| 1 | /* |
| 2 | * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved. |
| 3 | * Use is subject to license terms. |
| 4 | * |
| 5 | * This library is free software; you can redistribute it and/or |
| 6 | * modify it under the terms of the GNU Lesser General Public |
| 7 | * License as published by the Free Software Foundation; either |
| 8 | * version 2.1 of the License, or (at your option) any later version. |
| 9 | * |
| 10 | * This library is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | * Lesser General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU Lesser General Public License |
| 16 | * along with this library; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | */ |
| 23 | |
| 24 | /* ********************************************************************* |
| 25 | * |
| 26 | * The Original Code is the Multi-precision Binary Polynomial Arithmetic Library. |
| 27 | * |
| 28 | * The Initial Developer of the Original Code is |
| 29 | * Sun Microsystems, Inc. |
| 30 | * Portions created by the Initial Developer are Copyright (C) 2003 |
| 31 | * the Initial Developer. All Rights Reserved. |
| 32 | * |
| 33 | * Contributor(s): |
| 34 | * Sheueling Chang Shantz <sheueling.chang@sun.com> and |
| 35 | * Douglas Stebila <douglas@stebila.ca> of Sun Laboratories. |
| 36 | * |
| 37 | *********************************************************************** */ |
| 38 | |
| 39 | #include "mp_gf2m.h" |
| 40 | #include "mp_gf2m-priv.h" |
| 41 | #include "mplogic.h" |
| 42 | #include "mpi-priv.h" |
| 43 | |
| 44 | const mp_digit mp_gf2m_sqr_tb[16] = |
| 45 | { |
| 46 | 0, 1, 4, 5, 16, 17, 20, 21, |
| 47 | 64, 65, 68, 69, 80, 81, 84, 85 |
| 48 | }; |
| 49 | |
| 50 | /* Multiply two binary polynomials mp_digits a, b. |
| 51 | * Result is a polynomial with degree < 2 * MP_DIGIT_BITS - 1. |
| 52 | * Output in two mp_digits rh, rl. |
| 53 | */ |
| 54 | #if MP_DIGIT_BITS == 32 |
| 55 | void |
| 56 | s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b) |
| 57 | { |
| 58 | register mp_digit h, l, s; |
| 59 | mp_digit tab[8], top2b = a >> 30; |
| 60 | register mp_digit a1, a2, a4; |
| 61 | |
| 62 | a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1; |
| 63 | |
| 64 | tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2; |
| 65 | tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4; |
| 66 | |
| 67 | s = tab[b & 0x7]; l = s; |
| 68 | s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29; |
| 69 | s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26; |
| 70 | s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23; |
| 71 | s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20; |
| 72 | s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17; |
| 73 | s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14; |
| 74 | s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11; |
| 75 | s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8; |
| 76 | s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5; |
| 77 | s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2; |
| 78 | |
| 79 | /* compensate for the top two bits of a */ |
| 80 | |
| 81 | if (top2b & 01) { l ^= b << 30; h ^= b >> 2; } |
| 82 | if (top2b & 02) { l ^= b << 31; h ^= b >> 1; } |
| 83 | |
| 84 | *rh = h; *rl = l; |
| 85 | } |
| 86 | #else |
| 87 | void |
| 88 | s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b) |
| 89 | { |
| 90 | register mp_digit h, l, s; |
| 91 | mp_digit tab[16], top3b = a >> 61; |
| 92 | register mp_digit a1, a2, a4, a8; |
| 93 | |
| 94 | a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; |
| 95 | a4 = a2 << 1; a8 = a4 << 1; |
| 96 | tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2; |
| 97 | tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4; |
| 98 | tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8; |
| 99 | tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8; |
| 100 | |
| 101 | s = tab[b & 0xF]; l = s; |
| 102 | s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60; |
| 103 | s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56; |
| 104 | s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52; |
| 105 | s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48; |
| 106 | s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44; |
| 107 | s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40; |
| 108 | s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36; |
| 109 | s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32; |
| 110 | s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28; |
| 111 | s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24; |
| 112 | s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20; |
| 113 | s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16; |
| 114 | s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12; |
| 115 | s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8; |
| 116 | s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4; |
| 117 | |
| 118 | /* compensate for the top three bits of a */ |
| 119 | |
| 120 | if (top3b & 01) { l ^= b << 61; h ^= b >> 3; } |
| 121 | if (top3b & 02) { l ^= b << 62; h ^= b >> 2; } |
| 122 | if (top3b & 04) { l ^= b << 63; h ^= b >> 1; } |
| 123 | |
| 124 | *rh = h; *rl = l; |
| 125 | } |
| 126 | #endif |
| 127 | |
| 128 | /* Compute xor-multiply of two binary polynomials (a1, a0) x (b1, b0) |
| 129 | * result is a binary polynomial in 4 mp_digits r[4]. |
| 130 | * The caller MUST ensure that r has the right amount of space allocated. |
| 131 | */ |
| 132 | void |
| 133 | s_bmul_2x2(mp_digit *r, const mp_digit a1, const mp_digit a0, const mp_digit b1, |
| 134 | const mp_digit b0) |
| 135 | { |
| 136 | mp_digit m1, m0; |
| 137 | /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */ |
| 138 | s_bmul_1x1(r+3, r+2, a1, b1); |
| 139 | s_bmul_1x1(r+1, r, a0, b0); |
| 140 | s_bmul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1); |
| 141 | /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */ |
| 142 | r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */ |
| 143 | r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */ |
| 144 | } |
| 145 | |
| 146 | /* Compute xor-multiply of two binary polynomials (a2, a1, a0) x (b2, b1, b0) |
| 147 | * result is a binary polynomial in 6 mp_digits r[6]. |
| 148 | * The caller MUST ensure that r has the right amount of space allocated. |
| 149 | */ |
| 150 | void |
| 151 | s_bmul_3x3(mp_digit *r, const mp_digit a2, const mp_digit a1, const mp_digit a0, |
| 152 | const mp_digit b2, const mp_digit b1, const mp_digit b0) |
| 153 | { |
| 154 | mp_digit zm[4]; |
| 155 | |
| 156 | s_bmul_1x1(r+5, r+4, a2, b2); /* fill top 2 words */ |
| 157 | s_bmul_2x2(zm, a1, a2^a0, b1, b2^b0); /* fill middle 4 words */ |
| 158 | s_bmul_2x2(r, a1, a0, b1, b0); /* fill bottom 4 words */ |
| 159 | |
| 160 | zm[3] ^= r[3]; |
| 161 | zm[2] ^= r[2]; |
| 162 | zm[1] ^= r[1] ^ r[5]; |
| 163 | zm[0] ^= r[0] ^ r[4]; |
| 164 | |
| 165 | r[5] ^= zm[3]; |
| 166 | r[4] ^= zm[2]; |
| 167 | r[3] ^= zm[1]; |
| 168 | r[2] ^= zm[0]; |
| 169 | } |
| 170 | |
| 171 | /* Compute xor-multiply of two binary polynomials (a3, a2, a1, a0) x (b3, b2, b1, b0) |
| 172 | * result is a binary polynomial in 8 mp_digits r[8]. |
| 173 | * The caller MUST ensure that r has the right amount of space allocated. |
| 174 | */ |
| 175 | void s_bmul_4x4(mp_digit *r, const mp_digit a3, const mp_digit a2, const mp_digit a1, |
| 176 | const mp_digit a0, const mp_digit b3, const mp_digit b2, const mp_digit b1, |
| 177 | const mp_digit b0) |
| 178 | { |
| 179 | mp_digit zm[4]; |
| 180 | |
| 181 | s_bmul_2x2(r+4, a3, a2, b3, b2); /* fill top 4 words */ |
| 182 | s_bmul_2x2(zm, a3^a1, a2^a0, b3^b1, b2^b0); /* fill middle 4 words */ |
| 183 | s_bmul_2x2(r, a1, a0, b1, b0); /* fill bottom 4 words */ |
| 184 | |
| 185 | zm[3] ^= r[3] ^ r[7]; |
| 186 | zm[2] ^= r[2] ^ r[6]; |
| 187 | zm[1] ^= r[1] ^ r[5]; |
| 188 | zm[0] ^= r[0] ^ r[4]; |
| 189 | |
| 190 | r[5] ^= zm[3]; |
| 191 | r[4] ^= zm[2]; |
| 192 | r[3] ^= zm[1]; |
| 193 | r[2] ^= zm[0]; |
| 194 | } |
| 195 | |
| 196 | /* Compute addition of two binary polynomials a and b, |
| 197 | * store result in c; c could be a or b, a and b could be equal; |
| 198 | * c is the bitwise XOR of a and b. |
| 199 | */ |
| 200 | mp_err |
| 201 | mp_badd(const mp_int *a, const mp_int *b, mp_int *c) |
| 202 | { |
| 203 | mp_digit *pa, *pb, *pc; |
| 204 | mp_size ix; |
| 205 | mp_size used_pa, used_pb; |
| 206 | mp_err res = MP_OKAY; |
| 207 | |
| 208 | /* Add all digits up to the precision of b. If b had more |
| 209 | * precision than a initially, swap a, b first |
| 210 | */ |
| 211 | if (MP_USED(a) >= MP_USED(b)) { |
| 212 | pa = MP_DIGITS(a); |
| 213 | pb = MP_DIGITS(b); |
| 214 | used_pa = MP_USED(a); |
| 215 | used_pb = MP_USED(b); |
| 216 | } else { |
| 217 | pa = MP_DIGITS(b); |
| 218 | pb = MP_DIGITS(a); |
| 219 | used_pa = MP_USED(b); |
| 220 | used_pb = MP_USED(a); |
| 221 | } |
| 222 | |
| 223 | /* Make sure c has enough precision for the output value */ |
| 224 | MP_CHECKOK( s_mp_pad(c, used_pa) ); |
| 225 | |
| 226 | /* Do word-by-word xor */ |
| 227 | pc = MP_DIGITS(c); |
| 228 | for (ix = 0; ix < used_pb; ix++) { |
| 229 | (*pc++) = (*pa++) ^ (*pb++); |
| 230 | } |
| 231 | |
| 232 | /* Finish the rest of digits until we're actually done */ |
| 233 | for (; ix < used_pa; ++ix) { |
| 234 | *pc++ = *pa++; |
| 235 | } |
| 236 | |
| 237 | MP_USED(c) = used_pa; |
| 238 | MP_SIGN(c) = ZPOS; |
| 239 | s_mp_clamp(c); |
| 240 | |
| 241 | CLEANUP: |
| 242 | return res; |
| 243 | } |
| 244 | |
| 245 | #define s_mp_div2(a) MP_CHECKOK( mpl_rsh((a), (a), 1) ); |
| 246 | |
| 247 | /* Compute binary polynomial multiply d = a * b */ |
| 248 | static void |
| 249 | s_bmul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d) |
| 250 | { |
| 251 | mp_digit a_i, a0b0, a1b1, carry = 0; |
| 252 | while (a_len--) { |
| 253 | a_i = *a++; |
| 254 | s_bmul_1x1(&a1b1, &a0b0, a_i, b); |
| 255 | *d++ = a0b0 ^ carry; |
| 256 | carry = a1b1; |
| 257 | } |
| 258 | *d = carry; |
| 259 | } |
| 260 | |
| 261 | /* Compute binary polynomial xor multiply accumulate d ^= a * b */ |
| 262 | static void |
| 263 | s_bmul_d_add(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d) |
| 264 | { |
| 265 | mp_digit a_i, a0b0, a1b1, carry = 0; |
| 266 | while (a_len--) { |
| 267 | a_i = *a++; |
| 268 | s_bmul_1x1(&a1b1, &a0b0, a_i, b); |
| 269 | *d++ ^= a0b0 ^ carry; |
| 270 | carry = a1b1; |
| 271 | } |
| 272 | *d ^= carry; |
| 273 | } |
| 274 | |
| 275 | /* Compute binary polynomial xor multiply c = a * b. |
| 276 | * All parameters may be identical. |
| 277 | */ |
| 278 | mp_err |
| 279 | mp_bmul(const mp_int *a, const mp_int *b, mp_int *c) |
| 280 | { |
| 281 | mp_digit *pb, b_i; |
| 282 | mp_int tmp; |
| 283 | mp_size ib, a_used, b_used; |
| 284 | mp_err res = MP_OKAY; |
| 285 | |
| 286 | MP_DIGITS(&tmp) = 0; |
| 287 | |
| 288 | ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
| 289 | |
| 290 | if (a == c) { |
| 291 | MP_CHECKOK( mp_init_copy(&tmp, a) ); |
| 292 | if (a == b) |
| 293 | b = &tmp; |
| 294 | a = &tmp; |
| 295 | } else if (b == c) { |
| 296 | MP_CHECKOK( mp_init_copy(&tmp, b) ); |
| 297 | b = &tmp; |
| 298 | } |
| 299 | |
| 300 | if (MP_USED(a) < MP_USED(b)) { |
| 301 | const mp_int *xch = b; /* switch a and b if b longer */ |
| 302 | b = a; |
| 303 | a = xch; |
| 304 | } |
| 305 | |
| 306 | MP_USED(c) = 1; MP_DIGIT(c, 0) = 0; |
| 307 | MP_CHECKOK( s_mp_pad(c, USED(a) + USED(b)) ); |
| 308 | |
| 309 | pb = MP_DIGITS(b); |
| 310 | s_bmul_d(MP_DIGITS(a), MP_USED(a), *pb++, MP_DIGITS(c)); |
| 311 | |
| 312 | /* Outer loop: Digits of b */ |
| 313 | a_used = MP_USED(a); |
| 314 | b_used = MP_USED(b); |
| 315 | MP_USED(c) = a_used + b_used; |
| 316 | for (ib = 1; ib < b_used; ib++) { |
| 317 | b_i = *pb++; |
| 318 | |
| 319 | /* Inner product: Digits of a */ |
| 320 | if (b_i) |
| 321 | s_bmul_d_add(MP_DIGITS(a), a_used, b_i, MP_DIGITS(c) + ib); |
| 322 | else |
| 323 | MP_DIGIT(c, ib + a_used) = b_i; |
| 324 | } |
| 325 | |
| 326 | s_mp_clamp(c); |
| 327 | |
| 328 | SIGN(c) = ZPOS; |
| 329 | |
| 330 | CLEANUP: |
| 331 | mp_clear(&tmp); |
| 332 | return res; |
| 333 | } |
| 334 | |
| 335 | |
| 336 | /* Compute modular reduction of a and store result in r. |
| 337 | * r could be a. |
| 338 | * For modular arithmetic, the irreducible polynomial f(t) is represented |
| 339 | * as an array of int[], where f(t) is of the form: |
| 340 | * f(t) = t^p[0] + t^p[1] + ... + t^p[k] |
| 341 | * where m = p[0] > p[1] > ... > p[k] = 0. |
| 342 | */ |
| 343 | mp_err |
| 344 | mp_bmod(const mp_int *a, const unsigned int p[], mp_int *r) |
| 345 | { |
| 346 | int j, k; |
| 347 | int n, dN, d0, d1; |
| 348 | mp_digit zz, *z, tmp; |
| 349 | mp_size used; |
| 350 | mp_err res = MP_OKAY; |
| 351 | |
| 352 | /* The algorithm does the reduction in place in r, |
| 353 | * if a != r, copy a into r first so reduction can be done in r |
| 354 | */ |
| 355 | if (a != r) { |
| 356 | MP_CHECKOK( mp_copy(a, r) ); |
| 357 | } |
| 358 | z = MP_DIGITS(r); |
| 359 | |
| 360 | /* start reduction */ |
| 361 | dN = p[0] / MP_DIGIT_BITS; |
| 362 | used = MP_USED(r); |
| 363 | |
| 364 | for (j = used - 1; j > dN;) { |
| 365 | |
| 366 | zz = z[j]; |
| 367 | if (zz == 0) { |
| 368 | j--; continue; |
| 369 | } |
| 370 | z[j] = 0; |
| 371 | |
| 372 | for (k = 1; p[k] > 0; k++) { |
| 373 | /* reducing component t^p[k] */ |
| 374 | n = p[0] - p[k]; |
| 375 | d0 = n % MP_DIGIT_BITS; |
| 376 | d1 = MP_DIGIT_BITS - d0; |
| 377 | n /= MP_DIGIT_BITS; |
| 378 | z[j-n] ^= (zz>>d0); |
| 379 | if (d0) |
| 380 | z[j-n-1] ^= (zz<<d1); |
| 381 | } |
| 382 | |
| 383 | /* reducing component t^0 */ |
| 384 | n = dN; |
| 385 | d0 = p[0] % MP_DIGIT_BITS; |
| 386 | d1 = MP_DIGIT_BITS - d0; |
| 387 | z[j-n] ^= (zz >> d0); |
| 388 | if (d0) |
| 389 | z[j-n-1] ^= (zz << d1); |
| 390 | |
| 391 | } |
| 392 | |
| 393 | /* final round of reduction */ |
| 394 | while (j == dN) { |
| 395 | |
| 396 | d0 = p[0] % MP_DIGIT_BITS; |
| 397 | zz = z[dN] >> d0; |
| 398 | if (zz == 0) break; |
| 399 | d1 = MP_DIGIT_BITS - d0; |
| 400 | |
| 401 | /* clear up the top d1 bits */ |
| 402 | if (d0) z[dN] = (z[dN] << d1) >> d1; |
| 403 | *z ^= zz; /* reduction t^0 component */ |
| 404 | |
| 405 | for (k = 1; p[k] > 0; k++) { |
| 406 | /* reducing component t^p[k]*/ |
| 407 | n = p[k] / MP_DIGIT_BITS; |
| 408 | d0 = p[k] % MP_DIGIT_BITS; |
| 409 | d1 = MP_DIGIT_BITS - d0; |
| 410 | z[n] ^= (zz << d0); |
| 411 | tmp = zz >> d1; |
| 412 | if (d0 && tmp) |
| 413 | z[n+1] ^= tmp; |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | s_mp_clamp(r); |
| 418 | CLEANUP: |
| 419 | return res; |
| 420 | } |
| 421 | |
| 422 | /* Compute the product of two polynomials a and b, reduce modulo p, |
| 423 | * Store the result in r. r could be a or b; a could be b. |
| 424 | */ |
| 425 | mp_err |
| 426 | mp_bmulmod(const mp_int *a, const mp_int *b, const unsigned int p[], mp_int *r) |
| 427 | { |
| 428 | mp_err res; |
| 429 | |
| 430 | if (a == b) return mp_bsqrmod(a, p, r); |
| 431 | if ((res = mp_bmul(a, b, r) ) != MP_OKAY) |
| 432 | return res; |
| 433 | return mp_bmod(r, p, r); |
| 434 | } |
| 435 | |
| 436 | /* Compute binary polynomial squaring c = a*a mod p . |
| 437 | * Parameter r and a can be identical. |
| 438 | */ |
| 439 | |
| 440 | mp_err |
| 441 | mp_bsqrmod(const mp_int *a, const unsigned int p[], mp_int *r) |
| 442 | { |
| 443 | mp_digit *pa, *pr, a_i; |
| 444 | mp_int tmp; |
| 445 | mp_size ia, a_used; |
| 446 | mp_err res; |
| 447 | |
| 448 | ARGCHK(a != NULL && r != NULL, MP_BADARG); |
| 449 | MP_DIGITS(&tmp) = 0; |
| 450 | |
| 451 | if (a == r) { |
| 452 | MP_CHECKOK( mp_init_copy(&tmp, a) ); |
| 453 | a = &tmp; |
| 454 | } |
| 455 | |
| 456 | MP_USED(r) = 1; MP_DIGIT(r, 0) = 0; |
| 457 | MP_CHECKOK( s_mp_pad(r, 2*USED(a)) ); |
| 458 | |
| 459 | pa = MP_DIGITS(a); |
| 460 | pr = MP_DIGITS(r); |
| 461 | a_used = MP_USED(a); |
| 462 | MP_USED(r) = 2 * a_used; |
| 463 | |
| 464 | for (ia = 0; ia < a_used; ia++) { |
| 465 | a_i = *pa++; |
| 466 | *pr++ = gf2m_SQR0(a_i); |
| 467 | *pr++ = gf2m_SQR1(a_i); |
| 468 | } |
| 469 | |
| 470 | MP_CHECKOK( mp_bmod(r, p, r) ); |
| 471 | s_mp_clamp(r); |
| 472 | SIGN(r) = ZPOS; |
| 473 | |
| 474 | CLEANUP: |
| 475 | mp_clear(&tmp); |
| 476 | return res; |
| 477 | } |
| 478 | |
| 479 | /* Compute binary polynomial y/x mod p, y divided by x, reduce modulo p. |
| 480 | * Store the result in r. r could be x or y, and x could equal y. |
| 481 | * Uses algorithm Modular_Division_GF(2^m) from |
| 482 | * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to |
| 483 | * the Great Divide". |
| 484 | */ |
| 485 | int |
| 486 | mp_bdivmod(const mp_int *y, const mp_int *x, const mp_int *pp, |
| 487 | const unsigned int p[], mp_int *r) |
| 488 | { |
| 489 | mp_int aa, bb, uu; |
| 490 | mp_int *a, *b, *u, *v; |
| 491 | mp_err res = MP_OKAY; |
| 492 | |
| 493 | MP_DIGITS(&aa) = 0; |
| 494 | MP_DIGITS(&bb) = 0; |
| 495 | MP_DIGITS(&uu) = 0; |
| 496 | |
| 497 | MP_CHECKOK( mp_init_copy(&aa, x) ); |
| 498 | MP_CHECKOK( mp_init_copy(&uu, y) ); |
| 499 | MP_CHECKOK( mp_init_copy(&bb, pp) ); |
| 500 | MP_CHECKOK( s_mp_pad(r, USED(pp)) ); |
| 501 | MP_USED(r) = 1; MP_DIGIT(r, 0) = 0; |
| 502 | |
| 503 | a = &aa; b= &bb; u=&uu; v=r; |
| 504 | /* reduce x and y mod p */ |
| 505 | MP_CHECKOK( mp_bmod(a, p, a) ); |
| 506 | MP_CHECKOK( mp_bmod(u, p, u) ); |
| 507 | |
| 508 | while (!mp_isodd(a)) { |
| 509 | s_mp_div2(a); |
| 510 | if (mp_isodd(u)) { |
| 511 | MP_CHECKOK( mp_badd(u, pp, u) ); |
| 512 | } |
| 513 | s_mp_div2(u); |
| 514 | } |
| 515 | |
| 516 | do { |
| 517 | if (mp_cmp_mag(b, a) > 0) { |
| 518 | MP_CHECKOK( mp_badd(b, a, b) ); |
| 519 | MP_CHECKOK( mp_badd(v, u, v) ); |
| 520 | do { |
| 521 | s_mp_div2(b); |
| 522 | if (mp_isodd(v)) { |
| 523 | MP_CHECKOK( mp_badd(v, pp, v) ); |
| 524 | } |
| 525 | s_mp_div2(v); |
| 526 | } while (!mp_isodd(b)); |
| 527 | } |
| 528 | else if ((MP_DIGIT(a,0) == 1) && (MP_USED(a) == 1)) |
| 529 | break; |
| 530 | else { |
| 531 | MP_CHECKOK( mp_badd(a, b, a) ); |
| 532 | MP_CHECKOK( mp_badd(u, v, u) ); |
| 533 | do { |
| 534 | s_mp_div2(a); |
| 535 | if (mp_isodd(u)) { |
| 536 | MP_CHECKOK( mp_badd(u, pp, u) ); |
| 537 | } |
| 538 | s_mp_div2(u); |
| 539 | } while (!mp_isodd(a)); |
| 540 | } |
| 541 | } while (1); |
| 542 | |
| 543 | MP_CHECKOK( mp_copy(u, r) ); |
| 544 | |
| 545 | CLEANUP: |
| 546 | /* XXX this appears to be a memory leak in the NSS code */ |
| 547 | mp_clear(&aa); |
| 548 | mp_clear(&bb); |
| 549 | mp_clear(&uu); |
| 550 | return res; |
| 551 | |
| 552 | } |
| 553 | |
| 554 | /* Convert the bit-string representation of a polynomial a into an array |
| 555 | * of integers corresponding to the bits with non-zero coefficient. |
| 556 | * Up to max elements of the array will be filled. Return value is total |
| 557 | * number of coefficients that would be extracted if array was large enough. |
| 558 | */ |
| 559 | int |
| 560 | mp_bpoly2arr(const mp_int *a, unsigned int p[], int max) |
| 561 | { |
| 562 | int i, j, k; |
| 563 | mp_digit top_bit, mask; |
| 564 | |
| 565 | top_bit = 1; |
| 566 | top_bit <<= MP_DIGIT_BIT - 1; |
| 567 | |
| 568 | for (k = 0; k < max; k++) p[k] = 0; |
| 569 | k = 0; |
| 570 | |
| 571 | for (i = MP_USED(a) - 1; i >= 0; i--) { |
| 572 | mask = top_bit; |
| 573 | for (j = MP_DIGIT_BIT - 1; j >= 0; j--) { |
| 574 | if (MP_DIGITS(a)[i] & mask) { |
| 575 | if (k < max) p[k] = MP_DIGIT_BIT * i + j; |
| 576 | k++; |
| 577 | } |
| 578 | mask >>= 1; |
| 579 | } |
| 580 | } |
| 581 | |
| 582 | return k; |
| 583 | } |
| 584 | |
| 585 | /* Convert the coefficient array representation of a polynomial to a |
| 586 | * bit-string. The array must be terminated by 0. |
| 587 | */ |
| 588 | mp_err |
| 589 | mp_barr2poly(const unsigned int p[], mp_int *a) |
| 590 | { |
| 591 | |
| 592 | mp_err res = MP_OKAY; |
| 593 | int i; |
| 594 | |
| 595 | mp_zero(a); |
| 596 | for (i = 0; p[i] > 0; i++) { |
| 597 | MP_CHECKOK( mpl_set_bit(a, p[i], 1) ); |
| 598 | } |
| 599 | MP_CHECKOK( mpl_set_bit(a, 0, 1) ); |
| 600 | |
| 601 | CLEANUP: |
| 602 | return res; |
| 603 | } |
| 604 | |