ReorderBufferChange, node, change_i.cur); |
| 2279 | |
| 2280 | /* |
| 2281 | * store in segment in which it belongs by start lsn, don't split over |
| 2282 | * multiple segments tho |
| 2283 | */ |
| 2284 | if (fd == -1 || |
| 2285 | !XLByteInSeg(change->lsn, curOpenSegNo, wal_segment_size)) |
| 2286 | { |
| 2287 | char path[MAXPGPATH]; |
| 2288 | |
| 2289 | if (fd != -1) |
| 2290 | CloseTransientFile(fd); |
| 2291 | |
| 2292 | XLByteToSeg(change->lsn, curOpenSegNo, wal_segment_size); |
| 2293 | |
| 2294 | /* |
| 2295 | * No need to care about TLIs here, only used during a single run, |
| 2296 | * so each LSN only maps to a specific WAL record. |
| 2297 | */ |
| 2298 | ReorderBufferSerializedPath(path, MyReplicationSlot, txn->xid, |
| 2299 | curOpenSegNo); |
| 2300 | |
| 2301 | /* open segment, create it if necessary */ |
| 2302 | fd = OpenTransientFile(path, |
| 2303 | O_CREAT | O_WRONLY | O_APPEND | PG_BINARY); |
| 2304 | |
| 2305 | if (fd < 0) |
| 2306 | ereport(ERROR, |
| 2307 | (errcode_for_file_access(), |
| 2308 | errmsg("could not open file \"%s\": %m" , path))); |
| 2309 | } |
| 2310 | |
| 2311 | ReorderBufferSerializeChange(rb, txn, fd, change); |
| 2312 | dlist_delete(&change->node); |
| 2313 | ReorderBufferReturnChange(rb, change); |
| 2314 | |
| 2315 | spilled++; |
| 2316 | } |
| 2317 | |
| 2318 | Assert(spilled == txn->nentries_mem); |
| 2319 | Assert(dlist_is_empty(&txn->changes)); |
| 2320 | txn->nentries_mem = 0; |
| 2321 | txn->serialized = true; |
| 2322 | |
| 2323 | if (fd != -1) |
| 2324 | CloseTransientFile(fd); |
| 2325 | } |
| 2326 | |
| 2327 | /* |
| 2328 | * Serialize individual change to disk. |
| 2329 | */ |
| 2330 | static void |
| 2331 | ReorderBufferSerializeChange(ReorderBuffer *rb, ReorderBufferTXN *txn, |
| 2332 | int fd, ReorderBufferChange *change) |
| 2333 | { |
| 2334 | ReorderBufferDiskChange *ondisk; |
| 2335 | Size sz = sizeof(ReorderBufferDiskChange); |
| 2336 | |
| 2337 | ReorderBufferSerializeReserve(rb, sz); |
| 2338 | |
| 2339 | ondisk = (ReorderBufferDiskChange *) rb->outbuf; |
| 2340 | memcpy(&ondisk->change, change, sizeof(ReorderBufferChange)); |
| 2341 | |
| 2342 | switch (change->action) |
| 2343 | { |
| 2344 | /* fall through these, they're all similar enough */ |
| 2345 | case REORDER_BUFFER_CHANGE_INSERT: |
| 2346 | case REORDER_BUFFER_CHANGE_UPDATE: |
| 2347 | case REORDER_BUFFER_CHANGE_DELETE: |
| 2348 | case REORDER_BUFFER_CHANGE_INTERNAL_SPEC_INSERT: |
| 2349 | { |
| 2350 | char *data; |
| 2351 | ReorderBufferTupleBuf *oldtup, |
| 2352 | *newtup; |
| 2353 | Size oldlen = 0; |
| 2354 | Size newlen = 0; |
| 2355 | |
| 2356 | oldtup = change->data.tp.oldtuple; |
| 2357 | newtup = change->data.tp.newtuple; |
| 2358 | |
| 2359 | if (oldtup) |
| 2360 | { |
| 2361 | sz += sizeof(HeapTupleData); |
| 2362 | oldlen = oldtup->tuple.t_len; |
| 2363 | sz += oldlen; |
| 2364 | } |
| 2365 | |
| 2366 | if (newtup) |
| 2367 | { |
| 2368 | sz += sizeof(HeapTupleData); |
| 2369 | newlen = newtup->tuple.t_len; |
| 2370 | sz += newlen; |
| 2371 | } |
| 2372 | |
| 2373 | /* make sure we have enough space */ |
| 2374 | ReorderBufferSerializeReserve(rb, sz); |
| 2375 | |
| 2376 | data = ((char *) rb->outbuf) + sizeof(ReorderBufferDiskChange); |
| 2377 | /* might have been reallocated above */ |
| 2378 | ondisk = (ReorderBufferDiskChange *) rb->outbuf; |
| 2379 | |
| 2380 | if (oldlen) |
| 2381 | { |
| 2382 | memcpy(data, &oldtup->tuple, sizeof(HeapTupleData)); |
| 2383 | data += sizeof(HeapTupleData); |
| 2384 | |
| 2385 | memcpy(data, oldtup->tuple.t_data, oldlen); |
| 2386 | data += oldlen; |
| 2387 | } |
| 2388 | |
| 2389 | if (newlen) |
| 2390 | { |
| 2391 | memcpy(data, &newtup->tuple, sizeof(HeapTupleData)); |
| 2392 | data += sizeof(HeapTupleData); |
| 2393 | |
| 2394 | memcpy(data, newtup->tuple.t_data, newlen); |
| 2395 | data += newlen; |
| 2396 | } |
| 2397 | break; |
| 2398 | } |
| 2399 | case REORDER_BUFFER_CHANGE_MESSAGE: |
| 2400 | { |
| 2401 | char *data; |
| 2402 | Size prefix_size = strlen(change->data.msg.prefix) + 1; |
| 2403 | |
| 2404 | sz += prefix_size + change->data.msg.message_size + |
| 2405 | sizeof(Size) + sizeof(Size); |
| 2406 | ReorderBufferSerializeReserve(rb, sz); |
| 2407 | |
| 2408 | data = ((char *) rb->outbuf) + sizeof(ReorderBufferDiskChange); |
| 2409 | |
| 2410 | /* might have been reallocated above */ |
| 2411 | ondisk = (ReorderBufferDiskChange *) rb->outbuf; |
| 2412 | |
| 2413 | /* write the prefix including the size */ |
| 2414 | memcpy(data, &prefix_size, sizeof(Size)); |
| 2415 | data += sizeof(Size); |
| 2416 | memcpy(data, change->data.msg.prefix, |
| 2417 | prefix_size); |
| 2418 | data += prefix_size; |
| 2419 | |
| 2420 | /* write the message including the size */ |
| 2421 | memcpy(data, &change->data.msg.message_size, sizeof(Size)); |
| 2422 | data += sizeof(Size); |
| 2423 | memcpy(data, change->data.msg.message, |
| 2424 | change->data.msg.message_size); |
| 2425 | data += change->data.msg.message_size; |
| 2426 | |
| 2427 | break; |
| 2428 | } |
| 2429 | case REORDER_BUFFER_CHANGE_INTERNAL_SNAPSHOT: |
| 2430 | { |
| 2431 | Snapshot snap; |
| 2432 | char *data; |
| 2433 | |
| 2434 | snap = change->data.snapshot; |
| 2435 | |
| 2436 | sz += sizeof(SnapshotData) + |
| 2437 | sizeof(TransactionId) * snap->xcnt + |
| 2438 | sizeof(TransactionId) * snap->subxcnt |
| 2439 | ; |
| 2440 | |
| 2441 | /* make sure we have enough space */ |
| 2442 | ReorderBufferSerializeReserve(rb, sz); |
| 2443 | data = ((char *) rb->outbuf) + sizeof(ReorderBufferDiskChange); |
| 2444 | /* might have been reallocated above */ |
| 2445 | ondisk = (ReorderBufferDiskChange *) rb->outbuf; |
| 2446 | |
| 2447 | memcpy(data, snap, sizeof(SnapshotData)); |
| 2448 | data += sizeof(SnapshotData); |
| 2449 | |
| 2450 | if (snap->xcnt) |
| 2451 | { |
| 2452 | memcpy(data, snap->xip, |
| 2453 | sizeof(TransactionId) * snap->xcnt); |
| 2454 | data += sizeof(TransactionId) * snap->xcnt; |
| 2455 | } |
| 2456 | |
| 2457 | if (snap->subxcnt) |
| 2458 | { |
| 2459 | memcpy(data, snap->subxip, |
| 2460 | sizeof(TransactionId) * snap->subxcnt); |
| 2461 | data += sizeof(TransactionId) * snap->subxcnt; |
| 2462 | } |
| 2463 | break; |
| 2464 | } |
| 2465 | case REORDER_BUFFER_CHANGE_TRUNCATE: |
| 2466 | { |
| 2467 | Size size; |
| 2468 | char *data; |
| 2469 | |
| 2470 | /* account for the OIDs of truncated relations */ |
| 2471 | size = sizeof(Oid) * change->data.truncate.nrelids; |
| 2472 | sz += size; |
| 2473 | |
| 2474 | /* make sure we have enough space */ |
| 2475 | ReorderBufferSerializeReserve(rb, sz); |
| 2476 | |
| 2477 | data = ((char *) rb->outbuf) + sizeof(ReorderBufferDiskChange); |
| 2478 | /* might have been reallocated above */ |
| 2479 | ondisk = (ReorderBufferDiskChange *) rb->outbuf; |
| 2480 | |
| 2481 | memcpy(data, change->data.truncate.relids, size); |
| 2482 | data += size; |
| 2483 | |
| 2484 | break; |
| 2485 | } |
| 2486 | case REORDER_BUFFER_CHANGE_INTERNAL_SPEC_CONFIRM: |
| 2487 | case REORDER_BUFFER_CHANGE_INTERNAL_COMMAND_ID: |
| 2488 | case REORDER_BUFFER_CHANGE_INTERNAL_TUPLECID: |
| 2489 | /* ReorderBufferChange contains everything important */ |
| 2490 | break; |
| 2491 | } |
| 2492 | |
| 2493 | ondisk->size = sz; |
| 2494 | |
| 2495 | errno = 0; |
| 2496 | pgstat_report_wait_start(WAIT_EVENT_REORDER_BUFFER_WRITE); |
| 2497 | if (write(fd, rb->outbuf, ondisk->size) != ondisk->size) |
| 2498 | { |
| 2499 | int save_errno = errno; |
| 2500 | |
| 2501 | CloseTransientFile(fd); |
| 2502 | |
| 2503 | /* if write didn't set errno, assume problem is no disk space */ |
| 2504 | errno = save_errno ? save_errno : ENOSPC; |
| 2505 | ereport(ERROR, |
| 2506 | (errcode_for_file_access(), |
| 2507 | errmsg("could not write to data file for XID %u: %m" , |
| 2508 | txn->xid))); |
| 2509 | } |
| 2510 | pgstat_report_wait_end(); |
| 2511 | |
| 2512 | Assert(ondisk->change.action == change->action); |
| 2513 | } |
| 2514 | |
| 2515 | /* |
| 2516 | * Restore a number of changes spilled to disk back into memory. |
| 2517 | */ |
| 2518 | static Size |
| 2519 | ReorderBufferRestoreChanges(ReorderBuffer *rb, ReorderBufferTXN *txn, |
| 2520 | int *fd, XLogSegNo *segno) |
| 2521 | { |
| 2522 | Size restored = 0; |
| 2523 | XLogSegNo last_segno; |
| 2524 | dlist_mutable_iter cleanup_iter; |
| 2525 | |
| 2526 | Assert(txn->first_lsn != InvalidXLogRecPtr); |
| 2527 | Assert(txn->final_lsn != InvalidXLogRecPtr); |
| 2528 | |
| 2529 | /* free current entries, so we have memory for more */ |
| 2530 | dlist_foreach_modify(cleanup_iter, &txn->changes) |
| 2531 | { |
| 2532 | ReorderBufferChange *cleanup = |
| 2533 | dlist_container(ReorderBufferChange, node, cleanup_iter.cur); |
| 2534 | |
| 2535 | dlist_delete(&cleanup->node); |
| 2536 | ReorderBufferReturnChange(rb, cleanup); |
| 2537 | } |
| 2538 | txn->nentries_mem = 0; |
| 2539 | Assert(dlist_is_empty(&txn->changes)); |
| 2540 | |
| 2541 | XLByteToSeg(txn->final_lsn, last_segno, wal_segment_size); |
| 2542 | |
| 2543 | while (restored < max_changes_in_memory && *segno <= last_segno) |
| 2544 | { |
| 2545 | int readBytes; |
| 2546 | ReorderBufferDiskChange *ondisk; |
| 2547 | |
| 2548 | if (*fd == -1) |
| 2549 | { |
| 2550 | char path[MAXPGPATH]; |
| 2551 | |
| 2552 | /* first time in */ |
| 2553 | if (*segno == 0) |
| 2554 | XLByteToSeg(txn->first_lsn, *segno, wal_segment_size); |
| 2555 | |
| 2556 | Assert(*segno != 0 || dlist_is_empty(&txn->changes)); |
| 2557 | |
| 2558 | /* |
| 2559 | * No need to care about TLIs here, only used during a single run, |
| 2560 | * so each LSN only maps to a specific WAL record. |
| 2561 | */ |
| 2562 | ReorderBufferSerializedPath(path, MyReplicationSlot, txn->xid, |
| 2563 | *segno); |
| 2564 | |
| 2565 | *fd = OpenTransientFile(path, O_RDONLY | PG_BINARY); |
| 2566 | if (*fd < 0 && errno == ENOENT) |
| 2567 | { |
| 2568 | *fd = -1; |
| 2569 | (*segno)++; |
| 2570 | continue; |
| 2571 | } |
| 2572 | else if (*fd < 0) |
| 2573 | ereport(ERROR, |
| 2574 | (errcode_for_file_access(), |
| 2575 | errmsg("could not open file \"%s\": %m" , |
| 2576 | path))); |
| 2577 | } |
| 2578 | |
| 2579 | /* |
| 2580 | * Read the statically sized part of a change which has information |
| 2581 | * about the total size. If we couldn't read a record, we're at the |
| 2582 | * end of this file. |
| 2583 | */ |
| 2584 | ReorderBufferSerializeReserve(rb, sizeof(ReorderBufferDiskChange)); |
| 2585 | pgstat_report_wait_start(WAIT_EVENT_REORDER_BUFFER_READ); |
| 2586 | readBytes = read(*fd, rb->outbuf, sizeof(ReorderBufferDiskChange)); |
| 2587 | pgstat_report_wait_end(); |
| 2588 | |
| 2589 | /* eof */ |
| 2590 | if (readBytes == 0) |
| 2591 | { |
| 2592 | CloseTransientFile(*fd); |
| 2593 | *fd = -1; |
| 2594 | (*segno)++; |
| 2595 | continue; |
| 2596 | } |
| 2597 | else if (readBytes < 0) |
| 2598 | ereport(ERROR, |
| 2599 | (errcode_for_file_access(), |
| 2600 | errmsg("could not read from reorderbuffer spill file: %m" ))); |
| 2601 | else if (readBytes != sizeof(ReorderBufferDiskChange)) |
| 2602 | ereport(ERROR, |
| 2603 | (errcode_for_file_access(), |
| 2604 | errmsg("could not read from reorderbuffer spill file: read %d instead of %u bytes" , |
| 2605 | readBytes, |
| 2606 | (uint32) sizeof(ReorderBufferDiskChange)))); |
| 2607 | |
| 2608 | ondisk = (ReorderBufferDiskChange *) rb->outbuf; |
| 2609 | |
| 2610 | ReorderBufferSerializeReserve(rb, |
| 2611 | sizeof(ReorderBufferDiskChange) + ondisk->size); |
| 2612 | ondisk = (ReorderBufferDiskChange *) rb->outbuf; |
| 2613 | |
| 2614 | pgstat_report_wait_start(WAIT_EVENT_REORDER_BUFFER_READ); |
| 2615 | readBytes = read(*fd, rb->outbuf + sizeof(ReorderBufferDiskChange), |
| 2616 | ondisk->size - sizeof(ReorderBufferDiskChange)); |
| 2617 | pgstat_report_wait_end(); |
| 2618 | |
| 2619 | if (readBytes < 0) |
| 2620 | ereport(ERROR, |
| 2621 | (errcode_for_file_access(), |
| 2622 | errmsg("could not read from reorderbuffer spill file: %m" ))); |
| 2623 | else if (readBytes != ondisk->size - sizeof(ReorderBufferDiskChange)) |
| 2624 | ereport(ERROR, |
| 2625 | (errcode_for_file_access(), |
| 2626 | errmsg("could not read from reorderbuffer spill file: read %d instead of %u bytes" , |
| 2627 | readBytes, |
| 2628 | (uint32) (ondisk->size - sizeof(ReorderBufferDiskChange))))); |
| 2629 | |
| 2630 | /* |
| 2631 | * ok, read a full change from disk, now restore it into proper |
| 2632 | * in-memory format |
| 2633 | */ |
| 2634 | ReorderBufferRestoreChange(rb, txn, rb->outbuf); |
| 2635 | restored++; |
| 2636 | } |
| 2637 | |
| 2638 | return restored; |
| 2639 | } |
| 2640 | |
| 2641 | /* |
| 2642 | * Convert change from its on-disk format to in-memory format and queue it onto |
| 2643 | * the TXN's ->changes list. |
| 2644 | * |
| 2645 | * Note: although "data" is declared char*, at entry it points to a |
| 2646 | * maxalign'd buffer, making it safe in most of this function to assume |
| 2647 | * that the pointed-to data is suitably aligned for direct access. |
| 2648 | */ |
| 2649 | static void |
| 2650 | ReorderBufferRestoreChange(ReorderBuffer *rb, ReorderBufferTXN *txn, |
| 2651 | char *data) |
| 2652 | { |
| 2653 | ReorderBufferDiskChange *ondisk; |
| 2654 | ReorderBufferChange *change; |
| 2655 | |
| 2656 | ondisk = (ReorderBufferDiskChange *) data; |
| 2657 | |
| 2658 | change = ReorderBufferGetChange(rb); |
| 2659 | |
| 2660 | /* copy static part */ |
| 2661 | memcpy(change, &ondisk->change, sizeof(ReorderBufferChange)); |
| 2662 | |
| 2663 | data += sizeof(ReorderBufferDiskChange); |
| 2664 | |
| 2665 | /* restore individual stuff */ |
| 2666 | switch (change->action) |
| 2667 | { |
| 2668 | /* fall through these, they're all similar enough */ |
| 2669 | case REORDER_BUFFER_CHANGE_INSERT: |
| 2670 | case REORDER_BUFFER_CHANGE_UPDATE: |
| 2671 | case REORDER_BUFFER_CHANGE_DELETE: |
| 2672 | case REORDER_BUFFER_CHANGE_INTERNAL_SPEC_INSERT: |
| 2673 | if (change->data.tp.oldtuple) |
| 2674 | { |
| 2675 | uint32 tuplelen = ((HeapTuple) data)->t_len; |
| 2676 | |
| 2677 | change->data.tp.oldtuple = |
| 2678 | ReorderBufferGetTupleBuf(rb, tuplelen - SizeofHeapTupleHeader); |
| 2679 | |
| 2680 | /* restore ->tuple */ |
| 2681 | memcpy(&change->data.tp.oldtuple->tuple, data, |
| 2682 | sizeof(HeapTupleData)); |
| 2683 | data += sizeof(HeapTupleData); |
| 2684 | |
| 2685 | /* reset t_data pointer into the new tuplebuf */ |
| 2686 | change->data.tp.oldtuple->tuple.t_data = |
| 2687 | ReorderBufferTupleBufData(change->data.tp.oldtuple); |
| 2688 | |
| 2689 | /* restore tuple data itself */ |
| 2690 | memcpy(change->data.tp.oldtuple->tuple.t_data, data, tuplelen); |
| 2691 | data += tuplelen; |
| 2692 | } |
| 2693 | |
| 2694 | if (change->data.tp.newtuple) |
| 2695 | { |
| 2696 | /* here, data might not be suitably aligned! */ |
| 2697 | uint32 tuplelen; |
| 2698 | |
| 2699 | memcpy(&tuplelen, data + offsetof(HeapTupleData, t_len), |
| 2700 | sizeof(uint32)); |
| 2701 | |
| 2702 | change->data.tp.newtuple = |
| 2703 | ReorderBufferGetTupleBuf(rb, tuplelen - SizeofHeapTupleHeader); |
| 2704 | |
| 2705 | /* restore ->tuple */ |
| 2706 | memcpy(&change->data.tp.newtuple->tuple, data, |
| 2707 | sizeof(HeapTupleData)); |
| 2708 | data += sizeof(HeapTupleData); |
| 2709 | |
| 2710 | /* reset t_data pointer into the new tuplebuf */ |
| 2711 | change->data.tp.newtuple->tuple.t_data = |
| 2712 | ReorderBufferTupleBufData(change->data.tp.newtuple); |
| 2713 | |
| 2714 | /* restore tuple data itself */ |
| 2715 | memcpy(change->data.tp.newtuple->tuple.t_data, data, tuplelen); |
| 2716 | data += tuplelen; |
| 2717 | } |
| 2718 | |
| 2719 | break; |
| 2720 | case REORDER_BUFFER_CHANGE_MESSAGE: |
| 2721 | { |
| 2722 | Size prefix_size; |
| 2723 | |
| 2724 | /* read prefix */ |
| 2725 | memcpy(&prefix_size, data, sizeof(Size)); |
| 2726 | data += sizeof(Size); |
| 2727 | change->data.msg.prefix = MemoryContextAlloc(rb->context, |
| 2728 | prefix_size); |
| 2729 | memcpy(change->data.msg.prefix, data, prefix_size); |
| 2730 | Assert(change->data.msg.prefix[prefix_size - 1] == '\0'); |
| 2731 | data += prefix_size; |
| 2732 | |
| 2733 | /* read the message */ |
| 2734 | memcpy(&change->data.msg.message_size, data, sizeof(Size)); |
| 2735 | data += sizeof(Size); |
| 2736 | change->data.msg.message = MemoryContextAlloc(rb->context, |
| 2737 | change->data.msg.message_size); |
| 2738 | memcpy(change->data.msg.message, data, |
| 2739 | change->data.msg.message_size); |
| 2740 | data += change->data.msg.message_size; |
| 2741 | |
| 2742 | break; |
| 2743 | } |
| 2744 | case REORDER_BUFFER_CHANGE_INTERNAL_SNAPSHOT: |
| 2745 | { |
| 2746 | Snapshot oldsnap; |
| 2747 | Snapshot newsnap; |
| 2748 | Size size; |
| 2749 | |
| 2750 | oldsnap = (Snapshot) data; |
| 2751 | |
| 2752 | size = sizeof(SnapshotData) + |
| 2753 | sizeof(TransactionId) * oldsnap->xcnt + |
| 2754 | sizeof(TransactionId) * (oldsnap->subxcnt + 0); |
| 2755 | |
| 2756 | change->data.snapshot = MemoryContextAllocZero(rb->context, size); |
| 2757 | |
| 2758 | newsnap = change->data.snapshot; |
| 2759 | |
| 2760 | memcpy(newsnap, data, size); |
| 2761 | newsnap->xip = (TransactionId *) |
| 2762 | (((char *) newsnap) + sizeof(SnapshotData)); |
| 2763 | newsnap->subxip = newsnap->xip + newsnap->xcnt; |
| 2764 | newsnap->copied = true; |
| 2765 | break; |
| 2766 | } |
| 2767 | /* the base struct contains all the data, easy peasy */ |
| 2768 | case REORDER_BUFFER_CHANGE_TRUNCATE: |
| 2769 | { |
| 2770 | Oid *relids; |
| 2771 | |
| 2772 | relids = ReorderBufferGetRelids(rb, |
| 2773 | change->data.truncate.nrelids); |
| 2774 | memcpy(relids, data, change->data.truncate.nrelids * sizeof(Oid)); |
| 2775 | change->data.truncate.relids = relids; |
| 2776 | |
| 2777 | break; |
| 2778 | } |
| 2779 | case REORDER_BUFFER_CHANGE_INTERNAL_SPEC_CONFIRM: |
| 2780 | case REORDER_BUFFER_CHANGE_INTERNAL_COMMAND_ID: |
| 2781 | case REORDER_BUFFER_CHANGE_INTERNAL_TUPLECID: |
| 2782 | break; |
| 2783 | } |
| 2784 | |
| 2785 | dlist_push_tail(&txn->changes, &change->node); |
| 2786 | txn->nentries_mem++; |
| 2787 | } |
| 2788 | |
| 2789 | /* |
| 2790 | * Remove all on-disk stored for the passed in transaction. |
| 2791 | */ |
| 2792 | static void |
| 2793 | ReorderBufferRestoreCleanup(ReorderBuffer *rb, ReorderBufferTXN *txn) |
| 2794 | { |
| 2795 | XLogSegNo first; |
| 2796 | XLogSegNo cur; |
| 2797 | XLogSegNo last; |
| 2798 | |
| 2799 | Assert(txn->first_lsn != InvalidXLogRecPtr); |
| 2800 | Assert(txn->final_lsn != InvalidXLogRecPtr); |
| 2801 | |
| 2802 | XLByteToSeg(txn->first_lsn, first, wal_segment_size); |
| 2803 | XLByteToSeg(txn->final_lsn, last, wal_segment_size); |
| 2804 | |
| 2805 | /* iterate over all possible filenames, and delete them */ |
| 2806 | for (cur = first; cur <= last; cur++) |
| 2807 | { |
| 2808 | char path[MAXPGPATH]; |
| 2809 | |
| 2810 | ReorderBufferSerializedPath(path, MyReplicationSlot, txn->xid, cur); |
| 2811 | if (unlink(path) != 0 && errno != ENOENT) |
| 2812 | ereport(ERROR, |
| 2813 | (errcode_for_file_access(), |
| 2814 | errmsg("could not remove file \"%s\": %m" , path))); |
| 2815 | } |
| 2816 | } |
| 2817 | |
| 2818 | /* |
| 2819 | * Remove any leftover serialized reorder buffers from a slot directory after a |
| 2820 | * prior crash or decoding session exit. |
| 2821 | */ |
| 2822 | static void |
| 2823 | ReorderBufferCleanupSerializedTXNs(const char *slotname) |
| 2824 | { |
| 2825 | DIR *spill_dir; |
| 2826 | struct dirent *spill_de; |
| 2827 | struct stat statbuf; |
| 2828 | char path[MAXPGPATH * 2 + 12]; |
| 2829 | |
| 2830 | sprintf(path, "pg_replslot/%s" , slotname); |
| 2831 | |
| 2832 | /* we're only handling directories here, skip if it's not ours */ |
| 2833 | if (lstat(path, &statbuf) == 0 && !S_ISDIR(statbuf.st_mode)) |
| 2834 | return; |
| 2835 | |
| 2836 | spill_dir = AllocateDir(path); |
| 2837 | while ((spill_de = ReadDirExtended(spill_dir, path, INFO)) != NULL) |
| 2838 | { |
| 2839 | /* only look at names that can be ours */ |
| 2840 | if (strncmp(spill_de->d_name, "xid" , 3) == 0) |
| 2841 | { |
| 2842 | snprintf(path, sizeof(path), |
| 2843 | "pg_replslot/%s/%s" , slotname, |
| 2844 | spill_de->d_name); |
| 2845 | |
| 2846 | if (unlink(path) != 0) |
| 2847 | ereport(ERROR, |
| 2848 | (errcode_for_file_access(), |
| 2849 | errmsg("could not remove file \"%s\" during removal of pg_replslot/%s/xid*: %m" , |
| 2850 | path, slotname))); |
| 2851 | } |
| 2852 | } |
| 2853 | FreeDir(spill_dir); |
| 2854 | } |
| 2855 | |
| 2856 | /* |
| 2857 | * Given a replication slot, transaction ID and segment number, fill in the |
| 2858 | * corresponding spill file into 'path', which is a caller-owned buffer of size |
| 2859 | * at least MAXPGPATH. |
| 2860 | */ |
| 2861 | static void |
| 2862 | ReorderBufferSerializedPath(char *path, ReplicationSlot *slot, TransactionId xid, |
| 2863 | XLogSegNo segno) |
| 2864 | { |
| 2865 | XLogRecPtr recptr; |
| 2866 | |
| 2867 | XLogSegNoOffsetToRecPtr(segno, 0, wal_segment_size, recptr); |
| 2868 | |
| 2869 | snprintf(path, MAXPGPATH, "pg_replslot/%s/xid-%u-lsn-%X-%X.spill" , |
| 2870 | NameStr(MyReplicationSlot->data.name), |
| 2871 | xid, |
| 2872 | (uint32) (recptr >> 32), (uint32) recptr); |
| 2873 | } |
| 2874 | |
| 2875 | /* |
| 2876 | * Delete all data spilled to disk after we've restarted/crashed. It will be |
| 2877 | * recreated when the respective slots are reused. |
| 2878 | */ |
| 2879 | void |
| 2880 | StartupReorderBuffer(void) |
| 2881 | { |
| 2882 | DIR *logical_dir; |
| 2883 | struct dirent *logical_de; |
| 2884 | |
| 2885 | logical_dir = AllocateDir("pg_replslot" ); |
| 2886 | while ((logical_de = ReadDir(logical_dir, "pg_replslot" )) != NULL) |
| 2887 | { |
| 2888 | if (strcmp(logical_de->d_name, "." ) == 0 || |
| 2889 | strcmp(logical_de->d_name, ".." ) == 0) |
| 2890 | continue; |
| 2891 | |
| 2892 | /* if it cannot be a slot, skip the directory */ |
| 2893 | if (!ReplicationSlotValidateName(logical_de->d_name, DEBUG2)) |
| 2894 | continue; |
| 2895 | |
| 2896 | /* |
| 2897 | * ok, has to be a surviving logical slot, iterate and delete |
| 2898 | * everything starting with xid-* |
| 2899 | */ |
| 2900 | ReorderBufferCleanupSerializedTXNs(logical_de->d_name); |
| 2901 | } |
| 2902 | FreeDir(logical_dir); |
| 2903 | } |
| 2904 | |
| 2905 | /* --------------------------------------- |
| 2906 | * toast reassembly support |
| 2907 | * --------------------------------------- |
| 2908 | */ |
| 2909 | |
| 2910 | /* |
| 2911 | * Initialize per tuple toast reconstruction support. |
| 2912 | */ |
| 2913 | static void |
| 2914 | ReorderBufferToastInitHash(ReorderBuffer *rb, ReorderBufferTXN *txn) |
| 2915 | { |
| 2916 | HASHCTL hash_ctl; |
| 2917 | |
| 2918 | Assert(txn->toast_hash == NULL); |
| 2919 | |
| 2920 | memset(&hash_ctl, 0, sizeof(hash_ctl)); |
| 2921 | hash_ctl.keysize = sizeof(Oid); |
| 2922 | hash_ctl.entrysize = sizeof(ReorderBufferToastEnt); |
| 2923 | hash_ctl.hcxt = rb->context; |
| 2924 | txn->toast_hash = hash_create("ReorderBufferToastHash" , 5, &hash_ctl, |
| 2925 | HASH_ELEM | HASH_BLOBS | HASH_CONTEXT); |
| 2926 | } |
| 2927 | |
| 2928 | /* |
| 2929 | * Per toast-chunk handling for toast reconstruction |
| 2930 | * |
| 2931 | * Appends a toast chunk so we can reconstruct it when the tuple "owning" the |
| 2932 | * toasted Datum comes along. |
| 2933 | */ |
| 2934 | static void |
| 2935 | ReorderBufferToastAppendChunk(ReorderBuffer *rb, ReorderBufferTXN *txn, |
| 2936 | Relation relation, ReorderBufferChange *change) |
| 2937 | { |
| 2938 | ReorderBufferToastEnt *ent; |
| 2939 | ReorderBufferTupleBuf *newtup; |
| 2940 | bool found; |
| 2941 | int32 chunksize; |
| 2942 | bool isnull; |
| 2943 | Pointer chunk; |
| 2944 | TupleDesc desc = RelationGetDescr(relation); |
| 2945 | Oid chunk_id; |
| 2946 | int32 chunk_seq; |
| 2947 | |
| 2948 | if (txn->toast_hash == NULL) |
| 2949 | ReorderBufferToastInitHash(rb, txn); |
| 2950 | |
| 2951 | Assert(IsToastRelation(relation)); |
| 2952 | |
| 2953 | newtup = change->data.tp.newtuple; |
| 2954 | chunk_id = DatumGetObjectId(fastgetattr(&newtup->tuple, 1, desc, &isnull)); |
| 2955 | Assert(!isnull); |
| 2956 | chunk_seq = DatumGetInt32(fastgetattr(&newtup->tuple, 2, desc, &isnull)); |
| 2957 | Assert(!isnull); |
| 2958 | |
| 2959 | ent = (ReorderBufferToastEnt *) |
| 2960 | hash_search(txn->toast_hash, |
| 2961 | (void *) &chunk_id, |
| 2962 | HASH_ENTER, |
| 2963 | &found); |
| 2964 | |
| 2965 | if (!found) |
| 2966 | { |
| 2967 | Assert(ent->chunk_id == chunk_id); |
| 2968 | ent->num_chunks = 0; |
| 2969 | ent->last_chunk_seq = 0; |
| 2970 | ent->size = 0; |
| 2971 | ent->reconstructed = NULL; |
| 2972 | dlist_init(&ent->chunks); |
| 2973 | |
| 2974 | if (chunk_seq != 0) |
| 2975 | elog(ERROR, "got sequence entry %d for toast chunk %u instead of seq 0" , |
| 2976 | chunk_seq, chunk_id); |
| 2977 | } |
| 2978 | else if (found && chunk_seq != ent->last_chunk_seq + 1) |
| 2979 | elog(ERROR, "got sequence entry %d for toast chunk %u instead of seq %d" , |
| 2980 | chunk_seq, chunk_id, ent->last_chunk_seq + 1); |
| 2981 | |
| 2982 | chunk = DatumGetPointer(fastgetattr(&newtup->tuple, 3, desc, &isnull)); |
| 2983 | Assert(!isnull); |
| 2984 | |
| 2985 | /* calculate size so we can allocate the right size at once later */ |
| 2986 | if (!VARATT_IS_EXTENDED(chunk)) |
| 2987 | chunksize = VARSIZE(chunk) - VARHDRSZ; |
| 2988 | else if (VARATT_IS_SHORT(chunk)) |
| 2989 | /* could happen due to heap_form_tuple doing its thing */ |
| 2990 | chunksize = VARSIZE_SHORT(chunk) - VARHDRSZ_SHORT; |
| 2991 | else |
| 2992 | elog(ERROR, "unexpected type of toast chunk" ); |
| 2993 | |
| 2994 | ent->size += chunksize; |
| 2995 | ent->last_chunk_seq = chunk_seq; |
| 2996 | ent->num_chunks++; |
| 2997 | dlist_push_tail(&ent->chunks, &change->node); |
| 2998 | } |
| 2999 | |
| 3000 | /* |
| 3001 | * Rejigger change->newtuple to point to in-memory toast tuples instead to |
| 3002 | * on-disk toast tuples that may not longer exist (think DROP TABLE or VACUUM). |
| 3003 | * |
| 3004 | * We cannot replace unchanged toast tuples though, so those will still point |
| 3005 | * to on-disk toast data. |
| 3006 | */ |
| 3007 | static void |
| 3008 | ReorderBufferToastReplace(ReorderBuffer *rb, ReorderBufferTXN *txn, |
| 3009 | Relation relation, ReorderBufferChange *change) |
| 3010 | { |
| 3011 | TupleDesc desc; |
| 3012 | int natt; |
| 3013 | Datum *attrs; |
| 3014 | bool *isnull; |
| 3015 | bool *free; |
| 3016 | HeapTuple tmphtup; |
| 3017 | Relation toast_rel; |
| 3018 | TupleDesc toast_desc; |
| 3019 | MemoryContext oldcontext; |
| 3020 | ReorderBufferTupleBuf *newtup; |
| 3021 | |
| 3022 | /* no toast tuples changed */ |
| 3023 | if (txn->toast_hash == NULL) |
| 3024 | return; |
| 3025 | |
| 3026 | oldcontext = MemoryContextSwitchTo(rb->context); |
| 3027 | |
| 3028 | /* we should only have toast tuples in an INSERT or UPDATE */ |
| 3029 | Assert(change->data.tp.newtuple); |
| 3030 | |
| 3031 | desc = RelationGetDescr(relation); |
| 3032 | |
| 3033 | toast_rel = RelationIdGetRelation(relation->rd_rel->reltoastrelid); |
| 3034 | if (!RelationIsValid(toast_rel)) |
| 3035 | elog(ERROR, "could not open relation with OID %u" , |
| 3036 | relation->rd_rel->reltoastrelid); |
| 3037 | |
| 3038 | toast_desc = RelationGetDescr(toast_rel); |
| 3039 | |
| 3040 | /* should we allocate from stack instead? */ |
| 3041 | attrs = palloc0(sizeof(Datum) * desc->natts); |
| 3042 | isnull = palloc0(sizeof(bool) * desc->natts); |
| 3043 | free = palloc0(sizeof(bool) * desc->natts); |
| 3044 | |
| 3045 | newtup = change->data.tp.newtuple; |
| 3046 | |
| 3047 | heap_deform_tuple(&newtup->tuple, desc, attrs, isnull); |
| 3048 | |
| 3049 | for (natt = 0; natt < desc->natts; natt++) |
| 3050 | { |
| 3051 | Form_pg_attribute attr = TupleDescAttr(desc, natt); |
| 3052 | ReorderBufferToastEnt *ent; |
| 3053 | struct varlena *varlena; |
| 3054 | |
| 3055 | /* va_rawsize is the size of the original datum -- including header */ |
| 3056 | struct varatt_external toast_pointer; |
| 3057 | struct varatt_indirect redirect_pointer; |
| 3058 | struct varlena *new_datum = NULL; |
| 3059 | struct varlena *reconstructed; |
| 3060 | dlist_iter it; |
| 3061 | Size data_done = 0; |
| 3062 | |
| 3063 | /* system columns aren't toasted */ |
| 3064 | if (attr->attnum < 0) |
| 3065 | continue; |
| 3066 | |
| 3067 | if (attr->attisdropped) |
| 3068 | continue; |
| 3069 | |
| 3070 | /* not a varlena datatype */ |
| 3071 | if (attr->attlen != -1) |
| 3072 | continue; |
| 3073 | |
| 3074 | /* no data */ |
| 3075 | if (isnull[natt]) |
| 3076 | continue; |
| 3077 | |
| 3078 | /* ok, we know we have a toast datum */ |
| 3079 | varlena = (struct varlena *) DatumGetPointer(attrs[natt]); |
| 3080 | |
| 3081 | /* no need to do anything if the tuple isn't external */ |
| 3082 | if (!VARATT_IS_EXTERNAL(varlena)) |
| 3083 | continue; |
| 3084 | |
| 3085 | VARATT_EXTERNAL_GET_POINTER(toast_pointer, varlena); |
| 3086 | |
| 3087 | /* |
| 3088 | * Check whether the toast tuple changed, replace if so. |
| 3089 | */ |
| 3090 | ent = (ReorderBufferToastEnt *) |
| 3091 | hash_search(txn->toast_hash, |
| 3092 | (void *) &toast_pointer.va_valueid, |
| 3093 | HASH_FIND, |
| 3094 | NULL); |
| 3095 | if (ent == NULL) |
| 3096 | continue; |
| 3097 | |
| 3098 | new_datum = |
| 3099 | (struct varlena *) palloc0(INDIRECT_POINTER_SIZE); |
| 3100 | |
| 3101 | free[natt] = true; |
| 3102 | |
| 3103 | reconstructed = palloc0(toast_pointer.va_rawsize); |
| 3104 | |
| 3105 | ent->reconstructed = reconstructed; |
| 3106 | |
| 3107 | /* stitch toast tuple back together from its parts */ |
| 3108 | dlist_foreach(it, &ent->chunks) |
| 3109 | { |
| 3110 | bool isnull; |
| 3111 | ReorderBufferChange *cchange; |
| 3112 | ReorderBufferTupleBuf *ctup; |
| 3113 | Pointer chunk; |
| 3114 | |
| 3115 | cchange = dlist_container(ReorderBufferChange, node, it.cur); |
| 3116 | ctup = cchange->data.tp.newtuple; |
| 3117 | chunk = DatumGetPointer( |
| 3118 | fastgetattr(&ctup->tuple, 3, toast_desc, &isnull)); |
| 3119 | |
| 3120 | Assert(!isnull); |
| 3121 | Assert(!VARATT_IS_EXTERNAL(chunk)); |
| 3122 | Assert(!VARATT_IS_SHORT(chunk)); |
| 3123 | |
| 3124 | memcpy(VARDATA(reconstructed) + data_done, |
| 3125 | VARDATA(chunk), |
| 3126 | VARSIZE(chunk) - VARHDRSZ); |
| 3127 | data_done += VARSIZE(chunk) - VARHDRSZ; |
| 3128 | } |
| 3129 | Assert(data_done == toast_pointer.va_extsize); |
| 3130 | |
| 3131 | /* make sure its marked as compressed or not */ |
| 3132 | if (VARATT_EXTERNAL_IS_COMPRESSED(toast_pointer)) |
| 3133 | SET_VARSIZE_COMPRESSED(reconstructed, data_done + VARHDRSZ); |
| 3134 | else |
| 3135 | SET_VARSIZE(reconstructed, data_done + VARHDRSZ); |
| 3136 | |
| 3137 | memset(&redirect_pointer, 0, sizeof(redirect_pointer)); |
| 3138 | redirect_pointer.pointer = reconstructed; |
| 3139 | |
| 3140 | SET_VARTAG_EXTERNAL(new_datum, VARTAG_INDIRECT); |
| 3141 | memcpy(VARDATA_EXTERNAL(new_datum), &redirect_pointer, |
| 3142 | sizeof(redirect_pointer)); |
| 3143 | |
| 3144 | attrs[natt] = PointerGetDatum(new_datum); |
| 3145 | } |
| 3146 | |
| 3147 | /* |
| 3148 | * Build tuple in separate memory & copy tuple back into the tuplebuf |
| 3149 | * passed to the output plugin. We can't directly heap_fill_tuple() into |
| 3150 | * the tuplebuf because attrs[] will point back into the current content. |
| 3151 | */ |
| 3152 | tmphtup = heap_form_tuple(desc, attrs, isnull); |
| 3153 | Assert(newtup->tuple.t_len <= MaxHeapTupleSize); |
| 3154 | Assert(ReorderBufferTupleBufData(newtup) == newtup->tuple.t_data); |
| 3155 | |
| 3156 | memcpy(newtup->tuple.t_data, tmphtup->t_data, tmphtup->t_len); |
| 3157 | newtup->tuple.t_len = tmphtup->t_len; |
| 3158 | |
| 3159 | /* |
| 3160 | * free resources we won't further need, more persistent stuff will be |
| 3161 | * free'd in ReorderBufferToastReset(). |
| 3162 | */ |
| 3163 | RelationClose(toast_rel); |
| 3164 | pfree(tmphtup); |
| 3165 | for (natt = 0; natt < desc->natts; natt++) |
| 3166 | { |
| 3167 | if (free[natt]) |
| 3168 | pfree(DatumGetPointer(attrs[natt])); |
| 3169 | } |
| 3170 | pfree(attrs); |
| 3171 | pfree(free); |
| 3172 | pfree(isnull); |
| 3173 | |
| 3174 | MemoryContextSwitchTo(oldcontext); |
| 3175 | } |
| 3176 | |
| 3177 | /* |
| 3178 | * Free all resources allocated for toast reconstruction. |
| 3179 | */ |
| 3180 | static void |
| 3181 | ReorderBufferToastReset(ReorderBuffer *rb, ReorderBufferTXN *txn) |
| 3182 | { |
| 3183 | HASH_SEQ_STATUS hstat; |
| 3184 | ReorderBufferToastEnt *ent; |
| 3185 | |
| 3186 | if (txn->toast_hash == NULL) |
| 3187 | return; |
| 3188 | |
| 3189 | /* sequentially walk over the hash and free everything */ |
| 3190 | hash_seq_init(&hstat, txn->toast_hash); |
| 3191 | while ((ent = (ReorderBufferToastEnt *) hash_seq_search(&hstat)) != NULL) |
| 3192 | { |
| 3193 | dlist_mutable_iter it; |
| 3194 | |
| 3195 | if (ent->reconstructed != NULL) |
| 3196 | pfree(ent->reconstructed); |
| 3197 | |
| 3198 | dlist_foreach_modify(it, &ent->chunks) |
| 3199 | { |
| 3200 | ReorderBufferChange *change = |
| 3201 | dlist_container(ReorderBufferChange, node, it.cur); |
| 3202 | |
| 3203 | dlist_delete(&change->node); |
| 3204 | ReorderBufferReturnChange(rb, change); |
| 3205 | } |
| 3206 | } |
| 3207 | |
| 3208 | hash_destroy(txn->toast_hash); |
| 3209 | txn->toast_hash = NULL; |
| 3210 | } |
| 3211 | |
| 3212 | |
| 3213 | /* --------------------------------------- |
| 3214 | * Visibility support for logical decoding |
| 3215 | * |
| 3216 | * |
| 3217 | * Lookup actual cmin/cmax values when using decoding snapshot. We can't |
| 3218 | * always rely on stored cmin/cmax values because of two scenarios: |
| 3219 | * |
| 3220 | * * A tuple got changed multiple times during a single transaction and thus |
| 3221 | * has got a combocid. Combocid's are only valid for the duration of a |
| 3222 | * single transaction. |
| 3223 | * * A tuple with a cmin but no cmax (and thus no combocid) got |
| 3224 | * deleted/updated in another transaction than the one which created it |
| 3225 | * which we are looking at right now. As only one of cmin, cmax or combocid |
| 3226 | * is actually stored in the heap we don't have access to the value we |
| 3227 | * need anymore. |
| 3228 | * |
| 3229 | * To resolve those problems we have a per-transaction hash of (cmin, |
| 3230 | * cmax) tuples keyed by (relfilenode, ctid) which contains the actual |
| 3231 | * (cmin, cmax) values. That also takes care of combocids by simply |
| 3232 | * not caring about them at all. As we have the real cmin/cmax values |
| 3233 | * combocids aren't interesting. |
| 3234 | * |
| 3235 | * As we only care about catalog tuples here the overhead of this |
| 3236 | * hashtable should be acceptable. |
| 3237 | * |
| 3238 | * Heap rewrites complicate this a bit, check rewriteheap.c for |
| 3239 | * details. |
| 3240 | * ------------------------------------------------------------------------- |
| 3241 | */ |
| 3242 | |
| 3243 | /* struct for qsort()ing mapping files by lsn somewhat efficiently */ |
| 3244 | typedef struct RewriteMappingFile |
| 3245 | { |
| 3246 | XLogRecPtr lsn; |
| 3247 | char fname[MAXPGPATH]; |
| 3248 | } RewriteMappingFile; |
| 3249 | |
| 3250 | #if NOT_USED |
| 3251 | static void |
| 3252 | DisplayMapping(HTAB *tuplecid_data) |
| 3253 | { |
| 3254 | HASH_SEQ_STATUS hstat; |
| 3255 | ReorderBufferTupleCidEnt *ent; |
| 3256 | |
| 3257 | hash_seq_init(&hstat, tuplecid_data); |
| 3258 | while ((ent = (ReorderBufferTupleCidEnt *) hash_seq_search(&hstat)) != NULL) |
| 3259 | { |
| 3260 | elog(DEBUG3, "mapping: node: %u/%u/%u tid: %u/%u cmin: %u, cmax: %u" , |
| 3261 | ent->key.relnode.dbNode, |
| 3262 | ent->key.relnode.spcNode, |
| 3263 | ent->key.relnode.relNode, |
| 3264 | ItemPointerGetBlockNumber(&ent->key.tid), |
| 3265 | ItemPointerGetOffsetNumber(&ent->key.tid), |
| 3266 | ent->cmin, |
| 3267 | ent->cmax |
| 3268 | ); |
| 3269 | } |
| 3270 | } |
| 3271 | #endif |
| 3272 | |
| 3273 | /* |
| 3274 | * Apply a single mapping file to tuplecid_data. |
| 3275 | * |
| 3276 | * The mapping file has to have been verified to be a) committed b) for our |
| 3277 | * transaction c) applied in LSN order. |
| 3278 | */ |
| 3279 | static void |
| 3280 | ApplyLogicalMappingFile(HTAB *tuplecid_data, Oid relid, const char *fname) |
| 3281 | { |
| 3282 | char path[MAXPGPATH]; |
| 3283 | int fd; |
| 3284 | int readBytes; |
| 3285 | LogicalRewriteMappingData map; |
| 3286 | |
| 3287 | sprintf(path, "pg_logical/mappings/%s" , fname); |
| 3288 | fd = OpenTransientFile(path, O_RDONLY | PG_BINARY); |
| 3289 | if (fd < 0) |
| 3290 | ereport(ERROR, |
| 3291 | (errcode_for_file_access(), |
| 3292 | errmsg("could not open file \"%s\": %m" , path))); |
| 3293 | |
| 3294 | while (true) |
| 3295 | { |
| 3296 | ReorderBufferTupleCidKey key; |
| 3297 | ReorderBufferTupleCidEnt *ent; |
| 3298 | ReorderBufferTupleCidEnt *new_ent; |
| 3299 | bool found; |
| 3300 | |
| 3301 | /* be careful about padding */ |
| 3302 | memset(&key, 0, sizeof(ReorderBufferTupleCidKey)); |
| 3303 | |
| 3304 | /* read all mappings till the end of the file */ |
| 3305 | pgstat_report_wait_start(WAIT_EVENT_REORDER_LOGICAL_MAPPING_READ); |
| 3306 | readBytes = read(fd, &map, sizeof(LogicalRewriteMappingData)); |
| 3307 | pgstat_report_wait_end(); |
| 3308 | |
| 3309 | if (readBytes < 0) |
| 3310 | ereport(ERROR, |
| 3311 | (errcode_for_file_access(), |
| 3312 | errmsg("could not read file \"%s\": %m" , |
| 3313 | path))); |
| 3314 | else if (readBytes == 0) /* EOF */ |
| 3315 | break; |
| 3316 | else if (readBytes != sizeof(LogicalRewriteMappingData)) |
| 3317 | ereport(ERROR, |
| 3318 | (errcode_for_file_access(), |
| 3319 | errmsg("could not read from file \"%s\": read %d instead of %d bytes" , |
| 3320 | path, readBytes, |
| 3321 | (int32) sizeof(LogicalRewriteMappingData)))); |
| 3322 | |
| 3323 | key.relnode = map.old_node; |
| 3324 | ItemPointerCopy(&map.old_tid, |
| 3325 | &key.tid); |
| 3326 | |
| 3327 | |
| 3328 | ent = (ReorderBufferTupleCidEnt *) |
| 3329 | hash_search(tuplecid_data, |
| 3330 | (void *) &key, |
| 3331 | HASH_FIND, |
| 3332 | NULL); |
| 3333 | |
| 3334 | /* no existing mapping, no need to update */ |
| 3335 | if (!ent) |
| 3336 | continue; |
| 3337 | |
| 3338 | key.relnode = map.new_node; |
| 3339 | ItemPointerCopy(&map.new_tid, |
| 3340 | &key.tid); |
| 3341 | |
| 3342 | new_ent = (ReorderBufferTupleCidEnt *) |
| 3343 | hash_search(tuplecid_data, |
| 3344 | (void *) &key, |
| 3345 | HASH_ENTER, |
| 3346 | &found); |
| 3347 | |
| 3348 | if (found) |
| 3349 | { |
| 3350 | /* |
| 3351 | * Make sure the existing mapping makes sense. We sometime update |
| 3352 | * old records that did not yet have a cmax (e.g. pg_class' own |
| 3353 | * entry while rewriting it) during rewrites, so allow that. |
| 3354 | */ |
| 3355 | Assert(ent->cmin == InvalidCommandId || ent->cmin == new_ent->cmin); |
| 3356 | Assert(ent->cmax == InvalidCommandId || ent->cmax == new_ent->cmax); |
| 3357 | } |
| 3358 | else |
| 3359 | { |
| 3360 | /* update mapping */ |
| 3361 | new_ent->cmin = ent->cmin; |
| 3362 | new_ent->cmax = ent->cmax; |
| 3363 | new_ent->combocid = ent->combocid; |
| 3364 | } |
| 3365 | } |
| 3366 | |
| 3367 | if (CloseTransientFile(fd)) |
| 3368 | ereport(ERROR, |
| 3369 | (errcode_for_file_access(), |
| 3370 | errmsg("could not close file \"%s\": %m" , path))); |
| 3371 | } |
| 3372 | |
| 3373 | |
| 3374 | /* |
| 3375 | * Check whether the TransactionOid 'xid' is in the pre-sorted array 'xip'. |
| 3376 | */ |
| 3377 | static bool |
| 3378 | TransactionIdInArray(TransactionId xid, TransactionId *xip, Size num) |
| 3379 | { |
| 3380 | return bsearch(&xid, xip, num, |
| 3381 | sizeof(TransactionId), xidComparator) != NULL; |
| 3382 | } |
| 3383 | |
| 3384 | /* |
| 3385 | * qsort() comparator for sorting RewriteMappingFiles in LSN order. |
| 3386 | */ |
| 3387 | static int |
| 3388 | file_sort_by_lsn(const void *a_p, const void *b_p) |
| 3389 | { |
| 3390 | RewriteMappingFile *a = *(RewriteMappingFile **) a_p; |
| 3391 | RewriteMappingFile *b = *(RewriteMappingFile **) b_p; |
| 3392 | |
| 3393 | if (a->lsn < b->lsn) |
| 3394 | return -1; |
| 3395 | else if (a->lsn > b->lsn) |
| 3396 | return 1; |
| 3397 | return 0; |
| 3398 | } |
| 3399 | |
| 3400 | /* |
| 3401 | * Apply any existing logical remapping files if there are any targeted at our |
| 3402 | * transaction for relid. |
| 3403 | */ |
| 3404 | static void |
| 3405 | UpdateLogicalMappings(HTAB *tuplecid_data, Oid relid, Snapshot snapshot) |
| 3406 | { |
| 3407 | DIR *mapping_dir; |
| 3408 | struct dirent *mapping_de; |
| 3409 | List *files = NIL; |
| 3410 | ListCell *file; |
| 3411 | RewriteMappingFile **files_a; |
| 3412 | size_t off; |
| 3413 | Oid dboid = IsSharedRelation(relid) ? InvalidOid : MyDatabaseId; |
| 3414 | |
| 3415 | mapping_dir = AllocateDir("pg_logical/mappings" ); |
| 3416 | while ((mapping_de = ReadDir(mapping_dir, "pg_logical/mappings" )) != NULL) |
| 3417 | { |
| 3418 | Oid f_dboid; |
| 3419 | Oid f_relid; |
| 3420 | TransactionId f_mapped_xid; |
| 3421 | TransactionId f_create_xid; |
| 3422 | XLogRecPtr f_lsn; |
| 3423 | uint32 f_hi, |
| 3424 | f_lo; |
| 3425 | RewriteMappingFile *f; |
| 3426 | |
| 3427 | if (strcmp(mapping_de->d_name, "." ) == 0 || |
| 3428 | strcmp(mapping_de->d_name, ".." ) == 0) |
| 3429 | continue; |
| 3430 | |
| 3431 | /* Ignore files that aren't ours */ |
| 3432 | if (strncmp(mapping_de->d_name, "map-" , 4) != 0) |
| 3433 | continue; |
| 3434 | |
| 3435 | if (sscanf(mapping_de->d_name, LOGICAL_REWRITE_FORMAT, |
| 3436 | &f_dboid, &f_relid, &f_hi, &f_lo, |
| 3437 | &f_mapped_xid, &f_create_xid) != 6) |
| 3438 | elog(ERROR, "could not parse filename \"%s\"" , mapping_de->d_name); |
| 3439 | |
| 3440 | f_lsn = ((uint64) f_hi) << 32 | f_lo; |
| 3441 | |
| 3442 | /* mapping for another database */ |
| 3443 | if (f_dboid != dboid) |
| 3444 | continue; |
| 3445 | |
| 3446 | /* mapping for another relation */ |
| 3447 | if (f_relid != relid) |
| 3448 | continue; |
| 3449 | |
| 3450 | /* did the creating transaction abort? */ |
| 3451 | if (!TransactionIdDidCommit(f_create_xid)) |
| 3452 | continue; |
| 3453 | |
| 3454 | /* not for our transaction */ |
| 3455 | if (!TransactionIdInArray(f_mapped_xid, snapshot->subxip, snapshot->subxcnt)) |
| 3456 | continue; |
| 3457 | |
| 3458 | /* ok, relevant, queue for apply */ |
| 3459 | f = palloc(sizeof(RewriteMappingFile)); |
| 3460 | f->lsn = f_lsn; |
| 3461 | strcpy(f->fname, mapping_de->d_name); |
| 3462 | files = lappend(files, f); |
| 3463 | } |
| 3464 | FreeDir(mapping_dir); |
| 3465 | |
| 3466 | /* build array we can easily sort */ |
| 3467 | files_a = palloc(list_length(files) * sizeof(RewriteMappingFile *)); |
| 3468 | off = 0; |
| 3469 | foreach(file, files) |
| 3470 | { |
| 3471 | files_a[off++] = lfirst(file); |
| 3472 | } |
| 3473 | |
| 3474 | /* sort files so we apply them in LSN order */ |
| 3475 | qsort(files_a, list_length(files), sizeof(RewriteMappingFile *), |
| 3476 | file_sort_by_lsn); |
| 3477 | |
| 3478 | for (off = 0; off < list_length(files); off++) |
| 3479 | { |
| 3480 | RewriteMappingFile *f = files_a[off]; |
| 3481 | |
| 3482 | elog(DEBUG1, "applying mapping: \"%s\" in %u" , f->fname, |
| 3483 | snapshot->subxip[0]); |
| 3484 | ApplyLogicalMappingFile(tuplecid_data, relid, f->fname); |
| 3485 | pfree(f); |
| 3486 | } |
| 3487 | } |
| 3488 | |
| 3489 | /* |
| 3490 | * Lookup cmin/cmax of a tuple, during logical decoding where we can't rely on |
| 3491 | * combocids. |
| 3492 | */ |
| 3493 | bool |
| 3494 | ResolveCminCmaxDuringDecoding(HTAB *tuplecid_data, |
| 3495 | Snapshot snapshot, |
| 3496 | HeapTuple htup, Buffer buffer, |
| 3497 | CommandId *cmin, CommandId *cmax) |
| 3498 | { |
| 3499 | ReorderBufferTupleCidKey key; |
| 3500 | ReorderBufferTupleCidEnt *ent; |
| 3501 | ForkNumber forkno; |
| 3502 | BlockNumber blockno; |
| 3503 | bool updated_mapping = false; |
| 3504 | |
| 3505 | /* be careful about padding */ |
| 3506 | memset(&key, 0, sizeof(key)); |
| 3507 | |
| 3508 | Assert(!BufferIsLocal(buffer)); |
| 3509 | |
| 3510 | /* |
| 3511 | * get relfilenode from the buffer, no convenient way to access it other |
| 3512 | * than that. |
| 3513 | */ |
| 3514 | BufferGetTag(buffer, &key.relnode, &forkno, &blockno); |
| 3515 | |
| 3516 | /* tuples can only be in the main fork */ |
| 3517 | Assert(forkno == MAIN_FORKNUM); |
| 3518 | Assert(blockno == ItemPointerGetBlockNumber(&htup->t_self)); |
| 3519 | |
| 3520 | ItemPointerCopy(&htup->t_self, |
| 3521 | &key.tid); |
| 3522 | |
| 3523 | restart: |
| 3524 | ent = (ReorderBufferTupleCidEnt *) |
| 3525 | hash_search(tuplecid_data, |
| 3526 | (void *) &key, |
| 3527 | HASH_FIND, |
| 3528 | NULL); |
| 3529 | |
| 3530 | /* |
| 3531 | * failed to find a mapping, check whether the table was rewritten and |
| 3532 | * apply mapping if so, but only do that once - there can be no new |
| 3533 | * mappings while we are in here since we have to hold a lock on the |
| 3534 | * relation. |
| 3535 | */ |
| 3536 | if (ent == NULL && !updated_mapping) |
| 3537 | { |
| 3538 | UpdateLogicalMappings(tuplecid_data, htup->t_tableOid, snapshot); |
| 3539 | /* now check but don't update for a mapping again */ |
| 3540 | updated_mapping = true; |
| 3541 | goto restart; |
| 3542 | } |
| 3543 | else if (ent == NULL) |
| 3544 | return false; |
| 3545 | |
| 3546 | if (cmin) |
| 3547 | *cmin = ent->cmin; |
| 3548 | if (cmax) |
| 3549 | *cmax = ent->cmax; |
| 3550 | return true; |
| 3551 | } |
| 3552 | |