| 1 | /* |
| 2 | * Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved. |
| 3 | * Use is subject to license terms. |
| 4 | * |
| 5 | * This library is free software; you can redistribute it and/or |
| 6 | * modify it under the terms of the GNU Lesser General Public |
| 7 | * License as published by the Free Software Foundation; either |
| 8 | * version 2.1 of the License, or (at your option) any later version. |
| 9 | * |
| 10 | * This library is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | * Lesser General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU Lesser General Public License |
| 16 | * along with this library; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | */ |
| 23 | |
| 24 | /* ********************************************************************* |
| 25 | * |
| 26 | * The Original Code is the elliptic curve math library. |
| 27 | * |
| 28 | * The Initial Developer of the Original Code is |
| 29 | * Sun Microsystems, Inc. |
| 30 | * Portions created by the Initial Developer are Copyright (C) 2003 |
| 31 | * the Initial Developer. All Rights Reserved. |
| 32 | * |
| 33 | * Contributor(s): |
| 34 | * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories |
| 35 | * |
| 36 | * Last Modified Date from the Original Code: May 2017 |
| 37 | *********************************************************************** */ |
| 38 | |
| 39 | #include "mpi.h" |
| 40 | #include "mplogic.h" |
| 41 | #include "ecl.h" |
| 42 | #include "ecl-priv.h" |
| 43 | #ifndef _KERNEL |
| 44 | #include <stdlib.h> |
| 45 | #endif |
| 46 | |
| 47 | /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k * P(x, |
| 48 | * y). If x, y = NULL, then P is assumed to be the generator (base point) |
| 49 | * of the group of points on the elliptic curve. Input and output values |
| 50 | * are assumed to be NOT field-encoded. */ |
| 51 | mp_err |
| 52 | ECPoint_mul(const ECGroup *group, const mp_int *k, const mp_int *px, |
| 53 | const mp_int *py, mp_int *rx, mp_int *ry, |
| 54 | int timing) |
| 55 | { |
| 56 | mp_err res = MP_OKAY; |
| 57 | mp_int kt; |
| 58 | |
| 59 | ARGCHK((k != NULL) && (group != NULL), MP_BADARG); |
| 60 | MP_DIGITS(&kt) = 0; |
| 61 | |
| 62 | /* want scalar to be less than or equal to group order */ |
| 63 | if (mp_cmp(k, &group->order) > 0) { |
| 64 | MP_CHECKOK(mp_init(&kt, FLAG(k))); |
| 65 | MP_CHECKOK(mp_mod(k, &group->order, &kt)); |
| 66 | } else { |
| 67 | MP_SIGN(&kt) = MP_ZPOS; |
| 68 | MP_USED(&kt) = MP_USED(k); |
| 69 | MP_ALLOC(&kt) = MP_ALLOC(k); |
| 70 | MP_DIGITS(&kt) = MP_DIGITS(k); |
| 71 | } |
| 72 | |
| 73 | if ((px == NULL) || (py == NULL)) { |
| 74 | if (group->base_point_mul) { |
| 75 | MP_CHECKOK(group->base_point_mul(&kt, rx, ry, group)); |
| 76 | } else { |
| 77 | kt.flag = (mp_sign)0; |
| 78 | MP_CHECKOK(group-> |
| 79 | point_mul(&kt, &group->genx, &group->geny, rx, ry, |
| 80 | group, timing)); |
| 81 | } |
| 82 | } else { |
| 83 | kt.flag = (mp_sign)0; |
| 84 | if (group->meth->field_enc) { |
| 85 | MP_CHECKOK(group->meth->field_enc(px, rx, group->meth)); |
| 86 | MP_CHECKOK(group->meth->field_enc(py, ry, group->meth)); |
| 87 | MP_CHECKOK(group->point_mul(&kt, rx, ry, rx, ry, group, timing)); |
| 88 | } else { |
| 89 | MP_CHECKOK(group->point_mul(&kt, px, py, rx, ry, group, timing)); |
| 90 | } |
| 91 | } |
| 92 | if (group->meth->field_dec) { |
| 93 | MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth)); |
| 94 | MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth)); |
| 95 | } |
| 96 | |
| 97 | CLEANUP: |
| 98 | if (MP_DIGITS(&kt) != MP_DIGITS(k)) { |
| 99 | mp_clear(&kt); |
| 100 | } |
| 101 | return res; |
| 102 | } |
| 103 | |
| 104 | /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G + |
| 105 | * k2 * P(x, y), where G is the generator (base point) of the group of |
| 106 | * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL. |
| 107 | * Input and output values are assumed to be NOT field-encoded. */ |
| 108 | mp_err |
| 109 | ec_pts_mul_basic(const mp_int *k1, const mp_int *k2, const mp_int *px, |
| 110 | const mp_int *py, mp_int *rx, mp_int *ry, |
| 111 | const ECGroup *group, int timing) |
| 112 | { |
| 113 | mp_err res = MP_OKAY; |
| 114 | mp_int sx, sy; |
| 115 | |
| 116 | ARGCHK(group != NULL, MP_BADARG); |
| 117 | ARGCHK(!((k1 == NULL) |
| 118 | && ((k2 == NULL) || (px == NULL) |
| 119 | || (py == NULL))), MP_BADARG); |
| 120 | |
| 121 | /* if some arguments are not defined used ECPoint_mul */ |
| 122 | if (k1 == NULL) { |
| 123 | return ECPoint_mul(group, k2, px, py, rx, ry, timing); |
| 124 | } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) { |
| 125 | return ECPoint_mul(group, k1, NULL, NULL, rx, ry, timing); |
| 126 | } |
| 127 | |
| 128 | MP_DIGITS(&sx) = 0; |
| 129 | MP_DIGITS(&sy) = 0; |
| 130 | MP_CHECKOK(mp_init(&sx, FLAG(k1))); |
| 131 | MP_CHECKOK(mp_init(&sy, FLAG(k1))); |
| 132 | |
| 133 | MP_CHECKOK(ECPoint_mul(group, k1, NULL, NULL, &sx, &sy, timing)); |
| 134 | MP_CHECKOK(ECPoint_mul(group, k2, px, py, rx, ry, timing)); |
| 135 | |
| 136 | if (group->meth->field_enc) { |
| 137 | MP_CHECKOK(group->meth->field_enc(&sx, &sx, group->meth)); |
| 138 | MP_CHECKOK(group->meth->field_enc(&sy, &sy, group->meth)); |
| 139 | MP_CHECKOK(group->meth->field_enc(rx, rx, group->meth)); |
| 140 | MP_CHECKOK(group->meth->field_enc(ry, ry, group->meth)); |
| 141 | } |
| 142 | |
| 143 | MP_CHECKOK(group->point_add(&sx, &sy, rx, ry, rx, ry, group)); |
| 144 | |
| 145 | if (group->meth->field_dec) { |
| 146 | MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth)); |
| 147 | MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth)); |
| 148 | } |
| 149 | |
| 150 | CLEANUP: |
| 151 | mp_clear(&sx); |
| 152 | mp_clear(&sy); |
| 153 | return res; |
| 154 | } |
| 155 | |
| 156 | /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G + |
| 157 | * k2 * P(x, y), where G is the generator (base point) of the group of |
| 158 | * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL. |
| 159 | * Input and output values are assumed to be NOT field-encoded. Uses |
| 160 | * algorithm 15 (simultaneous multiple point multiplication) from Brown, |
| 161 | * Hankerson, Lopez, Menezes. Software Implementation of the NIST |
| 162 | * Elliptic Curves over Prime Fields. */ |
| 163 | mp_err |
| 164 | ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2, const mp_int *px, |
| 165 | const mp_int *py, mp_int *rx, mp_int *ry, |
| 166 | const ECGroup *group, int timing) |
| 167 | { |
| 168 | mp_err res = MP_OKAY; |
| 169 | mp_int precomp[4][4][2]; |
| 170 | const mp_int *a, *b; |
| 171 | int i, j; |
| 172 | int ai, bi, d; |
| 173 | |
| 174 | ARGCHK(group != NULL, MP_BADARG); |
| 175 | ARGCHK(!((k1 == NULL) |
| 176 | && ((k2 == NULL) || (px == NULL) |
| 177 | || (py == NULL))), MP_BADARG); |
| 178 | |
| 179 | /* if some arguments are not defined used ECPoint_mul */ |
| 180 | if (k1 == NULL) { |
| 181 | return ECPoint_mul(group, k2, px, py, rx, ry, timing); |
| 182 | } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) { |
| 183 | return ECPoint_mul(group, k1, NULL, NULL, rx, ry, timing); |
| 184 | } |
| 185 | |
| 186 | /* initialize precomputation table */ |
| 187 | for (i = 0; i < 4; i++) { |
| 188 | for (j = 0; j < 4; j++) { |
| 189 | MP_DIGITS(&precomp[i][j][0]) = 0; |
| 190 | MP_DIGITS(&precomp[i][j][1]) = 0; |
| 191 | } |
| 192 | } |
| 193 | for (i = 0; i < 4; i++) { |
| 194 | for (j = 0; j < 4; j++) { |
| 195 | MP_CHECKOK( mp_init_size(&precomp[i][j][0], |
| 196 | ECL_MAX_FIELD_SIZE_DIGITS, FLAG(k1)) ); |
| 197 | MP_CHECKOK( mp_init_size(&precomp[i][j][1], |
| 198 | ECL_MAX_FIELD_SIZE_DIGITS, FLAG(k1)) ); |
| 199 | } |
| 200 | } |
| 201 | |
| 202 | /* fill precomputation table */ |
| 203 | /* assign {k1, k2} = {a, b} such that len(a) >= len(b) */ |
| 204 | if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) { |
| 205 | a = k2; |
| 206 | b = k1; |
| 207 | if (group->meth->field_enc) { |
| 208 | MP_CHECKOK(group->meth-> |
| 209 | field_enc(px, &precomp[1][0][0], group->meth)); |
| 210 | MP_CHECKOK(group->meth-> |
| 211 | field_enc(py, &precomp[1][0][1], group->meth)); |
| 212 | } else { |
| 213 | MP_CHECKOK(mp_copy(px, &precomp[1][0][0])); |
| 214 | MP_CHECKOK(mp_copy(py, &precomp[1][0][1])); |
| 215 | } |
| 216 | MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0])); |
| 217 | MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1])); |
| 218 | } else { |
| 219 | a = k1; |
| 220 | b = k2; |
| 221 | MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0])); |
| 222 | MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1])); |
| 223 | if (group->meth->field_enc) { |
| 224 | MP_CHECKOK(group->meth-> |
| 225 | field_enc(px, &precomp[0][1][0], group->meth)); |
| 226 | MP_CHECKOK(group->meth-> |
| 227 | field_enc(py, &precomp[0][1][1], group->meth)); |
| 228 | } else { |
| 229 | MP_CHECKOK(mp_copy(px, &precomp[0][1][0])); |
| 230 | MP_CHECKOK(mp_copy(py, &precomp[0][1][1])); |
| 231 | } |
| 232 | } |
| 233 | /* precompute [*][0][*] */ |
| 234 | mp_zero(&precomp[0][0][0]); |
| 235 | mp_zero(&precomp[0][0][1]); |
| 236 | MP_CHECKOK(group-> |
| 237 | point_dbl(&precomp[1][0][0], &precomp[1][0][1], |
| 238 | &precomp[2][0][0], &precomp[2][0][1], group)); |
| 239 | MP_CHECKOK(group-> |
| 240 | point_add(&precomp[1][0][0], &precomp[1][0][1], |
| 241 | &precomp[2][0][0], &precomp[2][0][1], |
| 242 | &precomp[3][0][0], &precomp[3][0][1], group)); |
| 243 | /* precompute [*][1][*] */ |
| 244 | for (i = 1; i < 4; i++) { |
| 245 | MP_CHECKOK(group-> |
| 246 | point_add(&precomp[0][1][0], &precomp[0][1][1], |
| 247 | &precomp[i][0][0], &precomp[i][0][1], |
| 248 | &precomp[i][1][0], &precomp[i][1][1], group)); |
| 249 | } |
| 250 | /* precompute [*][2][*] */ |
| 251 | MP_CHECKOK(group-> |
| 252 | point_dbl(&precomp[0][1][0], &precomp[0][1][1], |
| 253 | &precomp[0][2][0], &precomp[0][2][1], group)); |
| 254 | for (i = 1; i < 4; i++) { |
| 255 | MP_CHECKOK(group-> |
| 256 | point_add(&precomp[0][2][0], &precomp[0][2][1], |
| 257 | &precomp[i][0][0], &precomp[i][0][1], |
| 258 | &precomp[i][2][0], &precomp[i][2][1], group)); |
| 259 | } |
| 260 | /* precompute [*][3][*] */ |
| 261 | MP_CHECKOK(group-> |
| 262 | point_add(&precomp[0][1][0], &precomp[0][1][1], |
| 263 | &precomp[0][2][0], &precomp[0][2][1], |
| 264 | &precomp[0][3][0], &precomp[0][3][1], group)); |
| 265 | for (i = 1; i < 4; i++) { |
| 266 | MP_CHECKOK(group-> |
| 267 | point_add(&precomp[0][3][0], &precomp[0][3][1], |
| 268 | &precomp[i][0][0], &precomp[i][0][1], |
| 269 | &precomp[i][3][0], &precomp[i][3][1], group)); |
| 270 | } |
| 271 | |
| 272 | d = (mpl_significant_bits(a) + 1) / 2; |
| 273 | |
| 274 | /* R = inf */ |
| 275 | mp_zero(rx); |
| 276 | mp_zero(ry); |
| 277 | |
| 278 | for (i = d - 1; i >= 0; i--) { |
| 279 | ai = MP_GET_BIT(a, 2 * i + 1); |
| 280 | ai <<= 1; |
| 281 | ai |= MP_GET_BIT(a, 2 * i); |
| 282 | bi = MP_GET_BIT(b, 2 * i + 1); |
| 283 | bi <<= 1; |
| 284 | bi |= MP_GET_BIT(b, 2 * i); |
| 285 | /* R = 2^2 * R */ |
| 286 | MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group)); |
| 287 | MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group)); |
| 288 | /* R = R + (ai * A + bi * B) */ |
| 289 | MP_CHECKOK(group-> |
| 290 | point_add(rx, ry, &precomp[ai][bi][0], |
| 291 | &precomp[ai][bi][1], rx, ry, group)); |
| 292 | } |
| 293 | |
| 294 | if (group->meth->field_dec) { |
| 295 | MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth)); |
| 296 | MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth)); |
| 297 | } |
| 298 | |
| 299 | CLEANUP: |
| 300 | for (i = 0; i < 4; i++) { |
| 301 | for (j = 0; j < 4; j++) { |
| 302 | mp_clear(&precomp[i][j][0]); |
| 303 | mp_clear(&precomp[i][j][1]); |
| 304 | } |
| 305 | } |
| 306 | return res; |
| 307 | } |
| 308 | |
| 309 | /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G + |
| 310 | * k2 * P(x, y), where G is the generator (base point) of the group of |
| 311 | * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL. |
| 312 | * Input and output values are assumed to be NOT field-encoded. */ |
| 313 | mp_err |
| 314 | ECPoints_mul(const ECGroup *group, const mp_int *k1, const mp_int *k2, |
| 315 | const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry, |
| 316 | int timing) |
| 317 | { |
| 318 | mp_err res = MP_OKAY; |
| 319 | mp_int k1t, k2t; |
| 320 | const mp_int *k1p, *k2p; |
| 321 | |
| 322 | MP_DIGITS(&k1t) = 0; |
| 323 | MP_DIGITS(&k2t) = 0; |
| 324 | |
| 325 | ARGCHK(group != NULL, MP_BADARG); |
| 326 | |
| 327 | /* want scalar to be less than or equal to group order */ |
| 328 | if (k1 != NULL) { |
| 329 | if (mp_cmp(k1, &group->order) >= 0) { |
| 330 | MP_CHECKOK(mp_init(&k1t, FLAG(k1))); |
| 331 | MP_CHECKOK(mp_mod(k1, &group->order, &k1t)); |
| 332 | k1p = &k1t; |
| 333 | } else { |
| 334 | k1p = k1; |
| 335 | } |
| 336 | } else { |
| 337 | k1p = k1; |
| 338 | } |
| 339 | if (k2 != NULL) { |
| 340 | if (mp_cmp(k2, &group->order) >= 0) { |
| 341 | MP_CHECKOK(mp_init(&k2t, FLAG(k2))); |
| 342 | MP_CHECKOK(mp_mod(k2, &group->order, &k2t)); |
| 343 | k2p = &k2t; |
| 344 | } else { |
| 345 | k2p = k2; |
| 346 | } |
| 347 | } else { |
| 348 | k2p = k2; |
| 349 | } |
| 350 | |
| 351 | /* if points_mul is defined, then use it */ |
| 352 | if (group->points_mul) { |
| 353 | res = group->points_mul(k1p, k2p, px, py, rx, ry, group, timing); |
| 354 | } else { |
| 355 | res = ec_pts_mul_simul_w2(k1p, k2p, px, py, rx, ry, group, timing); |
| 356 | } |
| 357 | |
| 358 | CLEANUP: |
| 359 | mp_clear(&k1t); |
| 360 | mp_clear(&k2t); |
| 361 | return res; |
| 362 | } |
| 363 | |