| 1 | /* |
| 2 | * Copyright (c) 2007, 2016, Oracle and/or its affiliates. All rights reserved. |
| 3 | * Use is subject to license terms. |
| 4 | * |
| 5 | * This library is free software; you can redistribute it and/or |
| 6 | * modify it under the terms of the GNU Lesser General Public |
| 7 | * License as published by the Free Software Foundation; either |
| 8 | * version 2.1 of the License, or (at your option) any later version. |
| 9 | * |
| 10 | * This library is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | * Lesser General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU Lesser General Public License |
| 16 | * along with this library; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | */ |
| 23 | |
| 24 | /* ********************************************************************* |
| 25 | * |
| 26 | * The Original Code is the MPI Arbitrary Precision Integer Arithmetic library. |
| 27 | * |
| 28 | * The Initial Developer of the Original Code is |
| 29 | * Michael J. Fromberger. |
| 30 | * Portions created by the Initial Developer are Copyright (C) 1998 |
| 31 | * the Initial Developer. All Rights Reserved. |
| 32 | * |
| 33 | * Contributor(s): |
| 34 | * Netscape Communications Corporation |
| 35 | * Douglas Stebila <douglas@stebila.ca> of Sun Laboratories. |
| 36 | * |
| 37 | * Last Modified Date from the Original Code: Nov 2016 |
| 38 | *********************************************************************** */ |
| 39 | |
| 40 | /* Arbitrary precision integer arithmetic library */ |
| 41 | |
| 42 | #include "mpi-priv.h" |
| 43 | #if defined(OSF1) |
| 44 | #include <c_asm.h> |
| 45 | #endif |
| 46 | |
| 47 | #if MP_LOGTAB |
| 48 | /* |
| 49 | A table of the logs of 2 for various bases (the 0 and 1 entries of |
| 50 | this table are meaningless and should not be referenced). |
| 51 | |
| 52 | This table is used to compute output lengths for the mp_toradix() |
| 53 | function. Since a number n in radix r takes up about log_r(n) |
| 54 | digits, we estimate the output size by taking the least integer |
| 55 | greater than log_r(n), where: |
| 56 | |
| 57 | log_r(n) = log_2(n) * log_r(2) |
| 58 | |
| 59 | This table, therefore, is a table of log_r(2) for 2 <= r <= 36, |
| 60 | which are the output bases supported. |
| 61 | */ |
| 62 | #include "logtab.h" |
| 63 | #endif |
| 64 | |
| 65 | /* {{{ Constant strings */ |
| 66 | |
| 67 | /* Constant strings returned by mp_strerror() */ |
| 68 | static const char *mp_err_string[] = { |
| 69 | "unknown result code" , /* say what? */ |
| 70 | "boolean true" , /* MP_OKAY, MP_YES */ |
| 71 | "boolean false" , /* MP_NO */ |
| 72 | "out of memory" , /* MP_MEM */ |
| 73 | "argument out of range" , /* MP_RANGE */ |
| 74 | "invalid input parameter" , /* MP_BADARG */ |
| 75 | "result is undefined" /* MP_UNDEF */ |
| 76 | }; |
| 77 | |
| 78 | /* Value to digit maps for radix conversion */ |
| 79 | |
| 80 | /* s_dmap_1 - standard digits and letters */ |
| 81 | static const char *s_dmap_1 = |
| 82 | "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/" ; |
| 83 | |
| 84 | /* }}} */ |
| 85 | |
| 86 | unsigned long mp_allocs; |
| 87 | unsigned long mp_frees; |
| 88 | unsigned long mp_copies; |
| 89 | |
| 90 | /* {{{ Default precision manipulation */ |
| 91 | |
| 92 | /* Default precision for newly created mp_int's */ |
| 93 | static mp_size s_mp_defprec = MP_DEFPREC; |
| 94 | |
| 95 | mp_size mp_get_prec(void) |
| 96 | { |
| 97 | return s_mp_defprec; |
| 98 | |
| 99 | } /* end mp_get_prec() */ |
| 100 | |
| 101 | void mp_set_prec(mp_size prec) |
| 102 | { |
| 103 | if(prec == 0) |
| 104 | s_mp_defprec = MP_DEFPREC; |
| 105 | else |
| 106 | s_mp_defprec = prec; |
| 107 | |
| 108 | } /* end mp_set_prec() */ |
| 109 | |
| 110 | /* }}} */ |
| 111 | |
| 112 | /*------------------------------------------------------------------------*/ |
| 113 | /* {{{ mp_init(mp, kmflag) */ |
| 114 | |
| 115 | /* |
| 116 | mp_init(mp, kmflag) |
| 117 | |
| 118 | Initialize a new zero-valued mp_int. Returns MP_OKAY if successful, |
| 119 | MP_MEM if memory could not be allocated for the structure. |
| 120 | */ |
| 121 | |
| 122 | mp_err mp_init(mp_int *mp, int kmflag) |
| 123 | { |
| 124 | return mp_init_size(mp, s_mp_defprec, kmflag); |
| 125 | |
| 126 | } /* end mp_init() */ |
| 127 | |
| 128 | /* }}} */ |
| 129 | |
| 130 | /* {{{ mp_init_size(mp, prec, kmflag) */ |
| 131 | |
| 132 | /* |
| 133 | mp_init_size(mp, prec, kmflag) |
| 134 | |
| 135 | Initialize a new zero-valued mp_int with at least the given |
| 136 | precision; returns MP_OKAY if successful, or MP_MEM if memory could |
| 137 | not be allocated for the structure. |
| 138 | */ |
| 139 | |
| 140 | mp_err mp_init_size(mp_int *mp, mp_size prec, int kmflag) |
| 141 | { |
| 142 | ARGCHK(mp != NULL && prec > 0, MP_BADARG); |
| 143 | |
| 144 | prec = MP_ROUNDUP(prec, s_mp_defprec); |
| 145 | if((DIGITS(mp) = s_mp_alloc(prec, sizeof(mp_digit), kmflag)) == NULL) |
| 146 | return MP_MEM; |
| 147 | |
| 148 | SIGN(mp) = ZPOS; |
| 149 | USED(mp) = 1; |
| 150 | ALLOC(mp) = prec; |
| 151 | |
| 152 | return MP_OKAY; |
| 153 | |
| 154 | } /* end mp_init_size() */ |
| 155 | |
| 156 | /* }}} */ |
| 157 | |
| 158 | /* {{{ mp_init_copy(mp, from) */ |
| 159 | |
| 160 | /* |
| 161 | mp_init_copy(mp, from) |
| 162 | |
| 163 | Initialize mp as an exact copy of from. Returns MP_OKAY if |
| 164 | successful, MP_MEM if memory could not be allocated for the new |
| 165 | structure. |
| 166 | */ |
| 167 | |
| 168 | mp_err mp_init_copy(mp_int *mp, const mp_int *from) |
| 169 | { |
| 170 | ARGCHK(mp != NULL && from != NULL, MP_BADARG); |
| 171 | |
| 172 | if(mp == from) |
| 173 | return MP_OKAY; |
| 174 | |
| 175 | if((DIGITS(mp) = s_mp_alloc(ALLOC(from), sizeof(mp_digit), FLAG(from))) == NULL) |
| 176 | return MP_MEM; |
| 177 | |
| 178 | s_mp_copy(DIGITS(from), DIGITS(mp), USED(from)); |
| 179 | USED(mp) = USED(from); |
| 180 | ALLOC(mp) = ALLOC(from); |
| 181 | SIGN(mp) = SIGN(from); |
| 182 | |
| 183 | #ifndef _WIN32 |
| 184 | FLAG(mp) = FLAG(from); |
| 185 | #endif /* _WIN32 */ |
| 186 | |
| 187 | return MP_OKAY; |
| 188 | |
| 189 | } /* end mp_init_copy() */ |
| 190 | |
| 191 | /* }}} */ |
| 192 | |
| 193 | /* {{{ mp_copy(from, to) */ |
| 194 | |
| 195 | /* |
| 196 | mp_copy(from, to) |
| 197 | |
| 198 | Copies the mp_int 'from' to the mp_int 'to'. It is presumed that |
| 199 | 'to' has already been initialized (if not, use mp_init_copy() |
| 200 | instead). If 'from' and 'to' are identical, nothing happens. |
| 201 | */ |
| 202 | |
| 203 | mp_err mp_copy(const mp_int *from, mp_int *to) |
| 204 | { |
| 205 | ARGCHK(from != NULL && to != NULL, MP_BADARG); |
| 206 | |
| 207 | if(from == to) |
| 208 | return MP_OKAY; |
| 209 | |
| 210 | ++mp_copies; |
| 211 | { /* copy */ |
| 212 | mp_digit *tmp; |
| 213 | |
| 214 | /* |
| 215 | If the allocated buffer in 'to' already has enough space to hold |
| 216 | all the used digits of 'from', we'll re-use it to avoid hitting |
| 217 | the memory allocater more than necessary; otherwise, we'd have |
| 218 | to grow anyway, so we just allocate a hunk and make the copy as |
| 219 | usual |
| 220 | */ |
| 221 | if(ALLOC(to) >= USED(from)) { |
| 222 | s_mp_setz(DIGITS(to) + USED(from), ALLOC(to) - USED(from)); |
| 223 | s_mp_copy(DIGITS(from), DIGITS(to), USED(from)); |
| 224 | |
| 225 | } else { |
| 226 | if((tmp = s_mp_alloc(ALLOC(from), sizeof(mp_digit), FLAG(from))) == NULL) |
| 227 | return MP_MEM; |
| 228 | |
| 229 | s_mp_copy(DIGITS(from), tmp, USED(from)); |
| 230 | |
| 231 | if(DIGITS(to) != NULL) { |
| 232 | #if MP_CRYPTO |
| 233 | s_mp_setz(DIGITS(to), ALLOC(to)); |
| 234 | #endif |
| 235 | s_mp_free(DIGITS(to), ALLOC(to)); |
| 236 | } |
| 237 | |
| 238 | DIGITS(to) = tmp; |
| 239 | ALLOC(to) = ALLOC(from); |
| 240 | } |
| 241 | |
| 242 | /* Copy the precision and sign from the original */ |
| 243 | USED(to) = USED(from); |
| 244 | SIGN(to) = SIGN(from); |
| 245 | } /* end copy */ |
| 246 | |
| 247 | return MP_OKAY; |
| 248 | |
| 249 | } /* end mp_copy() */ |
| 250 | |
| 251 | /* }}} */ |
| 252 | |
| 253 | /* {{{ mp_exch(mp1, mp2) */ |
| 254 | |
| 255 | /* |
| 256 | mp_exch(mp1, mp2) |
| 257 | |
| 258 | Exchange mp1 and mp2 without allocating any intermediate memory |
| 259 | (well, unless you count the stack space needed for this call and the |
| 260 | locals it creates...). This cannot fail. |
| 261 | */ |
| 262 | |
| 263 | void mp_exch(mp_int *mp1, mp_int *mp2) |
| 264 | { |
| 265 | #if MP_ARGCHK == 2 |
| 266 | assert(mp1 != NULL && mp2 != NULL); |
| 267 | #else |
| 268 | if(mp1 == NULL || mp2 == NULL) |
| 269 | return; |
| 270 | #endif |
| 271 | |
| 272 | s_mp_exch(mp1, mp2); |
| 273 | |
| 274 | } /* end mp_exch() */ |
| 275 | |
| 276 | /* }}} */ |
| 277 | |
| 278 | /* {{{ mp_clear(mp) */ |
| 279 | |
| 280 | /* |
| 281 | mp_clear(mp) |
| 282 | |
| 283 | Release the storage used by an mp_int, and void its fields so that |
| 284 | if someone calls mp_clear() again for the same int later, we won't |
| 285 | get tollchocked. |
| 286 | */ |
| 287 | |
| 288 | void mp_clear(mp_int *mp) |
| 289 | { |
| 290 | if(mp == NULL) |
| 291 | return; |
| 292 | |
| 293 | if(DIGITS(mp) != NULL) { |
| 294 | #if MP_CRYPTO |
| 295 | s_mp_setz(DIGITS(mp), ALLOC(mp)); |
| 296 | #endif |
| 297 | s_mp_free(DIGITS(mp), ALLOC(mp)); |
| 298 | DIGITS(mp) = NULL; |
| 299 | } |
| 300 | |
| 301 | USED(mp) = 0; |
| 302 | ALLOC(mp) = 0; |
| 303 | |
| 304 | } /* end mp_clear() */ |
| 305 | |
| 306 | /* }}} */ |
| 307 | |
| 308 | /* {{{ mp_zero(mp) */ |
| 309 | |
| 310 | /* |
| 311 | mp_zero(mp) |
| 312 | |
| 313 | Set mp to zero. Does not change the allocated size of the structure, |
| 314 | and therefore cannot fail (except on a bad argument, which we ignore) |
| 315 | */ |
| 316 | void mp_zero(mp_int *mp) |
| 317 | { |
| 318 | if(mp == NULL) |
| 319 | return; |
| 320 | |
| 321 | s_mp_setz(DIGITS(mp), ALLOC(mp)); |
| 322 | USED(mp) = 1; |
| 323 | SIGN(mp) = ZPOS; |
| 324 | |
| 325 | } /* end mp_zero() */ |
| 326 | |
| 327 | /* }}} */ |
| 328 | |
| 329 | /* {{{ mp_set(mp, d) */ |
| 330 | |
| 331 | void mp_set(mp_int *mp, mp_digit d) |
| 332 | { |
| 333 | if(mp == NULL) |
| 334 | return; |
| 335 | |
| 336 | mp_zero(mp); |
| 337 | DIGIT(mp, 0) = d; |
| 338 | |
| 339 | } /* end mp_set() */ |
| 340 | |
| 341 | /* }}} */ |
| 342 | |
| 343 | /* {{{ mp_set_int(mp, z) */ |
| 344 | |
| 345 | mp_err mp_set_int(mp_int *mp, long z) |
| 346 | { |
| 347 | int ix; |
| 348 | unsigned long v = labs(z); |
| 349 | mp_err res; |
| 350 | |
| 351 | ARGCHK(mp != NULL, MP_BADARG); |
| 352 | |
| 353 | mp_zero(mp); |
| 354 | if(z == 0) |
| 355 | return MP_OKAY; /* shortcut for zero */ |
| 356 | |
| 357 | if (sizeof v <= sizeof(mp_digit)) { |
| 358 | DIGIT(mp,0) = v; |
| 359 | } else { |
| 360 | for (ix = sizeof(long) - 1; ix >= 0; ix--) { |
| 361 | if ((res = s_mp_mul_d(mp, (UCHAR_MAX + 1))) != MP_OKAY) |
| 362 | return res; |
| 363 | |
| 364 | res = s_mp_add_d(mp, (mp_digit)((v >> (ix * CHAR_BIT)) & UCHAR_MAX)); |
| 365 | if (res != MP_OKAY) |
| 366 | return res; |
| 367 | } |
| 368 | } |
| 369 | if(z < 0) |
| 370 | SIGN(mp) = NEG; |
| 371 | |
| 372 | return MP_OKAY; |
| 373 | |
| 374 | } /* end mp_set_int() */ |
| 375 | |
| 376 | /* }}} */ |
| 377 | |
| 378 | /* {{{ mp_set_ulong(mp, z) */ |
| 379 | |
| 380 | mp_err mp_set_ulong(mp_int *mp, unsigned long z) |
| 381 | { |
| 382 | int ix; |
| 383 | mp_err res; |
| 384 | |
| 385 | ARGCHK(mp != NULL, MP_BADARG); |
| 386 | |
| 387 | mp_zero(mp); |
| 388 | if(z == 0) |
| 389 | return MP_OKAY; /* shortcut for zero */ |
| 390 | |
| 391 | if (sizeof z <= sizeof(mp_digit)) { |
| 392 | DIGIT(mp,0) = z; |
| 393 | } else { |
| 394 | for (ix = sizeof(long) - 1; ix >= 0; ix--) { |
| 395 | if ((res = s_mp_mul_d(mp, (UCHAR_MAX + 1))) != MP_OKAY) |
| 396 | return res; |
| 397 | |
| 398 | res = s_mp_add_d(mp, (mp_digit)((z >> (ix * CHAR_BIT)) & UCHAR_MAX)); |
| 399 | if (res != MP_OKAY) |
| 400 | return res; |
| 401 | } |
| 402 | } |
| 403 | return MP_OKAY; |
| 404 | } /* end mp_set_ulong() */ |
| 405 | |
| 406 | /* }}} */ |
| 407 | |
| 408 | /*------------------------------------------------------------------------*/ |
| 409 | /* {{{ Digit arithmetic */ |
| 410 | |
| 411 | /* {{{ mp_add_d(a, d, b) */ |
| 412 | |
| 413 | /* |
| 414 | mp_add_d(a, d, b) |
| 415 | |
| 416 | Compute the sum b = a + d, for a single digit d. Respects the sign of |
| 417 | its primary addend (single digits are unsigned anyway). |
| 418 | */ |
| 419 | |
| 420 | mp_err mp_add_d(const mp_int *a, mp_digit d, mp_int *b) |
| 421 | { |
| 422 | mp_int tmp; |
| 423 | mp_err res; |
| 424 | |
| 425 | ARGCHK(a != NULL && b != NULL, MP_BADARG); |
| 426 | |
| 427 | if((res = mp_init_copy(&tmp, a)) != MP_OKAY) |
| 428 | return res; |
| 429 | |
| 430 | if(SIGN(&tmp) == ZPOS) { |
| 431 | if((res = s_mp_add_d(&tmp, d)) != MP_OKAY) |
| 432 | goto CLEANUP; |
| 433 | } else if(s_mp_cmp_d(&tmp, d) >= 0) { |
| 434 | if((res = s_mp_sub_d(&tmp, d)) != MP_OKAY) |
| 435 | goto CLEANUP; |
| 436 | } else { |
| 437 | mp_neg(&tmp, &tmp); |
| 438 | |
| 439 | DIGIT(&tmp, 0) = d - DIGIT(&tmp, 0); |
| 440 | } |
| 441 | |
| 442 | if(s_mp_cmp_d(&tmp, 0) == 0) |
| 443 | SIGN(&tmp) = ZPOS; |
| 444 | |
| 445 | s_mp_exch(&tmp, b); |
| 446 | |
| 447 | CLEANUP: |
| 448 | mp_clear(&tmp); |
| 449 | return res; |
| 450 | |
| 451 | } /* end mp_add_d() */ |
| 452 | |
| 453 | /* }}} */ |
| 454 | |
| 455 | /* {{{ mp_sub_d(a, d, b) */ |
| 456 | |
| 457 | /* |
| 458 | mp_sub_d(a, d, b) |
| 459 | |
| 460 | Compute the difference b = a - d, for a single digit d. Respects the |
| 461 | sign of its subtrahend (single digits are unsigned anyway). |
| 462 | */ |
| 463 | |
| 464 | mp_err mp_sub_d(const mp_int *a, mp_digit d, mp_int *b) |
| 465 | { |
| 466 | mp_int tmp; |
| 467 | mp_err res; |
| 468 | |
| 469 | ARGCHK(a != NULL && b != NULL, MP_BADARG); |
| 470 | |
| 471 | if((res = mp_init_copy(&tmp, a)) != MP_OKAY) |
| 472 | return res; |
| 473 | |
| 474 | if(SIGN(&tmp) == NEG) { |
| 475 | if((res = s_mp_add_d(&tmp, d)) != MP_OKAY) |
| 476 | goto CLEANUP; |
| 477 | } else if(s_mp_cmp_d(&tmp, d) >= 0) { |
| 478 | if((res = s_mp_sub_d(&tmp, d)) != MP_OKAY) |
| 479 | goto CLEANUP; |
| 480 | } else { |
| 481 | mp_neg(&tmp, &tmp); |
| 482 | |
| 483 | DIGIT(&tmp, 0) = d - DIGIT(&tmp, 0); |
| 484 | SIGN(&tmp) = NEG; |
| 485 | } |
| 486 | |
| 487 | if(s_mp_cmp_d(&tmp, 0) == 0) |
| 488 | SIGN(&tmp) = ZPOS; |
| 489 | |
| 490 | s_mp_exch(&tmp, b); |
| 491 | |
| 492 | CLEANUP: |
| 493 | mp_clear(&tmp); |
| 494 | return res; |
| 495 | |
| 496 | } /* end mp_sub_d() */ |
| 497 | |
| 498 | /* }}} */ |
| 499 | |
| 500 | /* {{{ mp_mul_d(a, d, b) */ |
| 501 | |
| 502 | /* |
| 503 | mp_mul_d(a, d, b) |
| 504 | |
| 505 | Compute the product b = a * d, for a single digit d. Respects the sign |
| 506 | of its multiplicand (single digits are unsigned anyway) |
| 507 | */ |
| 508 | |
| 509 | mp_err mp_mul_d(const mp_int *a, mp_digit d, mp_int *b) |
| 510 | { |
| 511 | mp_err res; |
| 512 | |
| 513 | ARGCHK(a != NULL && b != NULL, MP_BADARG); |
| 514 | |
| 515 | if(d == 0) { |
| 516 | mp_zero(b); |
| 517 | return MP_OKAY; |
| 518 | } |
| 519 | |
| 520 | if((res = mp_copy(a, b)) != MP_OKAY) |
| 521 | return res; |
| 522 | |
| 523 | res = s_mp_mul_d(b, d); |
| 524 | |
| 525 | return res; |
| 526 | |
| 527 | } /* end mp_mul_d() */ |
| 528 | |
| 529 | /* }}} */ |
| 530 | |
| 531 | /* {{{ mp_mul_2(a, c) */ |
| 532 | |
| 533 | mp_err mp_mul_2(const mp_int *a, mp_int *c) |
| 534 | { |
| 535 | mp_err res; |
| 536 | |
| 537 | ARGCHK(a != NULL && c != NULL, MP_BADARG); |
| 538 | |
| 539 | if((res = mp_copy(a, c)) != MP_OKAY) |
| 540 | return res; |
| 541 | |
| 542 | return s_mp_mul_2(c); |
| 543 | |
| 544 | } /* end mp_mul_2() */ |
| 545 | |
| 546 | /* }}} */ |
| 547 | |
| 548 | /* {{{ mp_div_d(a, d, q, r) */ |
| 549 | |
| 550 | /* |
| 551 | mp_div_d(a, d, q, r) |
| 552 | |
| 553 | Compute the quotient q = a / d and remainder r = a mod d, for a |
| 554 | single digit d. Respects the sign of its divisor (single digits are |
| 555 | unsigned anyway). |
| 556 | */ |
| 557 | |
| 558 | mp_err mp_div_d(const mp_int *a, mp_digit d, mp_int *q, mp_digit *r) |
| 559 | { |
| 560 | mp_err res; |
| 561 | mp_int qp; |
| 562 | mp_digit rem; |
| 563 | int pow; |
| 564 | |
| 565 | ARGCHK(a != NULL, MP_BADARG); |
| 566 | |
| 567 | if(d == 0) |
| 568 | return MP_RANGE; |
| 569 | |
| 570 | /* Shortcut for powers of two ... */ |
| 571 | if((pow = s_mp_ispow2d(d)) >= 0) { |
| 572 | mp_digit mask; |
| 573 | |
| 574 | mask = ((mp_digit)1 << pow) - 1; |
| 575 | rem = DIGIT(a, 0) & mask; |
| 576 | |
| 577 | if(q) { |
| 578 | mp_copy(a, q); |
| 579 | s_mp_div_2d(q, pow); |
| 580 | } |
| 581 | |
| 582 | if(r) |
| 583 | *r = rem; |
| 584 | |
| 585 | return MP_OKAY; |
| 586 | } |
| 587 | |
| 588 | if((res = mp_init_copy(&qp, a)) != MP_OKAY) |
| 589 | return res; |
| 590 | |
| 591 | res = s_mp_div_d(&qp, d, &rem); |
| 592 | |
| 593 | if(s_mp_cmp_d(&qp, 0) == 0) |
| 594 | SIGN(q) = ZPOS; |
| 595 | |
| 596 | if(r) |
| 597 | *r = rem; |
| 598 | |
| 599 | if(q) |
| 600 | s_mp_exch(&qp, q); |
| 601 | |
| 602 | mp_clear(&qp); |
| 603 | return res; |
| 604 | |
| 605 | } /* end mp_div_d() */ |
| 606 | |
| 607 | /* }}} */ |
| 608 | |
| 609 | /* {{{ mp_div_2(a, c) */ |
| 610 | |
| 611 | /* |
| 612 | mp_div_2(a, c) |
| 613 | |
| 614 | Compute c = a / 2, disregarding the remainder. |
| 615 | */ |
| 616 | |
| 617 | mp_err mp_div_2(const mp_int *a, mp_int *c) |
| 618 | { |
| 619 | mp_err res; |
| 620 | |
| 621 | ARGCHK(a != NULL && c != NULL, MP_BADARG); |
| 622 | |
| 623 | if((res = mp_copy(a, c)) != MP_OKAY) |
| 624 | return res; |
| 625 | |
| 626 | s_mp_div_2(c); |
| 627 | |
| 628 | return MP_OKAY; |
| 629 | |
| 630 | } /* end mp_div_2() */ |
| 631 | |
| 632 | /* }}} */ |
| 633 | |
| 634 | /* {{{ mp_expt_d(a, d, b) */ |
| 635 | |
| 636 | mp_err mp_expt_d(const mp_int *a, mp_digit d, mp_int *c) |
| 637 | { |
| 638 | mp_int s, x; |
| 639 | mp_err res; |
| 640 | |
| 641 | ARGCHK(a != NULL && c != NULL, MP_BADARG); |
| 642 | |
| 643 | if((res = mp_init(&s, FLAG(a))) != MP_OKAY) |
| 644 | return res; |
| 645 | if((res = mp_init_copy(&x, a)) != MP_OKAY) |
| 646 | goto X; |
| 647 | |
| 648 | DIGIT(&s, 0) = 1; |
| 649 | |
| 650 | while(d != 0) { |
| 651 | if(d & 1) { |
| 652 | if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
| 653 | goto CLEANUP; |
| 654 | } |
| 655 | |
| 656 | d /= 2; |
| 657 | |
| 658 | if((res = s_mp_sqr(&x)) != MP_OKAY) |
| 659 | goto CLEANUP; |
| 660 | } |
| 661 | |
| 662 | s.flag = (mp_sign)0; |
| 663 | s_mp_exch(&s, c); |
| 664 | |
| 665 | CLEANUP: |
| 666 | mp_clear(&x); |
| 667 | X: |
| 668 | mp_clear(&s); |
| 669 | |
| 670 | return res; |
| 671 | |
| 672 | } /* end mp_expt_d() */ |
| 673 | |
| 674 | /* }}} */ |
| 675 | |
| 676 | /* }}} */ |
| 677 | |
| 678 | /*------------------------------------------------------------------------*/ |
| 679 | /* {{{ Full arithmetic */ |
| 680 | |
| 681 | /* {{{ mp_abs(a, b) */ |
| 682 | |
| 683 | /* |
| 684 | mp_abs(a, b) |
| 685 | |
| 686 | Compute b = |a|. 'a' and 'b' may be identical. |
| 687 | */ |
| 688 | |
| 689 | mp_err mp_abs(const mp_int *a, mp_int *b) |
| 690 | { |
| 691 | mp_err res; |
| 692 | |
| 693 | ARGCHK(a != NULL && b != NULL, MP_BADARG); |
| 694 | |
| 695 | if((res = mp_copy(a, b)) != MP_OKAY) |
| 696 | return res; |
| 697 | |
| 698 | SIGN(b) = ZPOS; |
| 699 | |
| 700 | return MP_OKAY; |
| 701 | |
| 702 | } /* end mp_abs() */ |
| 703 | |
| 704 | /* }}} */ |
| 705 | |
| 706 | /* {{{ mp_neg(a, b) */ |
| 707 | |
| 708 | /* |
| 709 | mp_neg(a, b) |
| 710 | |
| 711 | Compute b = -a. 'a' and 'b' may be identical. |
| 712 | */ |
| 713 | |
| 714 | mp_err mp_neg(const mp_int *a, mp_int *b) |
| 715 | { |
| 716 | mp_err res; |
| 717 | |
| 718 | ARGCHK(a != NULL && b != NULL, MP_BADARG); |
| 719 | |
| 720 | if((res = mp_copy(a, b)) != MP_OKAY) |
| 721 | return res; |
| 722 | |
| 723 | if(s_mp_cmp_d(b, 0) == MP_EQ) |
| 724 | SIGN(b) = ZPOS; |
| 725 | else |
| 726 | SIGN(b) = (SIGN(b) == NEG) ? ZPOS : NEG; |
| 727 | |
| 728 | return MP_OKAY; |
| 729 | |
| 730 | } /* end mp_neg() */ |
| 731 | |
| 732 | /* }}} */ |
| 733 | |
| 734 | /* {{{ mp_add(a, b, c) */ |
| 735 | |
| 736 | /* |
| 737 | mp_add(a, b, c) |
| 738 | |
| 739 | Compute c = a + b. All parameters may be identical. |
| 740 | */ |
| 741 | |
| 742 | mp_err mp_add(const mp_int *a, const mp_int *b, mp_int *c) |
| 743 | { |
| 744 | mp_err res; |
| 745 | |
| 746 | ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
| 747 | |
| 748 | if(SIGN(a) == SIGN(b)) { /* same sign: add values, keep sign */ |
| 749 | MP_CHECKOK( s_mp_add_3arg(a, b, c) ); |
| 750 | } else if(s_mp_cmp(a, b) >= 0) { /* different sign: |a| >= |b| */ |
| 751 | MP_CHECKOK( s_mp_sub_3arg(a, b, c) ); |
| 752 | } else { /* different sign: |a| < |b| */ |
| 753 | MP_CHECKOK( s_mp_sub_3arg(b, a, c) ); |
| 754 | } |
| 755 | |
| 756 | if (s_mp_cmp_d(c, 0) == MP_EQ) |
| 757 | SIGN(c) = ZPOS; |
| 758 | |
| 759 | CLEANUP: |
| 760 | return res; |
| 761 | |
| 762 | } /* end mp_add() */ |
| 763 | |
| 764 | /* }}} */ |
| 765 | |
| 766 | /* {{{ mp_sub(a, b, c) */ |
| 767 | |
| 768 | /* |
| 769 | mp_sub(a, b, c) |
| 770 | |
| 771 | Compute c = a - b. All parameters may be identical. |
| 772 | */ |
| 773 | |
| 774 | mp_err mp_sub(const mp_int *a, const mp_int *b, mp_int *c) |
| 775 | { |
| 776 | mp_err res; |
| 777 | int magDiff; |
| 778 | |
| 779 | ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
| 780 | |
| 781 | if (a == b) { |
| 782 | mp_zero(c); |
| 783 | return MP_OKAY; |
| 784 | } |
| 785 | |
| 786 | if (MP_SIGN(a) != MP_SIGN(b)) { |
| 787 | MP_CHECKOK( s_mp_add_3arg(a, b, c) ); |
| 788 | } else if (!(magDiff = s_mp_cmp(a, b))) { |
| 789 | mp_zero(c); |
| 790 | res = MP_OKAY; |
| 791 | } else if (magDiff > 0) { |
| 792 | MP_CHECKOK( s_mp_sub_3arg(a, b, c) ); |
| 793 | } else { |
| 794 | MP_CHECKOK( s_mp_sub_3arg(b, a, c) ); |
| 795 | MP_SIGN(c) = !MP_SIGN(a); |
| 796 | } |
| 797 | |
| 798 | if (s_mp_cmp_d(c, 0) == MP_EQ) |
| 799 | MP_SIGN(c) = MP_ZPOS; |
| 800 | |
| 801 | CLEANUP: |
| 802 | return res; |
| 803 | |
| 804 | } /* end mp_sub() */ |
| 805 | |
| 806 | /* }}} */ |
| 807 | |
| 808 | /* {{{ mp_mul(a, b, c) */ |
| 809 | |
| 810 | /* |
| 811 | mp_mul(a, b, c) |
| 812 | |
| 813 | Compute c = a * b. All parameters may be identical. |
| 814 | */ |
| 815 | mp_err mp_mul(const mp_int *a, const mp_int *b, mp_int * c) |
| 816 | { |
| 817 | mp_digit *pb; |
| 818 | mp_int tmp; |
| 819 | mp_err res; |
| 820 | mp_size ib; |
| 821 | mp_size useda, usedb; |
| 822 | |
| 823 | ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
| 824 | |
| 825 | if (a == c) { |
| 826 | if ((res = mp_init_copy(&tmp, a)) != MP_OKAY) |
| 827 | return res; |
| 828 | if (a == b) |
| 829 | b = &tmp; |
| 830 | a = &tmp; |
| 831 | } else if (b == c) { |
| 832 | if ((res = mp_init_copy(&tmp, b)) != MP_OKAY) |
| 833 | return res; |
| 834 | b = &tmp; |
| 835 | } else { |
| 836 | MP_DIGITS(&tmp) = 0; |
| 837 | } |
| 838 | |
| 839 | if (MP_USED(a) < MP_USED(b)) { |
| 840 | const mp_int *xch = b; /* switch a and b, to do fewer outer loops */ |
| 841 | b = a; |
| 842 | a = xch; |
| 843 | } |
| 844 | |
| 845 | MP_USED(c) = 1; MP_DIGIT(c, 0) = 0; |
| 846 | if((res = s_mp_pad(c, USED(a) + USED(b))) != MP_OKAY) |
| 847 | goto CLEANUP; |
| 848 | |
| 849 | #ifdef NSS_USE_COMBA |
| 850 | if ((MP_USED(a) == MP_USED(b)) && IS_POWER_OF_2(MP_USED(b))) { |
| 851 | if (MP_USED(a) == 4) { |
| 852 | s_mp_mul_comba_4(a, b, c); |
| 853 | goto CLEANUP; |
| 854 | } |
| 855 | if (MP_USED(a) == 8) { |
| 856 | s_mp_mul_comba_8(a, b, c); |
| 857 | goto CLEANUP; |
| 858 | } |
| 859 | if (MP_USED(a) == 16) { |
| 860 | s_mp_mul_comba_16(a, b, c); |
| 861 | goto CLEANUP; |
| 862 | } |
| 863 | if (MP_USED(a) == 32) { |
| 864 | s_mp_mul_comba_32(a, b, c); |
| 865 | goto CLEANUP; |
| 866 | } |
| 867 | } |
| 868 | #endif |
| 869 | |
| 870 | pb = MP_DIGITS(b); |
| 871 | s_mpv_mul_d(MP_DIGITS(a), MP_USED(a), *pb++, MP_DIGITS(c)); |
| 872 | |
| 873 | /* Outer loop: Digits of b */ |
| 874 | useda = MP_USED(a); |
| 875 | usedb = MP_USED(b); |
| 876 | for (ib = 1; ib < usedb; ib++) { |
| 877 | mp_digit b_i = *pb++; |
| 878 | |
| 879 | /* Inner product: Digits of a */ |
| 880 | if (b_i) |
| 881 | s_mpv_mul_d_add(MP_DIGITS(a), useda, b_i, MP_DIGITS(c) + ib); |
| 882 | else |
| 883 | MP_DIGIT(c, ib + useda) = b_i; |
| 884 | } |
| 885 | |
| 886 | s_mp_clamp(c); |
| 887 | |
| 888 | if(SIGN(a) == SIGN(b) || s_mp_cmp_d(c, 0) == MP_EQ) |
| 889 | SIGN(c) = ZPOS; |
| 890 | else |
| 891 | SIGN(c) = NEG; |
| 892 | |
| 893 | CLEANUP: |
| 894 | mp_clear(&tmp); |
| 895 | return res; |
| 896 | } /* end mp_mul() */ |
| 897 | |
| 898 | /* }}} */ |
| 899 | |
| 900 | /* {{{ mp_sqr(a, sqr) */ |
| 901 | |
| 902 | #if MP_SQUARE |
| 903 | /* |
| 904 | Computes the square of a. This can be done more |
| 905 | efficiently than a general multiplication, because many of the |
| 906 | computation steps are redundant when squaring. The inner product |
| 907 | step is a bit more complicated, but we save a fair number of |
| 908 | iterations of the multiplication loop. |
| 909 | */ |
| 910 | |
| 911 | /* sqr = a^2; Caller provides both a and tmp; */ |
| 912 | mp_err mp_sqr(const mp_int *a, mp_int *sqr) |
| 913 | { |
| 914 | mp_digit *pa; |
| 915 | mp_digit d; |
| 916 | mp_err res; |
| 917 | mp_size ix; |
| 918 | mp_int tmp; |
| 919 | int count; |
| 920 | |
| 921 | ARGCHK(a != NULL && sqr != NULL, MP_BADARG); |
| 922 | |
| 923 | if (a == sqr) { |
| 924 | if((res = mp_init_copy(&tmp, a)) != MP_OKAY) |
| 925 | return res; |
| 926 | a = &tmp; |
| 927 | } else { |
| 928 | DIGITS(&tmp) = 0; |
| 929 | res = MP_OKAY; |
| 930 | } |
| 931 | |
| 932 | ix = 2 * MP_USED(a); |
| 933 | if (ix > MP_ALLOC(sqr)) { |
| 934 | MP_USED(sqr) = 1; |
| 935 | MP_CHECKOK( s_mp_grow(sqr, ix) ); |
| 936 | } |
| 937 | MP_USED(sqr) = ix; |
| 938 | MP_DIGIT(sqr, 0) = 0; |
| 939 | |
| 940 | #ifdef NSS_USE_COMBA |
| 941 | if (IS_POWER_OF_2(MP_USED(a))) { |
| 942 | if (MP_USED(a) == 4) { |
| 943 | s_mp_sqr_comba_4(a, sqr); |
| 944 | goto CLEANUP; |
| 945 | } |
| 946 | if (MP_USED(a) == 8) { |
| 947 | s_mp_sqr_comba_8(a, sqr); |
| 948 | goto CLEANUP; |
| 949 | } |
| 950 | if (MP_USED(a) == 16) { |
| 951 | s_mp_sqr_comba_16(a, sqr); |
| 952 | goto CLEANUP; |
| 953 | } |
| 954 | if (MP_USED(a) == 32) { |
| 955 | s_mp_sqr_comba_32(a, sqr); |
| 956 | goto CLEANUP; |
| 957 | } |
| 958 | } |
| 959 | #endif |
| 960 | |
| 961 | pa = MP_DIGITS(a); |
| 962 | count = MP_USED(a) - 1; |
| 963 | if (count > 0) { |
| 964 | d = *pa++; |
| 965 | s_mpv_mul_d(pa, count, d, MP_DIGITS(sqr) + 1); |
| 966 | for (ix = 3; --count > 0; ix += 2) { |
| 967 | d = *pa++; |
| 968 | s_mpv_mul_d_add(pa, count, d, MP_DIGITS(sqr) + ix); |
| 969 | } /* for(ix ...) */ |
| 970 | MP_DIGIT(sqr, MP_USED(sqr)-1) = 0; /* above loop stopped short of this. */ |
| 971 | |
| 972 | /* now sqr *= 2 */ |
| 973 | s_mp_mul_2(sqr); |
| 974 | } else { |
| 975 | MP_DIGIT(sqr, 1) = 0; |
| 976 | } |
| 977 | |
| 978 | /* now add the squares of the digits of a to sqr. */ |
| 979 | s_mpv_sqr_add_prop(MP_DIGITS(a), MP_USED(a), MP_DIGITS(sqr)); |
| 980 | |
| 981 | SIGN(sqr) = ZPOS; |
| 982 | s_mp_clamp(sqr); |
| 983 | |
| 984 | CLEANUP: |
| 985 | mp_clear(&tmp); |
| 986 | return res; |
| 987 | |
| 988 | } /* end mp_sqr() */ |
| 989 | #endif |
| 990 | |
| 991 | /* }}} */ |
| 992 | |
| 993 | /* {{{ mp_div(a, b, q, r) */ |
| 994 | |
| 995 | /* |
| 996 | mp_div(a, b, q, r) |
| 997 | |
| 998 | Compute q = a / b and r = a mod b. Input parameters may be re-used |
| 999 | as output parameters. If q or r is NULL, that portion of the |
| 1000 | computation will be discarded (although it will still be computed) |
| 1001 | */ |
| 1002 | mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *q, mp_int *r) |
| 1003 | { |
| 1004 | mp_err res; |
| 1005 | mp_int *pQ, *pR; |
| 1006 | mp_int qtmp, rtmp, btmp; |
| 1007 | int cmp; |
| 1008 | mp_sign signA; |
| 1009 | mp_sign signB; |
| 1010 | |
| 1011 | ARGCHK(a != NULL && b != NULL, MP_BADARG); |
| 1012 | |
| 1013 | signA = MP_SIGN(a); |
| 1014 | signB = MP_SIGN(b); |
| 1015 | |
| 1016 | if(mp_cmp_z(b) == MP_EQ) |
| 1017 | return MP_RANGE; |
| 1018 | |
| 1019 | DIGITS(&qtmp) = 0; |
| 1020 | DIGITS(&rtmp) = 0; |
| 1021 | DIGITS(&btmp) = 0; |
| 1022 | |
| 1023 | /* Set up some temporaries... */ |
| 1024 | if (!r || r == a || r == b) { |
| 1025 | MP_CHECKOK( mp_init_copy(&rtmp, a) ); |
| 1026 | pR = &rtmp; |
| 1027 | } else { |
| 1028 | MP_CHECKOK( mp_copy(a, r) ); |
| 1029 | pR = r; |
| 1030 | } |
| 1031 | |
| 1032 | if (!q || q == a || q == b) { |
| 1033 | MP_CHECKOK( mp_init_size(&qtmp, MP_USED(a), FLAG(a)) ); |
| 1034 | pQ = &qtmp; |
| 1035 | } else { |
| 1036 | MP_CHECKOK( s_mp_pad(q, MP_USED(a)) ); |
| 1037 | pQ = q; |
| 1038 | mp_zero(pQ); |
| 1039 | } |
| 1040 | |
| 1041 | /* |
| 1042 | If |a| <= |b|, we can compute the solution without division; |
| 1043 | otherwise, we actually do the work required. |
| 1044 | */ |
| 1045 | if ((cmp = s_mp_cmp(a, b)) <= 0) { |
| 1046 | if (cmp) { |
| 1047 | /* r was set to a above. */ |
| 1048 | mp_zero(pQ); |
| 1049 | } else { |
| 1050 | mp_set(pQ, 1); |
| 1051 | mp_zero(pR); |
| 1052 | } |
| 1053 | } else { |
| 1054 | MP_CHECKOK( mp_init_copy(&btmp, b) ); |
| 1055 | MP_CHECKOK( s_mp_div(pR, &btmp, pQ) ); |
| 1056 | } |
| 1057 | |
| 1058 | /* Compute the signs for the output */ |
| 1059 | MP_SIGN(pR) = signA; /* Sr = Sa */ |
| 1060 | /* Sq = ZPOS if Sa == Sb */ /* Sq = NEG if Sa != Sb */ |
| 1061 | MP_SIGN(pQ) = (signA == signB) ? ZPOS : NEG; |
| 1062 | |
| 1063 | if(s_mp_cmp_d(pQ, 0) == MP_EQ) |
| 1064 | SIGN(pQ) = ZPOS; |
| 1065 | if(s_mp_cmp_d(pR, 0) == MP_EQ) |
| 1066 | SIGN(pR) = ZPOS; |
| 1067 | |
| 1068 | /* Copy output, if it is needed */ |
| 1069 | if(q && q != pQ) |
| 1070 | s_mp_exch(pQ, q); |
| 1071 | |
| 1072 | if(r && r != pR) |
| 1073 | s_mp_exch(pR, r); |
| 1074 | |
| 1075 | CLEANUP: |
| 1076 | mp_clear(&btmp); |
| 1077 | mp_clear(&rtmp); |
| 1078 | mp_clear(&qtmp); |
| 1079 | |
| 1080 | return res; |
| 1081 | |
| 1082 | } /* end mp_div() */ |
| 1083 | |
| 1084 | /* }}} */ |
| 1085 | |
| 1086 | /* {{{ mp_div_2d(a, d, q, r) */ |
| 1087 | |
| 1088 | mp_err mp_div_2d(const mp_int *a, mp_digit d, mp_int *q, mp_int *r) |
| 1089 | { |
| 1090 | mp_err res; |
| 1091 | |
| 1092 | ARGCHK(a != NULL, MP_BADARG); |
| 1093 | |
| 1094 | if(q) { |
| 1095 | if((res = mp_copy(a, q)) != MP_OKAY) |
| 1096 | return res; |
| 1097 | } |
| 1098 | if(r) { |
| 1099 | if((res = mp_copy(a, r)) != MP_OKAY) |
| 1100 | return res; |
| 1101 | } |
| 1102 | if(q) { |
| 1103 | s_mp_div_2d(q, d); |
| 1104 | } |
| 1105 | if(r) { |
| 1106 | s_mp_mod_2d(r, d); |
| 1107 | } |
| 1108 | |
| 1109 | return MP_OKAY; |
| 1110 | |
| 1111 | } /* end mp_div_2d() */ |
| 1112 | |
| 1113 | /* }}} */ |
| 1114 | |
| 1115 | /* {{{ mp_expt(a, b, c) */ |
| 1116 | |
| 1117 | /* |
| 1118 | mp_expt(a, b, c) |
| 1119 | |
| 1120 | Compute c = a ** b, that is, raise a to the b power. Uses a |
| 1121 | standard iterative square-and-multiply technique. |
| 1122 | */ |
| 1123 | |
| 1124 | mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c) |
| 1125 | { |
| 1126 | mp_int s, x; |
| 1127 | mp_err res; |
| 1128 | mp_digit d; |
| 1129 | unsigned int dig, bit; |
| 1130 | |
| 1131 | ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
| 1132 | |
| 1133 | if(mp_cmp_z(b) < 0) |
| 1134 | return MP_RANGE; |
| 1135 | |
| 1136 | if((res = mp_init(&s, FLAG(a))) != MP_OKAY) |
| 1137 | return res; |
| 1138 | |
| 1139 | mp_set(&s, 1); |
| 1140 | |
| 1141 | if((res = mp_init_copy(&x, a)) != MP_OKAY) |
| 1142 | goto X; |
| 1143 | |
| 1144 | /* Loop over low-order digits in ascending order */ |
| 1145 | for(dig = 0; dig < (USED(b) - 1); dig++) { |
| 1146 | d = DIGIT(b, dig); |
| 1147 | |
| 1148 | /* Loop over bits of each non-maximal digit */ |
| 1149 | for(bit = 0; bit < DIGIT_BIT; bit++) { |
| 1150 | if(d & 1) { |
| 1151 | if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
| 1152 | goto CLEANUP; |
| 1153 | } |
| 1154 | |
| 1155 | d >>= 1; |
| 1156 | |
| 1157 | if((res = s_mp_sqr(&x)) != MP_OKAY) |
| 1158 | goto CLEANUP; |
| 1159 | } |
| 1160 | } |
| 1161 | |
| 1162 | /* Consider now the last digit... */ |
| 1163 | d = DIGIT(b, dig); |
| 1164 | |
| 1165 | while(d) { |
| 1166 | if(d & 1) { |
| 1167 | if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
| 1168 | goto CLEANUP; |
| 1169 | } |
| 1170 | |
| 1171 | d >>= 1; |
| 1172 | |
| 1173 | if((res = s_mp_sqr(&x)) != MP_OKAY) |
| 1174 | goto CLEANUP; |
| 1175 | } |
| 1176 | |
| 1177 | if(mp_iseven(b)) |
| 1178 | SIGN(&s) = SIGN(a); |
| 1179 | |
| 1180 | res = mp_copy(&s, c); |
| 1181 | |
| 1182 | CLEANUP: |
| 1183 | mp_clear(&x); |
| 1184 | X: |
| 1185 | mp_clear(&s); |
| 1186 | |
| 1187 | return res; |
| 1188 | |
| 1189 | } /* end mp_expt() */ |
| 1190 | |
| 1191 | /* }}} */ |
| 1192 | |
| 1193 | /* {{{ mp_2expt(a, k) */ |
| 1194 | |
| 1195 | /* Compute a = 2^k */ |
| 1196 | |
| 1197 | mp_err mp_2expt(mp_int *a, mp_digit k) |
| 1198 | { |
| 1199 | ARGCHK(a != NULL, MP_BADARG); |
| 1200 | |
| 1201 | return s_mp_2expt(a, k); |
| 1202 | |
| 1203 | } /* end mp_2expt() */ |
| 1204 | |
| 1205 | /* }}} */ |
| 1206 | |
| 1207 | /* {{{ mp_mod(a, m, c) */ |
| 1208 | |
| 1209 | /* |
| 1210 | mp_mod(a, m, c) |
| 1211 | |
| 1212 | Compute c = a (mod m). Result will always be 0 <= c < m. |
| 1213 | */ |
| 1214 | |
| 1215 | mp_err mp_mod(const mp_int *a, const mp_int *m, mp_int *c) |
| 1216 | { |
| 1217 | mp_err res; |
| 1218 | int mag; |
| 1219 | |
| 1220 | ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG); |
| 1221 | |
| 1222 | if(SIGN(m) == NEG) |
| 1223 | return MP_RANGE; |
| 1224 | |
| 1225 | /* |
| 1226 | If |a| > m, we need to divide to get the remainder and take the |
| 1227 | absolute value. |
| 1228 | |
| 1229 | If |a| < m, we don't need to do any division, just copy and adjust |
| 1230 | the sign (if a is negative). |
| 1231 | |
| 1232 | If |a| == m, we can simply set the result to zero. |
| 1233 | |
| 1234 | This order is intended to minimize the average path length of the |
| 1235 | comparison chain on common workloads -- the most frequent cases are |
| 1236 | that |a| != m, so we do those first. |
| 1237 | */ |
| 1238 | if((mag = s_mp_cmp(a, m)) > 0) { |
| 1239 | if((res = mp_div(a, m, NULL, c)) != MP_OKAY) |
| 1240 | return res; |
| 1241 | |
| 1242 | if(SIGN(c) == NEG) { |
| 1243 | if((res = mp_add(c, m, c)) != MP_OKAY) |
| 1244 | return res; |
| 1245 | } |
| 1246 | |
| 1247 | } else if(mag < 0) { |
| 1248 | if((res = mp_copy(a, c)) != MP_OKAY) |
| 1249 | return res; |
| 1250 | |
| 1251 | if(mp_cmp_z(a) < 0) { |
| 1252 | if((res = mp_add(c, m, c)) != MP_OKAY) |
| 1253 | return res; |
| 1254 | |
| 1255 | } |
| 1256 | |
| 1257 | } else { |
| 1258 | mp_zero(c); |
| 1259 | |
| 1260 | } |
| 1261 | |
| 1262 | return MP_OKAY; |
| 1263 | |
| 1264 | } /* end mp_mod() */ |
| 1265 | |
| 1266 | /* }}} */ |
| 1267 | |
| 1268 | /* {{{ mp_mod_d(a, d, c) */ |
| 1269 | |
| 1270 | /* |
| 1271 | mp_mod_d(a, d, c) |
| 1272 | |
| 1273 | Compute c = a (mod d). Result will always be 0 <= c < d |
| 1274 | */ |
| 1275 | mp_err mp_mod_d(const mp_int *a, mp_digit d, mp_digit *c) |
| 1276 | { |
| 1277 | mp_err res; |
| 1278 | mp_digit rem; |
| 1279 | |
| 1280 | ARGCHK(a != NULL && c != NULL, MP_BADARG); |
| 1281 | |
| 1282 | if(s_mp_cmp_d(a, d) > 0) { |
| 1283 | if((res = mp_div_d(a, d, NULL, &rem)) != MP_OKAY) |
| 1284 | return res; |
| 1285 | |
| 1286 | } else { |
| 1287 | if(SIGN(a) == NEG) |
| 1288 | rem = d - DIGIT(a, 0); |
| 1289 | else |
| 1290 | rem = DIGIT(a, 0); |
| 1291 | } |
| 1292 | |
| 1293 | if(c) |
| 1294 | *c = rem; |
| 1295 | |
| 1296 | return MP_OKAY; |
| 1297 | |
| 1298 | } /* end mp_mod_d() */ |
| 1299 | |
| 1300 | /* }}} */ |
| 1301 | |
| 1302 | /* {{{ mp_sqrt(a, b) */ |
| 1303 | |
| 1304 | /* |
| 1305 | mp_sqrt(a, b) |
| 1306 | |
| 1307 | Compute the integer square root of a, and store the result in b. |
| 1308 | Uses an integer-arithmetic version of Newton's iterative linear |
| 1309 | approximation technique to determine this value; the result has the |
| 1310 | following two properties: |
| 1311 | |
| 1312 | b^2 <= a |
| 1313 | (b+1)^2 >= a |
| 1314 | |
| 1315 | It is a range error to pass a negative value. |
| 1316 | */ |
| 1317 | mp_err mp_sqrt(const mp_int *a, mp_int *b) |
| 1318 | { |
| 1319 | mp_int x, t; |
| 1320 | mp_err res; |
| 1321 | mp_size used; |
| 1322 | |
| 1323 | ARGCHK(a != NULL && b != NULL, MP_BADARG); |
| 1324 | |
| 1325 | /* Cannot take square root of a negative value */ |
| 1326 | if(SIGN(a) == NEG) |
| 1327 | return MP_RANGE; |
| 1328 | |
| 1329 | /* Special cases for zero and one, trivial */ |
| 1330 | if(mp_cmp_d(a, 1) <= 0) |
| 1331 | return mp_copy(a, b); |
| 1332 | |
| 1333 | /* Initialize the temporaries we'll use below */ |
| 1334 | if((res = mp_init_size(&t, USED(a), FLAG(a))) != MP_OKAY) |
| 1335 | return res; |
| 1336 | |
| 1337 | /* Compute an initial guess for the iteration as a itself */ |
| 1338 | if((res = mp_init_copy(&x, a)) != MP_OKAY) |
| 1339 | goto X; |
| 1340 | |
| 1341 | used = MP_USED(&x); |
| 1342 | if (used > 1) { |
| 1343 | s_mp_rshd(&x, used / 2); |
| 1344 | } |
| 1345 | |
| 1346 | for(;;) { |
| 1347 | /* t = (x * x) - a */ |
| 1348 | mp_copy(&x, &t); /* can't fail, t is big enough for original x */ |
| 1349 | if((res = mp_sqr(&t, &t)) != MP_OKAY || |
| 1350 | (res = mp_sub(&t, a, &t)) != MP_OKAY) |
| 1351 | goto CLEANUP; |
| 1352 | |
| 1353 | /* t = t / 2x */ |
| 1354 | s_mp_mul_2(&x); |
| 1355 | if((res = mp_div(&t, &x, &t, NULL)) != MP_OKAY) |
| 1356 | goto CLEANUP; |
| 1357 | s_mp_div_2(&x); |
| 1358 | |
| 1359 | /* Terminate the loop, if the quotient is zero */ |
| 1360 | if(mp_cmp_z(&t) == MP_EQ) |
| 1361 | break; |
| 1362 | |
| 1363 | /* x = x - t */ |
| 1364 | if((res = mp_sub(&x, &t, &x)) != MP_OKAY) |
| 1365 | goto CLEANUP; |
| 1366 | |
| 1367 | } |
| 1368 | |
| 1369 | /* Copy result to output parameter */ |
| 1370 | mp_sub_d(&x, 1, &x); |
| 1371 | s_mp_exch(&x, b); |
| 1372 | |
| 1373 | CLEANUP: |
| 1374 | mp_clear(&x); |
| 1375 | X: |
| 1376 | mp_clear(&t); |
| 1377 | |
| 1378 | return res; |
| 1379 | |
| 1380 | } /* end mp_sqrt() */ |
| 1381 | |
| 1382 | /* }}} */ |
| 1383 | |
| 1384 | /* }}} */ |
| 1385 | |
| 1386 | /*------------------------------------------------------------------------*/ |
| 1387 | /* {{{ Modular arithmetic */ |
| 1388 | |
| 1389 | #if MP_MODARITH |
| 1390 | /* {{{ mp_addmod(a, b, m, c) */ |
| 1391 | |
| 1392 | /* |
| 1393 | mp_addmod(a, b, m, c) |
| 1394 | |
| 1395 | Compute c = (a + b) mod m |
| 1396 | */ |
| 1397 | |
| 1398 | mp_err mp_addmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c) |
| 1399 | { |
| 1400 | mp_err res; |
| 1401 | |
| 1402 | ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); |
| 1403 | |
| 1404 | if((res = mp_add(a, b, c)) != MP_OKAY) |
| 1405 | return res; |
| 1406 | if((res = mp_mod(c, m, c)) != MP_OKAY) |
| 1407 | return res; |
| 1408 | |
| 1409 | return MP_OKAY; |
| 1410 | |
| 1411 | } |
| 1412 | |
| 1413 | /* }}} */ |
| 1414 | |
| 1415 | /* {{{ mp_submod(a, b, m, c) */ |
| 1416 | |
| 1417 | /* |
| 1418 | mp_submod(a, b, m, c) |
| 1419 | |
| 1420 | Compute c = (a - b) mod m |
| 1421 | */ |
| 1422 | |
| 1423 | mp_err mp_submod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c) |
| 1424 | { |
| 1425 | mp_err res; |
| 1426 | |
| 1427 | ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); |
| 1428 | |
| 1429 | if((res = mp_sub(a, b, c)) != MP_OKAY) |
| 1430 | return res; |
| 1431 | if((res = mp_mod(c, m, c)) != MP_OKAY) |
| 1432 | return res; |
| 1433 | |
| 1434 | return MP_OKAY; |
| 1435 | |
| 1436 | } |
| 1437 | |
| 1438 | /* }}} */ |
| 1439 | |
| 1440 | /* {{{ mp_mulmod(a, b, m, c) */ |
| 1441 | |
| 1442 | /* |
| 1443 | mp_mulmod(a, b, m, c) |
| 1444 | |
| 1445 | Compute c = (a * b) mod m |
| 1446 | */ |
| 1447 | |
| 1448 | mp_err mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c) |
| 1449 | { |
| 1450 | mp_err res; |
| 1451 | |
| 1452 | ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); |
| 1453 | |
| 1454 | if((res = mp_mul(a, b, c)) != MP_OKAY) |
| 1455 | return res; |
| 1456 | if((res = mp_mod(c, m, c)) != MP_OKAY) |
| 1457 | return res; |
| 1458 | |
| 1459 | return MP_OKAY; |
| 1460 | |
| 1461 | } |
| 1462 | |
| 1463 | /* }}} */ |
| 1464 | |
| 1465 | /* {{{ mp_sqrmod(a, m, c) */ |
| 1466 | |
| 1467 | #if MP_SQUARE |
| 1468 | mp_err mp_sqrmod(const mp_int *a, const mp_int *m, mp_int *c) |
| 1469 | { |
| 1470 | mp_err res; |
| 1471 | |
| 1472 | ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG); |
| 1473 | |
| 1474 | if((res = mp_sqr(a, c)) != MP_OKAY) |
| 1475 | return res; |
| 1476 | if((res = mp_mod(c, m, c)) != MP_OKAY) |
| 1477 | return res; |
| 1478 | |
| 1479 | return MP_OKAY; |
| 1480 | |
| 1481 | } /* end mp_sqrmod() */ |
| 1482 | #endif |
| 1483 | |
| 1484 | /* }}} */ |
| 1485 | |
| 1486 | /* {{{ s_mp_exptmod(a, b, m, c) */ |
| 1487 | |
| 1488 | /* |
| 1489 | s_mp_exptmod(a, b, m, c) |
| 1490 | |
| 1491 | Compute c = (a ** b) mod m. Uses a standard square-and-multiply |
| 1492 | method with modular reductions at each step. (This is basically the |
| 1493 | same code as mp_expt(), except for the addition of the reductions) |
| 1494 | |
| 1495 | The modular reductions are done using Barrett's algorithm (see |
| 1496 | s_mp_reduce() below for details) |
| 1497 | */ |
| 1498 | |
| 1499 | mp_err s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c) |
| 1500 | { |
| 1501 | mp_int s, x, mu; |
| 1502 | mp_err res; |
| 1503 | mp_digit d; |
| 1504 | unsigned int dig, bit; |
| 1505 | |
| 1506 | ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
| 1507 | |
| 1508 | if(mp_cmp_z(b) < 0 || mp_cmp_z(m) <= 0) |
| 1509 | return MP_RANGE; |
| 1510 | |
| 1511 | if((res = mp_init(&s, FLAG(a))) != MP_OKAY) |
| 1512 | return res; |
| 1513 | if((res = mp_init_copy(&x, a)) != MP_OKAY || |
| 1514 | (res = mp_mod(&x, m, &x)) != MP_OKAY) |
| 1515 | goto X; |
| 1516 | if((res = mp_init(&mu, FLAG(a))) != MP_OKAY) |
| 1517 | goto MU; |
| 1518 | |
| 1519 | mp_set(&s, 1); |
| 1520 | |
| 1521 | /* mu = b^2k / m */ |
| 1522 | s_mp_add_d(&mu, 1); |
| 1523 | s_mp_lshd(&mu, 2 * USED(m)); |
| 1524 | if((res = mp_div(&mu, m, &mu, NULL)) != MP_OKAY) |
| 1525 | goto CLEANUP; |
| 1526 | |
| 1527 | /* Loop over digits of b in ascending order, except highest order */ |
| 1528 | for(dig = 0; dig < (USED(b) - 1); dig++) { |
| 1529 | d = DIGIT(b, dig); |
| 1530 | |
| 1531 | /* Loop over the bits of the lower-order digits */ |
| 1532 | for(bit = 0; bit < DIGIT_BIT; bit++) { |
| 1533 | if(d & 1) { |
| 1534 | if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
| 1535 | goto CLEANUP; |
| 1536 | if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY) |
| 1537 | goto CLEANUP; |
| 1538 | } |
| 1539 | |
| 1540 | d >>= 1; |
| 1541 | |
| 1542 | if((res = s_mp_sqr(&x)) != MP_OKAY) |
| 1543 | goto CLEANUP; |
| 1544 | if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY) |
| 1545 | goto CLEANUP; |
| 1546 | } |
| 1547 | } |
| 1548 | |
| 1549 | /* Now do the last digit... */ |
| 1550 | d = DIGIT(b, dig); |
| 1551 | |
| 1552 | while(d) { |
| 1553 | if(d & 1) { |
| 1554 | if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
| 1555 | goto CLEANUP; |
| 1556 | if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY) |
| 1557 | goto CLEANUP; |
| 1558 | } |
| 1559 | |
| 1560 | d >>= 1; |
| 1561 | |
| 1562 | if((res = s_mp_sqr(&x)) != MP_OKAY) |
| 1563 | goto CLEANUP; |
| 1564 | if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY) |
| 1565 | goto CLEANUP; |
| 1566 | } |
| 1567 | |
| 1568 | s_mp_exch(&s, c); |
| 1569 | |
| 1570 | CLEANUP: |
| 1571 | mp_clear(&mu); |
| 1572 | MU: |
| 1573 | mp_clear(&x); |
| 1574 | X: |
| 1575 | mp_clear(&s); |
| 1576 | |
| 1577 | return res; |
| 1578 | |
| 1579 | } /* end s_mp_exptmod() */ |
| 1580 | |
| 1581 | /* }}} */ |
| 1582 | |
| 1583 | /* {{{ mp_exptmod_d(a, d, m, c) */ |
| 1584 | |
| 1585 | mp_err mp_exptmod_d(const mp_int *a, mp_digit d, const mp_int *m, mp_int *c) |
| 1586 | { |
| 1587 | mp_int s, x; |
| 1588 | mp_err res; |
| 1589 | |
| 1590 | ARGCHK(a != NULL && c != NULL, MP_BADARG); |
| 1591 | |
| 1592 | if((res = mp_init(&s, FLAG(a))) != MP_OKAY) |
| 1593 | return res; |
| 1594 | if((res = mp_init_copy(&x, a)) != MP_OKAY) |
| 1595 | goto X; |
| 1596 | |
| 1597 | mp_set(&s, 1); |
| 1598 | |
| 1599 | while(d != 0) { |
| 1600 | if(d & 1) { |
| 1601 | if((res = s_mp_mul(&s, &x)) != MP_OKAY || |
| 1602 | (res = mp_mod(&s, m, &s)) != MP_OKAY) |
| 1603 | goto CLEANUP; |
| 1604 | } |
| 1605 | |
| 1606 | d /= 2; |
| 1607 | |
| 1608 | if((res = s_mp_sqr(&x)) != MP_OKAY || |
| 1609 | (res = mp_mod(&x, m, &x)) != MP_OKAY) |
| 1610 | goto CLEANUP; |
| 1611 | } |
| 1612 | |
| 1613 | s.flag = (mp_sign)0; |
| 1614 | s_mp_exch(&s, c); |
| 1615 | |
| 1616 | CLEANUP: |
| 1617 | mp_clear(&x); |
| 1618 | X: |
| 1619 | mp_clear(&s); |
| 1620 | |
| 1621 | return res; |
| 1622 | |
| 1623 | } /* end mp_exptmod_d() */ |
| 1624 | |
| 1625 | /* }}} */ |
| 1626 | #endif /* if MP_MODARITH */ |
| 1627 | |
| 1628 | /* }}} */ |
| 1629 | |
| 1630 | /*------------------------------------------------------------------------*/ |
| 1631 | /* {{{ Comparison functions */ |
| 1632 | |
| 1633 | /* {{{ mp_cmp_z(a) */ |
| 1634 | |
| 1635 | /* |
| 1636 | mp_cmp_z(a) |
| 1637 | |
| 1638 | Compare a <=> 0. Returns <0 if a<0, 0 if a=0, >0 if a>0. |
| 1639 | */ |
| 1640 | |
| 1641 | int mp_cmp_z(const mp_int *a) |
| 1642 | { |
| 1643 | if(SIGN(a) == NEG) |
| 1644 | return MP_LT; |
| 1645 | else if(USED(a) == 1 && DIGIT(a, 0) == 0) |
| 1646 | return MP_EQ; |
| 1647 | else |
| 1648 | return MP_GT; |
| 1649 | |
| 1650 | } /* end mp_cmp_z() */ |
| 1651 | |
| 1652 | /* }}} */ |
| 1653 | |
| 1654 | /* {{{ mp_cmp_d(a, d) */ |
| 1655 | |
| 1656 | /* |
| 1657 | mp_cmp_d(a, d) |
| 1658 | |
| 1659 | Compare a <=> d. Returns <0 if a<d, 0 if a=d, >0 if a>d |
| 1660 | */ |
| 1661 | |
| 1662 | int mp_cmp_d(const mp_int *a, mp_digit d) |
| 1663 | { |
| 1664 | ARGCHK(a != NULL, MP_EQ); |
| 1665 | |
| 1666 | if(SIGN(a) == NEG) |
| 1667 | return MP_LT; |
| 1668 | |
| 1669 | return s_mp_cmp_d(a, d); |
| 1670 | |
| 1671 | } /* end mp_cmp_d() */ |
| 1672 | |
| 1673 | /* }}} */ |
| 1674 | |
| 1675 | /* {{{ mp_cmp(a, b) */ |
| 1676 | |
| 1677 | int mp_cmp(const mp_int *a, const mp_int *b) |
| 1678 | { |
| 1679 | ARGCHK(a != NULL && b != NULL, MP_EQ); |
| 1680 | |
| 1681 | if(SIGN(a) == SIGN(b)) { |
| 1682 | int mag; |
| 1683 | |
| 1684 | if((mag = s_mp_cmp(a, b)) == MP_EQ) |
| 1685 | return MP_EQ; |
| 1686 | |
| 1687 | if(SIGN(a) == ZPOS) |
| 1688 | return mag; |
| 1689 | else |
| 1690 | return -mag; |
| 1691 | |
| 1692 | } else if(SIGN(a) == ZPOS) { |
| 1693 | return MP_GT; |
| 1694 | } else { |
| 1695 | return MP_LT; |
| 1696 | } |
| 1697 | |
| 1698 | } /* end mp_cmp() */ |
| 1699 | |
| 1700 | /* }}} */ |
| 1701 | |
| 1702 | /* {{{ mp_cmp_mag(a, b) */ |
| 1703 | |
| 1704 | /* |
| 1705 | mp_cmp_mag(a, b) |
| 1706 | |
| 1707 | Compares |a| <=> |b|, and returns an appropriate comparison result |
| 1708 | */ |
| 1709 | |
| 1710 | int mp_cmp_mag(mp_int *a, mp_int *b) |
| 1711 | { |
| 1712 | ARGCHK(a != NULL && b != NULL, MP_EQ); |
| 1713 | |
| 1714 | return s_mp_cmp(a, b); |
| 1715 | |
| 1716 | } /* end mp_cmp_mag() */ |
| 1717 | |
| 1718 | /* }}} */ |
| 1719 | |
| 1720 | /* {{{ mp_cmp_int(a, z, kmflag) */ |
| 1721 | |
| 1722 | /* |
| 1723 | This just converts z to an mp_int, and uses the existing comparison |
| 1724 | routines. This is sort of inefficient, but it's not clear to me how |
| 1725 | frequently this wil get used anyway. For small positive constants, |
| 1726 | you can always use mp_cmp_d(), and for zero, there is mp_cmp_z(). |
| 1727 | */ |
| 1728 | int mp_cmp_int(const mp_int *a, long z, int kmflag) |
| 1729 | { |
| 1730 | mp_int tmp; |
| 1731 | int out; |
| 1732 | |
| 1733 | ARGCHK(a != NULL, MP_EQ); |
| 1734 | |
| 1735 | mp_init(&tmp, kmflag); mp_set_int(&tmp, z); |
| 1736 | out = mp_cmp(a, &tmp); |
| 1737 | mp_clear(&tmp); |
| 1738 | |
| 1739 | return out; |
| 1740 | |
| 1741 | } /* end mp_cmp_int() */ |
| 1742 | |
| 1743 | /* }}} */ |
| 1744 | |
| 1745 | /* {{{ mp_isodd(a) */ |
| 1746 | |
| 1747 | /* |
| 1748 | mp_isodd(a) |
| 1749 | |
| 1750 | Returns a true (non-zero) value if a is odd, false (zero) otherwise. |
| 1751 | */ |
| 1752 | int mp_isodd(const mp_int *a) |
| 1753 | { |
| 1754 | ARGCHK(a != NULL, 0); |
| 1755 | |
| 1756 | return (int)(DIGIT(a, 0) & 1); |
| 1757 | |
| 1758 | } /* end mp_isodd() */ |
| 1759 | |
| 1760 | /* }}} */ |
| 1761 | |
| 1762 | /* {{{ mp_iseven(a) */ |
| 1763 | |
| 1764 | int mp_iseven(const mp_int *a) |
| 1765 | { |
| 1766 | return !mp_isodd(a); |
| 1767 | |
| 1768 | } /* end mp_iseven() */ |
| 1769 | |
| 1770 | /* }}} */ |
| 1771 | |
| 1772 | /* }}} */ |
| 1773 | |
| 1774 | /*------------------------------------------------------------------------*/ |
| 1775 | /* {{{ Number theoretic functions */ |
| 1776 | |
| 1777 | #if MP_NUMTH |
| 1778 | /* {{{ mp_gcd(a, b, c) */ |
| 1779 | |
| 1780 | /* |
| 1781 | Like the old mp_gcd() function, except computes the GCD using the |
| 1782 | binary algorithm due to Josef Stein in 1961 (via Knuth). |
| 1783 | */ |
| 1784 | mp_err mp_gcd(mp_int *a, mp_int *b, mp_int *c) |
| 1785 | { |
| 1786 | mp_err res; |
| 1787 | mp_int u, v, t; |
| 1788 | mp_size k = 0; |
| 1789 | |
| 1790 | ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
| 1791 | |
| 1792 | if(mp_cmp_z(a) == MP_EQ && mp_cmp_z(b) == MP_EQ) |
| 1793 | return MP_RANGE; |
| 1794 | if(mp_cmp_z(a) == MP_EQ) { |
| 1795 | return mp_copy(b, c); |
| 1796 | } else if(mp_cmp_z(b) == MP_EQ) { |
| 1797 | return mp_copy(a, c); |
| 1798 | } |
| 1799 | |
| 1800 | if((res = mp_init(&t, FLAG(a))) != MP_OKAY) |
| 1801 | return res; |
| 1802 | if((res = mp_init_copy(&u, a)) != MP_OKAY) |
| 1803 | goto U; |
| 1804 | if((res = mp_init_copy(&v, b)) != MP_OKAY) |
| 1805 | goto V; |
| 1806 | |
| 1807 | SIGN(&u) = ZPOS; |
| 1808 | SIGN(&v) = ZPOS; |
| 1809 | |
| 1810 | /* Divide out common factors of 2 until at least 1 of a, b is even */ |
| 1811 | while(mp_iseven(&u) && mp_iseven(&v)) { |
| 1812 | s_mp_div_2(&u); |
| 1813 | s_mp_div_2(&v); |
| 1814 | ++k; |
| 1815 | } |
| 1816 | |
| 1817 | /* Initialize t */ |
| 1818 | if(mp_isodd(&u)) { |
| 1819 | if((res = mp_copy(&v, &t)) != MP_OKAY) |
| 1820 | goto CLEANUP; |
| 1821 | |
| 1822 | /* t = -v */ |
| 1823 | if(SIGN(&v) == ZPOS) |
| 1824 | SIGN(&t) = NEG; |
| 1825 | else |
| 1826 | SIGN(&t) = ZPOS; |
| 1827 | |
| 1828 | } else { |
| 1829 | if((res = mp_copy(&u, &t)) != MP_OKAY) |
| 1830 | goto CLEANUP; |
| 1831 | |
| 1832 | } |
| 1833 | |
| 1834 | for(;;) { |
| 1835 | while(mp_iseven(&t)) { |
| 1836 | s_mp_div_2(&t); |
| 1837 | } |
| 1838 | |
| 1839 | if(mp_cmp_z(&t) == MP_GT) { |
| 1840 | if((res = mp_copy(&t, &u)) != MP_OKAY) |
| 1841 | goto CLEANUP; |
| 1842 | |
| 1843 | } else { |
| 1844 | if((res = mp_copy(&t, &v)) != MP_OKAY) |
| 1845 | goto CLEANUP; |
| 1846 | |
| 1847 | /* v = -t */ |
| 1848 | if(SIGN(&t) == ZPOS) |
| 1849 | SIGN(&v) = NEG; |
| 1850 | else |
| 1851 | SIGN(&v) = ZPOS; |
| 1852 | } |
| 1853 | |
| 1854 | if((res = mp_sub(&u, &v, &t)) != MP_OKAY) |
| 1855 | goto CLEANUP; |
| 1856 | |
| 1857 | if(s_mp_cmp_d(&t, 0) == MP_EQ) |
| 1858 | break; |
| 1859 | } |
| 1860 | |
| 1861 | s_mp_2expt(&v, k); /* v = 2^k */ |
| 1862 | res = mp_mul(&u, &v, c); /* c = u * v */ |
| 1863 | |
| 1864 | CLEANUP: |
| 1865 | mp_clear(&v); |
| 1866 | V: |
| 1867 | mp_clear(&u); |
| 1868 | U: |
| 1869 | mp_clear(&t); |
| 1870 | |
| 1871 | return res; |
| 1872 | |
| 1873 | } /* end mp_gcd() */ |
| 1874 | |
| 1875 | /* }}} */ |
| 1876 | |
| 1877 | /* {{{ mp_lcm(a, b, c) */ |
| 1878 | |
| 1879 | /* We compute the least common multiple using the rule: |
| 1880 | |
| 1881 | ab = [a, b](a, b) |
| 1882 | |
| 1883 | ... by computing the product, and dividing out the gcd. |
| 1884 | */ |
| 1885 | |
| 1886 | mp_err mp_lcm(mp_int *a, mp_int *b, mp_int *c) |
| 1887 | { |
| 1888 | mp_int gcd, prod; |
| 1889 | mp_err res; |
| 1890 | |
| 1891 | ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
| 1892 | |
| 1893 | /* Set up temporaries */ |
| 1894 | if((res = mp_init(&gcd, FLAG(a))) != MP_OKAY) |
| 1895 | return res; |
| 1896 | if((res = mp_init(&prod, FLAG(a))) != MP_OKAY) |
| 1897 | goto GCD; |
| 1898 | |
| 1899 | if((res = mp_mul(a, b, &prod)) != MP_OKAY) |
| 1900 | goto CLEANUP; |
| 1901 | if((res = mp_gcd(a, b, &gcd)) != MP_OKAY) |
| 1902 | goto CLEANUP; |
| 1903 | |
| 1904 | res = mp_div(&prod, &gcd, c, NULL); |
| 1905 | |
| 1906 | CLEANUP: |
| 1907 | mp_clear(&prod); |
| 1908 | GCD: |
| 1909 | mp_clear(&gcd); |
| 1910 | |
| 1911 | return res; |
| 1912 | |
| 1913 | } /* end mp_lcm() */ |
| 1914 | |
| 1915 | /* }}} */ |
| 1916 | |
| 1917 | /* {{{ mp_xgcd(a, b, g, x, y) */ |
| 1918 | |
| 1919 | /* |
| 1920 | mp_xgcd(a, b, g, x, y) |
| 1921 | |
| 1922 | Compute g = (a, b) and values x and y satisfying Bezout's identity |
| 1923 | (that is, ax + by = g). This uses the binary extended GCD algorithm |
| 1924 | based on the Stein algorithm used for mp_gcd() |
| 1925 | See algorithm 14.61 in Handbook of Applied Cryptogrpahy. |
| 1926 | */ |
| 1927 | |
| 1928 | mp_err mp_xgcd(const mp_int *a, const mp_int *b, mp_int *g, mp_int *x, mp_int *y) |
| 1929 | { |
| 1930 | mp_int gx, xc, yc, u, v, A, B, C, D; |
| 1931 | mp_int *clean[9]; |
| 1932 | mp_err res; |
| 1933 | int last = -1; |
| 1934 | |
| 1935 | if(mp_cmp_z(b) == 0) |
| 1936 | return MP_RANGE; |
| 1937 | |
| 1938 | /* Initialize all these variables we need */ |
| 1939 | MP_CHECKOK( mp_init(&u, FLAG(a)) ); |
| 1940 | clean[++last] = &u; |
| 1941 | MP_CHECKOK( mp_init(&v, FLAG(a)) ); |
| 1942 | clean[++last] = &v; |
| 1943 | MP_CHECKOK( mp_init(&gx, FLAG(a)) ); |
| 1944 | clean[++last] = &gx; |
| 1945 | MP_CHECKOK( mp_init(&A, FLAG(a)) ); |
| 1946 | clean[++last] = &A; |
| 1947 | MP_CHECKOK( mp_init(&B, FLAG(a)) ); |
| 1948 | clean[++last] = &B; |
| 1949 | MP_CHECKOK( mp_init(&C, FLAG(a)) ); |
| 1950 | clean[++last] = &C; |
| 1951 | MP_CHECKOK( mp_init(&D, FLAG(a)) ); |
| 1952 | clean[++last] = &D; |
| 1953 | MP_CHECKOK( mp_init_copy(&xc, a) ); |
| 1954 | clean[++last] = &xc; |
| 1955 | mp_abs(&xc, &xc); |
| 1956 | MP_CHECKOK( mp_init_copy(&yc, b) ); |
| 1957 | clean[++last] = &yc; |
| 1958 | mp_abs(&yc, &yc); |
| 1959 | |
| 1960 | mp_set(&gx, 1); |
| 1961 | |
| 1962 | /* Divide by two until at least one of them is odd */ |
| 1963 | while(mp_iseven(&xc) && mp_iseven(&yc)) { |
| 1964 | mp_size nx = mp_trailing_zeros(&xc); |
| 1965 | mp_size ny = mp_trailing_zeros(&yc); |
| 1966 | mp_size n = MP_MIN(nx, ny); |
| 1967 | s_mp_div_2d(&xc,n); |
| 1968 | s_mp_div_2d(&yc,n); |
| 1969 | MP_CHECKOK( s_mp_mul_2d(&gx,n) ); |
| 1970 | } |
| 1971 | |
| 1972 | mp_copy(&xc, &u); |
| 1973 | mp_copy(&yc, &v); |
| 1974 | mp_set(&A, 1); mp_set(&D, 1); |
| 1975 | |
| 1976 | /* Loop through binary GCD algorithm */ |
| 1977 | do { |
| 1978 | while(mp_iseven(&u)) { |
| 1979 | s_mp_div_2(&u); |
| 1980 | |
| 1981 | if(mp_iseven(&A) && mp_iseven(&B)) { |
| 1982 | s_mp_div_2(&A); s_mp_div_2(&B); |
| 1983 | } else { |
| 1984 | MP_CHECKOK( mp_add(&A, &yc, &A) ); |
| 1985 | s_mp_div_2(&A); |
| 1986 | MP_CHECKOK( mp_sub(&B, &xc, &B) ); |
| 1987 | s_mp_div_2(&B); |
| 1988 | } |
| 1989 | } |
| 1990 | |
| 1991 | while(mp_iseven(&v)) { |
| 1992 | s_mp_div_2(&v); |
| 1993 | |
| 1994 | if(mp_iseven(&C) && mp_iseven(&D)) { |
| 1995 | s_mp_div_2(&C); s_mp_div_2(&D); |
| 1996 | } else { |
| 1997 | MP_CHECKOK( mp_add(&C, &yc, &C) ); |
| 1998 | s_mp_div_2(&C); |
| 1999 | MP_CHECKOK( mp_sub(&D, &xc, &D) ); |
| 2000 | s_mp_div_2(&D); |
| 2001 | } |
| 2002 | } |
| 2003 | |
| 2004 | if(mp_cmp(&u, &v) >= 0) { |
| 2005 | MP_CHECKOK( mp_sub(&u, &v, &u) ); |
| 2006 | MP_CHECKOK( mp_sub(&A, &C, &A) ); |
| 2007 | MP_CHECKOK( mp_sub(&B, &D, &B) ); |
| 2008 | } else { |
| 2009 | MP_CHECKOK( mp_sub(&v, &u, &v) ); |
| 2010 | MP_CHECKOK( mp_sub(&C, &A, &C) ); |
| 2011 | MP_CHECKOK( mp_sub(&D, &B, &D) ); |
| 2012 | } |
| 2013 | } while (mp_cmp_z(&u) != 0); |
| 2014 | |
| 2015 | /* copy results to output */ |
| 2016 | if(x) |
| 2017 | MP_CHECKOK( mp_copy(&C, x) ); |
| 2018 | |
| 2019 | if(y) |
| 2020 | MP_CHECKOK( mp_copy(&D, y) ); |
| 2021 | |
| 2022 | if(g) |
| 2023 | MP_CHECKOK( mp_mul(&gx, &v, g) ); |
| 2024 | |
| 2025 | CLEANUP: |
| 2026 | while(last >= 0) |
| 2027 | mp_clear(clean[last--]); |
| 2028 | |
| 2029 | return res; |
| 2030 | |
| 2031 | } /* end mp_xgcd() */ |
| 2032 | |
| 2033 | /* }}} */ |
| 2034 | |
| 2035 | mp_size mp_trailing_zeros(const mp_int *mp) |
| 2036 | { |
| 2037 | mp_digit d; |
| 2038 | mp_size n = 0; |
| 2039 | unsigned int ix; |
| 2040 | |
| 2041 | if (!mp || !MP_DIGITS(mp) || !mp_cmp_z(mp)) |
| 2042 | return n; |
| 2043 | |
| 2044 | for (ix = 0; !(d = MP_DIGIT(mp,ix)) && (ix < MP_USED(mp)); ++ix) |
| 2045 | n += MP_DIGIT_BIT; |
| 2046 | if (!d) |
| 2047 | return 0; /* shouldn't happen, but ... */ |
| 2048 | #if !defined(MP_USE_UINT_DIGIT) |
| 2049 | if (!(d & 0xffffffffU)) { |
| 2050 | d >>= 32; |
| 2051 | n += 32; |
| 2052 | } |
| 2053 | #endif |
| 2054 | if (!(d & 0xffffU)) { |
| 2055 | d >>= 16; |
| 2056 | n += 16; |
| 2057 | } |
| 2058 | if (!(d & 0xffU)) { |
| 2059 | d >>= 8; |
| 2060 | n += 8; |
| 2061 | } |
| 2062 | if (!(d & 0xfU)) { |
| 2063 | d >>= 4; |
| 2064 | n += 4; |
| 2065 | } |
| 2066 | if (!(d & 0x3U)) { |
| 2067 | d >>= 2; |
| 2068 | n += 2; |
| 2069 | } |
| 2070 | if (!(d & 0x1U)) { |
| 2071 | d >>= 1; |
| 2072 | n += 1; |
| 2073 | } |
| 2074 | #if MP_ARGCHK == 2 |
| 2075 | assert(0 != (d & 1)); |
| 2076 | #endif |
| 2077 | return n; |
| 2078 | } |
| 2079 | |
| 2080 | /* Given a and prime p, computes c and k such that a*c == 2**k (mod p). |
| 2081 | ** Returns k (positive) or error (negative). |
| 2082 | ** This technique from the paper "Fast Modular Reciprocals" (unpublished) |
| 2083 | ** by Richard Schroeppel (a.k.a. Captain Nemo). |
| 2084 | */ |
| 2085 | mp_err s_mp_almost_inverse(const mp_int *a, const mp_int *p, mp_int *c) |
| 2086 | { |
| 2087 | mp_err res; |
| 2088 | mp_err k = 0; |
| 2089 | mp_int d, f, g; |
| 2090 | |
| 2091 | ARGCHK(a && p && c, MP_BADARG); |
| 2092 | |
| 2093 | MP_DIGITS(&d) = 0; |
| 2094 | MP_DIGITS(&f) = 0; |
| 2095 | MP_DIGITS(&g) = 0; |
| 2096 | MP_CHECKOK( mp_init(&d, FLAG(a)) ); |
| 2097 | MP_CHECKOK( mp_init_copy(&f, a) ); /* f = a */ |
| 2098 | MP_CHECKOK( mp_init_copy(&g, p) ); /* g = p */ |
| 2099 | |
| 2100 | mp_set(c, 1); |
| 2101 | mp_zero(&d); |
| 2102 | |
| 2103 | if (mp_cmp_z(&f) == 0) { |
| 2104 | res = MP_UNDEF; |
| 2105 | } else |
| 2106 | for (;;) { |
| 2107 | int diff_sign; |
| 2108 | while (mp_iseven(&f)) { |
| 2109 | mp_size n = mp_trailing_zeros(&f); |
| 2110 | if (!n) { |
| 2111 | res = MP_UNDEF; |
| 2112 | goto CLEANUP; |
| 2113 | } |
| 2114 | s_mp_div_2d(&f, n); |
| 2115 | MP_CHECKOK( s_mp_mul_2d(&d, n) ); |
| 2116 | k += n; |
| 2117 | } |
| 2118 | if (mp_cmp_d(&f, 1) == MP_EQ) { /* f == 1 */ |
| 2119 | res = k; |
| 2120 | break; |
| 2121 | } |
| 2122 | diff_sign = mp_cmp(&f, &g); |
| 2123 | if (diff_sign < 0) { /* f < g */ |
| 2124 | s_mp_exch(&f, &g); |
| 2125 | s_mp_exch(c, &d); |
| 2126 | } else if (diff_sign == 0) { /* f == g */ |
| 2127 | res = MP_UNDEF; /* a and p are not relatively prime */ |
| 2128 | break; |
| 2129 | } |
| 2130 | if ((MP_DIGIT(&f,0) % 4) == (MP_DIGIT(&g,0) % 4)) { |
| 2131 | MP_CHECKOK( mp_sub(&f, &g, &f) ); /* f = f - g */ |
| 2132 | MP_CHECKOK( mp_sub(c, &d, c) ); /* c = c - d */ |
| 2133 | } else { |
| 2134 | MP_CHECKOK( mp_add(&f, &g, &f) ); /* f = f + g */ |
| 2135 | MP_CHECKOK( mp_add(c, &d, c) ); /* c = c + d */ |
| 2136 | } |
| 2137 | } |
| 2138 | if (res >= 0) { |
| 2139 | while (MP_SIGN(c) != MP_ZPOS) { |
| 2140 | MP_CHECKOK( mp_add(c, p, c) ); |
| 2141 | } |
| 2142 | res = k; |
| 2143 | } |
| 2144 | |
| 2145 | CLEANUP: |
| 2146 | mp_clear(&d); |
| 2147 | mp_clear(&f); |
| 2148 | mp_clear(&g); |
| 2149 | return res; |
| 2150 | } |
| 2151 | |
| 2152 | /* Compute T = (P ** -1) mod MP_RADIX. Also works for 16-bit mp_digits. |
| 2153 | ** This technique from the paper "Fast Modular Reciprocals" (unpublished) |
| 2154 | ** by Richard Schroeppel (a.k.a. Captain Nemo). |
| 2155 | */ |
| 2156 | mp_digit s_mp_invmod_radix(mp_digit P) |
| 2157 | { |
| 2158 | mp_digit T = P; |
| 2159 | T *= 2 - (P * T); |
| 2160 | T *= 2 - (P * T); |
| 2161 | T *= 2 - (P * T); |
| 2162 | T *= 2 - (P * T); |
| 2163 | #if !defined(MP_USE_UINT_DIGIT) |
| 2164 | T *= 2 - (P * T); |
| 2165 | T *= 2 - (P * T); |
| 2166 | #endif |
| 2167 | return T; |
| 2168 | } |
| 2169 | |
| 2170 | /* Given c, k, and prime p, where a*c == 2**k (mod p), |
| 2171 | ** Compute x = (a ** -1) mod p. This is similar to Montgomery reduction. |
| 2172 | ** This technique from the paper "Fast Modular Reciprocals" (unpublished) |
| 2173 | ** by Richard Schroeppel (a.k.a. Captain Nemo). |
| 2174 | */ |
| 2175 | mp_err s_mp_fixup_reciprocal(const mp_int *c, const mp_int *p, int k, mp_int *x) |
| 2176 | { |
| 2177 | int k_orig = k; |
| 2178 | mp_digit r; |
| 2179 | mp_size ix; |
| 2180 | mp_err res; |
| 2181 | |
| 2182 | if (mp_cmp_z(c) < 0) { /* c < 0 */ |
| 2183 | MP_CHECKOK( mp_add(c, p, x) ); /* x = c + p */ |
| 2184 | } else { |
| 2185 | MP_CHECKOK( mp_copy(c, x) ); /* x = c */ |
| 2186 | } |
| 2187 | |
| 2188 | /* make sure x is large enough */ |
| 2189 | ix = MP_HOWMANY(k, MP_DIGIT_BIT) + MP_USED(p) + 1; |
| 2190 | ix = MP_MAX(ix, MP_USED(x)); |
| 2191 | MP_CHECKOK( s_mp_pad(x, ix) ); |
| 2192 | |
| 2193 | r = 0 - s_mp_invmod_radix(MP_DIGIT(p,0)); |
| 2194 | |
| 2195 | for (ix = 0; k > 0; ix++) { |
| 2196 | int j = MP_MIN(k, MP_DIGIT_BIT); |
| 2197 | mp_digit v = r * MP_DIGIT(x, ix); |
| 2198 | if (j < MP_DIGIT_BIT) { |
| 2199 | v &= ((mp_digit)1 << j) - 1; /* v = v mod (2 ** j) */ |
| 2200 | } |
| 2201 | s_mp_mul_d_add_offset(p, v, x, ix); /* x += p * v * (RADIX ** ix) */ |
| 2202 | k -= j; |
| 2203 | } |
| 2204 | s_mp_clamp(x); |
| 2205 | s_mp_div_2d(x, k_orig); |
| 2206 | res = MP_OKAY; |
| 2207 | |
| 2208 | CLEANUP: |
| 2209 | return res; |
| 2210 | } |
| 2211 | |
| 2212 | /* compute mod inverse using Schroeppel's method, only if m is odd */ |
| 2213 | mp_err s_mp_invmod_odd_m(const mp_int *a, const mp_int *m, mp_int *c) |
| 2214 | { |
| 2215 | int k; |
| 2216 | mp_err res; |
| 2217 | mp_int x; |
| 2218 | |
| 2219 | ARGCHK(a && m && c, MP_BADARG); |
| 2220 | |
| 2221 | if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0) |
| 2222 | return MP_RANGE; |
| 2223 | if (mp_iseven(m)) |
| 2224 | return MP_UNDEF; |
| 2225 | |
| 2226 | MP_DIGITS(&x) = 0; |
| 2227 | |
| 2228 | if (a == c) { |
| 2229 | if ((res = mp_init_copy(&x, a)) != MP_OKAY) |
| 2230 | return res; |
| 2231 | if (a == m) |
| 2232 | m = &x; |
| 2233 | a = &x; |
| 2234 | } else if (m == c) { |
| 2235 | if ((res = mp_init_copy(&x, m)) != MP_OKAY) |
| 2236 | return res; |
| 2237 | m = &x; |
| 2238 | } else { |
| 2239 | MP_DIGITS(&x) = 0; |
| 2240 | } |
| 2241 | |
| 2242 | MP_CHECKOK( s_mp_almost_inverse(a, m, c) ); |
| 2243 | k = res; |
| 2244 | MP_CHECKOK( s_mp_fixup_reciprocal(c, m, k, c) ); |
| 2245 | CLEANUP: |
| 2246 | mp_clear(&x); |
| 2247 | return res; |
| 2248 | } |
| 2249 | |
| 2250 | /* Known good algorithm for computing modular inverse. But slow. */ |
| 2251 | mp_err mp_invmod_xgcd(const mp_int *a, const mp_int *m, mp_int *c) |
| 2252 | { |
| 2253 | mp_int g, x; |
| 2254 | mp_err res; |
| 2255 | |
| 2256 | ARGCHK(a && m && c, MP_BADARG); |
| 2257 | |
| 2258 | if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0) |
| 2259 | return MP_RANGE; |
| 2260 | |
| 2261 | MP_DIGITS(&g) = 0; |
| 2262 | MP_DIGITS(&x) = 0; |
| 2263 | MP_CHECKOK( mp_init(&x, FLAG(a)) ); |
| 2264 | MP_CHECKOK( mp_init(&g, FLAG(a)) ); |
| 2265 | |
| 2266 | MP_CHECKOK( mp_xgcd(a, m, &g, &x, NULL) ); |
| 2267 | |
| 2268 | if (mp_cmp_d(&g, 1) != MP_EQ) { |
| 2269 | res = MP_UNDEF; |
| 2270 | goto CLEANUP; |
| 2271 | } |
| 2272 | |
| 2273 | res = mp_mod(&x, m, c); |
| 2274 | SIGN(c) = SIGN(a); |
| 2275 | |
| 2276 | CLEANUP: |
| 2277 | mp_clear(&x); |
| 2278 | mp_clear(&g); |
| 2279 | |
| 2280 | return res; |
| 2281 | } |
| 2282 | |
| 2283 | /* modular inverse where modulus is 2**k. */ |
| 2284 | /* c = a**-1 mod 2**k */ |
| 2285 | mp_err s_mp_invmod_2d(const mp_int *a, mp_size k, mp_int *c) |
| 2286 | { |
| 2287 | mp_err res; |
| 2288 | mp_size ix = k + 4; |
| 2289 | mp_int t0, t1, val, tmp, two2k; |
| 2290 | |
| 2291 | static const mp_digit d2 = 2; |
| 2292 | static const mp_int two = { 0, MP_ZPOS, 1, 1, (mp_digit *)&d2 }; |
| 2293 | |
| 2294 | if (mp_iseven(a)) |
| 2295 | return MP_UNDEF; |
| 2296 | if (k <= MP_DIGIT_BIT) { |
| 2297 | mp_digit i = s_mp_invmod_radix(MP_DIGIT(a,0)); |
| 2298 | if (k < MP_DIGIT_BIT) |
| 2299 | i &= ((mp_digit)1 << k) - (mp_digit)1; |
| 2300 | mp_set(c, i); |
| 2301 | return MP_OKAY; |
| 2302 | } |
| 2303 | MP_DIGITS(&t0) = 0; |
| 2304 | MP_DIGITS(&t1) = 0; |
| 2305 | MP_DIGITS(&val) = 0; |
| 2306 | MP_DIGITS(&tmp) = 0; |
| 2307 | MP_DIGITS(&two2k) = 0; |
| 2308 | MP_CHECKOK( mp_init_copy(&val, a) ); |
| 2309 | s_mp_mod_2d(&val, k); |
| 2310 | MP_CHECKOK( mp_init_copy(&t0, &val) ); |
| 2311 | MP_CHECKOK( mp_init_copy(&t1, &t0) ); |
| 2312 | MP_CHECKOK( mp_init(&tmp, FLAG(a)) ); |
| 2313 | MP_CHECKOK( mp_init(&two2k, FLAG(a)) ); |
| 2314 | MP_CHECKOK( s_mp_2expt(&two2k, k) ); |
| 2315 | do { |
| 2316 | MP_CHECKOK( mp_mul(&val, &t1, &tmp) ); |
| 2317 | MP_CHECKOK( mp_sub(&two, &tmp, &tmp) ); |
| 2318 | MP_CHECKOK( mp_mul(&t1, &tmp, &t1) ); |
| 2319 | s_mp_mod_2d(&t1, k); |
| 2320 | while (MP_SIGN(&t1) != MP_ZPOS) { |
| 2321 | MP_CHECKOK( mp_add(&t1, &two2k, &t1) ); |
| 2322 | } |
| 2323 | if (mp_cmp(&t1, &t0) == MP_EQ) |
| 2324 | break; |
| 2325 | MP_CHECKOK( mp_copy(&t1, &t0) ); |
| 2326 | } while (--ix > 0); |
| 2327 | if (!ix) { |
| 2328 | res = MP_UNDEF; |
| 2329 | } else { |
| 2330 | mp_exch(c, &t1); |
| 2331 | } |
| 2332 | |
| 2333 | CLEANUP: |
| 2334 | mp_clear(&t0); |
| 2335 | mp_clear(&t1); |
| 2336 | mp_clear(&val); |
| 2337 | mp_clear(&tmp); |
| 2338 | mp_clear(&two2k); |
| 2339 | return res; |
| 2340 | } |
| 2341 | |
| 2342 | mp_err s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c) |
| 2343 | { |
| 2344 | mp_err res; |
| 2345 | mp_size k; |
| 2346 | mp_int oddFactor, evenFactor; /* factors of the modulus */ |
| 2347 | mp_int oddPart, evenPart; /* parts to combine via CRT. */ |
| 2348 | mp_int C2, tmp1, tmp2; |
| 2349 | |
| 2350 | /*static const mp_digit d1 = 1; */ |
| 2351 | /*static const mp_int one = { MP_ZPOS, 1, 1, (mp_digit *)&d1 }; */ |
| 2352 | |
| 2353 | if ((res = s_mp_ispow2(m)) >= 0) { |
| 2354 | k = res; |
| 2355 | return s_mp_invmod_2d(a, k, c); |
| 2356 | } |
| 2357 | MP_DIGITS(&oddFactor) = 0; |
| 2358 | MP_DIGITS(&evenFactor) = 0; |
| 2359 | MP_DIGITS(&oddPart) = 0; |
| 2360 | MP_DIGITS(&evenPart) = 0; |
| 2361 | MP_DIGITS(&C2) = 0; |
| 2362 | MP_DIGITS(&tmp1) = 0; |
| 2363 | MP_DIGITS(&tmp2) = 0; |
| 2364 | |
| 2365 | MP_CHECKOK( mp_init_copy(&oddFactor, m) ); /* oddFactor = m */ |
| 2366 | MP_CHECKOK( mp_init(&evenFactor, FLAG(m)) ); |
| 2367 | MP_CHECKOK( mp_init(&oddPart, FLAG(m)) ); |
| 2368 | MP_CHECKOK( mp_init(&evenPart, FLAG(m)) ); |
| 2369 | MP_CHECKOK( mp_init(&C2, FLAG(m)) ); |
| 2370 | MP_CHECKOK( mp_init(&tmp1, FLAG(m)) ); |
| 2371 | MP_CHECKOK( mp_init(&tmp2, FLAG(m)) ); |
| 2372 | |
| 2373 | k = mp_trailing_zeros(m); |
| 2374 | s_mp_div_2d(&oddFactor, k); |
| 2375 | MP_CHECKOK( s_mp_2expt(&evenFactor, k) ); |
| 2376 | |
| 2377 | /* compute a**-1 mod oddFactor. */ |
| 2378 | MP_CHECKOK( s_mp_invmod_odd_m(a, &oddFactor, &oddPart) ); |
| 2379 | /* compute a**-1 mod evenFactor, where evenFactor == 2**k. */ |
| 2380 | MP_CHECKOK( s_mp_invmod_2d( a, k, &evenPart) ); |
| 2381 | |
| 2382 | /* Use Chinese Remainer theorem to compute a**-1 mod m. */ |
| 2383 | /* let m1 = oddFactor, v1 = oddPart, |
| 2384 | * let m2 = evenFactor, v2 = evenPart. |
| 2385 | */ |
| 2386 | |
| 2387 | /* Compute C2 = m1**-1 mod m2. */ |
| 2388 | MP_CHECKOK( s_mp_invmod_2d(&oddFactor, k, &C2) ); |
| 2389 | |
| 2390 | /* compute u = (v2 - v1)*C2 mod m2 */ |
| 2391 | MP_CHECKOK( mp_sub(&evenPart, &oddPart, &tmp1) ); |
| 2392 | MP_CHECKOK( mp_mul(&tmp1, &C2, &tmp2) ); |
| 2393 | s_mp_mod_2d(&tmp2, k); |
| 2394 | while (MP_SIGN(&tmp2) != MP_ZPOS) { |
| 2395 | MP_CHECKOK( mp_add(&tmp2, &evenFactor, &tmp2) ); |
| 2396 | } |
| 2397 | |
| 2398 | /* compute answer = v1 + u*m1 */ |
| 2399 | MP_CHECKOK( mp_mul(&tmp2, &oddFactor, c) ); |
| 2400 | MP_CHECKOK( mp_add(&oddPart, c, c) ); |
| 2401 | /* not sure this is necessary, but it's low cost if not. */ |
| 2402 | MP_CHECKOK( mp_mod(c, m, c) ); |
| 2403 | |
| 2404 | CLEANUP: |
| 2405 | mp_clear(&oddFactor); |
| 2406 | mp_clear(&evenFactor); |
| 2407 | mp_clear(&oddPart); |
| 2408 | mp_clear(&evenPart); |
| 2409 | mp_clear(&C2); |
| 2410 | mp_clear(&tmp1); |
| 2411 | mp_clear(&tmp2); |
| 2412 | return res; |
| 2413 | } |
| 2414 | |
| 2415 | |
| 2416 | /* {{{ mp_invmod(a, m, c) */ |
| 2417 | |
| 2418 | /* |
| 2419 | mp_invmod(a, m, c) |
| 2420 | |
| 2421 | Compute c = a^-1 (mod m), if there is an inverse for a (mod m). |
| 2422 | This is equivalent to the question of whether (a, m) = 1. If not, |
| 2423 | MP_UNDEF is returned, and there is no inverse. |
| 2424 | */ |
| 2425 | |
| 2426 | mp_err mp_invmod(const mp_int *a, const mp_int *m, mp_int *c) |
| 2427 | { |
| 2428 | |
| 2429 | ARGCHK(a && m && c, MP_BADARG); |
| 2430 | |
| 2431 | if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0) |
| 2432 | return MP_RANGE; |
| 2433 | |
| 2434 | if (mp_isodd(m)) { |
| 2435 | return s_mp_invmod_odd_m(a, m, c); |
| 2436 | } |
| 2437 | if (mp_iseven(a)) |
| 2438 | return MP_UNDEF; /* not invertable */ |
| 2439 | |
| 2440 | return s_mp_invmod_even_m(a, m, c); |
| 2441 | |
| 2442 | } /* end mp_invmod() */ |
| 2443 | |
| 2444 | /* }}} */ |
| 2445 | #endif /* if MP_NUMTH */ |
| 2446 | |
| 2447 | /* }}} */ |
| 2448 | |
| 2449 | /*------------------------------------------------------------------------*/ |
| 2450 | /* {{{ mp_print(mp, ofp) */ |
| 2451 | |
| 2452 | #if MP_IOFUNC |
| 2453 | /* |
| 2454 | mp_print(mp, ofp) |
| 2455 | |
| 2456 | Print a textual representation of the given mp_int on the output |
| 2457 | stream 'ofp'. Output is generated using the internal radix. |
| 2458 | */ |
| 2459 | |
| 2460 | void mp_print(mp_int *mp, FILE *ofp) |
| 2461 | { |
| 2462 | int ix; |
| 2463 | |
| 2464 | if(mp == NULL || ofp == NULL) |
| 2465 | return; |
| 2466 | |
| 2467 | fputc((SIGN(mp) == NEG) ? '-' : '+', ofp); |
| 2468 | |
| 2469 | for(ix = USED(mp) - 1; ix >= 0; ix--) { |
| 2470 | fprintf(ofp, DIGIT_FMT, DIGIT(mp, ix)); |
| 2471 | } |
| 2472 | |
| 2473 | } /* end mp_print() */ |
| 2474 | |
| 2475 | #endif /* if MP_IOFUNC */ |
| 2476 | |
| 2477 | /* }}} */ |
| 2478 | |
| 2479 | /*------------------------------------------------------------------------*/ |
| 2480 | /* {{{ More I/O Functions */ |
| 2481 | |
| 2482 | /* {{{ mp_read_raw(mp, str, len) */ |
| 2483 | |
| 2484 | /* |
| 2485 | mp_read_raw(mp, str, len) |
| 2486 | |
| 2487 | Read in a raw value (base 256) into the given mp_int |
| 2488 | */ |
| 2489 | |
| 2490 | mp_err mp_read_raw(mp_int *mp, char *str, int len) |
| 2491 | { |
| 2492 | int ix; |
| 2493 | mp_err res; |
| 2494 | unsigned char *ustr = (unsigned char *)str; |
| 2495 | |
| 2496 | ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG); |
| 2497 | |
| 2498 | mp_zero(mp); |
| 2499 | |
| 2500 | /* Get sign from first byte */ |
| 2501 | if(ustr[0]) |
| 2502 | SIGN(mp) = NEG; |
| 2503 | else |
| 2504 | SIGN(mp) = ZPOS; |
| 2505 | |
| 2506 | /* Read the rest of the digits */ |
| 2507 | for(ix = 1; ix < len; ix++) { |
| 2508 | if((res = mp_mul_d(mp, 256, mp)) != MP_OKAY) |
| 2509 | return res; |
| 2510 | if((res = mp_add_d(mp, ustr[ix], mp)) != MP_OKAY) |
| 2511 | return res; |
| 2512 | } |
| 2513 | |
| 2514 | return MP_OKAY; |
| 2515 | |
| 2516 | } /* end mp_read_raw() */ |
| 2517 | |
| 2518 | /* }}} */ |
| 2519 | |
| 2520 | /* {{{ mp_raw_size(mp) */ |
| 2521 | |
| 2522 | int mp_raw_size(mp_int *mp) |
| 2523 | { |
| 2524 | ARGCHK(mp != NULL, 0); |
| 2525 | |
| 2526 | return (USED(mp) * sizeof(mp_digit)) + 1; |
| 2527 | |
| 2528 | } /* end mp_raw_size() */ |
| 2529 | |
| 2530 | /* }}} */ |
| 2531 | |
| 2532 | /* {{{ mp_toraw(mp, str) */ |
| 2533 | |
| 2534 | mp_err mp_toraw(mp_int *mp, char *str) |
| 2535 | { |
| 2536 | int ix, jx, pos = 1; |
| 2537 | |
| 2538 | ARGCHK(mp != NULL && str != NULL, MP_BADARG); |
| 2539 | |
| 2540 | str[0] = (char)SIGN(mp); |
| 2541 | |
| 2542 | /* Iterate over each digit... */ |
| 2543 | for(ix = USED(mp) - 1; ix >= 0; ix--) { |
| 2544 | mp_digit d = DIGIT(mp, ix); |
| 2545 | |
| 2546 | /* Unpack digit bytes, high order first */ |
| 2547 | for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) { |
| 2548 | str[pos++] = (char)(d >> (jx * CHAR_BIT)); |
| 2549 | } |
| 2550 | } |
| 2551 | |
| 2552 | return MP_OKAY; |
| 2553 | |
| 2554 | } /* end mp_toraw() */ |
| 2555 | |
| 2556 | /* }}} */ |
| 2557 | |
| 2558 | /* {{{ mp_read_radix(mp, str, radix) */ |
| 2559 | |
| 2560 | /* |
| 2561 | mp_read_radix(mp, str, radix) |
| 2562 | |
| 2563 | Read an integer from the given string, and set mp to the resulting |
| 2564 | value. The input is presumed to be in base 10. Leading non-digit |
| 2565 | characters are ignored, and the function reads until a non-digit |
| 2566 | character or the end of the string. |
| 2567 | */ |
| 2568 | |
| 2569 | mp_err mp_read_radix(mp_int *mp, const char *str, int radix) |
| 2570 | { |
| 2571 | int ix = 0, val = 0; |
| 2572 | mp_err res; |
| 2573 | mp_sign sig = ZPOS; |
| 2574 | |
| 2575 | ARGCHK(mp != NULL && str != NULL && radix >= 2 && radix <= MAX_RADIX, |
| 2576 | MP_BADARG); |
| 2577 | |
| 2578 | mp_zero(mp); |
| 2579 | |
| 2580 | /* Skip leading non-digit characters until a digit or '-' or '+' */ |
| 2581 | while(str[ix] && |
| 2582 | (s_mp_tovalue(str[ix], radix) < 0) && |
| 2583 | str[ix] != '-' && |
| 2584 | str[ix] != '+') { |
| 2585 | ++ix; |
| 2586 | } |
| 2587 | |
| 2588 | if(str[ix] == '-') { |
| 2589 | sig = NEG; |
| 2590 | ++ix; |
| 2591 | } else if(str[ix] == '+') { |
| 2592 | sig = ZPOS; /* this is the default anyway... */ |
| 2593 | ++ix; |
| 2594 | } |
| 2595 | |
| 2596 | while((val = s_mp_tovalue(str[ix], radix)) >= 0) { |
| 2597 | if((res = s_mp_mul_d(mp, radix)) != MP_OKAY) |
| 2598 | return res; |
| 2599 | if((res = s_mp_add_d(mp, val)) != MP_OKAY) |
| 2600 | return res; |
| 2601 | ++ix; |
| 2602 | } |
| 2603 | |
| 2604 | if(s_mp_cmp_d(mp, 0) == MP_EQ) |
| 2605 | SIGN(mp) = ZPOS; |
| 2606 | else |
| 2607 | SIGN(mp) = sig; |
| 2608 | |
| 2609 | return MP_OKAY; |
| 2610 | |
| 2611 | } /* end mp_read_radix() */ |
| 2612 | |
| 2613 | mp_err mp_read_variable_radix(mp_int *a, const char * str, int default_radix) |
| 2614 | { |
| 2615 | int radix = default_radix; |
| 2616 | int cx; |
| 2617 | mp_sign sig = ZPOS; |
| 2618 | mp_err res; |
| 2619 | |
| 2620 | /* Skip leading non-digit characters until a digit or '-' or '+' */ |
| 2621 | while ((cx = *str) != 0 && |
| 2622 | (s_mp_tovalue(cx, radix) < 0) && |
| 2623 | cx != '-' && |
| 2624 | cx != '+') { |
| 2625 | ++str; |
| 2626 | } |
| 2627 | |
| 2628 | if (cx == '-') { |
| 2629 | sig = NEG; |
| 2630 | ++str; |
| 2631 | } else if (cx == '+') { |
| 2632 | sig = ZPOS; /* this is the default anyway... */ |
| 2633 | ++str; |
| 2634 | } |
| 2635 | |
| 2636 | if (str[0] == '0') { |
| 2637 | if ((str[1] | 0x20) == 'x') { |
| 2638 | radix = 16; |
| 2639 | str += 2; |
| 2640 | } else { |
| 2641 | radix = 8; |
| 2642 | str++; |
| 2643 | } |
| 2644 | } |
| 2645 | res = mp_read_radix(a, str, radix); |
| 2646 | if (res == MP_OKAY) { |
| 2647 | MP_SIGN(a) = (s_mp_cmp_d(a, 0) == MP_EQ) ? ZPOS : sig; |
| 2648 | } |
| 2649 | return res; |
| 2650 | } |
| 2651 | |
| 2652 | /* }}} */ |
| 2653 | |
| 2654 | /* {{{ mp_radix_size(mp, radix) */ |
| 2655 | |
| 2656 | int mp_radix_size(mp_int *mp, int radix) |
| 2657 | { |
| 2658 | int bits; |
| 2659 | |
| 2660 | if(!mp || radix < 2 || radix > MAX_RADIX) |
| 2661 | return 0; |
| 2662 | |
| 2663 | bits = USED(mp) * DIGIT_BIT - 1; |
| 2664 | |
| 2665 | return s_mp_outlen(bits, radix); |
| 2666 | |
| 2667 | } /* end mp_radix_size() */ |
| 2668 | |
| 2669 | /* }}} */ |
| 2670 | |
| 2671 | /* {{{ mp_toradix(mp, str, radix) */ |
| 2672 | |
| 2673 | mp_err mp_toradix(mp_int *mp, char *str, int radix) |
| 2674 | { |
| 2675 | int ix, pos = 0; |
| 2676 | |
| 2677 | ARGCHK(mp != NULL && str != NULL, MP_BADARG); |
| 2678 | ARGCHK(radix > 1 && radix <= MAX_RADIX, MP_RANGE); |
| 2679 | |
| 2680 | if(mp_cmp_z(mp) == MP_EQ) { |
| 2681 | str[0] = '0'; |
| 2682 | str[1] = '\0'; |
| 2683 | } else { |
| 2684 | mp_err res; |
| 2685 | mp_int tmp; |
| 2686 | mp_sign sgn; |
| 2687 | mp_digit rem, rdx = (mp_digit)radix; |
| 2688 | char ch; |
| 2689 | |
| 2690 | if((res = mp_init_copy(&tmp, mp)) != MP_OKAY) |
| 2691 | return res; |
| 2692 | |
| 2693 | /* Save sign for later, and take absolute value */ |
| 2694 | sgn = SIGN(&tmp); SIGN(&tmp) = ZPOS; |
| 2695 | |
| 2696 | /* Generate output digits in reverse order */ |
| 2697 | while(mp_cmp_z(&tmp) != 0) { |
| 2698 | if((res = mp_div_d(&tmp, rdx, &tmp, &rem)) != MP_OKAY) { |
| 2699 | mp_clear(&tmp); |
| 2700 | return res; |
| 2701 | } |
| 2702 | |
| 2703 | /* Generate digits, use capital letters */ |
| 2704 | ch = s_mp_todigit(rem, radix, 0); |
| 2705 | |
| 2706 | str[pos++] = ch; |
| 2707 | } |
| 2708 | |
| 2709 | /* Add - sign if original value was negative */ |
| 2710 | if(sgn == NEG) |
| 2711 | str[pos++] = '-'; |
| 2712 | |
| 2713 | /* Add trailing NUL to end the string */ |
| 2714 | str[pos--] = '\0'; |
| 2715 | |
| 2716 | /* Reverse the digits and sign indicator */ |
| 2717 | ix = 0; |
| 2718 | while(ix < pos) { |
| 2719 | char tmp = str[ix]; |
| 2720 | |
| 2721 | str[ix] = str[pos]; |
| 2722 | str[pos] = tmp; |
| 2723 | ++ix; |
| 2724 | --pos; |
| 2725 | } |
| 2726 | |
| 2727 | mp_clear(&tmp); |
| 2728 | } |
| 2729 | |
| 2730 | return MP_OKAY; |
| 2731 | |
| 2732 | } /* end mp_toradix() */ |
| 2733 | |
| 2734 | /* }}} */ |
| 2735 | |
| 2736 | /* {{{ mp_tovalue(ch, r) */ |
| 2737 | |
| 2738 | int mp_tovalue(char ch, int r) |
| 2739 | { |
| 2740 | return s_mp_tovalue(ch, r); |
| 2741 | |
| 2742 | } /* end mp_tovalue() */ |
| 2743 | |
| 2744 | /* }}} */ |
| 2745 | |
| 2746 | /* }}} */ |
| 2747 | |
| 2748 | /* {{{ mp_strerror(ec) */ |
| 2749 | |
| 2750 | /* |
| 2751 | mp_strerror(ec) |
| 2752 | |
| 2753 | Return a string describing the meaning of error code 'ec'. The |
| 2754 | string returned is allocated in static memory, so the caller should |
| 2755 | not attempt to modify or free the memory associated with this |
| 2756 | string. |
| 2757 | */ |
| 2758 | const char *mp_strerror(mp_err ec) |
| 2759 | { |
| 2760 | int aec = (ec < 0) ? -ec : ec; |
| 2761 | |
| 2762 | /* Code values are negative, so the senses of these comparisons |
| 2763 | are accurate */ |
| 2764 | if(ec < MP_LAST_CODE || ec > MP_OKAY) { |
| 2765 | return mp_err_string[0]; /* unknown error code */ |
| 2766 | } else { |
| 2767 | return mp_err_string[aec + 1]; |
| 2768 | } |
| 2769 | |
| 2770 | } /* end mp_strerror() */ |
| 2771 | |
| 2772 | /* }}} */ |
| 2773 | |
| 2774 | /*========================================================================*/ |
| 2775 | /*------------------------------------------------------------------------*/ |
| 2776 | /* Static function definitions (internal use only) */ |
| 2777 | |
| 2778 | /* {{{ Memory management */ |
| 2779 | |
| 2780 | /* {{{ s_mp_grow(mp, min) */ |
| 2781 | |
| 2782 | /* Make sure there are at least 'min' digits allocated to mp */ |
| 2783 | mp_err s_mp_grow(mp_int *mp, mp_size min) |
| 2784 | { |
| 2785 | if(min > ALLOC(mp)) { |
| 2786 | mp_digit *tmp; |
| 2787 | |
| 2788 | /* Set min to next nearest default precision block size */ |
| 2789 | min = MP_ROUNDUP(min, s_mp_defprec); |
| 2790 | |
| 2791 | if((tmp = s_mp_alloc(min, sizeof(mp_digit), FLAG(mp))) == NULL) |
| 2792 | return MP_MEM; |
| 2793 | |
| 2794 | s_mp_copy(DIGITS(mp), tmp, USED(mp)); |
| 2795 | |
| 2796 | #if MP_CRYPTO |
| 2797 | s_mp_setz(DIGITS(mp), ALLOC(mp)); |
| 2798 | #endif |
| 2799 | s_mp_free(DIGITS(mp), ALLOC(mp)); |
| 2800 | DIGITS(mp) = tmp; |
| 2801 | ALLOC(mp) = min; |
| 2802 | } |
| 2803 | |
| 2804 | return MP_OKAY; |
| 2805 | |
| 2806 | } /* end s_mp_grow() */ |
| 2807 | |
| 2808 | /* }}} */ |
| 2809 | |
| 2810 | /* {{{ s_mp_pad(mp, min) */ |
| 2811 | |
| 2812 | /* Make sure the used size of mp is at least 'min', growing if needed */ |
| 2813 | mp_err s_mp_pad(mp_int *mp, mp_size min) |
| 2814 | { |
| 2815 | if(min > USED(mp)) { |
| 2816 | mp_err res; |
| 2817 | |
| 2818 | /* Make sure there is room to increase precision */ |
| 2819 | if (min > ALLOC(mp)) { |
| 2820 | if ((res = s_mp_grow(mp, min)) != MP_OKAY) |
| 2821 | return res; |
| 2822 | } else { |
| 2823 | s_mp_setz(DIGITS(mp) + USED(mp), min - USED(mp)); |
| 2824 | } |
| 2825 | |
| 2826 | /* Increase precision; should already be 0-filled */ |
| 2827 | USED(mp) = min; |
| 2828 | } |
| 2829 | |
| 2830 | return MP_OKAY; |
| 2831 | |
| 2832 | } /* end s_mp_pad() */ |
| 2833 | |
| 2834 | /* }}} */ |
| 2835 | |
| 2836 | /* {{{ s_mp_setz(dp, count) */ |
| 2837 | |
| 2838 | #if MP_MACRO == 0 |
| 2839 | /* Set 'count' digits pointed to by dp to be zeroes */ |
| 2840 | void s_mp_setz(mp_digit *dp, mp_size count) |
| 2841 | { |
| 2842 | #if MP_MEMSET == 0 |
| 2843 | int ix; |
| 2844 | |
| 2845 | for(ix = 0; ix < count; ix++) |
| 2846 | dp[ix] = 0; |
| 2847 | #else |
| 2848 | memset(dp, 0, count * sizeof(mp_digit)); |
| 2849 | #endif |
| 2850 | |
| 2851 | } /* end s_mp_setz() */ |
| 2852 | #endif |
| 2853 | |
| 2854 | /* }}} */ |
| 2855 | |
| 2856 | /* {{{ s_mp_copy(sp, dp, count) */ |
| 2857 | |
| 2858 | #if MP_MACRO == 0 |
| 2859 | /* Copy 'count' digits from sp to dp */ |
| 2860 | void s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count) |
| 2861 | { |
| 2862 | #if MP_MEMCPY == 0 |
| 2863 | int ix; |
| 2864 | |
| 2865 | for(ix = 0; ix < count; ix++) |
| 2866 | dp[ix] = sp[ix]; |
| 2867 | #else |
| 2868 | memcpy(dp, sp, count * sizeof(mp_digit)); |
| 2869 | #endif |
| 2870 | |
| 2871 | } /* end s_mp_copy() */ |
| 2872 | #endif |
| 2873 | |
| 2874 | /* }}} */ |
| 2875 | |
| 2876 | /* {{{ s_mp_alloc(nb, ni, kmflag) */ |
| 2877 | |
| 2878 | #if MP_MACRO == 0 |
| 2879 | /* Allocate ni records of nb bytes each, and return a pointer to that */ |
| 2880 | void *s_mp_alloc(size_t nb, size_t ni, int kmflag) |
| 2881 | { |
| 2882 | ++mp_allocs; |
| 2883 | #ifdef _KERNEL |
| 2884 | mp_int *mp; |
| 2885 | mp = kmem_zalloc(nb * ni, kmflag); |
| 2886 | if (mp != NULL) |
| 2887 | FLAG(mp) = kmflag; |
| 2888 | return (mp); |
| 2889 | #else |
| 2890 | return calloc(nb, ni); |
| 2891 | #endif |
| 2892 | |
| 2893 | } /* end s_mp_alloc() */ |
| 2894 | #endif |
| 2895 | |
| 2896 | /* }}} */ |
| 2897 | |
| 2898 | /* {{{ s_mp_free(ptr) */ |
| 2899 | |
| 2900 | #if MP_MACRO == 0 |
| 2901 | /* Free the memory pointed to by ptr */ |
| 2902 | void s_mp_free(void *ptr, mp_size alloc) |
| 2903 | { |
| 2904 | if(ptr) { |
| 2905 | ++mp_frees; |
| 2906 | #ifdef _KERNEL |
| 2907 | kmem_free(ptr, alloc * sizeof (mp_digit)); |
| 2908 | #else |
| 2909 | free(ptr); |
| 2910 | #endif |
| 2911 | } |
| 2912 | } /* end s_mp_free() */ |
| 2913 | #endif |
| 2914 | |
| 2915 | /* }}} */ |
| 2916 | |
| 2917 | /* {{{ s_mp_clamp(mp) */ |
| 2918 | |
| 2919 | #if MP_MACRO == 0 |
| 2920 | /* Remove leading zeroes from the given value */ |
| 2921 | void s_mp_clamp(mp_int *mp) |
| 2922 | { |
| 2923 | mp_size used = MP_USED(mp); |
| 2924 | while (used > 1 && DIGIT(mp, used - 1) == 0) |
| 2925 | --used; |
| 2926 | MP_USED(mp) = used; |
| 2927 | } /* end s_mp_clamp() */ |
| 2928 | #endif |
| 2929 | |
| 2930 | /* }}} */ |
| 2931 | |
| 2932 | /* {{{ s_mp_exch(a, b) */ |
| 2933 | |
| 2934 | /* Exchange the data for a and b; (b, a) = (a, b) */ |
| 2935 | void s_mp_exch(mp_int *a, mp_int *b) |
| 2936 | { |
| 2937 | mp_int tmp; |
| 2938 | |
| 2939 | tmp = *a; |
| 2940 | *a = *b; |
| 2941 | *b = tmp; |
| 2942 | |
| 2943 | } /* end s_mp_exch() */ |
| 2944 | |
| 2945 | /* }}} */ |
| 2946 | |
| 2947 | /* }}} */ |
| 2948 | |
| 2949 | /* {{{ Arithmetic helpers */ |
| 2950 | |
| 2951 | /* {{{ s_mp_lshd(mp, p) */ |
| 2952 | |
| 2953 | /* |
| 2954 | Shift mp leftward by p digits, growing if needed, and zero-filling |
| 2955 | the in-shifted digits at the right end. This is a convenient |
| 2956 | alternative to multiplication by powers of the radix |
| 2957 | The value of USED(mp) must already have been set to the value for |
| 2958 | the shifted result. |
| 2959 | */ |
| 2960 | |
| 2961 | mp_err s_mp_lshd(mp_int *mp, mp_size p) |
| 2962 | { |
| 2963 | mp_err res; |
| 2964 | mp_size pos; |
| 2965 | int ix; |
| 2966 | |
| 2967 | if(p == 0) |
| 2968 | return MP_OKAY; |
| 2969 | |
| 2970 | if (MP_USED(mp) == 1 && MP_DIGIT(mp, 0) == 0) |
| 2971 | return MP_OKAY; |
| 2972 | |
| 2973 | if((res = s_mp_pad(mp, USED(mp) + p)) != MP_OKAY) |
| 2974 | return res; |
| 2975 | |
| 2976 | pos = USED(mp) - 1; |
| 2977 | |
| 2978 | /* Shift all the significant figures over as needed */ |
| 2979 | for(ix = pos - p; ix >= 0; ix--) |
| 2980 | DIGIT(mp, ix + p) = DIGIT(mp, ix); |
| 2981 | |
| 2982 | /* Fill the bottom digits with zeroes */ |
| 2983 | for(ix = 0; ix < p; ix++) |
| 2984 | DIGIT(mp, ix) = 0; |
| 2985 | |
| 2986 | return MP_OKAY; |
| 2987 | |
| 2988 | } /* end s_mp_lshd() */ |
| 2989 | |
| 2990 | /* }}} */ |
| 2991 | |
| 2992 | /* {{{ s_mp_mul_2d(mp, d) */ |
| 2993 | |
| 2994 | /* |
| 2995 | Multiply the integer by 2^d, where d is a number of bits. This |
| 2996 | amounts to a bitwise shift of the value. |
| 2997 | */ |
| 2998 | mp_err s_mp_mul_2d(mp_int *mp, mp_digit d) |
| 2999 | { |
| 3000 | mp_err res; |
| 3001 | mp_digit dshift, bshift; |
| 3002 | mp_digit mask; |
| 3003 | |
| 3004 | ARGCHK(mp != NULL, MP_BADARG); |
| 3005 | |
| 3006 | dshift = d / MP_DIGIT_BIT; |
| 3007 | bshift = d % MP_DIGIT_BIT; |
| 3008 | /* bits to be shifted out of the top word */ |
| 3009 | mask = ((mp_digit)~0 << (MP_DIGIT_BIT - bshift)); |
| 3010 | mask &= MP_DIGIT(mp, MP_USED(mp) - 1); |
| 3011 | |
| 3012 | if (MP_OKAY != (res = s_mp_pad(mp, MP_USED(mp) + dshift + (mask != 0) ))) |
| 3013 | return res; |
| 3014 | |
| 3015 | if (dshift && MP_OKAY != (res = s_mp_lshd(mp, dshift))) |
| 3016 | return res; |
| 3017 | |
| 3018 | if (bshift) { |
| 3019 | mp_digit *pa = MP_DIGITS(mp); |
| 3020 | mp_digit *alim = pa + MP_USED(mp); |
| 3021 | mp_digit prev = 0; |
| 3022 | |
| 3023 | for (pa += dshift; pa < alim; ) { |
| 3024 | mp_digit x = *pa; |
| 3025 | *pa++ = (x << bshift) | prev; |
| 3026 | prev = x >> (DIGIT_BIT - bshift); |
| 3027 | } |
| 3028 | } |
| 3029 | |
| 3030 | s_mp_clamp(mp); |
| 3031 | return MP_OKAY; |
| 3032 | } /* end s_mp_mul_2d() */ |
| 3033 | |
| 3034 | /* {{{ s_mp_rshd(mp, p) */ |
| 3035 | |
| 3036 | /* |
| 3037 | Shift mp rightward by p digits. Maintains the invariant that |
| 3038 | digits above the precision are all zero. Digits shifted off the |
| 3039 | end are lost. Cannot fail. |
| 3040 | */ |
| 3041 | |
| 3042 | void s_mp_rshd(mp_int *mp, mp_size p) |
| 3043 | { |
| 3044 | mp_size ix; |
| 3045 | mp_digit *src, *dst; |
| 3046 | |
| 3047 | if(p == 0) |
| 3048 | return; |
| 3049 | |
| 3050 | /* Shortcut when all digits are to be shifted off */ |
| 3051 | if(p >= USED(mp)) { |
| 3052 | s_mp_setz(DIGITS(mp), ALLOC(mp)); |
| 3053 | USED(mp) = 1; |
| 3054 | SIGN(mp) = ZPOS; |
| 3055 | return; |
| 3056 | } |
| 3057 | |
| 3058 | /* Shift all the significant figures over as needed */ |
| 3059 | dst = MP_DIGITS(mp); |
| 3060 | src = dst + p; |
| 3061 | for (ix = USED(mp) - p; ix > 0; ix--) |
| 3062 | *dst++ = *src++; |
| 3063 | |
| 3064 | MP_USED(mp) -= p; |
| 3065 | /* Fill the top digits with zeroes */ |
| 3066 | while (p-- > 0) |
| 3067 | *dst++ = 0; |
| 3068 | |
| 3069 | #if 0 |
| 3070 | /* Strip off any leading zeroes */ |
| 3071 | s_mp_clamp(mp); |
| 3072 | #endif |
| 3073 | |
| 3074 | } /* end s_mp_rshd() */ |
| 3075 | |
| 3076 | /* }}} */ |
| 3077 | |
| 3078 | /* {{{ s_mp_div_2(mp) */ |
| 3079 | |
| 3080 | /* Divide by two -- take advantage of radix properties to do it fast */ |
| 3081 | void s_mp_div_2(mp_int *mp) |
| 3082 | { |
| 3083 | s_mp_div_2d(mp, 1); |
| 3084 | |
| 3085 | } /* end s_mp_div_2() */ |
| 3086 | |
| 3087 | /* }}} */ |
| 3088 | |
| 3089 | /* {{{ s_mp_mul_2(mp) */ |
| 3090 | |
| 3091 | mp_err s_mp_mul_2(mp_int *mp) |
| 3092 | { |
| 3093 | mp_digit *pd; |
| 3094 | unsigned int ix, used; |
| 3095 | mp_digit kin = 0; |
| 3096 | |
| 3097 | /* Shift digits leftward by 1 bit */ |
| 3098 | used = MP_USED(mp); |
| 3099 | pd = MP_DIGITS(mp); |
| 3100 | for (ix = 0; ix < used; ix++) { |
| 3101 | mp_digit d = *pd; |
| 3102 | *pd++ = (d << 1) | kin; |
| 3103 | kin = (d >> (DIGIT_BIT - 1)); |
| 3104 | } |
| 3105 | |
| 3106 | /* Deal with rollover from last digit */ |
| 3107 | if (kin) { |
| 3108 | if (ix >= ALLOC(mp)) { |
| 3109 | mp_err res; |
| 3110 | if((res = s_mp_grow(mp, ALLOC(mp) + 1)) != MP_OKAY) |
| 3111 | return res; |
| 3112 | } |
| 3113 | |
| 3114 | DIGIT(mp, ix) = kin; |
| 3115 | USED(mp) += 1; |
| 3116 | } |
| 3117 | |
| 3118 | return MP_OKAY; |
| 3119 | |
| 3120 | } /* end s_mp_mul_2() */ |
| 3121 | |
| 3122 | /* }}} */ |
| 3123 | |
| 3124 | /* {{{ s_mp_mod_2d(mp, d) */ |
| 3125 | |
| 3126 | /* |
| 3127 | Remainder the integer by 2^d, where d is a number of bits. This |
| 3128 | amounts to a bitwise AND of the value, and does not require the full |
| 3129 | division code |
| 3130 | */ |
| 3131 | void s_mp_mod_2d(mp_int *mp, mp_digit d) |
| 3132 | { |
| 3133 | mp_size ndig = (d / DIGIT_BIT), nbit = (d % DIGIT_BIT); |
| 3134 | mp_size ix; |
| 3135 | mp_digit dmask; |
| 3136 | |
| 3137 | if(ndig >= USED(mp)) |
| 3138 | return; |
| 3139 | |
| 3140 | /* Flush all the bits above 2^d in its digit */ |
| 3141 | dmask = ((mp_digit)1 << nbit) - 1; |
| 3142 | DIGIT(mp, ndig) &= dmask; |
| 3143 | |
| 3144 | /* Flush all digits above the one with 2^d in it */ |
| 3145 | for(ix = ndig + 1; ix < USED(mp); ix++) |
| 3146 | DIGIT(mp, ix) = 0; |
| 3147 | |
| 3148 | s_mp_clamp(mp); |
| 3149 | |
| 3150 | } /* end s_mp_mod_2d() */ |
| 3151 | |
| 3152 | /* }}} */ |
| 3153 | |
| 3154 | /* {{{ s_mp_div_2d(mp, d) */ |
| 3155 | |
| 3156 | /* |
| 3157 | Divide the integer by 2^d, where d is a number of bits. This |
| 3158 | amounts to a bitwise shift of the value, and does not require the |
| 3159 | full division code (used in Barrett reduction, see below) |
| 3160 | */ |
| 3161 | void s_mp_div_2d(mp_int *mp, mp_digit d) |
| 3162 | { |
| 3163 | int ix; |
| 3164 | mp_digit save, next, mask; |
| 3165 | |
| 3166 | s_mp_rshd(mp, d / DIGIT_BIT); |
| 3167 | d %= DIGIT_BIT; |
| 3168 | if (d) { |
| 3169 | mask = ((mp_digit)1 << d) - 1; |
| 3170 | save = 0; |
| 3171 | for(ix = USED(mp) - 1; ix >= 0; ix--) { |
| 3172 | next = DIGIT(mp, ix) & mask; |
| 3173 | DIGIT(mp, ix) = (DIGIT(mp, ix) >> d) | (save << (DIGIT_BIT - d)); |
| 3174 | save = next; |
| 3175 | } |
| 3176 | } |
| 3177 | s_mp_clamp(mp); |
| 3178 | |
| 3179 | } /* end s_mp_div_2d() */ |
| 3180 | |
| 3181 | /* }}} */ |
| 3182 | |
| 3183 | /* {{{ s_mp_norm(a, b, *d) */ |
| 3184 | |
| 3185 | /* |
| 3186 | s_mp_norm(a, b, *d) |
| 3187 | |
| 3188 | Normalize a and b for division, where b is the divisor. In order |
| 3189 | that we might make good guesses for quotient digits, we want the |
| 3190 | leading digit of b to be at least half the radix, which we |
| 3191 | accomplish by multiplying a and b by a power of 2. The exponent |
| 3192 | (shift count) is placed in *pd, so that the remainder can be shifted |
| 3193 | back at the end of the division process. |
| 3194 | */ |
| 3195 | |
| 3196 | mp_err s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd) |
| 3197 | { |
| 3198 | mp_digit d; |
| 3199 | mp_digit mask; |
| 3200 | mp_digit b_msd; |
| 3201 | mp_err res = MP_OKAY; |
| 3202 | |
| 3203 | d = 0; |
| 3204 | mask = DIGIT_MAX & ~(DIGIT_MAX >> 1); /* mask is msb of digit */ |
| 3205 | b_msd = DIGIT(b, USED(b) - 1); |
| 3206 | while (!(b_msd & mask)) { |
| 3207 | b_msd <<= 1; |
| 3208 | ++d; |
| 3209 | } |
| 3210 | |
| 3211 | if (d) { |
| 3212 | MP_CHECKOK( s_mp_mul_2d(a, d) ); |
| 3213 | MP_CHECKOK( s_mp_mul_2d(b, d) ); |
| 3214 | } |
| 3215 | |
| 3216 | *pd = d; |
| 3217 | CLEANUP: |
| 3218 | return res; |
| 3219 | |
| 3220 | } /* end s_mp_norm() */ |
| 3221 | |
| 3222 | /* }}} */ |
| 3223 | |
| 3224 | /* }}} */ |
| 3225 | |
| 3226 | /* {{{ Primitive digit arithmetic */ |
| 3227 | |
| 3228 | /* {{{ s_mp_add_d(mp, d) */ |
| 3229 | |
| 3230 | /* Add d to |mp| in place */ |
| 3231 | mp_err s_mp_add_d(mp_int *mp, mp_digit d) /* unsigned digit addition */ |
| 3232 | { |
| 3233 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
| 3234 | mp_word w, k = 0; |
| 3235 | mp_size ix = 1; |
| 3236 | |
| 3237 | w = (mp_word)DIGIT(mp, 0) + d; |
| 3238 | DIGIT(mp, 0) = ACCUM(w); |
| 3239 | k = CARRYOUT(w); |
| 3240 | |
| 3241 | while(ix < USED(mp) && k) { |
| 3242 | w = (mp_word)DIGIT(mp, ix) + k; |
| 3243 | DIGIT(mp, ix) = ACCUM(w); |
| 3244 | k = CARRYOUT(w); |
| 3245 | ++ix; |
| 3246 | } |
| 3247 | |
| 3248 | if(k != 0) { |
| 3249 | mp_err res; |
| 3250 | |
| 3251 | if((res = s_mp_pad(mp, USED(mp) + 1)) != MP_OKAY) |
| 3252 | return res; |
| 3253 | |
| 3254 | DIGIT(mp, ix) = (mp_digit)k; |
| 3255 | } |
| 3256 | |
| 3257 | return MP_OKAY; |
| 3258 | #else |
| 3259 | mp_digit * pmp = MP_DIGITS(mp); |
| 3260 | mp_digit sum, mp_i, carry = 0; |
| 3261 | mp_err res = MP_OKAY; |
| 3262 | int used = (int)MP_USED(mp); |
| 3263 | |
| 3264 | mp_i = *pmp; |
| 3265 | *pmp++ = sum = d + mp_i; |
| 3266 | carry = (sum < d); |
| 3267 | while (carry && --used > 0) { |
| 3268 | mp_i = *pmp; |
| 3269 | *pmp++ = sum = carry + mp_i; |
| 3270 | carry = !sum; |
| 3271 | } |
| 3272 | if (carry && !used) { |
| 3273 | /* mp is growing */ |
| 3274 | used = MP_USED(mp); |
| 3275 | MP_CHECKOK( s_mp_pad(mp, used + 1) ); |
| 3276 | MP_DIGIT(mp, used) = carry; |
| 3277 | } |
| 3278 | CLEANUP: |
| 3279 | return res; |
| 3280 | #endif |
| 3281 | } /* end s_mp_add_d() */ |
| 3282 | |
| 3283 | /* }}} */ |
| 3284 | |
| 3285 | /* {{{ s_mp_sub_d(mp, d) */ |
| 3286 | |
| 3287 | /* Subtract d from |mp| in place, assumes |mp| > d */ |
| 3288 | mp_err s_mp_sub_d(mp_int *mp, mp_digit d) /* unsigned digit subtract */ |
| 3289 | { |
| 3290 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
| 3291 | mp_word w, b = 0; |
| 3292 | mp_size ix = 1; |
| 3293 | |
| 3294 | /* Compute initial subtraction */ |
| 3295 | w = (RADIX + (mp_word)DIGIT(mp, 0)) - d; |
| 3296 | b = CARRYOUT(w) ? 0 : 1; |
| 3297 | DIGIT(mp, 0) = ACCUM(w); |
| 3298 | |
| 3299 | /* Propagate borrows leftward */ |
| 3300 | while(b && ix < USED(mp)) { |
| 3301 | w = (RADIX + (mp_word)DIGIT(mp, ix)) - b; |
| 3302 | b = CARRYOUT(w) ? 0 : 1; |
| 3303 | DIGIT(mp, ix) = ACCUM(w); |
| 3304 | ++ix; |
| 3305 | } |
| 3306 | |
| 3307 | /* Remove leading zeroes */ |
| 3308 | s_mp_clamp(mp); |
| 3309 | |
| 3310 | /* If we have a borrow out, it's a violation of the input invariant */ |
| 3311 | if(b) |
| 3312 | return MP_RANGE; |
| 3313 | else |
| 3314 | return MP_OKAY; |
| 3315 | #else |
| 3316 | mp_digit *pmp = MP_DIGITS(mp); |
| 3317 | mp_digit mp_i, diff, borrow; |
| 3318 | mp_size used = MP_USED(mp); |
| 3319 | |
| 3320 | mp_i = *pmp; |
| 3321 | *pmp++ = diff = mp_i - d; |
| 3322 | borrow = (diff > mp_i); |
| 3323 | while (borrow && --used) { |
| 3324 | mp_i = *pmp; |
| 3325 | *pmp++ = diff = mp_i - borrow; |
| 3326 | borrow = (diff > mp_i); |
| 3327 | } |
| 3328 | s_mp_clamp(mp); |
| 3329 | return (borrow && !used) ? MP_RANGE : MP_OKAY; |
| 3330 | #endif |
| 3331 | } /* end s_mp_sub_d() */ |
| 3332 | |
| 3333 | /* }}} */ |
| 3334 | |
| 3335 | /* {{{ s_mp_mul_d(a, d) */ |
| 3336 | |
| 3337 | /* Compute a = a * d, single digit multiplication */ |
| 3338 | mp_err s_mp_mul_d(mp_int *a, mp_digit d) |
| 3339 | { |
| 3340 | mp_err res; |
| 3341 | mp_size used; |
| 3342 | int pow; |
| 3343 | |
| 3344 | if (!d) { |
| 3345 | mp_zero(a); |
| 3346 | return MP_OKAY; |
| 3347 | } |
| 3348 | if (d == 1) |
| 3349 | return MP_OKAY; |
| 3350 | if (0 <= (pow = s_mp_ispow2d(d))) { |
| 3351 | return s_mp_mul_2d(a, (mp_digit)pow); |
| 3352 | } |
| 3353 | |
| 3354 | used = MP_USED(a); |
| 3355 | MP_CHECKOK( s_mp_pad(a, used + 1) ); |
| 3356 | |
| 3357 | s_mpv_mul_d(MP_DIGITS(a), used, d, MP_DIGITS(a)); |
| 3358 | |
| 3359 | s_mp_clamp(a); |
| 3360 | |
| 3361 | CLEANUP: |
| 3362 | return res; |
| 3363 | |
| 3364 | } /* end s_mp_mul_d() */ |
| 3365 | |
| 3366 | /* }}} */ |
| 3367 | |
| 3368 | /* {{{ s_mp_div_d(mp, d, r) */ |
| 3369 | |
| 3370 | /* |
| 3371 | s_mp_div_d(mp, d, r) |
| 3372 | |
| 3373 | Compute the quotient mp = mp / d and remainder r = mp mod d, for a |
| 3374 | single digit d. If r is null, the remainder will be discarded. |
| 3375 | */ |
| 3376 | |
| 3377 | mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r) |
| 3378 | { |
| 3379 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD) |
| 3380 | mp_word w = 0, q; |
| 3381 | #else |
| 3382 | mp_digit w = 0, q; |
| 3383 | #endif |
| 3384 | int ix; |
| 3385 | mp_err res; |
| 3386 | mp_int quot; |
| 3387 | mp_int rem; |
| 3388 | |
| 3389 | if(d == 0) |
| 3390 | return MP_RANGE; |
| 3391 | if (d == 1) { |
| 3392 | if (r) |
| 3393 | *r = 0; |
| 3394 | return MP_OKAY; |
| 3395 | } |
| 3396 | /* could check for power of 2 here, but mp_div_d does that. */ |
| 3397 | if (MP_USED(mp) == 1) { |
| 3398 | mp_digit n = MP_DIGIT(mp,0); |
| 3399 | mp_digit rem; |
| 3400 | |
| 3401 | q = n / d; |
| 3402 | rem = n % d; |
| 3403 | MP_DIGIT(mp,0) = q; |
| 3404 | if (r) |
| 3405 | *r = rem; |
| 3406 | return MP_OKAY; |
| 3407 | } |
| 3408 | |
| 3409 | MP_DIGITS(&rem) = 0; |
| 3410 | MP_DIGITS(") = 0; |
| 3411 | /* Make room for the quotient */ |
| 3412 | MP_CHECKOK( mp_init_size(", USED(mp), FLAG(mp)) ); |
| 3413 | |
| 3414 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD) |
| 3415 | for(ix = USED(mp) - 1; ix >= 0; ix--) { |
| 3416 | w = (w << DIGIT_BIT) | DIGIT(mp, ix); |
| 3417 | |
| 3418 | if(w >= d) { |
| 3419 | q = w / d; |
| 3420 | w = w % d; |
| 3421 | } else { |
| 3422 | q = 0; |
| 3423 | } |
| 3424 | |
| 3425 | s_mp_lshd(", 1); |
| 3426 | DIGIT(", 0) = (mp_digit)q; |
| 3427 | } |
| 3428 | #else |
| 3429 | { |
| 3430 | mp_digit p; |
| 3431 | #if !defined(MP_ASSEMBLY_DIV_2DX1D) |
| 3432 | mp_digit norm; |
| 3433 | #endif |
| 3434 | |
| 3435 | MP_CHECKOK( mp_init_copy(&rem, mp) ); |
| 3436 | |
| 3437 | #if !defined(MP_ASSEMBLY_DIV_2DX1D) |
| 3438 | MP_DIGIT(", 0) = d; |
| 3439 | MP_CHECKOK( s_mp_norm(&rem, ", &norm) ); |
| 3440 | if (norm) |
| 3441 | d <<= norm; |
| 3442 | MP_DIGIT(", 0) = 0; |
| 3443 | #endif |
| 3444 | |
| 3445 | p = 0; |
| 3446 | for (ix = USED(&rem) - 1; ix >= 0; ix--) { |
| 3447 | w = DIGIT(&rem, ix); |
| 3448 | |
| 3449 | if (p) { |
| 3450 | MP_CHECKOK( s_mpv_div_2dx1d(p, w, d, &q, &w) ); |
| 3451 | } else if (w >= d) { |
| 3452 | q = w / d; |
| 3453 | w = w % d; |
| 3454 | } else { |
| 3455 | q = 0; |
| 3456 | } |
| 3457 | |
| 3458 | MP_CHECKOK( s_mp_lshd(", 1) ); |
| 3459 | DIGIT(", 0) = q; |
| 3460 | p = w; |
| 3461 | } |
| 3462 | #if !defined(MP_ASSEMBLY_DIV_2DX1D) |
| 3463 | if (norm) |
| 3464 | w >>= norm; |
| 3465 | #endif |
| 3466 | } |
| 3467 | #endif |
| 3468 | |
| 3469 | /* Deliver the remainder, if desired */ |
| 3470 | if(r) |
| 3471 | *r = (mp_digit)w; |
| 3472 | |
| 3473 | s_mp_clamp("); |
| 3474 | mp_exch(", mp); |
| 3475 | CLEANUP: |
| 3476 | mp_clear("); |
| 3477 | mp_clear(&rem); |
| 3478 | |
| 3479 | return res; |
| 3480 | } /* end s_mp_div_d() */ |
| 3481 | |
| 3482 | /* }}} */ |
| 3483 | |
| 3484 | |
| 3485 | /* }}} */ |
| 3486 | |
| 3487 | /* {{{ Primitive full arithmetic */ |
| 3488 | |
| 3489 | /* {{{ s_mp_add(a, b) */ |
| 3490 | |
| 3491 | /* Compute a = |a| + |b| */ |
| 3492 | mp_err s_mp_add(mp_int *a, const mp_int *b) /* magnitude addition */ |
| 3493 | { |
| 3494 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
| 3495 | mp_word w = 0; |
| 3496 | #else |
| 3497 | mp_digit d, sum, carry = 0; |
| 3498 | #endif |
| 3499 | mp_digit *pa, *pb; |
| 3500 | mp_size ix; |
| 3501 | mp_size used; |
| 3502 | mp_err res; |
| 3503 | |
| 3504 | /* Make sure a has enough precision for the output value */ |
| 3505 | if((USED(b) > USED(a)) && (res = s_mp_pad(a, USED(b))) != MP_OKAY) |
| 3506 | return res; |
| 3507 | |
| 3508 | /* |
| 3509 | Add up all digits up to the precision of b. If b had initially |
| 3510 | the same precision as a, or greater, we took care of it by the |
| 3511 | padding step above, so there is no problem. If b had initially |
| 3512 | less precision, we'll have to make sure the carry out is duly |
| 3513 | propagated upward among the higher-order digits of the sum. |
| 3514 | */ |
| 3515 | pa = MP_DIGITS(a); |
| 3516 | pb = MP_DIGITS(b); |
| 3517 | used = MP_USED(b); |
| 3518 | for(ix = 0; ix < used; ix++) { |
| 3519 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
| 3520 | w = w + *pa + *pb++; |
| 3521 | *pa++ = ACCUM(w); |
| 3522 | w = CARRYOUT(w); |
| 3523 | #else |
| 3524 | d = *pa; |
| 3525 | sum = d + *pb++; |
| 3526 | d = (sum < d); /* detect overflow */ |
| 3527 | *pa++ = sum += carry; |
| 3528 | carry = d + (sum < carry); /* detect overflow */ |
| 3529 | #endif |
| 3530 | } |
| 3531 | |
| 3532 | /* If we run out of 'b' digits before we're actually done, make |
| 3533 | sure the carries get propagated upward... |
| 3534 | */ |
| 3535 | used = MP_USED(a); |
| 3536 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
| 3537 | while (w && ix < used) { |
| 3538 | w = w + *pa; |
| 3539 | *pa++ = ACCUM(w); |
| 3540 | w = CARRYOUT(w); |
| 3541 | ++ix; |
| 3542 | } |
| 3543 | #else |
| 3544 | while (carry && ix < used) { |
| 3545 | sum = carry + *pa; |
| 3546 | *pa++ = sum; |
| 3547 | carry = !sum; |
| 3548 | ++ix; |
| 3549 | } |
| 3550 | #endif |
| 3551 | |
| 3552 | /* If there's an overall carry out, increase precision and include |
| 3553 | it. We could have done this initially, but why touch the memory |
| 3554 | allocator unless we're sure we have to? |
| 3555 | */ |
| 3556 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
| 3557 | if (w) { |
| 3558 | if((res = s_mp_pad(a, used + 1)) != MP_OKAY) |
| 3559 | return res; |
| 3560 | |
| 3561 | DIGIT(a, ix) = (mp_digit)w; |
| 3562 | } |
| 3563 | #else |
| 3564 | if (carry) { |
| 3565 | if((res = s_mp_pad(a, used + 1)) != MP_OKAY) |
| 3566 | return res; |
| 3567 | |
| 3568 | DIGIT(a, used) = carry; |
| 3569 | } |
| 3570 | #endif |
| 3571 | |
| 3572 | return MP_OKAY; |
| 3573 | } /* end s_mp_add() */ |
| 3574 | |
| 3575 | /* }}} */ |
| 3576 | |
| 3577 | /* Compute c = |a| + |b| */ /* magnitude addition */ |
| 3578 | mp_err s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c) |
| 3579 | { |
| 3580 | mp_digit *pa, *pb, *pc; |
| 3581 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
| 3582 | mp_word w = 0; |
| 3583 | #else |
| 3584 | mp_digit sum, carry = 0, d; |
| 3585 | #endif |
| 3586 | mp_size ix; |
| 3587 | mp_size used; |
| 3588 | mp_err res; |
| 3589 | |
| 3590 | MP_SIGN(c) = MP_SIGN(a); |
| 3591 | if (MP_USED(a) < MP_USED(b)) { |
| 3592 | const mp_int *xch = a; |
| 3593 | a = b; |
| 3594 | b = xch; |
| 3595 | } |
| 3596 | |
| 3597 | /* Make sure a has enough precision for the output value */ |
| 3598 | if (MP_OKAY != (res = s_mp_pad(c, MP_USED(a)))) |
| 3599 | return res; |
| 3600 | |
| 3601 | /* |
| 3602 | Add up all digits up to the precision of b. If b had initially |
| 3603 | the same precision as a, or greater, we took care of it by the |
| 3604 | exchange step above, so there is no problem. If b had initially |
| 3605 | less precision, we'll have to make sure the carry out is duly |
| 3606 | propagated upward among the higher-order digits of the sum. |
| 3607 | */ |
| 3608 | pa = MP_DIGITS(a); |
| 3609 | pb = MP_DIGITS(b); |
| 3610 | pc = MP_DIGITS(c); |
| 3611 | used = MP_USED(b); |
| 3612 | for (ix = 0; ix < used; ix++) { |
| 3613 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
| 3614 | w = w + *pa++ + *pb++; |
| 3615 | *pc++ = ACCUM(w); |
| 3616 | w = CARRYOUT(w); |
| 3617 | #else |
| 3618 | d = *pa++; |
| 3619 | sum = d + *pb++; |
| 3620 | d = (sum < d); /* detect overflow */ |
| 3621 | *pc++ = sum += carry; |
| 3622 | carry = d + (sum < carry); /* detect overflow */ |
| 3623 | #endif |
| 3624 | } |
| 3625 | |
| 3626 | /* If we run out of 'b' digits before we're actually done, make |
| 3627 | sure the carries get propagated upward... |
| 3628 | */ |
| 3629 | for (used = MP_USED(a); ix < used; ++ix) { |
| 3630 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
| 3631 | w = w + *pa++; |
| 3632 | *pc++ = ACCUM(w); |
| 3633 | w = CARRYOUT(w); |
| 3634 | #else |
| 3635 | *pc++ = sum = carry + *pa++; |
| 3636 | carry = (sum < carry); |
| 3637 | #endif |
| 3638 | } |
| 3639 | |
| 3640 | /* If there's an overall carry out, increase precision and include |
| 3641 | it. We could have done this initially, but why touch the memory |
| 3642 | allocator unless we're sure we have to? |
| 3643 | */ |
| 3644 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
| 3645 | if (w) { |
| 3646 | if((res = s_mp_pad(c, used + 1)) != MP_OKAY) |
| 3647 | return res; |
| 3648 | |
| 3649 | DIGIT(c, used) = (mp_digit)w; |
| 3650 | ++used; |
| 3651 | } |
| 3652 | #else |
| 3653 | if (carry) { |
| 3654 | if((res = s_mp_pad(c, used + 1)) != MP_OKAY) |
| 3655 | return res; |
| 3656 | |
| 3657 | DIGIT(c, used) = carry; |
| 3658 | ++used; |
| 3659 | } |
| 3660 | #endif |
| 3661 | MP_USED(c) = used; |
| 3662 | return MP_OKAY; |
| 3663 | } |
| 3664 | /* {{{ s_mp_add_offset(a, b, offset) */ |
| 3665 | |
| 3666 | /* Compute a = |a| + ( |b| * (RADIX ** offset) ) */ |
| 3667 | mp_err s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset) |
| 3668 | { |
| 3669 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
| 3670 | mp_word w, k = 0; |
| 3671 | #else |
| 3672 | mp_digit d, sum, carry = 0; |
| 3673 | #endif |
| 3674 | mp_size ib; |
| 3675 | mp_size ia; |
| 3676 | mp_size lim; |
| 3677 | mp_err res; |
| 3678 | |
| 3679 | /* Make sure a has enough precision for the output value */ |
| 3680 | lim = MP_USED(b) + offset; |
| 3681 | if((lim > USED(a)) && (res = s_mp_pad(a, lim)) != MP_OKAY) |
| 3682 | return res; |
| 3683 | |
| 3684 | /* |
| 3685 | Add up all digits up to the precision of b. If b had initially |
| 3686 | the same precision as a, or greater, we took care of it by the |
| 3687 | padding step above, so there is no problem. If b had initially |
| 3688 | less precision, we'll have to make sure the carry out is duly |
| 3689 | propagated upward among the higher-order digits of the sum. |
| 3690 | */ |
| 3691 | lim = USED(b); |
| 3692 | for(ib = 0, ia = offset; ib < lim; ib++, ia++) { |
| 3693 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
| 3694 | w = (mp_word)DIGIT(a, ia) + DIGIT(b, ib) + k; |
| 3695 | DIGIT(a, ia) = ACCUM(w); |
| 3696 | k = CARRYOUT(w); |
| 3697 | #else |
| 3698 | d = MP_DIGIT(a, ia); |
| 3699 | sum = d + MP_DIGIT(b, ib); |
| 3700 | d = (sum < d); |
| 3701 | MP_DIGIT(a,ia) = sum += carry; |
| 3702 | carry = d + (sum < carry); |
| 3703 | #endif |
| 3704 | } |
| 3705 | |
| 3706 | /* If we run out of 'b' digits before we're actually done, make |
| 3707 | sure the carries get propagated upward... |
| 3708 | */ |
| 3709 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
| 3710 | for (lim = MP_USED(a); k && (ia < lim); ++ia) { |
| 3711 | w = (mp_word)DIGIT(a, ia) + k; |
| 3712 | DIGIT(a, ia) = ACCUM(w); |
| 3713 | k = CARRYOUT(w); |
| 3714 | } |
| 3715 | #else |
| 3716 | for (lim = MP_USED(a); carry && (ia < lim); ++ia) { |
| 3717 | d = MP_DIGIT(a, ia); |
| 3718 | MP_DIGIT(a,ia) = sum = d + carry; |
| 3719 | carry = (sum < d); |
| 3720 | } |
| 3721 | #endif |
| 3722 | |
| 3723 | /* If there's an overall carry out, increase precision and include |
| 3724 | it. We could have done this initially, but why touch the memory |
| 3725 | allocator unless we're sure we have to? |
| 3726 | */ |
| 3727 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
| 3728 | if(k) { |
| 3729 | if((res = s_mp_pad(a, USED(a) + 1)) != MP_OKAY) |
| 3730 | return res; |
| 3731 | |
| 3732 | DIGIT(a, ia) = (mp_digit)k; |
| 3733 | } |
| 3734 | #else |
| 3735 | if (carry) { |
| 3736 | if((res = s_mp_pad(a, lim + 1)) != MP_OKAY) |
| 3737 | return res; |
| 3738 | |
| 3739 | DIGIT(a, lim) = carry; |
| 3740 | } |
| 3741 | #endif |
| 3742 | s_mp_clamp(a); |
| 3743 | |
| 3744 | return MP_OKAY; |
| 3745 | |
| 3746 | } /* end s_mp_add_offset() */ |
| 3747 | |
| 3748 | /* }}} */ |
| 3749 | |
| 3750 | /* {{{ s_mp_sub(a, b) */ |
| 3751 | |
| 3752 | /* Compute a = |a| - |b|, assumes |a| >= |b| */ |
| 3753 | mp_err s_mp_sub(mp_int *a, const mp_int *b) /* magnitude subtract */ |
| 3754 | { |
| 3755 | mp_digit *pa, *pb, *limit; |
| 3756 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
| 3757 | mp_sword w = 0; |
| 3758 | #else |
| 3759 | mp_digit d, diff, borrow = 0; |
| 3760 | #endif |
| 3761 | |
| 3762 | /* |
| 3763 | Subtract and propagate borrow. Up to the precision of b, this |
| 3764 | accounts for the digits of b; after that, we just make sure the |
| 3765 | carries get to the right place. This saves having to pad b out to |
| 3766 | the precision of a just to make the loops work right... |
| 3767 | */ |
| 3768 | pa = MP_DIGITS(a); |
| 3769 | pb = MP_DIGITS(b); |
| 3770 | limit = pb + MP_USED(b); |
| 3771 | while (pb < limit) { |
| 3772 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
| 3773 | w = w + *pa - *pb++; |
| 3774 | *pa++ = ACCUM(w); |
| 3775 | w >>= MP_DIGIT_BIT; |
| 3776 | #else |
| 3777 | d = *pa; |
| 3778 | diff = d - *pb++; |
| 3779 | d = (diff > d); /* detect borrow */ |
| 3780 | if (borrow && --diff == MP_DIGIT_MAX) |
| 3781 | ++d; |
| 3782 | *pa++ = diff; |
| 3783 | borrow = d; |
| 3784 | #endif |
| 3785 | } |
| 3786 | limit = MP_DIGITS(a) + MP_USED(a); |
| 3787 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
| 3788 | while (w && pa < limit) { |
| 3789 | w = w + *pa; |
| 3790 | *pa++ = ACCUM(w); |
| 3791 | w >>= MP_DIGIT_BIT; |
| 3792 | } |
| 3793 | #else |
| 3794 | while (borrow && pa < limit) { |
| 3795 | d = *pa; |
| 3796 | *pa++ = diff = d - borrow; |
| 3797 | borrow = (diff > d); |
| 3798 | } |
| 3799 | #endif |
| 3800 | |
| 3801 | /* Clobber any leading zeroes we created */ |
| 3802 | s_mp_clamp(a); |
| 3803 | |
| 3804 | /* |
| 3805 | If there was a borrow out, then |b| > |a| in violation |
| 3806 | of our input invariant. We've already done the work, |
| 3807 | but we'll at least complain about it... |
| 3808 | */ |
| 3809 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
| 3810 | return w ? MP_RANGE : MP_OKAY; |
| 3811 | #else |
| 3812 | return borrow ? MP_RANGE : MP_OKAY; |
| 3813 | #endif |
| 3814 | } /* end s_mp_sub() */ |
| 3815 | |
| 3816 | /* }}} */ |
| 3817 | |
| 3818 | /* Compute c = |a| - |b|, assumes |a| >= |b| */ /* magnitude subtract */ |
| 3819 | mp_err s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c) |
| 3820 | { |
| 3821 | mp_digit *pa, *pb, *pc; |
| 3822 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
| 3823 | mp_sword w = 0; |
| 3824 | #else |
| 3825 | mp_digit d, diff, borrow = 0; |
| 3826 | #endif |
| 3827 | int ix, limit; |
| 3828 | mp_err res; |
| 3829 | |
| 3830 | MP_SIGN(c) = MP_SIGN(a); |
| 3831 | |
| 3832 | /* Make sure a has enough precision for the output value */ |
| 3833 | if (MP_OKAY != (res = s_mp_pad(c, MP_USED(a)))) |
| 3834 | return res; |
| 3835 | |
| 3836 | /* |
| 3837 | Subtract and propagate borrow. Up to the precision of b, this |
| 3838 | accounts for the digits of b; after that, we just make sure the |
| 3839 | carries get to the right place. This saves having to pad b out to |
| 3840 | the precision of a just to make the loops work right... |
| 3841 | */ |
| 3842 | pa = MP_DIGITS(a); |
| 3843 | pb = MP_DIGITS(b); |
| 3844 | pc = MP_DIGITS(c); |
| 3845 | limit = MP_USED(b); |
| 3846 | for (ix = 0; ix < limit; ++ix) { |
| 3847 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
| 3848 | w = w + *pa++ - *pb++; |
| 3849 | *pc++ = ACCUM(w); |
| 3850 | w >>= MP_DIGIT_BIT; |
| 3851 | #else |
| 3852 | d = *pa++; |
| 3853 | diff = d - *pb++; |
| 3854 | d = (diff > d); |
| 3855 | if (borrow && --diff == MP_DIGIT_MAX) |
| 3856 | ++d; |
| 3857 | *pc++ = diff; |
| 3858 | borrow = d; |
| 3859 | #endif |
| 3860 | } |
| 3861 | for (limit = MP_USED(a); ix < limit; ++ix) { |
| 3862 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
| 3863 | w = w + *pa++; |
| 3864 | *pc++ = ACCUM(w); |
| 3865 | w >>= MP_DIGIT_BIT; |
| 3866 | #else |
| 3867 | d = *pa++; |
| 3868 | *pc++ = diff = d - borrow; |
| 3869 | borrow = (diff > d); |
| 3870 | #endif |
| 3871 | } |
| 3872 | |
| 3873 | /* Clobber any leading zeroes we created */ |
| 3874 | MP_USED(c) = ix; |
| 3875 | s_mp_clamp(c); |
| 3876 | |
| 3877 | /* |
| 3878 | If there was a borrow out, then |b| > |a| in violation |
| 3879 | of our input invariant. We've already done the work, |
| 3880 | but we'll at least complain about it... |
| 3881 | */ |
| 3882 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
| 3883 | return w ? MP_RANGE : MP_OKAY; |
| 3884 | #else |
| 3885 | return borrow ? MP_RANGE : MP_OKAY; |
| 3886 | #endif |
| 3887 | } |
| 3888 | /* {{{ s_mp_mul(a, b) */ |
| 3889 | |
| 3890 | /* Compute a = |a| * |b| */ |
| 3891 | mp_err s_mp_mul(mp_int *a, const mp_int *b) |
| 3892 | { |
| 3893 | return mp_mul(a, b, a); |
| 3894 | } /* end s_mp_mul() */ |
| 3895 | |
| 3896 | /* }}} */ |
| 3897 | |
| 3898 | #if defined(MP_USE_UINT_DIGIT) && defined(MP_USE_LONG_LONG_MULTIPLY) |
| 3899 | /* This trick works on Sparc V8 CPUs with the Workshop compilers. */ |
| 3900 | #define MP_MUL_DxD(a, b, Phi, Plo) \ |
| 3901 | { unsigned long long product = (unsigned long long)a * b; \ |
| 3902 | Plo = (mp_digit)product; \ |
| 3903 | Phi = (mp_digit)(product >> MP_DIGIT_BIT); } |
| 3904 | #elif defined(OSF1) |
| 3905 | #define MP_MUL_DxD(a, b, Phi, Plo) \ |
| 3906 | { Plo = asm ("mulq %a0, %a1, %v0", a, b);\ |
| 3907 | Phi = asm ("umulh %a0, %a1, %v0", a, b); } |
| 3908 | #else |
| 3909 | #define MP_MUL_DxD(a, b, Phi, Plo) \ |
| 3910 | { mp_digit a0b1, a1b0; \ |
| 3911 | Plo = (a & MP_HALF_DIGIT_MAX) * (b & MP_HALF_DIGIT_MAX); \ |
| 3912 | Phi = (a >> MP_HALF_DIGIT_BIT) * (b >> MP_HALF_DIGIT_BIT); \ |
| 3913 | a0b1 = (a & MP_HALF_DIGIT_MAX) * (b >> MP_HALF_DIGIT_BIT); \ |
| 3914 | a1b0 = (a >> MP_HALF_DIGIT_BIT) * (b & MP_HALF_DIGIT_MAX); \ |
| 3915 | a1b0 += a0b1; \ |
| 3916 | Phi += a1b0 >> MP_HALF_DIGIT_BIT; \ |
| 3917 | if (a1b0 < a0b1) \ |
| 3918 | Phi += MP_HALF_RADIX; \ |
| 3919 | a1b0 <<= MP_HALF_DIGIT_BIT; \ |
| 3920 | Plo += a1b0; \ |
| 3921 | if (Plo < a1b0) \ |
| 3922 | ++Phi; \ |
| 3923 | } |
| 3924 | #endif |
| 3925 | |
| 3926 | #if !defined(MP_ASSEMBLY_MULTIPLY) |
| 3927 | /* c = a * b */ |
| 3928 | void s_mpv_mul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *c) |
| 3929 | { |
| 3930 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD) |
| 3931 | mp_digit d = 0; |
| 3932 | |
| 3933 | /* Inner product: Digits of a */ |
| 3934 | while (a_len--) { |
| 3935 | mp_word w = ((mp_word)b * *a++) + d; |
| 3936 | *c++ = ACCUM(w); |
| 3937 | d = CARRYOUT(w); |
| 3938 | } |
| 3939 | *c = d; |
| 3940 | #else |
| 3941 | mp_digit carry = 0; |
| 3942 | while (a_len--) { |
| 3943 | mp_digit a_i = *a++; |
| 3944 | mp_digit a0b0, a1b1; |
| 3945 | |
| 3946 | MP_MUL_DxD(a_i, b, a1b1, a0b0); |
| 3947 | |
| 3948 | a0b0 += carry; |
| 3949 | if (a0b0 < carry) |
| 3950 | ++a1b1; |
| 3951 | *c++ = a0b0; |
| 3952 | carry = a1b1; |
| 3953 | } |
| 3954 | *c = carry; |
| 3955 | #endif |
| 3956 | } |
| 3957 | |
| 3958 | /* c += a * b */ |
| 3959 | void s_mpv_mul_d_add(const mp_digit *a, mp_size a_len, mp_digit b, |
| 3960 | mp_digit *c) |
| 3961 | { |
| 3962 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD) |
| 3963 | mp_digit d = 0; |
| 3964 | |
| 3965 | /* Inner product: Digits of a */ |
| 3966 | while (a_len--) { |
| 3967 | mp_word w = ((mp_word)b * *a++) + *c + d; |
| 3968 | *c++ = ACCUM(w); |
| 3969 | d = CARRYOUT(w); |
| 3970 | } |
| 3971 | *c = d; |
| 3972 | #else |
| 3973 | mp_digit carry = 0; |
| 3974 | while (a_len--) { |
| 3975 | mp_digit a_i = *a++; |
| 3976 | mp_digit a0b0, a1b1; |
| 3977 | |
| 3978 | MP_MUL_DxD(a_i, b, a1b1, a0b0); |
| 3979 | |
| 3980 | a0b0 += carry; |
| 3981 | if (a0b0 < carry) |
| 3982 | ++a1b1; |
| 3983 | a0b0 += a_i = *c; |
| 3984 | if (a0b0 < a_i) |
| 3985 | ++a1b1; |
| 3986 | *c++ = a0b0; |
| 3987 | carry = a1b1; |
| 3988 | } |
| 3989 | *c = carry; |
| 3990 | #endif |
| 3991 | } |
| 3992 | |
| 3993 | /* Presently, this is only used by the Montgomery arithmetic code. */ |
| 3994 | /* c += a * b */ |
| 3995 | void s_mpv_mul_d_add_prop(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *c) |
| 3996 | { |
| 3997 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD) |
| 3998 | mp_digit d = 0; |
| 3999 | |
| 4000 | /* Inner product: Digits of a */ |
| 4001 | while (a_len--) { |
| 4002 | mp_word w = ((mp_word)b * *a++) + *c + d; |
| 4003 | *c++ = ACCUM(w); |
| 4004 | d = CARRYOUT(w); |
| 4005 | } |
| 4006 | |
| 4007 | while (d) { |
| 4008 | mp_word w = (mp_word)*c + d; |
| 4009 | *c++ = ACCUM(w); |
| 4010 | d = CARRYOUT(w); |
| 4011 | } |
| 4012 | #else |
| 4013 | mp_digit carry = 0; |
| 4014 | while (a_len--) { |
| 4015 | mp_digit a_i = *a++; |
| 4016 | mp_digit a0b0, a1b1; |
| 4017 | |
| 4018 | MP_MUL_DxD(a_i, b, a1b1, a0b0); |
| 4019 | |
| 4020 | a0b0 += carry; |
| 4021 | if (a0b0 < carry) |
| 4022 | ++a1b1; |
| 4023 | |
| 4024 | a0b0 += a_i = *c; |
| 4025 | if (a0b0 < a_i) |
| 4026 | ++a1b1; |
| 4027 | |
| 4028 | *c++ = a0b0; |
| 4029 | carry = a1b1; |
| 4030 | } |
| 4031 | while (carry) { |
| 4032 | mp_digit c_i = *c; |
| 4033 | carry += c_i; |
| 4034 | *c++ = carry; |
| 4035 | carry = carry < c_i; |
| 4036 | } |
| 4037 | #endif |
| 4038 | } |
| 4039 | #endif |
| 4040 | |
| 4041 | #if defined(MP_USE_UINT_DIGIT) && defined(MP_USE_LONG_LONG_MULTIPLY) |
| 4042 | /* This trick works on Sparc V8 CPUs with the Workshop compilers. */ |
| 4043 | #define MP_SQR_D(a, Phi, Plo) \ |
| 4044 | { unsigned long long square = (unsigned long long)a * a; \ |
| 4045 | Plo = (mp_digit)square; \ |
| 4046 | Phi = (mp_digit)(square >> MP_DIGIT_BIT); } |
| 4047 | #elif defined(OSF1) |
| 4048 | #define MP_SQR_D(a, Phi, Plo) \ |
| 4049 | { Plo = asm ("mulq %a0, %a0, %v0", a);\ |
| 4050 | Phi = asm ("umulh %a0, %a0, %v0", a); } |
| 4051 | #else |
| 4052 | #define MP_SQR_D(a, Phi, Plo) \ |
| 4053 | { mp_digit Pmid; \ |
| 4054 | Plo = (a & MP_HALF_DIGIT_MAX) * (a & MP_HALF_DIGIT_MAX); \ |
| 4055 | Phi = (a >> MP_HALF_DIGIT_BIT) * (a >> MP_HALF_DIGIT_BIT); \ |
| 4056 | Pmid = (a & MP_HALF_DIGIT_MAX) * (a >> MP_HALF_DIGIT_BIT); \ |
| 4057 | Phi += Pmid >> (MP_HALF_DIGIT_BIT - 1); \ |
| 4058 | Pmid <<= (MP_HALF_DIGIT_BIT + 1); \ |
| 4059 | Plo += Pmid; \ |
| 4060 | if (Plo < Pmid) \ |
| 4061 | ++Phi; \ |
| 4062 | } |
| 4063 | #endif |
| 4064 | |
| 4065 | #if !defined(MP_ASSEMBLY_SQUARE) |
| 4066 | /* Add the squares of the digits of a to the digits of b. */ |
| 4067 | void s_mpv_sqr_add_prop(const mp_digit *pa, mp_size a_len, mp_digit *ps) |
| 4068 | { |
| 4069 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD) |
| 4070 | mp_word w; |
| 4071 | mp_digit d; |
| 4072 | mp_size ix; |
| 4073 | |
| 4074 | w = 0; |
| 4075 | #define ADD_SQUARE(n) \ |
| 4076 | d = pa[n]; \ |
| 4077 | w += (d * (mp_word)d) + ps[2*n]; \ |
| 4078 | ps[2*n] = ACCUM(w); \ |
| 4079 | w = (w >> DIGIT_BIT) + ps[2*n+1]; \ |
| 4080 | ps[2*n+1] = ACCUM(w); \ |
| 4081 | w = (w >> DIGIT_BIT) |
| 4082 | |
| 4083 | for (ix = a_len; ix >= 4; ix -= 4) { |
| 4084 | ADD_SQUARE(0); |
| 4085 | ADD_SQUARE(1); |
| 4086 | ADD_SQUARE(2); |
| 4087 | ADD_SQUARE(3); |
| 4088 | pa += 4; |
| 4089 | ps += 8; |
| 4090 | } |
| 4091 | if (ix) { |
| 4092 | ps += 2*ix; |
| 4093 | pa += ix; |
| 4094 | switch (ix) { |
| 4095 | case 3: ADD_SQUARE(-3); /* FALLTHRU */ |
| 4096 | case 2: ADD_SQUARE(-2); /* FALLTHRU */ |
| 4097 | case 1: ADD_SQUARE(-1); /* FALLTHRU */ |
| 4098 | case 0: break; |
| 4099 | } |
| 4100 | } |
| 4101 | while (w) { |
| 4102 | w += *ps; |
| 4103 | *ps++ = ACCUM(w); |
| 4104 | w = (w >> DIGIT_BIT); |
| 4105 | } |
| 4106 | #else |
| 4107 | mp_digit carry = 0; |
| 4108 | while (a_len--) { |
| 4109 | mp_digit a_i = *pa++; |
| 4110 | mp_digit a0a0, a1a1; |
| 4111 | |
| 4112 | MP_SQR_D(a_i, a1a1, a0a0); |
| 4113 | |
| 4114 | /* here a1a1 and a0a0 constitute a_i ** 2 */ |
| 4115 | a0a0 += carry; |
| 4116 | if (a0a0 < carry) |
| 4117 | ++a1a1; |
| 4118 | |
| 4119 | /* now add to ps */ |
| 4120 | a0a0 += a_i = *ps; |
| 4121 | if (a0a0 < a_i) |
| 4122 | ++a1a1; |
| 4123 | *ps++ = a0a0; |
| 4124 | a1a1 += a_i = *ps; |
| 4125 | carry = (a1a1 < a_i); |
| 4126 | *ps++ = a1a1; |
| 4127 | } |
| 4128 | while (carry) { |
| 4129 | mp_digit s_i = *ps; |
| 4130 | carry += s_i; |
| 4131 | *ps++ = carry; |
| 4132 | carry = carry < s_i; |
| 4133 | } |
| 4134 | #endif |
| 4135 | } |
| 4136 | #endif |
| 4137 | |
| 4138 | #if (defined(MP_NO_MP_WORD) || defined(MP_NO_DIV_WORD)) \ |
| 4139 | && !defined(MP_ASSEMBLY_DIV_2DX1D) |
| 4140 | /* |
| 4141 | ** Divide 64-bit (Nhi,Nlo) by 32-bit divisor, which must be normalized |
| 4142 | ** so its high bit is 1. This code is from NSPR. |
| 4143 | */ |
| 4144 | mp_err s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo, mp_digit divisor, |
| 4145 | mp_digit *qp, mp_digit *rp) |
| 4146 | { |
| 4147 | mp_digit d1, d0, q1, q0; |
| 4148 | mp_digit r1, r0, m; |
| 4149 | |
| 4150 | d1 = divisor >> MP_HALF_DIGIT_BIT; |
| 4151 | d0 = divisor & MP_HALF_DIGIT_MAX; |
| 4152 | r1 = Nhi % d1; |
| 4153 | q1 = Nhi / d1; |
| 4154 | m = q1 * d0; |
| 4155 | r1 = (r1 << MP_HALF_DIGIT_BIT) | (Nlo >> MP_HALF_DIGIT_BIT); |
| 4156 | if (r1 < m) { |
| 4157 | q1--, r1 += divisor; |
| 4158 | if (r1 >= divisor && r1 < m) { |
| 4159 | q1--, r1 += divisor; |
| 4160 | } |
| 4161 | } |
| 4162 | r1 -= m; |
| 4163 | r0 = r1 % d1; |
| 4164 | q0 = r1 / d1; |
| 4165 | m = q0 * d0; |
| 4166 | r0 = (r0 << MP_HALF_DIGIT_BIT) | (Nlo & MP_HALF_DIGIT_MAX); |
| 4167 | if (r0 < m) { |
| 4168 | q0--, r0 += divisor; |
| 4169 | if (r0 >= divisor && r0 < m) { |
| 4170 | q0--, r0 += divisor; |
| 4171 | } |
| 4172 | } |
| 4173 | if (qp) |
| 4174 | *qp = (q1 << MP_HALF_DIGIT_BIT) | q0; |
| 4175 | if (rp) |
| 4176 | *rp = r0 - m; |
| 4177 | return MP_OKAY; |
| 4178 | } |
| 4179 | #endif |
| 4180 | |
| 4181 | #if MP_SQUARE |
| 4182 | /* {{{ s_mp_sqr(a) */ |
| 4183 | |
| 4184 | mp_err s_mp_sqr(mp_int *a) |
| 4185 | { |
| 4186 | mp_err res; |
| 4187 | mp_int tmp; |
| 4188 | tmp.flag = (mp_sign)0; |
| 4189 | |
| 4190 | if((res = mp_init_size(&tmp, 2 * USED(a), FLAG(a))) != MP_OKAY) |
| 4191 | return res; |
| 4192 | res = mp_sqr(a, &tmp); |
| 4193 | if (res == MP_OKAY) { |
| 4194 | s_mp_exch(&tmp, a); |
| 4195 | } |
| 4196 | mp_clear(&tmp); |
| 4197 | return res; |
| 4198 | } |
| 4199 | |
| 4200 | /* }}} */ |
| 4201 | #endif |
| 4202 | |
| 4203 | /* {{{ s_mp_div(a, b) */ |
| 4204 | |
| 4205 | /* |
| 4206 | s_mp_div(a, b) |
| 4207 | |
| 4208 | Compute a = a / b and b = a mod b. Assumes b > a. |
| 4209 | */ |
| 4210 | |
| 4211 | mp_err s_mp_div(mp_int *rem, /* i: dividend, o: remainder */ |
| 4212 | mp_int *div, /* i: divisor */ |
| 4213 | mp_int *quot) /* i: 0; o: quotient */ |
| 4214 | { |
| 4215 | mp_int part, t; |
| 4216 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD) |
| 4217 | mp_word q_msd; |
| 4218 | #else |
| 4219 | mp_digit q_msd; |
| 4220 | #endif |
| 4221 | mp_err res; |
| 4222 | mp_digit d; |
| 4223 | mp_digit div_msd; |
| 4224 | int ix; |
| 4225 | |
| 4226 | t.dp = (mp_digit *)NULL; |
| 4227 | |
| 4228 | if(mp_cmp_z(div) == 0) |
| 4229 | return MP_RANGE; |
| 4230 | |
| 4231 | /* Shortcut if divisor is power of two */ |
| 4232 | if((ix = s_mp_ispow2(div)) >= 0) { |
| 4233 | MP_CHECKOK( mp_copy(rem, quot) ); |
| 4234 | s_mp_div_2d(quot, (mp_digit)ix); |
| 4235 | s_mp_mod_2d(rem, (mp_digit)ix); |
| 4236 | |
| 4237 | return MP_OKAY; |
| 4238 | } |
| 4239 | |
| 4240 | DIGITS(&t) = 0; |
| 4241 | MP_SIGN(rem) = ZPOS; |
| 4242 | MP_SIGN(div) = ZPOS; |
| 4243 | |
| 4244 | /* A working temporary for division */ |
| 4245 | MP_CHECKOK( mp_init_size(&t, MP_ALLOC(rem), FLAG(rem))); |
| 4246 | |
| 4247 | /* Normalize to optimize guessing */ |
| 4248 | MP_CHECKOK( s_mp_norm(rem, div, &d) ); |
| 4249 | |
| 4250 | part = *rem; |
| 4251 | |
| 4252 | /* Perform the division itself...woo! */ |
| 4253 | MP_USED(quot) = MP_ALLOC(quot); |
| 4254 | |
| 4255 | /* Find a partial substring of rem which is at least div */ |
| 4256 | /* If we didn't find one, we're finished dividing */ |
| 4257 | while (MP_USED(rem) > MP_USED(div) || s_mp_cmp(rem, div) >= 0) { |
| 4258 | int i; |
| 4259 | int unusedRem; |
| 4260 | |
| 4261 | unusedRem = MP_USED(rem) - MP_USED(div); |
| 4262 | MP_DIGITS(&part) = MP_DIGITS(rem) + unusedRem; |
| 4263 | MP_ALLOC(&part) = MP_ALLOC(rem) - unusedRem; |
| 4264 | MP_USED(&part) = MP_USED(div); |
| 4265 | if (s_mp_cmp(&part, div) < 0) { |
| 4266 | -- unusedRem; |
| 4267 | #if MP_ARGCHK == 2 |
| 4268 | assert(unusedRem >= 0); |
| 4269 | #endif |
| 4270 | -- MP_DIGITS(&part); |
| 4271 | ++ MP_USED(&part); |
| 4272 | ++ MP_ALLOC(&part); |
| 4273 | } |
| 4274 | |
| 4275 | /* Compute a guess for the next quotient digit */ |
| 4276 | q_msd = MP_DIGIT(&part, MP_USED(&part) - 1); |
| 4277 | div_msd = MP_DIGIT(div, MP_USED(div) - 1); |
| 4278 | if (q_msd >= div_msd) { |
| 4279 | q_msd = 1; |
| 4280 | } else if (MP_USED(&part) > 1) { |
| 4281 | #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD) |
| 4282 | q_msd = (q_msd << MP_DIGIT_BIT) | MP_DIGIT(&part, MP_USED(&part) - 2); |
| 4283 | q_msd /= div_msd; |
| 4284 | if (q_msd == RADIX) |
| 4285 | --q_msd; |
| 4286 | #else |
| 4287 | mp_digit r; |
| 4288 | MP_CHECKOK( s_mpv_div_2dx1d(q_msd, MP_DIGIT(&part, MP_USED(&part) - 2), |
| 4289 | div_msd, &q_msd, &r) ); |
| 4290 | #endif |
| 4291 | } else { |
| 4292 | q_msd = 0; |
| 4293 | } |
| 4294 | #if MP_ARGCHK == 2 |
| 4295 | assert(q_msd > 0); /* This case should never occur any more. */ |
| 4296 | #endif |
| 4297 | if (q_msd <= 0) |
| 4298 | break; |
| 4299 | |
| 4300 | /* See what that multiplies out to */ |
| 4301 | mp_copy(div, &t); |
| 4302 | MP_CHECKOK( s_mp_mul_d(&t, (mp_digit)q_msd) ); |
| 4303 | |
| 4304 | /* |
| 4305 | If it's too big, back it off. We should not have to do this |
| 4306 | more than once, or, in rare cases, twice. Knuth describes a |
| 4307 | method by which this could be reduced to a maximum of once, but |
| 4308 | I didn't implement that here. |
| 4309 | * When using s_mpv_div_2dx1d, we may have to do this 3 times. |
| 4310 | */ |
| 4311 | for (i = 4; s_mp_cmp(&t, &part) > 0 && i > 0; --i) { |
| 4312 | --q_msd; |
| 4313 | s_mp_sub(&t, div); /* t -= div */ |
| 4314 | } |
| 4315 | if (i < 0) { |
| 4316 | res = MP_RANGE; |
| 4317 | goto CLEANUP; |
| 4318 | } |
| 4319 | |
| 4320 | /* At this point, q_msd should be the right next digit */ |
| 4321 | MP_CHECKOK( s_mp_sub(&part, &t) ); /* part -= t */ |
| 4322 | s_mp_clamp(rem); |
| 4323 | |
| 4324 | /* |
| 4325 | Include the digit in the quotient. We allocated enough memory |
| 4326 | for any quotient we could ever possibly get, so we should not |
| 4327 | have to check for failures here |
| 4328 | */ |
| 4329 | MP_DIGIT(quot, unusedRem) = (mp_digit)q_msd; |
| 4330 | } |
| 4331 | |
| 4332 | /* Denormalize remainder */ |
| 4333 | if (d) { |
| 4334 | s_mp_div_2d(rem, d); |
| 4335 | } |
| 4336 | |
| 4337 | s_mp_clamp(quot); |
| 4338 | |
| 4339 | CLEANUP: |
| 4340 | mp_clear(&t); |
| 4341 | |
| 4342 | return res; |
| 4343 | |
| 4344 | } /* end s_mp_div() */ |
| 4345 | |
| 4346 | |
| 4347 | /* }}} */ |
| 4348 | |
| 4349 | /* {{{ s_mp_2expt(a, k) */ |
| 4350 | |
| 4351 | mp_err s_mp_2expt(mp_int *a, mp_digit k) |
| 4352 | { |
| 4353 | mp_err res; |
| 4354 | mp_size dig, bit; |
| 4355 | |
| 4356 | dig = k / DIGIT_BIT; |
| 4357 | bit = k % DIGIT_BIT; |
| 4358 | |
| 4359 | mp_zero(a); |
| 4360 | if((res = s_mp_pad(a, dig + 1)) != MP_OKAY) |
| 4361 | return res; |
| 4362 | |
| 4363 | DIGIT(a, dig) |= ((mp_digit)1 << bit); |
| 4364 | |
| 4365 | return MP_OKAY; |
| 4366 | |
| 4367 | } /* end s_mp_2expt() */ |
| 4368 | |
| 4369 | /* }}} */ |
| 4370 | |
| 4371 | /* {{{ s_mp_reduce(x, m, mu) */ |
| 4372 | |
| 4373 | /* |
| 4374 | Compute Barrett reduction, x (mod m), given a precomputed value for |
| 4375 | mu = b^2k / m, where b = RADIX and k = #digits(m). This should be |
| 4376 | faster than straight division, when many reductions by the same |
| 4377 | value of m are required (such as in modular exponentiation). This |
| 4378 | can nearly halve the time required to do modular exponentiation, |
| 4379 | as compared to using the full integer divide to reduce. |
| 4380 | |
| 4381 | This algorithm was derived from the _Handbook of Applied |
| 4382 | Cryptography_ by Menezes, Oorschot and VanStone, Ch. 14, |
| 4383 | pp. 603-604. |
| 4384 | */ |
| 4385 | |
| 4386 | mp_err s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu) |
| 4387 | { |
| 4388 | mp_int q; |
| 4389 | mp_err res; |
| 4390 | |
| 4391 | if((res = mp_init_copy(&q, x)) != MP_OKAY) |
| 4392 | return res; |
| 4393 | |
| 4394 | s_mp_rshd(&q, USED(m) - 1); /* q1 = x / b^(k-1) */ |
| 4395 | s_mp_mul(&q, mu); /* q2 = q1 * mu */ |
| 4396 | s_mp_rshd(&q, USED(m) + 1); /* q3 = q2 / b^(k+1) */ |
| 4397 | |
| 4398 | /* x = x mod b^(k+1), quick (no division) */ |
| 4399 | s_mp_mod_2d(x, DIGIT_BIT * (USED(m) + 1)); |
| 4400 | |
| 4401 | /* q = q * m mod b^(k+1), quick (no division) */ |
| 4402 | s_mp_mul(&q, m); |
| 4403 | s_mp_mod_2d(&q, DIGIT_BIT * (USED(m) + 1)); |
| 4404 | |
| 4405 | /* x = x - q */ |
| 4406 | if((res = mp_sub(x, &q, x)) != MP_OKAY) |
| 4407 | goto CLEANUP; |
| 4408 | |
| 4409 | /* If x < 0, add b^(k+1) to it */ |
| 4410 | if(mp_cmp_z(x) < 0) { |
| 4411 | mp_set(&q, 1); |
| 4412 | if((res = s_mp_lshd(&q, USED(m) + 1)) != MP_OKAY) |
| 4413 | goto CLEANUP; |
| 4414 | if((res = mp_add(x, &q, x)) != MP_OKAY) |
| 4415 | goto CLEANUP; |
| 4416 | } |
| 4417 | |
| 4418 | /* Back off if it's too big */ |
| 4419 | while(mp_cmp(x, m) >= 0) { |
| 4420 | if((res = s_mp_sub(x, m)) != MP_OKAY) |
| 4421 | break; |
| 4422 | } |
| 4423 | |
| 4424 | CLEANUP: |
| 4425 | mp_clear(&q); |
| 4426 | |
| 4427 | return res; |
| 4428 | |
| 4429 | } /* end s_mp_reduce() */ |
| 4430 | |
| 4431 | /* }}} */ |
| 4432 | |
| 4433 | /* }}} */ |
| 4434 | |
| 4435 | /* {{{ Primitive comparisons */ |
| 4436 | |
| 4437 | /* {{{ s_mp_cmp(a, b) */ |
| 4438 | |
| 4439 | /* Compare |a| <=> |b|, return 0 if equal, <0 if a<b, >0 if a>b */ |
| 4440 | int s_mp_cmp(const mp_int *a, const mp_int *b) |
| 4441 | { |
| 4442 | mp_size used_a = MP_USED(a); |
| 4443 | { |
| 4444 | mp_size used_b = MP_USED(b); |
| 4445 | |
| 4446 | if (used_a > used_b) |
| 4447 | goto IS_GT; |
| 4448 | if (used_a < used_b) |
| 4449 | goto IS_LT; |
| 4450 | } |
| 4451 | { |
| 4452 | mp_digit *pa, *pb; |
| 4453 | mp_digit da = 0, db = 0; |
| 4454 | |
| 4455 | #define CMP_AB(n) if ((da = pa[n]) != (db = pb[n])) goto done |
| 4456 | |
| 4457 | pa = MP_DIGITS(a) + used_a; |
| 4458 | pb = MP_DIGITS(b) + used_a; |
| 4459 | while (used_a >= 4) { |
| 4460 | pa -= 4; |
| 4461 | pb -= 4; |
| 4462 | used_a -= 4; |
| 4463 | CMP_AB(3); |
| 4464 | CMP_AB(2); |
| 4465 | CMP_AB(1); |
| 4466 | CMP_AB(0); |
| 4467 | } |
| 4468 | while (used_a-- > 0 && ((da = *--pa) == (db = *--pb))) |
| 4469 | /* do nothing */; |
| 4470 | done: |
| 4471 | if (da > db) |
| 4472 | goto IS_GT; |
| 4473 | if (da < db) |
| 4474 | goto IS_LT; |
| 4475 | } |
| 4476 | return MP_EQ; |
| 4477 | IS_LT: |
| 4478 | return MP_LT; |
| 4479 | IS_GT: |
| 4480 | return MP_GT; |
| 4481 | } /* end s_mp_cmp() */ |
| 4482 | |
| 4483 | /* }}} */ |
| 4484 | |
| 4485 | /* {{{ s_mp_cmp_d(a, d) */ |
| 4486 | |
| 4487 | /* Compare |a| <=> d, return 0 if equal, <0 if a<d, >0 if a>d */ |
| 4488 | int s_mp_cmp_d(const mp_int *a, mp_digit d) |
| 4489 | { |
| 4490 | if(USED(a) > 1) |
| 4491 | return MP_GT; |
| 4492 | |
| 4493 | if(DIGIT(a, 0) < d) |
| 4494 | return MP_LT; |
| 4495 | else if(DIGIT(a, 0) > d) |
| 4496 | return MP_GT; |
| 4497 | else |
| 4498 | return MP_EQ; |
| 4499 | |
| 4500 | } /* end s_mp_cmp_d() */ |
| 4501 | |
| 4502 | /* }}} */ |
| 4503 | |
| 4504 | /* {{{ s_mp_ispow2(v) */ |
| 4505 | |
| 4506 | /* |
| 4507 | Returns -1 if the value is not a power of two; otherwise, it returns |
| 4508 | k such that v = 2^k, i.e. lg(v). |
| 4509 | */ |
| 4510 | int s_mp_ispow2(const mp_int *v) |
| 4511 | { |
| 4512 | mp_digit d; |
| 4513 | int = 0, ix; |
| 4514 | |
| 4515 | ix = MP_USED(v) - 1; |
| 4516 | d = MP_DIGIT(v, ix); /* most significant digit of v */ |
| 4517 | |
| 4518 | extra = s_mp_ispow2d(d); |
| 4519 | if (extra < 0 || ix == 0) |
| 4520 | return extra; |
| 4521 | |
| 4522 | while (--ix >= 0) { |
| 4523 | if (DIGIT(v, ix) != 0) |
| 4524 | return -1; /* not a power of two */ |
| 4525 | extra += MP_DIGIT_BIT; |
| 4526 | } |
| 4527 | |
| 4528 | return extra; |
| 4529 | |
| 4530 | } /* end s_mp_ispow2() */ |
| 4531 | |
| 4532 | /* }}} */ |
| 4533 | |
| 4534 | /* {{{ s_mp_ispow2d(d) */ |
| 4535 | |
| 4536 | int s_mp_ispow2d(mp_digit d) |
| 4537 | { |
| 4538 | if ((d != 0) && ((d & (d-1)) == 0)) { /* d is a power of 2 */ |
| 4539 | int pow = 0; |
| 4540 | #if defined (MP_USE_UINT_DIGIT) |
| 4541 | if (d & 0xffff0000U) |
| 4542 | pow += 16; |
| 4543 | if (d & 0xff00ff00U) |
| 4544 | pow += 8; |
| 4545 | if (d & 0xf0f0f0f0U) |
| 4546 | pow += 4; |
| 4547 | if (d & 0xccccccccU) |
| 4548 | pow += 2; |
| 4549 | if (d & 0xaaaaaaaaU) |
| 4550 | pow += 1; |
| 4551 | #elif defined(MP_USE_LONG_LONG_DIGIT) |
| 4552 | if (d & 0xffffffff00000000ULL) |
| 4553 | pow += 32; |
| 4554 | if (d & 0xffff0000ffff0000ULL) |
| 4555 | pow += 16; |
| 4556 | if (d & 0xff00ff00ff00ff00ULL) |
| 4557 | pow += 8; |
| 4558 | if (d & 0xf0f0f0f0f0f0f0f0ULL) |
| 4559 | pow += 4; |
| 4560 | if (d & 0xccccccccccccccccULL) |
| 4561 | pow += 2; |
| 4562 | if (d & 0xaaaaaaaaaaaaaaaaULL) |
| 4563 | pow += 1; |
| 4564 | #elif defined(MP_USE_LONG_DIGIT) |
| 4565 | if (d & 0xffffffff00000000UL) |
| 4566 | pow += 32; |
| 4567 | if (d & 0xffff0000ffff0000UL) |
| 4568 | pow += 16; |
| 4569 | if (d & 0xff00ff00ff00ff00UL) |
| 4570 | pow += 8; |
| 4571 | if (d & 0xf0f0f0f0f0f0f0f0UL) |
| 4572 | pow += 4; |
| 4573 | if (d & 0xccccccccccccccccUL) |
| 4574 | pow += 2; |
| 4575 | if (d & 0xaaaaaaaaaaaaaaaaUL) |
| 4576 | pow += 1; |
| 4577 | #else |
| 4578 | #error "unknown type for mp_digit" |
| 4579 | #endif |
| 4580 | return pow; |
| 4581 | } |
| 4582 | return -1; |
| 4583 | |
| 4584 | } /* end s_mp_ispow2d() */ |
| 4585 | |
| 4586 | /* }}} */ |
| 4587 | |
| 4588 | /* }}} */ |
| 4589 | |
| 4590 | /* {{{ Primitive I/O helpers */ |
| 4591 | |
| 4592 | /* {{{ s_mp_tovalue(ch, r) */ |
| 4593 | |
| 4594 | /* |
| 4595 | Convert the given character to its digit value, in the given radix. |
| 4596 | If the given character is not understood in the given radix, -1 is |
| 4597 | returned. Otherwise the digit's numeric value is returned. |
| 4598 | |
| 4599 | The results will be odd if you use a radix < 2 or > 62, you are |
| 4600 | expected to know what you're up to. |
| 4601 | */ |
| 4602 | int s_mp_tovalue(char ch, int r) |
| 4603 | { |
| 4604 | int val, xch; |
| 4605 | |
| 4606 | if(r > 36) |
| 4607 | xch = ch; |
| 4608 | else |
| 4609 | xch = toupper(ch); |
| 4610 | |
| 4611 | if(isdigit(xch)) |
| 4612 | val = xch - '0'; |
| 4613 | else if(isupper(xch)) |
| 4614 | val = xch - 'A' + 10; |
| 4615 | else if(islower(xch)) |
| 4616 | val = xch - 'a' + 36; |
| 4617 | else if(xch == '+') |
| 4618 | val = 62; |
| 4619 | else if(xch == '/') |
| 4620 | val = 63; |
| 4621 | else |
| 4622 | return -1; |
| 4623 | |
| 4624 | if(val < 0 || val >= r) |
| 4625 | return -1; |
| 4626 | |
| 4627 | return val; |
| 4628 | |
| 4629 | } /* end s_mp_tovalue() */ |
| 4630 | |
| 4631 | /* }}} */ |
| 4632 | |
| 4633 | /* {{{ s_mp_todigit(val, r, low) */ |
| 4634 | |
| 4635 | /* |
| 4636 | Convert val to a radix-r digit, if possible. If val is out of range |
| 4637 | for r, returns zero. Otherwise, returns an ASCII character denoting |
| 4638 | the value in the given radix. |
| 4639 | |
| 4640 | The results may be odd if you use a radix < 2 or > 64, you are |
| 4641 | expected to know what you're doing. |
| 4642 | */ |
| 4643 | |
| 4644 | char s_mp_todigit(mp_digit val, int r, int low) |
| 4645 | { |
| 4646 | char ch; |
| 4647 | |
| 4648 | if(val >= (unsigned int)r) |
| 4649 | return 0; |
| 4650 | |
| 4651 | ch = s_dmap_1[val]; |
| 4652 | |
| 4653 | if(r <= 36 && low) |
| 4654 | ch = tolower(ch); |
| 4655 | |
| 4656 | return ch; |
| 4657 | |
| 4658 | } /* end s_mp_todigit() */ |
| 4659 | |
| 4660 | /* }}} */ |
| 4661 | |
| 4662 | /* {{{ s_mp_outlen(bits, radix) */ |
| 4663 | |
| 4664 | /* |
| 4665 | Return an estimate for how long a string is needed to hold a radix |
| 4666 | r representation of a number with 'bits' significant bits, plus an |
| 4667 | extra for a zero terminator (assuming C style strings here) |
| 4668 | */ |
| 4669 | int s_mp_outlen(int bits, int r) |
| 4670 | { |
| 4671 | return (int)((double)bits * LOG_V_2(r) + 1.5) + 1; |
| 4672 | |
| 4673 | } /* end s_mp_outlen() */ |
| 4674 | |
| 4675 | /* }}} */ |
| 4676 | |
| 4677 | /* }}} */ |
| 4678 | |
| 4679 | /* {{{ mp_read_unsigned_octets(mp, str, len) */ |
| 4680 | /* mp_read_unsigned_octets(mp, str, len) |
| 4681 | Read in a raw value (base 256) into the given mp_int |
| 4682 | No sign bit, number is positive. Leading zeros ignored. |
| 4683 | */ |
| 4684 | |
| 4685 | mp_err |
| 4686 | mp_read_unsigned_octets(mp_int *mp, const unsigned char *str, mp_size len) |
| 4687 | { |
| 4688 | int count; |
| 4689 | mp_err res; |
| 4690 | mp_digit d; |
| 4691 | |
| 4692 | ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG); |
| 4693 | |
| 4694 | mp_zero(mp); |
| 4695 | |
| 4696 | count = len % sizeof(mp_digit); |
| 4697 | if (count) { |
| 4698 | for (d = 0; count-- > 0; --len) { |
| 4699 | d = (d << 8) | *str++; |
| 4700 | } |
| 4701 | MP_DIGIT(mp, 0) = d; |
| 4702 | } |
| 4703 | |
| 4704 | /* Read the rest of the digits */ |
| 4705 | for(; len > 0; len -= sizeof(mp_digit)) { |
| 4706 | for (d = 0, count = sizeof(mp_digit); count > 0; --count) { |
| 4707 | d = (d << 8) | *str++; |
| 4708 | } |
| 4709 | if (MP_EQ == mp_cmp_z(mp)) { |
| 4710 | if (!d) |
| 4711 | continue; |
| 4712 | } else { |
| 4713 | if((res = s_mp_lshd(mp, 1)) != MP_OKAY) |
| 4714 | return res; |
| 4715 | } |
| 4716 | MP_DIGIT(mp, 0) = d; |
| 4717 | } |
| 4718 | return MP_OKAY; |
| 4719 | } /* end mp_read_unsigned_octets() */ |
| 4720 | /* }}} */ |
| 4721 | |
| 4722 | /* {{{ mp_unsigned_octet_size(mp) */ |
| 4723 | int |
| 4724 | mp_unsigned_octet_size(const mp_int *mp) |
| 4725 | { |
| 4726 | int bytes; |
| 4727 | int ix; |
| 4728 | mp_digit d = 0; |
| 4729 | |
| 4730 | ARGCHK(mp != NULL, MP_BADARG); |
| 4731 | ARGCHK(MP_ZPOS == SIGN(mp), MP_BADARG); |
| 4732 | |
| 4733 | bytes = (USED(mp) * sizeof(mp_digit)); |
| 4734 | |
| 4735 | /* subtract leading zeros. */ |
| 4736 | /* Iterate over each digit... */ |
| 4737 | for(ix = USED(mp) - 1; ix >= 0; ix--) { |
| 4738 | d = DIGIT(mp, ix); |
| 4739 | if (d) |
| 4740 | break; |
| 4741 | bytes -= sizeof(d); |
| 4742 | } |
| 4743 | if (!bytes) |
| 4744 | return 1; |
| 4745 | |
| 4746 | /* Have MSD, check digit bytes, high order first */ |
| 4747 | for(ix = sizeof(mp_digit) - 1; ix >= 0; ix--) { |
| 4748 | unsigned char x = (unsigned char)(d >> (ix * CHAR_BIT)); |
| 4749 | if (x) |
| 4750 | break; |
| 4751 | --bytes; |
| 4752 | } |
| 4753 | return bytes; |
| 4754 | } /* end mp_unsigned_octet_size() */ |
| 4755 | /* }}} */ |
| 4756 | |
| 4757 | /* {{{ mp_to_unsigned_octets(mp, str) */ |
| 4758 | /* output a buffer of big endian octets no longer than specified. */ |
| 4759 | mp_err |
| 4760 | mp_to_unsigned_octets(const mp_int *mp, unsigned char *str, mp_size maxlen) |
| 4761 | { |
| 4762 | int ix, pos = 0; |
| 4763 | unsigned int bytes; |
| 4764 | |
| 4765 | ARGCHK(mp != NULL && str != NULL && !SIGN(mp), MP_BADARG); |
| 4766 | |
| 4767 | bytes = mp_unsigned_octet_size(mp); |
| 4768 | ARGCHK(bytes <= maxlen, MP_BADARG); |
| 4769 | |
| 4770 | /* Iterate over each digit... */ |
| 4771 | for(ix = USED(mp) - 1; ix >= 0; ix--) { |
| 4772 | mp_digit d = DIGIT(mp, ix); |
| 4773 | int jx; |
| 4774 | |
| 4775 | /* Unpack digit bytes, high order first */ |
| 4776 | for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) { |
| 4777 | unsigned char x = (unsigned char)(d >> (jx * CHAR_BIT)); |
| 4778 | if (!pos && !x) /* suppress leading zeros */ |
| 4779 | continue; |
| 4780 | str[pos++] = x; |
| 4781 | } |
| 4782 | } |
| 4783 | if (!pos) |
| 4784 | str[pos++] = 0; |
| 4785 | return pos; |
| 4786 | } /* end mp_to_unsigned_octets() */ |
| 4787 | /* }}} */ |
| 4788 | |
| 4789 | /* {{{ mp_to_signed_octets(mp, str) */ |
| 4790 | /* output a buffer of big endian octets no longer than specified. */ |
| 4791 | mp_err |
| 4792 | mp_to_signed_octets(const mp_int *mp, unsigned char *str, mp_size maxlen) |
| 4793 | { |
| 4794 | int ix, pos = 0; |
| 4795 | unsigned int bytes; |
| 4796 | |
| 4797 | ARGCHK(mp != NULL && str != NULL && !SIGN(mp), MP_BADARG); |
| 4798 | |
| 4799 | bytes = mp_unsigned_octet_size(mp); |
| 4800 | ARGCHK(bytes <= maxlen, MP_BADARG); |
| 4801 | |
| 4802 | /* Iterate over each digit... */ |
| 4803 | for(ix = USED(mp) - 1; ix >= 0; ix--) { |
| 4804 | mp_digit d = DIGIT(mp, ix); |
| 4805 | int jx; |
| 4806 | |
| 4807 | /* Unpack digit bytes, high order first */ |
| 4808 | for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) { |
| 4809 | unsigned char x = (unsigned char)(d >> (jx * CHAR_BIT)); |
| 4810 | if (!pos) { |
| 4811 | if (!x) /* suppress leading zeros */ |
| 4812 | continue; |
| 4813 | if (x & 0x80) { /* add one leading zero to make output positive. */ |
| 4814 | ARGCHK(bytes + 1 <= maxlen, MP_BADARG); |
| 4815 | if (bytes + 1 > maxlen) |
| 4816 | return MP_BADARG; |
| 4817 | str[pos++] = 0; |
| 4818 | } |
| 4819 | } |
| 4820 | str[pos++] = x; |
| 4821 | } |
| 4822 | } |
| 4823 | if (!pos) |
| 4824 | str[pos++] = 0; |
| 4825 | return pos; |
| 4826 | } /* end mp_to_signed_octets() */ |
| 4827 | /* }}} */ |
| 4828 | |
| 4829 | /* {{{ mp_to_fixlen_octets(mp, str) */ |
| 4830 | /* output a buffer of big endian octets exactly as long as requested. */ |
| 4831 | mp_err |
| 4832 | mp_to_fixlen_octets(const mp_int *mp, unsigned char *str, mp_size length) |
| 4833 | { |
| 4834 | int ix, pos = 0; |
| 4835 | unsigned int bytes; |
| 4836 | |
| 4837 | ARGCHK(mp != NULL && str != NULL && !SIGN(mp), MP_BADARG); |
| 4838 | |
| 4839 | bytes = mp_unsigned_octet_size(mp); |
| 4840 | ARGCHK(bytes <= length, MP_BADARG); |
| 4841 | |
| 4842 | /* place any needed leading zeros */ |
| 4843 | for (;length > bytes; --length) { |
| 4844 | *str++ = 0; |
| 4845 | } |
| 4846 | |
| 4847 | /* Iterate over each digit... */ |
| 4848 | for(ix = USED(mp) - 1; ix >= 0; ix--) { |
| 4849 | mp_digit d = DIGIT(mp, ix); |
| 4850 | int jx; |
| 4851 | |
| 4852 | /* Unpack digit bytes, high order first */ |
| 4853 | for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) { |
| 4854 | unsigned char x = (unsigned char)(d >> (jx * CHAR_BIT)); |
| 4855 | if (!pos && !x) /* suppress leading zeros */ |
| 4856 | continue; |
| 4857 | str[pos++] = x; |
| 4858 | } |
| 4859 | } |
| 4860 | if (!pos) |
| 4861 | str[pos++] = 0; |
| 4862 | return MP_OKAY; |
| 4863 | } /* end mp_to_fixlen_octets() */ |
| 4864 | /* }}} */ |
| 4865 | |
| 4866 | |
| 4867 | /*------------------------------------------------------------------------*/ |
| 4868 | /* HERE THERE BE DRAGONS */ |
| 4869 | |