1/*
2 * Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved.
3 * Use is subject to license terms.
4 *
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2.1 of the License, or (at your option) any later version.
9 *
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
14 *
15 * You should have received a copy of the GNU Lesser General Public License
16 * along with this library; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 */
23
24/* *********************************************************************
25 *
26 * The Original Code is the elliptic curve math library.
27 *
28 * The Initial Developer of the Original Code is
29 * Sun Microsystems, Inc.
30 * Portions created by the Initial Developer are Copyright (C) 2003
31 * the Initial Developer. All Rights Reserved.
32 *
33 * Contributor(s):
34 * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
35 *
36 * Last Modified Date from the Original Code: May 2017
37 *********************************************************************** */
38
39#include "mpi.h"
40#include "mplogic.h"
41#include "ecl.h"
42#include "ecl-priv.h"
43#ifndef _KERNEL
44#include <stdlib.h>
45#endif
46
47/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k * P(x,
48 * y). If x, y = NULL, then P is assumed to be the generator (base point)
49 * of the group of points on the elliptic curve. Input and output values
50 * are assumed to be NOT field-encoded. */
51mp_err
52ECPoint_mul(const ECGroup *group, const mp_int *k, const mp_int *px,
53 const mp_int *py, mp_int *rx, mp_int *ry,
54 int timing)
55{
56 mp_err res = MP_OKAY;
57 mp_int kt;
58
59 ARGCHK((k != NULL) && (group != NULL), MP_BADARG);
60 MP_DIGITS(&kt) = 0;
61
62 /* want scalar to be less than or equal to group order */
63 if (mp_cmp(k, &group->order) > 0) {
64 MP_CHECKOK(mp_init(&kt, FLAG(k)));
65 MP_CHECKOK(mp_mod(k, &group->order, &kt));
66 } else {
67 MP_SIGN(&kt) = MP_ZPOS;
68 MP_USED(&kt) = MP_USED(k);
69 MP_ALLOC(&kt) = MP_ALLOC(k);
70 MP_DIGITS(&kt) = MP_DIGITS(k);
71 }
72
73 if ((px == NULL) || (py == NULL)) {
74 if (group->base_point_mul) {
75 MP_CHECKOK(group->base_point_mul(&kt, rx, ry, group));
76 } else {
77 kt.flag = (mp_sign)0;
78 MP_CHECKOK(group->
79 point_mul(&kt, &group->genx, &group->geny, rx, ry,
80 group, timing));
81 }
82 } else {
83 kt.flag = (mp_sign)0;
84 if (group->meth->field_enc) {
85 MP_CHECKOK(group->meth->field_enc(px, rx, group->meth));
86 MP_CHECKOK(group->meth->field_enc(py, ry, group->meth));
87 MP_CHECKOK(group->point_mul(&kt, rx, ry, rx, ry, group, timing));
88 } else {
89 MP_CHECKOK(group->point_mul(&kt, px, py, rx, ry, group, timing));
90 }
91 }
92 if (group->meth->field_dec) {
93 MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
94 MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
95 }
96
97 CLEANUP:
98 if (MP_DIGITS(&kt) != MP_DIGITS(k)) {
99 mp_clear(&kt);
100 }
101 return res;
102}
103
104/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
105 * k2 * P(x, y), where G is the generator (base point) of the group of
106 * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
107 * Input and output values are assumed to be NOT field-encoded. */
108mp_err
109ec_pts_mul_basic(const mp_int *k1, const mp_int *k2, const mp_int *px,
110 const mp_int *py, mp_int *rx, mp_int *ry,
111 const ECGroup *group, int timing)
112{
113 mp_err res = MP_OKAY;
114 mp_int sx, sy;
115
116 ARGCHK(group != NULL, MP_BADARG);
117 ARGCHK(!((k1 == NULL)
118 && ((k2 == NULL) || (px == NULL)
119 || (py == NULL))), MP_BADARG);
120
121 /* if some arguments are not defined used ECPoint_mul */
122 if (k1 == NULL) {
123 return ECPoint_mul(group, k2, px, py, rx, ry, timing);
124 } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
125 return ECPoint_mul(group, k1, NULL, NULL, rx, ry, timing);
126 }
127
128 MP_DIGITS(&sx) = 0;
129 MP_DIGITS(&sy) = 0;
130 MP_CHECKOK(mp_init(&sx, FLAG(k1)));
131 MP_CHECKOK(mp_init(&sy, FLAG(k1)));
132
133 MP_CHECKOK(ECPoint_mul(group, k1, NULL, NULL, &sx, &sy, timing));
134 MP_CHECKOK(ECPoint_mul(group, k2, px, py, rx, ry, timing));
135
136 if (group->meth->field_enc) {
137 MP_CHECKOK(group->meth->field_enc(&sx, &sx, group->meth));
138 MP_CHECKOK(group->meth->field_enc(&sy, &sy, group->meth));
139 MP_CHECKOK(group->meth->field_enc(rx, rx, group->meth));
140 MP_CHECKOK(group->meth->field_enc(ry, ry, group->meth));
141 }
142
143 MP_CHECKOK(group->point_add(&sx, &sy, rx, ry, rx, ry, group));
144
145 if (group->meth->field_dec) {
146 MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
147 MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
148 }
149
150 CLEANUP:
151 mp_clear(&sx);
152 mp_clear(&sy);
153 return res;
154}
155
156/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
157 * k2 * P(x, y), where G is the generator (base point) of the group of
158 * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
159 * Input and output values are assumed to be NOT field-encoded. Uses
160 * algorithm 15 (simultaneous multiple point multiplication) from Brown,
161 * Hankerson, Lopez, Menezes. Software Implementation of the NIST
162 * Elliptic Curves over Prime Fields. */
163mp_err
164ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2, const mp_int *px,
165 const mp_int *py, mp_int *rx, mp_int *ry,
166 const ECGroup *group, int timing)
167{
168 mp_err res = MP_OKAY;
169 mp_int precomp[4][4][2];
170 const mp_int *a, *b;
171 int i, j;
172 int ai, bi, d;
173
174 ARGCHK(group != NULL, MP_BADARG);
175 ARGCHK(!((k1 == NULL)
176 && ((k2 == NULL) || (px == NULL)
177 || (py == NULL))), MP_BADARG);
178
179 /* if some arguments are not defined used ECPoint_mul */
180 if (k1 == NULL) {
181 return ECPoint_mul(group, k2, px, py, rx, ry, timing);
182 } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
183 return ECPoint_mul(group, k1, NULL, NULL, rx, ry, timing);
184 }
185
186 /* initialize precomputation table */
187 for (i = 0; i < 4; i++) {
188 for (j = 0; j < 4; j++) {
189 MP_DIGITS(&precomp[i][j][0]) = 0;
190 MP_DIGITS(&precomp[i][j][1]) = 0;
191 }
192 }
193 for (i = 0; i < 4; i++) {
194 for (j = 0; j < 4; j++) {
195 MP_CHECKOK( mp_init_size(&precomp[i][j][0],
196 ECL_MAX_FIELD_SIZE_DIGITS, FLAG(k1)) );
197 MP_CHECKOK( mp_init_size(&precomp[i][j][1],
198 ECL_MAX_FIELD_SIZE_DIGITS, FLAG(k1)) );
199 }
200 }
201
202 /* fill precomputation table */
203 /* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
204 if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
205 a = k2;
206 b = k1;
207 if (group->meth->field_enc) {
208 MP_CHECKOK(group->meth->
209 field_enc(px, &precomp[1][0][0], group->meth));
210 MP_CHECKOK(group->meth->
211 field_enc(py, &precomp[1][0][1], group->meth));
212 } else {
213 MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
214 MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
215 }
216 MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
217 MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
218 } else {
219 a = k1;
220 b = k2;
221 MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
222 MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
223 if (group->meth->field_enc) {
224 MP_CHECKOK(group->meth->
225 field_enc(px, &precomp[0][1][0], group->meth));
226 MP_CHECKOK(group->meth->
227 field_enc(py, &precomp[0][1][1], group->meth));
228 } else {
229 MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
230 MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
231 }
232 }
233 /* precompute [*][0][*] */
234 mp_zero(&precomp[0][0][0]);
235 mp_zero(&precomp[0][0][1]);
236 MP_CHECKOK(group->
237 point_dbl(&precomp[1][0][0], &precomp[1][0][1],
238 &precomp[2][0][0], &precomp[2][0][1], group));
239 MP_CHECKOK(group->
240 point_add(&precomp[1][0][0], &precomp[1][0][1],
241 &precomp[2][0][0], &precomp[2][0][1],
242 &precomp[3][0][0], &precomp[3][0][1], group));
243 /* precompute [*][1][*] */
244 for (i = 1; i < 4; i++) {
245 MP_CHECKOK(group->
246 point_add(&precomp[0][1][0], &precomp[0][1][1],
247 &precomp[i][0][0], &precomp[i][0][1],
248 &precomp[i][1][0], &precomp[i][1][1], group));
249 }
250 /* precompute [*][2][*] */
251 MP_CHECKOK(group->
252 point_dbl(&precomp[0][1][0], &precomp[0][1][1],
253 &precomp[0][2][0], &precomp[0][2][1], group));
254 for (i = 1; i < 4; i++) {
255 MP_CHECKOK(group->
256 point_add(&precomp[0][2][0], &precomp[0][2][1],
257 &precomp[i][0][0], &precomp[i][0][1],
258 &precomp[i][2][0], &precomp[i][2][1], group));
259 }
260 /* precompute [*][3][*] */
261 MP_CHECKOK(group->
262 point_add(&precomp[0][1][0], &precomp[0][1][1],
263 &precomp[0][2][0], &precomp[0][2][1],
264 &precomp[0][3][0], &precomp[0][3][1], group));
265 for (i = 1; i < 4; i++) {
266 MP_CHECKOK(group->
267 point_add(&precomp[0][3][0], &precomp[0][3][1],
268 &precomp[i][0][0], &precomp[i][0][1],
269 &precomp[i][3][0], &precomp[i][3][1], group));
270 }
271
272 d = (mpl_significant_bits(a) + 1) / 2;
273
274 /* R = inf */
275 mp_zero(rx);
276 mp_zero(ry);
277
278 for (i = d - 1; i >= 0; i--) {
279 ai = MP_GET_BIT(a, 2 * i + 1);
280 ai <<= 1;
281 ai |= MP_GET_BIT(a, 2 * i);
282 bi = MP_GET_BIT(b, 2 * i + 1);
283 bi <<= 1;
284 bi |= MP_GET_BIT(b, 2 * i);
285 /* R = 2^2 * R */
286 MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
287 MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
288 /* R = R + (ai * A + bi * B) */
289 MP_CHECKOK(group->
290 point_add(rx, ry, &precomp[ai][bi][0],
291 &precomp[ai][bi][1], rx, ry, group));
292 }
293
294 if (group->meth->field_dec) {
295 MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
296 MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
297 }
298
299 CLEANUP:
300 for (i = 0; i < 4; i++) {
301 for (j = 0; j < 4; j++) {
302 mp_clear(&precomp[i][j][0]);
303 mp_clear(&precomp[i][j][1]);
304 }
305 }
306 return res;
307}
308
309/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
310 * k2 * P(x, y), where G is the generator (base point) of the group of
311 * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
312 * Input and output values are assumed to be NOT field-encoded. */
313mp_err
314ECPoints_mul(const ECGroup *group, const mp_int *k1, const mp_int *k2,
315 const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry,
316 int timing)
317{
318 mp_err res = MP_OKAY;
319 mp_int k1t, k2t;
320 const mp_int *k1p, *k2p;
321
322 MP_DIGITS(&k1t) = 0;
323 MP_DIGITS(&k2t) = 0;
324
325 ARGCHK(group != NULL, MP_BADARG);
326
327 /* want scalar to be less than or equal to group order */
328 if (k1 != NULL) {
329 if (mp_cmp(k1, &group->order) >= 0) {
330 MP_CHECKOK(mp_init(&k1t, FLAG(k1)));
331 MP_CHECKOK(mp_mod(k1, &group->order, &k1t));
332 k1p = &k1t;
333 } else {
334 k1p = k1;
335 }
336 } else {
337 k1p = k1;
338 }
339 if (k2 != NULL) {
340 if (mp_cmp(k2, &group->order) >= 0) {
341 MP_CHECKOK(mp_init(&k2t, FLAG(k2)));
342 MP_CHECKOK(mp_mod(k2, &group->order, &k2t));
343 k2p = &k2t;
344 } else {
345 k2p = k2;
346 }
347 } else {
348 k2p = k2;
349 }
350
351 /* if points_mul is defined, then use it */
352 if (group->points_mul) {
353 res = group->points_mul(k1p, k2p, px, py, rx, ry, group, timing);
354 } else {
355 res = ec_pts_mul_simul_w2(k1p, k2p, px, py, rx, ry, group, timing);
356 }
357
358 CLEANUP:
359 mp_clear(&k1t);
360 mp_clear(&k2t);
361 return res;
362}
363