| 1 | /* |
| 2 | * Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved. |
| 3 | * Use is subject to license terms. |
| 4 | * |
| 5 | * This library is free software; you can redistribute it and/or |
| 6 | * modify it under the terms of the GNU Lesser General Public |
| 7 | * License as published by the Free Software Foundation; either |
| 8 | * version 2.1 of the License, or (at your option) any later version. |
| 9 | * |
| 10 | * This library is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | * Lesser General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU Lesser General Public License |
| 16 | * along with this library; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | */ |
| 23 | |
| 24 | /* ********************************************************************* |
| 25 | * |
| 26 | * The Original Code is the elliptic curve math library. |
| 27 | * |
| 28 | * The Initial Developer of the Original Code is |
| 29 | * Sun Microsystems, Inc. |
| 30 | * Portions created by the Initial Developer are Copyright (C) 2003 |
| 31 | * the Initial Developer. All Rights Reserved. |
| 32 | * |
| 33 | * Contributor(s): |
| 34 | * Stephen Fung <fungstep@hotmail.com> and |
| 35 | * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories |
| 36 | * |
| 37 | *********************************************************************** */ |
| 38 | |
| 39 | #include "mpi.h" |
| 40 | #include "mp_gf2m.h" |
| 41 | #include "ecl-priv.h" |
| 42 | #include "mpi-priv.h" |
| 43 | #ifndef _KERNEL |
| 44 | #include <stdlib.h> |
| 45 | #endif |
| 46 | |
| 47 | /* Allocate memory for a new GFMethod object. */ |
| 48 | GFMethod * |
| 49 | GFMethod_new(int kmflag) |
| 50 | { |
| 51 | mp_err res = MP_OKAY; |
| 52 | GFMethod *meth; |
| 53 | #ifdef _KERNEL |
| 54 | meth = (GFMethod *) kmem_alloc(sizeof(GFMethod), kmflag); |
| 55 | #else |
| 56 | meth = (GFMethod *) malloc(sizeof(GFMethod)); |
| 57 | if (meth == NULL) |
| 58 | return NULL; |
| 59 | #endif |
| 60 | meth->constructed = MP_YES; |
| 61 | MP_DIGITS(&meth->irr) = 0; |
| 62 | meth->extra_free = NULL; |
| 63 | MP_CHECKOK(mp_init(&meth->irr, kmflag)); |
| 64 | |
| 65 | CLEANUP: |
| 66 | if (res != MP_OKAY) { |
| 67 | GFMethod_free(meth); |
| 68 | return NULL; |
| 69 | } |
| 70 | return meth; |
| 71 | } |
| 72 | |
| 73 | /* Construct a generic GFMethod for arithmetic over prime fields with |
| 74 | * irreducible irr. */ |
| 75 | GFMethod * |
| 76 | GFMethod_consGFp(const mp_int *irr) |
| 77 | { |
| 78 | mp_err res = MP_OKAY; |
| 79 | GFMethod *meth = NULL; |
| 80 | |
| 81 | meth = GFMethod_new(FLAG(irr)); |
| 82 | if (meth == NULL) |
| 83 | return NULL; |
| 84 | |
| 85 | MP_CHECKOK(mp_copy(irr, &meth->irr)); |
| 86 | meth->irr_arr[0] = mpl_significant_bits(irr); |
| 87 | meth->irr_arr[1] = meth->irr_arr[2] = meth->irr_arr[3] = |
| 88 | meth->irr_arr[4] = 0; |
| 89 | switch(MP_USED(&meth->irr)) { |
| 90 | /* maybe we need 1 and 2 words here as well?*/ |
| 91 | case 3: |
| 92 | meth->field_add = &ec_GFp_add_3; |
| 93 | meth->field_sub = &ec_GFp_sub_3; |
| 94 | break; |
| 95 | case 4: |
| 96 | meth->field_add = &ec_GFp_add_4; |
| 97 | meth->field_sub = &ec_GFp_sub_4; |
| 98 | break; |
| 99 | case 5: |
| 100 | meth->field_add = &ec_GFp_add_5; |
| 101 | meth->field_sub = &ec_GFp_sub_5; |
| 102 | break; |
| 103 | case 6: |
| 104 | meth->field_add = &ec_GFp_add_6; |
| 105 | meth->field_sub = &ec_GFp_sub_6; |
| 106 | break; |
| 107 | default: |
| 108 | meth->field_add = &ec_GFp_add; |
| 109 | meth->field_sub = &ec_GFp_sub; |
| 110 | } |
| 111 | meth->field_neg = &ec_GFp_neg; |
| 112 | meth->field_mod = &ec_GFp_mod; |
| 113 | meth->field_mul = &ec_GFp_mul; |
| 114 | meth->field_sqr = &ec_GFp_sqr; |
| 115 | meth->field_div = &ec_GFp_div; |
| 116 | meth->field_enc = NULL; |
| 117 | meth->field_dec = NULL; |
| 118 | meth->extra1 = NULL; |
| 119 | meth->extra2 = NULL; |
| 120 | meth->extra_free = NULL; |
| 121 | |
| 122 | CLEANUP: |
| 123 | if (res != MP_OKAY) { |
| 124 | GFMethod_free(meth); |
| 125 | return NULL; |
| 126 | } |
| 127 | return meth; |
| 128 | } |
| 129 | |
| 130 | /* Construct a generic GFMethod for arithmetic over binary polynomial |
| 131 | * fields with irreducible irr that has array representation irr_arr (see |
| 132 | * ecl-priv.h for description of the representation). If irr_arr is NULL, |
| 133 | * then it is constructed from the bitstring representation. */ |
| 134 | GFMethod * |
| 135 | GFMethod_consGF2m(const mp_int *irr, const unsigned int irr_arr[5]) |
| 136 | { |
| 137 | mp_err res = MP_OKAY; |
| 138 | int ret; |
| 139 | GFMethod *meth = NULL; |
| 140 | |
| 141 | meth = GFMethod_new(FLAG(irr)); |
| 142 | if (meth == NULL) |
| 143 | return NULL; |
| 144 | |
| 145 | MP_CHECKOK(mp_copy(irr, &meth->irr)); |
| 146 | if (irr_arr != NULL) { |
| 147 | /* Irreducible polynomials are either trinomials or pentanomials. */ |
| 148 | meth->irr_arr[0] = irr_arr[0]; |
| 149 | meth->irr_arr[1] = irr_arr[1]; |
| 150 | meth->irr_arr[2] = irr_arr[2]; |
| 151 | if (irr_arr[2] > 0) { |
| 152 | meth->irr_arr[3] = irr_arr[3]; |
| 153 | meth->irr_arr[4] = irr_arr[4]; |
| 154 | } else { |
| 155 | meth->irr_arr[3] = meth->irr_arr[4] = 0; |
| 156 | } |
| 157 | } else { |
| 158 | ret = mp_bpoly2arr(irr, meth->irr_arr, 5); |
| 159 | /* Irreducible polynomials are either trinomials or pentanomials. */ |
| 160 | if ((ret != 5) && (ret != 3)) { |
| 161 | res = MP_UNDEF; |
| 162 | goto CLEANUP; |
| 163 | } |
| 164 | } |
| 165 | meth->field_add = &ec_GF2m_add; |
| 166 | meth->field_neg = &ec_GF2m_neg; |
| 167 | meth->field_sub = &ec_GF2m_add; |
| 168 | meth->field_mod = &ec_GF2m_mod; |
| 169 | meth->field_mul = &ec_GF2m_mul; |
| 170 | meth->field_sqr = &ec_GF2m_sqr; |
| 171 | meth->field_div = &ec_GF2m_div; |
| 172 | meth->field_enc = NULL; |
| 173 | meth->field_dec = NULL; |
| 174 | meth->extra1 = NULL; |
| 175 | meth->extra2 = NULL; |
| 176 | meth->extra_free = NULL; |
| 177 | |
| 178 | CLEANUP: |
| 179 | if (res != MP_OKAY) { |
| 180 | GFMethod_free(meth); |
| 181 | return NULL; |
| 182 | } |
| 183 | return meth; |
| 184 | } |
| 185 | |
| 186 | /* Free the memory allocated (if any) to a GFMethod object. */ |
| 187 | void |
| 188 | GFMethod_free(GFMethod *meth) |
| 189 | { |
| 190 | if (meth == NULL) |
| 191 | return; |
| 192 | if (meth->constructed == MP_NO) |
| 193 | return; |
| 194 | mp_clear(&meth->irr); |
| 195 | if (meth->extra_free != NULL) |
| 196 | meth->extra_free(meth); |
| 197 | #ifdef _KERNEL |
| 198 | kmem_free(meth, sizeof(GFMethod)); |
| 199 | #else |
| 200 | free(meth); |
| 201 | #endif |
| 202 | } |
| 203 | |
| 204 | /* Wrapper functions for generic prime field arithmetic. */ |
| 205 | |
| 206 | /* Add two field elements. Assumes that 0 <= a, b < meth->irr */ |
| 207 | mp_err |
| 208 | ec_GFp_add(const mp_int *a, const mp_int *b, mp_int *r, |
| 209 | const GFMethod *meth) |
| 210 | { |
| 211 | /* PRE: 0 <= a, b < p = meth->irr POST: 0 <= r < p, r = a + b (mod p) */ |
| 212 | mp_err res; |
| 213 | |
| 214 | if ((res = mp_add(a, b, r)) != MP_OKAY) { |
| 215 | return res; |
| 216 | } |
| 217 | if (mp_cmp(r, &meth->irr) >= 0) { |
| 218 | return mp_sub(r, &meth->irr, r); |
| 219 | } |
| 220 | return res; |
| 221 | } |
| 222 | |
| 223 | /* Negates a field element. Assumes that 0 <= a < meth->irr */ |
| 224 | mp_err |
| 225 | ec_GFp_neg(const mp_int *a, mp_int *r, const GFMethod *meth) |
| 226 | { |
| 227 | /* PRE: 0 <= a < p = meth->irr POST: 0 <= r < p, r = -a (mod p) */ |
| 228 | |
| 229 | if (mp_cmp_z(a) == 0) { |
| 230 | mp_zero(r); |
| 231 | return MP_OKAY; |
| 232 | } |
| 233 | return mp_sub(&meth->irr, a, r); |
| 234 | } |
| 235 | |
| 236 | /* Subtracts two field elements. Assumes that 0 <= a, b < meth->irr */ |
| 237 | mp_err |
| 238 | ec_GFp_sub(const mp_int *a, const mp_int *b, mp_int *r, |
| 239 | const GFMethod *meth) |
| 240 | { |
| 241 | mp_err res = MP_OKAY; |
| 242 | |
| 243 | /* PRE: 0 <= a, b < p = meth->irr POST: 0 <= r < p, r = a - b (mod p) */ |
| 244 | res = mp_sub(a, b, r); |
| 245 | if (res == MP_RANGE) { |
| 246 | MP_CHECKOK(mp_sub(b, a, r)); |
| 247 | if (mp_cmp_z(r) < 0) { |
| 248 | MP_CHECKOK(mp_add(r, &meth->irr, r)); |
| 249 | } |
| 250 | MP_CHECKOK(ec_GFp_neg(r, r, meth)); |
| 251 | } |
| 252 | if (mp_cmp_z(r) < 0) { |
| 253 | MP_CHECKOK(mp_add(r, &meth->irr, r)); |
| 254 | } |
| 255 | CLEANUP: |
| 256 | return res; |
| 257 | } |
| 258 | /* |
| 259 | * Inline adds for small curve lengths. |
| 260 | */ |
| 261 | /* 3 words */ |
| 262 | mp_err |
| 263 | ec_GFp_add_3(const mp_int *a, const mp_int *b, mp_int *r, |
| 264 | const GFMethod *meth) |
| 265 | { |
| 266 | mp_err res = MP_OKAY; |
| 267 | mp_digit a0 = 0, a1 = 0, a2 = 0; |
| 268 | mp_digit r0 = 0, r1 = 0, r2 = 0; |
| 269 | mp_digit carry; |
| 270 | |
| 271 | switch(MP_USED(a)) { |
| 272 | case 3: |
| 273 | a2 = MP_DIGIT(a,2); |
| 274 | case 2: |
| 275 | a1 = MP_DIGIT(a,1); |
| 276 | case 1: |
| 277 | a0 = MP_DIGIT(a,0); |
| 278 | } |
| 279 | switch(MP_USED(b)) { |
| 280 | case 3: |
| 281 | r2 = MP_DIGIT(b,2); |
| 282 | case 2: |
| 283 | r1 = MP_DIGIT(b,1); |
| 284 | case 1: |
| 285 | r0 = MP_DIGIT(b,0); |
| 286 | } |
| 287 | |
| 288 | #ifndef MPI_AMD64_ADD |
| 289 | MP_ADD_CARRY_ZERO(a0, r0, r0, carry); |
| 290 | MP_ADD_CARRY(a1, r1, r1, carry, carry); |
| 291 | MP_ADD_CARRY(a2, r2, r2, carry, carry); |
| 292 | #else |
| 293 | __asm__ ( |
| 294 | "xorq %3,%3 \n\t" |
| 295 | "addq %4,%0 \n\t" |
| 296 | "adcq %5,%1 \n\t" |
| 297 | "adcq %6,%2 \n\t" |
| 298 | "adcq $0,%3 \n\t" |
| 299 | : "=r" (r0), "=r" (r1), "=r" (r2), "=r" (carry) |
| 300 | : "r" (a0), "r" (a1), "r" (a2), |
| 301 | "0" (r0), "1" (r1), "2" (r2) |
| 302 | : "%cc" ); |
| 303 | #endif |
| 304 | |
| 305 | MP_CHECKOK(s_mp_pad(r, 3)); |
| 306 | MP_DIGIT(r, 2) = r2; |
| 307 | MP_DIGIT(r, 1) = r1; |
| 308 | MP_DIGIT(r, 0) = r0; |
| 309 | MP_SIGN(r) = MP_ZPOS; |
| 310 | MP_USED(r) = 3; |
| 311 | |
| 312 | /* Do quick 'subract' if we've gone over |
| 313 | * (add the 2's complement of the curve field) */ |
| 314 | a2 = MP_DIGIT(&meth->irr,2); |
| 315 | if (carry || r2 > a2 || |
| 316 | ((r2 == a2) && mp_cmp(r,&meth->irr) != MP_LT)) { |
| 317 | a1 = MP_DIGIT(&meth->irr,1); |
| 318 | a0 = MP_DIGIT(&meth->irr,0); |
| 319 | #ifndef MPI_AMD64_ADD |
| 320 | MP_SUB_BORROW(r0, a0, r0, 0, carry); |
| 321 | MP_SUB_BORROW(r1, a1, r1, carry, carry); |
| 322 | MP_SUB_BORROW(r2, a2, r2, carry, carry); |
| 323 | #else |
| 324 | __asm__ ( |
| 325 | "subq %3,%0 \n\t" |
| 326 | "sbbq %4,%1 \n\t" |
| 327 | "sbbq %5,%2 \n\t" |
| 328 | : "=r" (r0), "=r" (r1), "=r" (r2) |
| 329 | : "r" (a0), "r" (a1), "r" (a2), |
| 330 | "0" (r0), "1" (r1), "2" (r2) |
| 331 | : "%cc" ); |
| 332 | #endif |
| 333 | MP_DIGIT(r, 2) = r2; |
| 334 | MP_DIGIT(r, 1) = r1; |
| 335 | MP_DIGIT(r, 0) = r0; |
| 336 | } |
| 337 | |
| 338 | s_mp_clamp(r); |
| 339 | |
| 340 | CLEANUP: |
| 341 | return res; |
| 342 | } |
| 343 | |
| 344 | /* 4 words */ |
| 345 | mp_err |
| 346 | ec_GFp_add_4(const mp_int *a, const mp_int *b, mp_int *r, |
| 347 | const GFMethod *meth) |
| 348 | { |
| 349 | mp_err res = MP_OKAY; |
| 350 | mp_digit a0 = 0, a1 = 0, a2 = 0, a3 = 0; |
| 351 | mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0; |
| 352 | mp_digit carry; |
| 353 | |
| 354 | switch(MP_USED(a)) { |
| 355 | case 4: |
| 356 | a3 = MP_DIGIT(a,3); |
| 357 | case 3: |
| 358 | a2 = MP_DIGIT(a,2); |
| 359 | case 2: |
| 360 | a1 = MP_DIGIT(a,1); |
| 361 | case 1: |
| 362 | a0 = MP_DIGIT(a,0); |
| 363 | } |
| 364 | switch(MP_USED(b)) { |
| 365 | case 4: |
| 366 | r3 = MP_DIGIT(b,3); |
| 367 | case 3: |
| 368 | r2 = MP_DIGIT(b,2); |
| 369 | case 2: |
| 370 | r1 = MP_DIGIT(b,1); |
| 371 | case 1: |
| 372 | r0 = MP_DIGIT(b,0); |
| 373 | } |
| 374 | |
| 375 | #ifndef MPI_AMD64_ADD |
| 376 | MP_ADD_CARRY_ZERO(a0, r0, r0, carry); |
| 377 | MP_ADD_CARRY(a1, r1, r1, carry, carry); |
| 378 | MP_ADD_CARRY(a2, r2, r2, carry, carry); |
| 379 | MP_ADD_CARRY(a3, r3, r3, carry, carry); |
| 380 | #else |
| 381 | __asm__ ( |
| 382 | "xorq %4,%4 \n\t" |
| 383 | "addq %5,%0 \n\t" |
| 384 | "adcq %6,%1 \n\t" |
| 385 | "adcq %7,%2 \n\t" |
| 386 | "adcq %8,%3 \n\t" |
| 387 | "adcq $0,%4 \n\t" |
| 388 | : "=r" (r0), "=r" (r1), "=r" (r2), "=r" (r3), "=r" (carry) |
| 389 | : "r" (a0), "r" (a1), "r" (a2), "r" (a3), |
| 390 | "0" (r0), "1" (r1), "2" (r2), "3" (r3) |
| 391 | : "%cc" ); |
| 392 | #endif |
| 393 | |
| 394 | MP_CHECKOK(s_mp_pad(r, 4)); |
| 395 | MP_DIGIT(r, 3) = r3; |
| 396 | MP_DIGIT(r, 2) = r2; |
| 397 | MP_DIGIT(r, 1) = r1; |
| 398 | MP_DIGIT(r, 0) = r0; |
| 399 | MP_SIGN(r) = MP_ZPOS; |
| 400 | MP_USED(r) = 4; |
| 401 | |
| 402 | /* Do quick 'subract' if we've gone over |
| 403 | * (add the 2's complement of the curve field) */ |
| 404 | a3 = MP_DIGIT(&meth->irr,3); |
| 405 | if (carry || r3 > a3 || |
| 406 | ((r3 == a3) && mp_cmp(r,&meth->irr) != MP_LT)) { |
| 407 | a2 = MP_DIGIT(&meth->irr,2); |
| 408 | a1 = MP_DIGIT(&meth->irr,1); |
| 409 | a0 = MP_DIGIT(&meth->irr,0); |
| 410 | #ifndef MPI_AMD64_ADD |
| 411 | MP_SUB_BORROW(r0, a0, r0, 0, carry); |
| 412 | MP_SUB_BORROW(r1, a1, r1, carry, carry); |
| 413 | MP_SUB_BORROW(r2, a2, r2, carry, carry); |
| 414 | MP_SUB_BORROW(r3, a3, r3, carry, carry); |
| 415 | #else |
| 416 | __asm__ ( |
| 417 | "subq %4,%0 \n\t" |
| 418 | "sbbq %5,%1 \n\t" |
| 419 | "sbbq %6,%2 \n\t" |
| 420 | "sbbq %7,%3 \n\t" |
| 421 | : "=r" (r0), "=r" (r1), "=r" (r2), "=r" (r3) |
| 422 | : "r" (a0), "r" (a1), "r" (a2), "r" (a3), |
| 423 | "0" (r0), "1" (r1), "2" (r2), "3" (r3) |
| 424 | : "%cc" ); |
| 425 | #endif |
| 426 | MP_DIGIT(r, 3) = r3; |
| 427 | MP_DIGIT(r, 2) = r2; |
| 428 | MP_DIGIT(r, 1) = r1; |
| 429 | MP_DIGIT(r, 0) = r0; |
| 430 | } |
| 431 | |
| 432 | s_mp_clamp(r); |
| 433 | |
| 434 | CLEANUP: |
| 435 | return res; |
| 436 | } |
| 437 | |
| 438 | /* 5 words */ |
| 439 | mp_err |
| 440 | ec_GFp_add_5(const mp_int *a, const mp_int *b, mp_int *r, |
| 441 | const GFMethod *meth) |
| 442 | { |
| 443 | mp_err res = MP_OKAY; |
| 444 | mp_digit a0 = 0, a1 = 0, a2 = 0, a3 = 0, a4 = 0; |
| 445 | mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0, r4 = 0; |
| 446 | mp_digit carry; |
| 447 | |
| 448 | switch(MP_USED(a)) { |
| 449 | case 5: |
| 450 | a4 = MP_DIGIT(a,4); |
| 451 | case 4: |
| 452 | a3 = MP_DIGIT(a,3); |
| 453 | case 3: |
| 454 | a2 = MP_DIGIT(a,2); |
| 455 | case 2: |
| 456 | a1 = MP_DIGIT(a,1); |
| 457 | case 1: |
| 458 | a0 = MP_DIGIT(a,0); |
| 459 | } |
| 460 | switch(MP_USED(b)) { |
| 461 | case 5: |
| 462 | r4 = MP_DIGIT(b,4); |
| 463 | case 4: |
| 464 | r3 = MP_DIGIT(b,3); |
| 465 | case 3: |
| 466 | r2 = MP_DIGIT(b,2); |
| 467 | case 2: |
| 468 | r1 = MP_DIGIT(b,1); |
| 469 | case 1: |
| 470 | r0 = MP_DIGIT(b,0); |
| 471 | } |
| 472 | |
| 473 | MP_ADD_CARRY_ZERO(a0, r0, r0, carry); |
| 474 | MP_ADD_CARRY(a1, r1, r1, carry, carry); |
| 475 | MP_ADD_CARRY(a2, r2, r2, carry, carry); |
| 476 | MP_ADD_CARRY(a3, r3, r3, carry, carry); |
| 477 | MP_ADD_CARRY(a4, r4, r4, carry, carry); |
| 478 | |
| 479 | MP_CHECKOK(s_mp_pad(r, 5)); |
| 480 | MP_DIGIT(r, 4) = r4; |
| 481 | MP_DIGIT(r, 3) = r3; |
| 482 | MP_DIGIT(r, 2) = r2; |
| 483 | MP_DIGIT(r, 1) = r1; |
| 484 | MP_DIGIT(r, 0) = r0; |
| 485 | MP_SIGN(r) = MP_ZPOS; |
| 486 | MP_USED(r) = 5; |
| 487 | |
| 488 | /* Do quick 'subract' if we've gone over |
| 489 | * (add the 2's complement of the curve field) */ |
| 490 | a4 = MP_DIGIT(&meth->irr,4); |
| 491 | if (carry || r4 > a4 || |
| 492 | ((r4 == a4) && mp_cmp(r,&meth->irr) != MP_LT)) { |
| 493 | a3 = MP_DIGIT(&meth->irr,3); |
| 494 | a2 = MP_DIGIT(&meth->irr,2); |
| 495 | a1 = MP_DIGIT(&meth->irr,1); |
| 496 | a0 = MP_DIGIT(&meth->irr,0); |
| 497 | MP_SUB_BORROW(r0, a0, r0, 0, carry); |
| 498 | MP_SUB_BORROW(r1, a1, r1, carry, carry); |
| 499 | MP_SUB_BORROW(r2, a2, r2, carry, carry); |
| 500 | MP_SUB_BORROW(r3, a3, r3, carry, carry); |
| 501 | MP_SUB_BORROW(r4, a4, r4, carry, carry); |
| 502 | MP_DIGIT(r, 4) = r4; |
| 503 | MP_DIGIT(r, 3) = r3; |
| 504 | MP_DIGIT(r, 2) = r2; |
| 505 | MP_DIGIT(r, 1) = r1; |
| 506 | MP_DIGIT(r, 0) = r0; |
| 507 | } |
| 508 | |
| 509 | s_mp_clamp(r); |
| 510 | |
| 511 | CLEANUP: |
| 512 | return res; |
| 513 | } |
| 514 | |
| 515 | /* 6 words */ |
| 516 | mp_err |
| 517 | ec_GFp_add_6(const mp_int *a, const mp_int *b, mp_int *r, |
| 518 | const GFMethod *meth) |
| 519 | { |
| 520 | mp_err res = MP_OKAY; |
| 521 | mp_digit a0 = 0, a1 = 0, a2 = 0, a3 = 0, a4 = 0, a5 = 0; |
| 522 | mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0, r4 = 0, r5 = 0; |
| 523 | mp_digit carry; |
| 524 | |
| 525 | switch(MP_USED(a)) { |
| 526 | case 6: |
| 527 | a5 = MP_DIGIT(a,5); |
| 528 | case 5: |
| 529 | a4 = MP_DIGIT(a,4); |
| 530 | case 4: |
| 531 | a3 = MP_DIGIT(a,3); |
| 532 | case 3: |
| 533 | a2 = MP_DIGIT(a,2); |
| 534 | case 2: |
| 535 | a1 = MP_DIGIT(a,1); |
| 536 | case 1: |
| 537 | a0 = MP_DIGIT(a,0); |
| 538 | } |
| 539 | switch(MP_USED(b)) { |
| 540 | case 6: |
| 541 | r5 = MP_DIGIT(b,5); |
| 542 | case 5: |
| 543 | r4 = MP_DIGIT(b,4); |
| 544 | case 4: |
| 545 | r3 = MP_DIGIT(b,3); |
| 546 | case 3: |
| 547 | r2 = MP_DIGIT(b,2); |
| 548 | case 2: |
| 549 | r1 = MP_DIGIT(b,1); |
| 550 | case 1: |
| 551 | r0 = MP_DIGIT(b,0); |
| 552 | } |
| 553 | |
| 554 | MP_ADD_CARRY_ZERO(a0, r0, r0, carry); |
| 555 | MP_ADD_CARRY(a1, r1, r1, carry, carry); |
| 556 | MP_ADD_CARRY(a2, r2, r2, carry, carry); |
| 557 | MP_ADD_CARRY(a3, r3, r3, carry, carry); |
| 558 | MP_ADD_CARRY(a4, r4, r4, carry, carry); |
| 559 | MP_ADD_CARRY(a5, r5, r5, carry, carry); |
| 560 | |
| 561 | MP_CHECKOK(s_mp_pad(r, 6)); |
| 562 | MP_DIGIT(r, 5) = r5; |
| 563 | MP_DIGIT(r, 4) = r4; |
| 564 | MP_DIGIT(r, 3) = r3; |
| 565 | MP_DIGIT(r, 2) = r2; |
| 566 | MP_DIGIT(r, 1) = r1; |
| 567 | MP_DIGIT(r, 0) = r0; |
| 568 | MP_SIGN(r) = MP_ZPOS; |
| 569 | MP_USED(r) = 6; |
| 570 | |
| 571 | /* Do quick 'subract' if we've gone over |
| 572 | * (add the 2's complement of the curve field) */ |
| 573 | a5 = MP_DIGIT(&meth->irr,5); |
| 574 | if (carry || r5 > a5 || |
| 575 | ((r5 == a5) && mp_cmp(r,&meth->irr) != MP_LT)) { |
| 576 | a4 = MP_DIGIT(&meth->irr,4); |
| 577 | a3 = MP_DIGIT(&meth->irr,3); |
| 578 | a2 = MP_DIGIT(&meth->irr,2); |
| 579 | a1 = MP_DIGIT(&meth->irr,1); |
| 580 | a0 = MP_DIGIT(&meth->irr,0); |
| 581 | MP_SUB_BORROW(r0, a0, r0, 0, carry); |
| 582 | MP_SUB_BORROW(r1, a1, r1, carry, carry); |
| 583 | MP_SUB_BORROW(r2, a2, r2, carry, carry); |
| 584 | MP_SUB_BORROW(r3, a3, r3, carry, carry); |
| 585 | MP_SUB_BORROW(r4, a4, r4, carry, carry); |
| 586 | MP_SUB_BORROW(r5, a5, r5, carry, carry); |
| 587 | MP_DIGIT(r, 5) = r5; |
| 588 | MP_DIGIT(r, 4) = r4; |
| 589 | MP_DIGIT(r, 3) = r3; |
| 590 | MP_DIGIT(r, 2) = r2; |
| 591 | MP_DIGIT(r, 1) = r1; |
| 592 | MP_DIGIT(r, 0) = r0; |
| 593 | } |
| 594 | |
| 595 | s_mp_clamp(r); |
| 596 | |
| 597 | CLEANUP: |
| 598 | return res; |
| 599 | } |
| 600 | |
| 601 | /* |
| 602 | * The following subraction functions do in-line subractions based |
| 603 | * on our curve size. |
| 604 | * |
| 605 | * ... 3 words |
| 606 | */ |
| 607 | mp_err |
| 608 | ec_GFp_sub_3(const mp_int *a, const mp_int *b, mp_int *r, |
| 609 | const GFMethod *meth) |
| 610 | { |
| 611 | mp_err res = MP_OKAY; |
| 612 | mp_digit b0 = 0, b1 = 0, b2 = 0; |
| 613 | mp_digit r0 = 0, r1 = 0, r2 = 0; |
| 614 | mp_digit borrow; |
| 615 | |
| 616 | switch(MP_USED(a)) { |
| 617 | case 3: |
| 618 | r2 = MP_DIGIT(a,2); |
| 619 | case 2: |
| 620 | r1 = MP_DIGIT(a,1); |
| 621 | case 1: |
| 622 | r0 = MP_DIGIT(a,0); |
| 623 | } |
| 624 | switch(MP_USED(b)) { |
| 625 | case 3: |
| 626 | b2 = MP_DIGIT(b,2); |
| 627 | case 2: |
| 628 | b1 = MP_DIGIT(b,1); |
| 629 | case 1: |
| 630 | b0 = MP_DIGIT(b,0); |
| 631 | } |
| 632 | |
| 633 | #ifndef MPI_AMD64_ADD |
| 634 | MP_SUB_BORROW(r0, b0, r0, 0, borrow); |
| 635 | MP_SUB_BORROW(r1, b1, r1, borrow, borrow); |
| 636 | MP_SUB_BORROW(r2, b2, r2, borrow, borrow); |
| 637 | #else |
| 638 | __asm__ ( |
| 639 | "xorq %3,%3 \n\t" |
| 640 | "subq %4,%0 \n\t" |
| 641 | "sbbq %5,%1 \n\t" |
| 642 | "sbbq %6,%2 \n\t" |
| 643 | "adcq $0,%3 \n\t" |
| 644 | : "=r" (r0), "=r" (r1), "=r" (r2), "=r" (borrow) |
| 645 | : "r" (b0), "r" (b1), "r" (b2), |
| 646 | "0" (r0), "1" (r1), "2" (r2) |
| 647 | : "%cc" ); |
| 648 | #endif |
| 649 | |
| 650 | /* Do quick 'add' if we've gone under 0 |
| 651 | * (subtract the 2's complement of the curve field) */ |
| 652 | if (borrow) { |
| 653 | b2 = MP_DIGIT(&meth->irr,2); |
| 654 | b1 = MP_DIGIT(&meth->irr,1); |
| 655 | b0 = MP_DIGIT(&meth->irr,0); |
| 656 | #ifndef MPI_AMD64_ADD |
| 657 | MP_ADD_CARRY_ZERO(b0, r0, r0, borrow); |
| 658 | MP_ADD_CARRY(b1, r1, r1, borrow, borrow); |
| 659 | MP_ADD_CARRY(b2, r2, r2, borrow, borrow); |
| 660 | #else |
| 661 | __asm__ ( |
| 662 | "addq %3,%0 \n\t" |
| 663 | "adcq %4,%1 \n\t" |
| 664 | "adcq %5,%2 \n\t" |
| 665 | : "=r" (r0), "=r" (r1), "=r" (r2) |
| 666 | : "r" (b0), "r" (b1), "r" (b2), |
| 667 | "0" (r0), "1" (r1), "2" (r2) |
| 668 | : "%cc" ); |
| 669 | #endif |
| 670 | } |
| 671 | |
| 672 | #ifdef MPI_AMD64_ADD |
| 673 | /* compiler fakeout? */ |
| 674 | if ((r2 == b0) && (r1 == b0) && (r0 == b0)) { |
| 675 | MP_CHECKOK(s_mp_pad(r, 4)); |
| 676 | } |
| 677 | #endif |
| 678 | MP_CHECKOK(s_mp_pad(r, 3)); |
| 679 | MP_DIGIT(r, 2) = r2; |
| 680 | MP_DIGIT(r, 1) = r1; |
| 681 | MP_DIGIT(r, 0) = r0; |
| 682 | MP_SIGN(r) = MP_ZPOS; |
| 683 | MP_USED(r) = 3; |
| 684 | s_mp_clamp(r); |
| 685 | |
| 686 | CLEANUP: |
| 687 | return res; |
| 688 | } |
| 689 | |
| 690 | /* 4 words */ |
| 691 | mp_err |
| 692 | ec_GFp_sub_4(const mp_int *a, const mp_int *b, mp_int *r, |
| 693 | const GFMethod *meth) |
| 694 | { |
| 695 | mp_err res = MP_OKAY; |
| 696 | mp_digit b0 = 0, b1 = 0, b2 = 0, b3 = 0; |
| 697 | mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0; |
| 698 | mp_digit borrow; |
| 699 | |
| 700 | switch(MP_USED(a)) { |
| 701 | case 4: |
| 702 | r3 = MP_DIGIT(a,3); |
| 703 | case 3: |
| 704 | r2 = MP_DIGIT(a,2); |
| 705 | case 2: |
| 706 | r1 = MP_DIGIT(a,1); |
| 707 | case 1: |
| 708 | r0 = MP_DIGIT(a,0); |
| 709 | } |
| 710 | switch(MP_USED(b)) { |
| 711 | case 4: |
| 712 | b3 = MP_DIGIT(b,3); |
| 713 | case 3: |
| 714 | b2 = MP_DIGIT(b,2); |
| 715 | case 2: |
| 716 | b1 = MP_DIGIT(b,1); |
| 717 | case 1: |
| 718 | b0 = MP_DIGIT(b,0); |
| 719 | } |
| 720 | |
| 721 | #ifndef MPI_AMD64_ADD |
| 722 | MP_SUB_BORROW(r0, b0, r0, 0, borrow); |
| 723 | MP_SUB_BORROW(r1, b1, r1, borrow, borrow); |
| 724 | MP_SUB_BORROW(r2, b2, r2, borrow, borrow); |
| 725 | MP_SUB_BORROW(r3, b3, r3, borrow, borrow); |
| 726 | #else |
| 727 | __asm__ ( |
| 728 | "xorq %4,%4 \n\t" |
| 729 | "subq %5,%0 \n\t" |
| 730 | "sbbq %6,%1 \n\t" |
| 731 | "sbbq %7,%2 \n\t" |
| 732 | "sbbq %8,%3 \n\t" |
| 733 | "adcq $0,%4 \n\t" |
| 734 | : "=r" (r0), "=r" (r1), "=r" (r2), "=r" (r3), "=r" (borrow) |
| 735 | : "r" (b0), "r" (b1), "r" (b2), "r" (b3), |
| 736 | "0" (r0), "1" (r1), "2" (r2), "3" (r3) |
| 737 | : "%cc" ); |
| 738 | #endif |
| 739 | |
| 740 | /* Do quick 'add' if we've gone under 0 |
| 741 | * (subtract the 2's complement of the curve field) */ |
| 742 | if (borrow) { |
| 743 | b3 = MP_DIGIT(&meth->irr,3); |
| 744 | b2 = MP_DIGIT(&meth->irr,2); |
| 745 | b1 = MP_DIGIT(&meth->irr,1); |
| 746 | b0 = MP_DIGIT(&meth->irr,0); |
| 747 | #ifndef MPI_AMD64_ADD |
| 748 | MP_ADD_CARRY_ZERO(b0, r0, r0, borrow); |
| 749 | MP_ADD_CARRY(b1, r1, r1, borrow, borrow); |
| 750 | MP_ADD_CARRY(b2, r2, r2, borrow, borrow); |
| 751 | MP_ADD_CARRY(b3, r3, r3, borrow, borrow); |
| 752 | #else |
| 753 | __asm__ ( |
| 754 | "addq %4,%0 \n\t" |
| 755 | "adcq %5,%1 \n\t" |
| 756 | "adcq %6,%2 \n\t" |
| 757 | "adcq %7,%3 \n\t" |
| 758 | : "=r" (r0), "=r" (r1), "=r" (r2), "=r" (r3) |
| 759 | : "r" (b0), "r" (b1), "r" (b2), "r" (b3), |
| 760 | "0" (r0), "1" (r1), "2" (r2), "3" (r3) |
| 761 | : "%cc" ); |
| 762 | #endif |
| 763 | } |
| 764 | #ifdef MPI_AMD64_ADD |
| 765 | /* compiler fakeout? */ |
| 766 | if ((r3 == b0) && (r1 == b0) && (r0 == b0)) { |
| 767 | MP_CHECKOK(s_mp_pad(r, 4)); |
| 768 | } |
| 769 | #endif |
| 770 | MP_CHECKOK(s_mp_pad(r, 4)); |
| 771 | MP_DIGIT(r, 3) = r3; |
| 772 | MP_DIGIT(r, 2) = r2; |
| 773 | MP_DIGIT(r, 1) = r1; |
| 774 | MP_DIGIT(r, 0) = r0; |
| 775 | MP_SIGN(r) = MP_ZPOS; |
| 776 | MP_USED(r) = 4; |
| 777 | s_mp_clamp(r); |
| 778 | |
| 779 | CLEANUP: |
| 780 | return res; |
| 781 | } |
| 782 | |
| 783 | /* 5 words */ |
| 784 | mp_err |
| 785 | ec_GFp_sub_5(const mp_int *a, const mp_int *b, mp_int *r, |
| 786 | const GFMethod *meth) |
| 787 | { |
| 788 | mp_err res = MP_OKAY; |
| 789 | mp_digit b0 = 0, b1 = 0, b2 = 0, b3 = 0, b4 = 0; |
| 790 | mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0, r4 = 0; |
| 791 | mp_digit borrow; |
| 792 | |
| 793 | switch(MP_USED(a)) { |
| 794 | case 5: |
| 795 | r4 = MP_DIGIT(a,4); |
| 796 | case 4: |
| 797 | r3 = MP_DIGIT(a,3); |
| 798 | case 3: |
| 799 | r2 = MP_DIGIT(a,2); |
| 800 | case 2: |
| 801 | r1 = MP_DIGIT(a,1); |
| 802 | case 1: |
| 803 | r0 = MP_DIGIT(a,0); |
| 804 | } |
| 805 | switch(MP_USED(b)) { |
| 806 | case 5: |
| 807 | b4 = MP_DIGIT(b,4); |
| 808 | case 4: |
| 809 | b3 = MP_DIGIT(b,3); |
| 810 | case 3: |
| 811 | b2 = MP_DIGIT(b,2); |
| 812 | case 2: |
| 813 | b1 = MP_DIGIT(b,1); |
| 814 | case 1: |
| 815 | b0 = MP_DIGIT(b,0); |
| 816 | } |
| 817 | |
| 818 | MP_SUB_BORROW(r0, b0, r0, 0, borrow); |
| 819 | MP_SUB_BORROW(r1, b1, r1, borrow, borrow); |
| 820 | MP_SUB_BORROW(r2, b2, r2, borrow, borrow); |
| 821 | MP_SUB_BORROW(r3, b3, r3, borrow, borrow); |
| 822 | MP_SUB_BORROW(r4, b4, r4, borrow, borrow); |
| 823 | |
| 824 | /* Do quick 'add' if we've gone under 0 |
| 825 | * (subtract the 2's complement of the curve field) */ |
| 826 | if (borrow) { |
| 827 | b4 = MP_DIGIT(&meth->irr,4); |
| 828 | b3 = MP_DIGIT(&meth->irr,3); |
| 829 | b2 = MP_DIGIT(&meth->irr,2); |
| 830 | b1 = MP_DIGIT(&meth->irr,1); |
| 831 | b0 = MP_DIGIT(&meth->irr,0); |
| 832 | MP_ADD_CARRY_ZERO(b0, r0, r0, borrow); |
| 833 | MP_ADD_CARRY(b1, r1, r1, borrow, borrow); |
| 834 | MP_ADD_CARRY(b2, r2, r2, borrow, borrow); |
| 835 | MP_ADD_CARRY(b3, r3, r3, borrow, borrow); |
| 836 | MP_ADD_CARRY(b4, r4, r4, borrow, borrow); |
| 837 | } |
| 838 | MP_CHECKOK(s_mp_pad(r, 5)); |
| 839 | MP_DIGIT(r, 4) = r4; |
| 840 | MP_DIGIT(r, 3) = r3; |
| 841 | MP_DIGIT(r, 2) = r2; |
| 842 | MP_DIGIT(r, 1) = r1; |
| 843 | MP_DIGIT(r, 0) = r0; |
| 844 | MP_SIGN(r) = MP_ZPOS; |
| 845 | MP_USED(r) = 5; |
| 846 | s_mp_clamp(r); |
| 847 | |
| 848 | CLEANUP: |
| 849 | return res; |
| 850 | } |
| 851 | |
| 852 | /* 6 words */ |
| 853 | mp_err |
| 854 | ec_GFp_sub_6(const mp_int *a, const mp_int *b, mp_int *r, |
| 855 | const GFMethod *meth) |
| 856 | { |
| 857 | mp_err res = MP_OKAY; |
| 858 | mp_digit b0 = 0, b1 = 0, b2 = 0, b3 = 0, b4 = 0, b5 = 0; |
| 859 | mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0, r4 = 0, r5 = 0; |
| 860 | mp_digit borrow; |
| 861 | |
| 862 | switch(MP_USED(a)) { |
| 863 | case 6: |
| 864 | r5 = MP_DIGIT(a,5); |
| 865 | case 5: |
| 866 | r4 = MP_DIGIT(a,4); |
| 867 | case 4: |
| 868 | r3 = MP_DIGIT(a,3); |
| 869 | case 3: |
| 870 | r2 = MP_DIGIT(a,2); |
| 871 | case 2: |
| 872 | r1 = MP_DIGIT(a,1); |
| 873 | case 1: |
| 874 | r0 = MP_DIGIT(a,0); |
| 875 | } |
| 876 | switch(MP_USED(b)) { |
| 877 | case 6: |
| 878 | b5 = MP_DIGIT(b,5); |
| 879 | case 5: |
| 880 | b4 = MP_DIGIT(b,4); |
| 881 | case 4: |
| 882 | b3 = MP_DIGIT(b,3); |
| 883 | case 3: |
| 884 | b2 = MP_DIGIT(b,2); |
| 885 | case 2: |
| 886 | b1 = MP_DIGIT(b,1); |
| 887 | case 1: |
| 888 | b0 = MP_DIGIT(b,0); |
| 889 | } |
| 890 | |
| 891 | MP_SUB_BORROW(r0, b0, r0, 0, borrow); |
| 892 | MP_SUB_BORROW(r1, b1, r1, borrow, borrow); |
| 893 | MP_SUB_BORROW(r2, b2, r2, borrow, borrow); |
| 894 | MP_SUB_BORROW(r3, b3, r3, borrow, borrow); |
| 895 | MP_SUB_BORROW(r4, b4, r4, borrow, borrow); |
| 896 | MP_SUB_BORROW(r5, b5, r5, borrow, borrow); |
| 897 | |
| 898 | /* Do quick 'add' if we've gone under 0 |
| 899 | * (subtract the 2's complement of the curve field) */ |
| 900 | if (borrow) { |
| 901 | b5 = MP_DIGIT(&meth->irr,5); |
| 902 | b4 = MP_DIGIT(&meth->irr,4); |
| 903 | b3 = MP_DIGIT(&meth->irr,3); |
| 904 | b2 = MP_DIGIT(&meth->irr,2); |
| 905 | b1 = MP_DIGIT(&meth->irr,1); |
| 906 | b0 = MP_DIGIT(&meth->irr,0); |
| 907 | MP_ADD_CARRY_ZERO(b0, r0, r0, borrow); |
| 908 | MP_ADD_CARRY(b1, r1, r1, borrow, borrow); |
| 909 | MP_ADD_CARRY(b2, r2, r2, borrow, borrow); |
| 910 | MP_ADD_CARRY(b3, r3, r3, borrow, borrow); |
| 911 | MP_ADD_CARRY(b4, r4, r4, borrow, borrow); |
| 912 | MP_ADD_CARRY(b5, r5, r5, borrow, borrow); |
| 913 | } |
| 914 | |
| 915 | MP_CHECKOK(s_mp_pad(r, 6)); |
| 916 | MP_DIGIT(r, 5) = r5; |
| 917 | MP_DIGIT(r, 4) = r4; |
| 918 | MP_DIGIT(r, 3) = r3; |
| 919 | MP_DIGIT(r, 2) = r2; |
| 920 | MP_DIGIT(r, 1) = r1; |
| 921 | MP_DIGIT(r, 0) = r0; |
| 922 | MP_SIGN(r) = MP_ZPOS; |
| 923 | MP_USED(r) = 6; |
| 924 | s_mp_clamp(r); |
| 925 | |
| 926 | CLEANUP: |
| 927 | return res; |
| 928 | } |
| 929 | |
| 930 | |
| 931 | /* Reduces an integer to a field element. */ |
| 932 | mp_err |
| 933 | ec_GFp_mod(const mp_int *a, mp_int *r, const GFMethod *meth) |
| 934 | { |
| 935 | return mp_mod(a, &meth->irr, r); |
| 936 | } |
| 937 | |
| 938 | /* Multiplies two field elements. */ |
| 939 | mp_err |
| 940 | ec_GFp_mul(const mp_int *a, const mp_int *b, mp_int *r, |
| 941 | const GFMethod *meth) |
| 942 | { |
| 943 | return mp_mulmod(a, b, &meth->irr, r); |
| 944 | } |
| 945 | |
| 946 | /* Squares a field element. */ |
| 947 | mp_err |
| 948 | ec_GFp_sqr(const mp_int *a, mp_int *r, const GFMethod *meth) |
| 949 | { |
| 950 | return mp_sqrmod(a, &meth->irr, r); |
| 951 | } |
| 952 | |
| 953 | /* Divides two field elements. If a is NULL, then returns the inverse of |
| 954 | * b. */ |
| 955 | mp_err |
| 956 | ec_GFp_div(const mp_int *a, const mp_int *b, mp_int *r, |
| 957 | const GFMethod *meth) |
| 958 | { |
| 959 | mp_err res = MP_OKAY; |
| 960 | mp_int t; |
| 961 | |
| 962 | /* If a is NULL, then return the inverse of b, otherwise return a/b. */ |
| 963 | if (a == NULL) { |
| 964 | return mp_invmod(b, &meth->irr, r); |
| 965 | } else { |
| 966 | /* MPI doesn't support divmod, so we implement it using invmod and |
| 967 | * mulmod. */ |
| 968 | MP_CHECKOK(mp_init(&t, FLAG(b))); |
| 969 | MP_CHECKOK(mp_invmod(b, &meth->irr, &t)); |
| 970 | MP_CHECKOK(mp_mulmod(a, &t, &meth->irr, r)); |
| 971 | CLEANUP: |
| 972 | mp_clear(&t); |
| 973 | return res; |
| 974 | } |
| 975 | } |
| 976 | |
| 977 | /* Wrapper functions for generic binary polynomial field arithmetic. */ |
| 978 | |
| 979 | /* Adds two field elements. */ |
| 980 | mp_err |
| 981 | ec_GF2m_add(const mp_int *a, const mp_int *b, mp_int *r, |
| 982 | const GFMethod *meth) |
| 983 | { |
| 984 | return mp_badd(a, b, r); |
| 985 | } |
| 986 | |
| 987 | /* Negates a field element. Note that for binary polynomial fields, the |
| 988 | * negation of a field element is the field element itself. */ |
| 989 | mp_err |
| 990 | ec_GF2m_neg(const mp_int *a, mp_int *r, const GFMethod *meth) |
| 991 | { |
| 992 | if (a == r) { |
| 993 | return MP_OKAY; |
| 994 | } else { |
| 995 | return mp_copy(a, r); |
| 996 | } |
| 997 | } |
| 998 | |
| 999 | /* Reduces a binary polynomial to a field element. */ |
| 1000 | mp_err |
| 1001 | ec_GF2m_mod(const mp_int *a, mp_int *r, const GFMethod *meth) |
| 1002 | { |
| 1003 | return mp_bmod(a, meth->irr_arr, r); |
| 1004 | } |
| 1005 | |
| 1006 | /* Multiplies two field elements. */ |
| 1007 | mp_err |
| 1008 | ec_GF2m_mul(const mp_int *a, const mp_int *b, mp_int *r, |
| 1009 | const GFMethod *meth) |
| 1010 | { |
| 1011 | return mp_bmulmod(a, b, meth->irr_arr, r); |
| 1012 | } |
| 1013 | |
| 1014 | /* Squares a field element. */ |
| 1015 | mp_err |
| 1016 | ec_GF2m_sqr(const mp_int *a, mp_int *r, const GFMethod *meth) |
| 1017 | { |
| 1018 | return mp_bsqrmod(a, meth->irr_arr, r); |
| 1019 | } |
| 1020 | |
| 1021 | /* Divides two field elements. If a is NULL, then returns the inverse of |
| 1022 | * b. */ |
| 1023 | mp_err |
| 1024 | ec_GF2m_div(const mp_int *a, const mp_int *b, mp_int *r, |
| 1025 | const GFMethod *meth) |
| 1026 | { |
| 1027 | mp_err res = MP_OKAY; |
| 1028 | mp_int t; |
| 1029 | |
| 1030 | /* If a is NULL, then return the inverse of b, otherwise return a/b. */ |
| 1031 | if (a == NULL) { |
| 1032 | /* The GF(2^m) portion of MPI doesn't support invmod, so we |
| 1033 | * compute 1/b. */ |
| 1034 | MP_CHECKOK(mp_init(&t, FLAG(b))); |
| 1035 | MP_CHECKOK(mp_set_int(&t, 1)); |
| 1036 | MP_CHECKOK(mp_bdivmod(&t, b, &meth->irr, meth->irr_arr, r)); |
| 1037 | CLEANUP: |
| 1038 | mp_clear(&t); |
| 1039 | return res; |
| 1040 | } else { |
| 1041 | return mp_bdivmod(a, b, &meth->irr, meth->irr_arr, r); |
| 1042 | } |
| 1043 | } |
| 1044 | |