| 1 | /* |
| 2 | * Copyright (c) 2007, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * Use is subject to license terms. |
| 4 | * |
| 5 | * This library is free software; you can redistribute it and/or |
| 6 | * modify it under the terms of the GNU Lesser General Public |
| 7 | * License as published by the Free Software Foundation; either |
| 8 | * version 2.1 of the License, or (at your option) any later version. |
| 9 | * |
| 10 | * This library is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | * Lesser General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU Lesser General Public License |
| 16 | * along with this library; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | */ |
| 23 | |
| 24 | /* ********************************************************************* |
| 25 | * |
| 26 | * The Original Code is the Elliptic Curve Cryptography library. |
| 27 | * |
| 28 | * The Initial Developer of the Original Code is |
| 29 | * Sun Microsystems, Inc. |
| 30 | * Portions created by the Initial Developer are Copyright (C) 2003 |
| 31 | * the Initial Developer. All Rights Reserved. |
| 32 | * |
| 33 | * Contributor(s): |
| 34 | * Dr Vipul Gupta <vipul.gupta@sun.com> and |
| 35 | * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories |
| 36 | * |
| 37 | * Last Modified Date from the Original Code: May 2017 |
| 38 | *********************************************************************** */ |
| 39 | |
| 40 | #include "mplogic.h" |
| 41 | #include "ec.h" |
| 42 | #include "ecl.h" |
| 43 | |
| 44 | #include <sys/types.h> |
| 45 | #ifndef _KERNEL |
| 46 | #include <stdio.h> |
| 47 | #include <stdlib.h> |
| 48 | #include <string.h> |
| 49 | |
| 50 | #ifndef _WIN32 |
| 51 | #include <strings.h> |
| 52 | #endif /* _WIN32 */ |
| 53 | |
| 54 | #endif |
| 55 | #include "ecl-exp.h" |
| 56 | #include "mpi.h" |
| 57 | #include "ecc_impl.h" |
| 58 | |
| 59 | #ifdef _KERNEL |
| 60 | #define PORT_ZFree(p, l) bzero((p), (l)); kmem_free((p), (l)) |
| 61 | #else |
| 62 | #ifndef _WIN32 |
| 63 | #define PORT_ZFree(p, l) bzero((p), (l)); free((p)) |
| 64 | #else |
| 65 | #define PORT_ZFree(p, l) memset((p), 0, (l)); free((p)) |
| 66 | #endif /* _WIN32 */ |
| 67 | #endif |
| 68 | |
| 69 | /* |
| 70 | * Returns true if pointP is the point at infinity, false otherwise |
| 71 | */ |
| 72 | PRBool |
| 73 | ec_point_at_infinity(SECItem *pointP) |
| 74 | { |
| 75 | unsigned int i; |
| 76 | |
| 77 | for (i = 1; i < pointP->len; i++) { |
| 78 | if (pointP->data[i] != 0x00) return PR_FALSE; |
| 79 | } |
| 80 | |
| 81 | return PR_TRUE; |
| 82 | } |
| 83 | |
| 84 | /* |
| 85 | * Computes scalar point multiplication pointQ = k1 * G + k2 * pointP for |
| 86 | * the curve whose parameters are encoded in params with base point G. |
| 87 | */ |
| 88 | SECStatus |
| 89 | ec_points_mul(const ECParams *params, const mp_int *k1, const mp_int *k2, |
| 90 | const SECItem *pointP, SECItem *pointQ, int kmflag, int timing) |
| 91 | { |
| 92 | mp_int Px, Py, Qx, Qy; |
| 93 | mp_int Gx, Gy, order, irreducible, a, b; |
| 94 | #if 0 /* currently don't support non-named curves */ |
| 95 | unsigned int irr_arr[5]; |
| 96 | #endif |
| 97 | ECGroup *group = NULL; |
| 98 | SECStatus rv = SECFailure; |
| 99 | mp_err err = MP_OKAY; |
| 100 | unsigned int len; |
| 101 | |
| 102 | #if EC_DEBUG |
| 103 | int i; |
| 104 | char mpstr[256]; |
| 105 | |
| 106 | printf("ec_points_mul: params [len=%d]:" , params->DEREncoding.len); |
| 107 | for (i = 0; i < params->DEREncoding.len; i++) |
| 108 | printf("%02x:" , params->DEREncoding.data[i]); |
| 109 | printf("\n" ); |
| 110 | |
| 111 | if (k1 != NULL) { |
| 112 | mp_tohex((mp_int*)k1, mpstr); |
| 113 | printf("ec_points_mul: scalar k1: %s\n" , mpstr); |
| 114 | mp_todecimal((mp_int*)k1, mpstr); |
| 115 | printf("ec_points_mul: scalar k1: %s (dec)\n" , mpstr); |
| 116 | } |
| 117 | |
| 118 | if (k2 != NULL) { |
| 119 | mp_tohex((mp_int*)k2, mpstr); |
| 120 | printf("ec_points_mul: scalar k2: %s\n" , mpstr); |
| 121 | mp_todecimal((mp_int*)k2, mpstr); |
| 122 | printf("ec_points_mul: scalar k2: %s (dec)\n" , mpstr); |
| 123 | } |
| 124 | |
| 125 | if (pointP != NULL) { |
| 126 | printf("ec_points_mul: pointP [len=%d]:" , pointP->len); |
| 127 | for (i = 0; i < pointP->len; i++) |
| 128 | printf("%02x:" , pointP->data[i]); |
| 129 | printf("\n" ); |
| 130 | } |
| 131 | #endif |
| 132 | |
| 133 | /* NOTE: We only support uncompressed points for now */ |
| 134 | len = (params->fieldID.size + 7) >> 3; |
| 135 | if (pointP != NULL) { |
| 136 | if ((pointP->data[0] != EC_POINT_FORM_UNCOMPRESSED) || |
| 137 | (pointP->len != (2 * len + 1))) { |
| 138 | return SECFailure; |
| 139 | }; |
| 140 | } |
| 141 | |
| 142 | MP_DIGITS(&Px) = 0; |
| 143 | MP_DIGITS(&Py) = 0; |
| 144 | MP_DIGITS(&Qx) = 0; |
| 145 | MP_DIGITS(&Qy) = 0; |
| 146 | MP_DIGITS(&Gx) = 0; |
| 147 | MP_DIGITS(&Gy) = 0; |
| 148 | MP_DIGITS(&order) = 0; |
| 149 | MP_DIGITS(&irreducible) = 0; |
| 150 | MP_DIGITS(&a) = 0; |
| 151 | MP_DIGITS(&b) = 0; |
| 152 | CHECK_MPI_OK( mp_init(&Px, kmflag) ); |
| 153 | CHECK_MPI_OK( mp_init(&Py, kmflag) ); |
| 154 | CHECK_MPI_OK( mp_init(&Qx, kmflag) ); |
| 155 | CHECK_MPI_OK( mp_init(&Qy, kmflag) ); |
| 156 | CHECK_MPI_OK( mp_init(&Gx, kmflag) ); |
| 157 | CHECK_MPI_OK( mp_init(&Gy, kmflag) ); |
| 158 | CHECK_MPI_OK( mp_init(&order, kmflag) ); |
| 159 | CHECK_MPI_OK( mp_init(&irreducible, kmflag) ); |
| 160 | CHECK_MPI_OK( mp_init(&a, kmflag) ); |
| 161 | CHECK_MPI_OK( mp_init(&b, kmflag) ); |
| 162 | |
| 163 | if ((k2 != NULL) && (pointP != NULL)) { |
| 164 | /* Initialize Px and Py */ |
| 165 | CHECK_MPI_OK( mp_read_unsigned_octets(&Px, pointP->data + 1, (mp_size) len) ); |
| 166 | CHECK_MPI_OK( mp_read_unsigned_octets(&Py, pointP->data + 1 + len, (mp_size) len) ); |
| 167 | } |
| 168 | |
| 169 | /* construct from named params, if possible */ |
| 170 | if (params->name != ECCurve_noName) { |
| 171 | group = ECGroup_fromName(params->name, kmflag); |
| 172 | } |
| 173 | |
| 174 | #if 0 /* currently don't support non-named curves */ |
| 175 | if (group == NULL) { |
| 176 | /* Set up mp_ints containing the curve coefficients */ |
| 177 | CHECK_MPI_OK( mp_read_unsigned_octets(&Gx, params->base.data + 1, |
| 178 | (mp_size) len) ); |
| 179 | CHECK_MPI_OK( mp_read_unsigned_octets(&Gy, params->base.data + 1 + len, |
| 180 | (mp_size) len) ); |
| 181 | SECITEM_TO_MPINT( params->order, &order ); |
| 182 | SECITEM_TO_MPINT( params->curve.a, &a ); |
| 183 | SECITEM_TO_MPINT( params->curve.b, &b ); |
| 184 | if (params->fieldID.type == ec_field_GFp) { |
| 185 | SECITEM_TO_MPINT( params->fieldID.u.prime, &irreducible ); |
| 186 | group = ECGroup_consGFp(&irreducible, &a, &b, &Gx, &Gy, &order, params->cofactor); |
| 187 | } else { |
| 188 | SECITEM_TO_MPINT( params->fieldID.u.poly, &irreducible ); |
| 189 | irr_arr[0] = params->fieldID.size; |
| 190 | irr_arr[1] = params->fieldID.k1; |
| 191 | irr_arr[2] = params->fieldID.k2; |
| 192 | irr_arr[3] = params->fieldID.k3; |
| 193 | irr_arr[4] = 0; |
| 194 | group = ECGroup_consGF2m(&irreducible, irr_arr, &a, &b, &Gx, &Gy, &order, params->cofactor); |
| 195 | } |
| 196 | } |
| 197 | #endif |
| 198 | if (group == NULL) |
| 199 | goto cleanup; |
| 200 | |
| 201 | if ((k2 != NULL) && (pointP != NULL)) { |
| 202 | CHECK_MPI_OK( ECPoints_mul(group, k1, k2, &Px, &Py, &Qx, &Qy, timing) ); |
| 203 | } else { |
| 204 | CHECK_MPI_OK( ECPoints_mul(group, k1, NULL, NULL, NULL, &Qx, &Qy, timing) ); |
| 205 | } |
| 206 | |
| 207 | /* Construct the SECItem representation of point Q */ |
| 208 | pointQ->data[0] = EC_POINT_FORM_UNCOMPRESSED; |
| 209 | CHECK_MPI_OK( mp_to_fixlen_octets(&Qx, pointQ->data + 1, |
| 210 | (mp_size) len) ); |
| 211 | CHECK_MPI_OK( mp_to_fixlen_octets(&Qy, pointQ->data + 1 + len, |
| 212 | (mp_size) len) ); |
| 213 | |
| 214 | rv = SECSuccess; |
| 215 | |
| 216 | #if EC_DEBUG |
| 217 | printf("ec_points_mul: pointQ [len=%d]:" , pointQ->len); |
| 218 | for (i = 0; i < pointQ->len; i++) |
| 219 | printf("%02x:" , pointQ->data[i]); |
| 220 | printf("\n" ); |
| 221 | #endif |
| 222 | |
| 223 | cleanup: |
| 224 | ECGroup_free(group); |
| 225 | mp_clear(&Px); |
| 226 | mp_clear(&Py); |
| 227 | mp_clear(&Qx); |
| 228 | mp_clear(&Qy); |
| 229 | mp_clear(&Gx); |
| 230 | mp_clear(&Gy); |
| 231 | mp_clear(&order); |
| 232 | mp_clear(&irreducible); |
| 233 | mp_clear(&a); |
| 234 | mp_clear(&b); |
| 235 | if (err) { |
| 236 | MP_TO_SEC_ERROR(err); |
| 237 | rv = SECFailure; |
| 238 | } |
| 239 | |
| 240 | return rv; |
| 241 | } |
| 242 | |
| 243 | /* Generates a new EC key pair. The private key is a supplied |
| 244 | * value and the public key is the result of performing a scalar |
| 245 | * point multiplication of that value with the curve's base point. |
| 246 | */ |
| 247 | SECStatus |
| 248 | ec_NewKey(ECParams *ecParams, ECPrivateKey **privKey, |
| 249 | const unsigned char *privKeyBytes, int privKeyLen, int kmflag) |
| 250 | { |
| 251 | SECStatus rv = SECFailure; |
| 252 | PRArenaPool *arena; |
| 253 | ECPrivateKey *key; |
| 254 | mp_int k; |
| 255 | mp_err err = MP_OKAY; |
| 256 | int len; |
| 257 | |
| 258 | #if EC_DEBUG |
| 259 | printf("ec_NewKey called\n" ); |
| 260 | #endif |
| 261 | k.dp = (mp_digit*)NULL; |
| 262 | |
| 263 | if (!ecParams || !privKey || !privKeyBytes || (privKeyLen < 0)) { |
| 264 | PORT_SetError(SEC_ERROR_INVALID_ARGS); |
| 265 | return SECFailure; |
| 266 | } |
| 267 | |
| 268 | /* Initialize an arena for the EC key. */ |
| 269 | if (!(arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE))) |
| 270 | return SECFailure; |
| 271 | |
| 272 | key = (ECPrivateKey *)PORT_ArenaZAlloc(arena, sizeof(ECPrivateKey), |
| 273 | kmflag); |
| 274 | if (!key) { |
| 275 | PORT_FreeArena(arena, PR_TRUE); |
| 276 | return SECFailure; |
| 277 | } |
| 278 | |
| 279 | /* Set the version number (SEC 1 section C.4 says it should be 1) */ |
| 280 | SECITEM_AllocItem(arena, &key->version, 1, kmflag); |
| 281 | key->version.data[0] = 1; |
| 282 | |
| 283 | /* Copy all of the fields from the ECParams argument to the |
| 284 | * ECParams structure within the private key. |
| 285 | */ |
| 286 | key->ecParams.arena = arena; |
| 287 | key->ecParams.type = ecParams->type; |
| 288 | key->ecParams.fieldID.size = ecParams->fieldID.size; |
| 289 | key->ecParams.fieldID.type = ecParams->fieldID.type; |
| 290 | if (ecParams->fieldID.type == ec_field_GFp) { |
| 291 | CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.fieldID.u.prime, |
| 292 | &ecParams->fieldID.u.prime, kmflag)); |
| 293 | } else { |
| 294 | CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.fieldID.u.poly, |
| 295 | &ecParams->fieldID.u.poly, kmflag)); |
| 296 | } |
| 297 | key->ecParams.fieldID.k1 = ecParams->fieldID.k1; |
| 298 | key->ecParams.fieldID.k2 = ecParams->fieldID.k2; |
| 299 | key->ecParams.fieldID.k3 = ecParams->fieldID.k3; |
| 300 | CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.curve.a, |
| 301 | &ecParams->curve.a, kmflag)); |
| 302 | CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.curve.b, |
| 303 | &ecParams->curve.b, kmflag)); |
| 304 | CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.curve.seed, |
| 305 | &ecParams->curve.seed, kmflag)); |
| 306 | CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.base, |
| 307 | &ecParams->base, kmflag)); |
| 308 | CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.order, |
| 309 | &ecParams->order, kmflag)); |
| 310 | key->ecParams.cofactor = ecParams->cofactor; |
| 311 | CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.DEREncoding, |
| 312 | &ecParams->DEREncoding, kmflag)); |
| 313 | key->ecParams.name = ecParams->name; |
| 314 | CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.curveOID, |
| 315 | &ecParams->curveOID, kmflag)); |
| 316 | |
| 317 | len = (ecParams->fieldID.size + 7) >> 3; |
| 318 | SECITEM_AllocItem(arena, &key->publicValue, 2*len + 1, kmflag); |
| 319 | len = ecParams->order.len; |
| 320 | SECITEM_AllocItem(arena, &key->privateValue, len, kmflag); |
| 321 | |
| 322 | /* Copy private key */ |
| 323 | if (privKeyLen >= len) { |
| 324 | memcpy(key->privateValue.data, privKeyBytes, len); |
| 325 | } else { |
| 326 | memset(key->privateValue.data, 0, (len - privKeyLen)); |
| 327 | memcpy(key->privateValue.data + (len - privKeyLen), privKeyBytes, privKeyLen); |
| 328 | } |
| 329 | |
| 330 | /* Compute corresponding public key */ |
| 331 | MP_DIGITS(&k) = 0; |
| 332 | CHECK_MPI_OK( mp_init(&k, kmflag) ); |
| 333 | CHECK_MPI_OK( mp_read_unsigned_octets(&k, key->privateValue.data, |
| 334 | (mp_size) len) ); |
| 335 | |
| 336 | /* key generation does not support timing mitigation */ |
| 337 | rv = ec_points_mul(ecParams, &k, NULL, NULL, &(key->publicValue), kmflag, /*timing*/ 0); |
| 338 | if (rv != SECSuccess) goto cleanup; |
| 339 | *privKey = key; |
| 340 | |
| 341 | cleanup: |
| 342 | mp_clear(&k); |
| 343 | if (rv) { |
| 344 | PORT_FreeArena(arena, PR_TRUE); |
| 345 | } |
| 346 | |
| 347 | #if EC_DEBUG |
| 348 | printf("ec_NewKey returning %s\n" , |
| 349 | (rv == SECSuccess) ? "success" : "failure" ); |
| 350 | #endif |
| 351 | |
| 352 | return rv; |
| 353 | |
| 354 | } |
| 355 | |
| 356 | /* Generates a new EC key pair. The private key is a supplied |
| 357 | * random value (in seed) and the public key is the result of |
| 358 | * performing a scalar point multiplication of that value with |
| 359 | * the curve's base point. |
| 360 | */ |
| 361 | SECStatus |
| 362 | EC_NewKeyFromSeed(ECParams *ecParams, ECPrivateKey **privKey, |
| 363 | const unsigned char *seed, int seedlen, int kmflag) |
| 364 | { |
| 365 | SECStatus rv = SECFailure; |
| 366 | rv = ec_NewKey(ecParams, privKey, seed, seedlen, kmflag); |
| 367 | return rv; |
| 368 | } |
| 369 | |
| 370 | /* Generate a random private key using the algorithm A.4.1 of ANSI X9.62, |
| 371 | * modified a la FIPS 186-2 Change Notice 1 to eliminate the bias in the |
| 372 | * random number generator. |
| 373 | * |
| 374 | * Parameters |
| 375 | * - order: a buffer that holds the curve's group order |
| 376 | * - len: the length in octets of the order buffer |
| 377 | * - random: a buffer of 2 * len random bytes |
| 378 | * - randomlen: the length in octets of the random buffer |
| 379 | * |
| 380 | * Return Value |
| 381 | * Returns a buffer of len octets that holds the private key. The caller |
| 382 | * is responsible for freeing the buffer with PORT_ZFree. |
| 383 | */ |
| 384 | static unsigned char * |
| 385 | ec_GenerateRandomPrivateKey(const unsigned char *order, int len, |
| 386 | const unsigned char *random, int randomlen, int kmflag) |
| 387 | { |
| 388 | SECStatus rv = SECSuccess; |
| 389 | mp_err err; |
| 390 | unsigned char *privKeyBytes = NULL; |
| 391 | mp_int privKeyVal, order_1, one; |
| 392 | |
| 393 | MP_DIGITS(&privKeyVal) = 0; |
| 394 | MP_DIGITS(&order_1) = 0; |
| 395 | MP_DIGITS(&one) = 0; |
| 396 | CHECK_MPI_OK( mp_init(&privKeyVal, kmflag) ); |
| 397 | CHECK_MPI_OK( mp_init(&order_1, kmflag) ); |
| 398 | CHECK_MPI_OK( mp_init(&one, kmflag) ); |
| 399 | |
| 400 | /* |
| 401 | * Reduces the 2*len buffer of random bytes modulo the group order. |
| 402 | */ |
| 403 | if ((privKeyBytes = PORT_Alloc(2*len, kmflag)) == NULL) goto cleanup; |
| 404 | if (randomlen != 2 * len) { |
| 405 | randomlen = 2 * len; |
| 406 | } |
| 407 | /* No need to generate - random bytes are now supplied */ |
| 408 | /* CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(privKeyBytes, 2*len) );*/ |
| 409 | memcpy(privKeyBytes, random, randomlen); |
| 410 | |
| 411 | CHECK_MPI_OK( mp_read_unsigned_octets(&privKeyVal, privKeyBytes, 2*len) ); |
| 412 | CHECK_MPI_OK( mp_read_unsigned_octets(&order_1, order, len) ); |
| 413 | CHECK_MPI_OK( mp_set_int(&one, 1) ); |
| 414 | CHECK_MPI_OK( mp_sub(&order_1, &one, &order_1) ); |
| 415 | CHECK_MPI_OK( mp_mod(&privKeyVal, &order_1, &privKeyVal) ); |
| 416 | CHECK_MPI_OK( mp_add(&privKeyVal, &one, &privKeyVal) ); |
| 417 | CHECK_MPI_OK( mp_to_fixlen_octets(&privKeyVal, privKeyBytes, len) ); |
| 418 | memset(privKeyBytes+len, 0, len); |
| 419 | cleanup: |
| 420 | mp_clear(&privKeyVal); |
| 421 | mp_clear(&order_1); |
| 422 | mp_clear(&one); |
| 423 | if (err < MP_OKAY) { |
| 424 | MP_TO_SEC_ERROR(err); |
| 425 | rv = SECFailure; |
| 426 | } |
| 427 | if (rv != SECSuccess && privKeyBytes) { |
| 428 | #ifdef _KERNEL |
| 429 | kmem_free(privKeyBytes, 2*len); |
| 430 | #else |
| 431 | free(privKeyBytes); |
| 432 | #endif |
| 433 | privKeyBytes = NULL; |
| 434 | } |
| 435 | return privKeyBytes; |
| 436 | } |
| 437 | |
| 438 | /* Generates a new EC key pair. The private key is a random value and |
| 439 | * the public key is the result of performing a scalar point multiplication |
| 440 | * of that value with the curve's base point. |
| 441 | */ |
| 442 | SECStatus |
| 443 | EC_NewKey(ECParams *ecParams, ECPrivateKey **privKey, |
| 444 | const unsigned char* random, int randomlen, int kmflag) |
| 445 | { |
| 446 | SECStatus rv = SECFailure; |
| 447 | int len; |
| 448 | unsigned char *privKeyBytes = NULL; |
| 449 | |
| 450 | if (!ecParams) { |
| 451 | PORT_SetError(SEC_ERROR_INVALID_ARGS); |
| 452 | return SECFailure; |
| 453 | } |
| 454 | |
| 455 | len = ecParams->order.len; |
| 456 | privKeyBytes = ec_GenerateRandomPrivateKey(ecParams->order.data, len, |
| 457 | random, randomlen, kmflag); |
| 458 | if (privKeyBytes == NULL) goto cleanup; |
| 459 | /* generate public key */ |
| 460 | CHECK_SEC_OK( ec_NewKey(ecParams, privKey, privKeyBytes, len, kmflag) ); |
| 461 | |
| 462 | cleanup: |
| 463 | if (privKeyBytes) { |
| 464 | PORT_ZFree(privKeyBytes, len * 2); |
| 465 | } |
| 466 | #if EC_DEBUG |
| 467 | printf("EC_NewKey returning %s\n" , |
| 468 | (rv == SECSuccess) ? "success" : "failure" ); |
| 469 | #endif |
| 470 | |
| 471 | return rv; |
| 472 | } |
| 473 | |
| 474 | /* Validates an EC public key as described in Section 5.2.2 of |
| 475 | * X9.62. The ECDH primitive when used without the cofactor does |
| 476 | * not address small subgroup attacks, which may occur when the |
| 477 | * public key is not valid. These attacks can be prevented by |
| 478 | * validating the public key before using ECDH. |
| 479 | */ |
| 480 | SECStatus |
| 481 | EC_ValidatePublicKey(ECParams *ecParams, SECItem *publicValue, int kmflag) |
| 482 | { |
| 483 | mp_int Px, Py; |
| 484 | ECGroup *group = NULL; |
| 485 | SECStatus rv = SECFailure; |
| 486 | mp_err err = MP_OKAY; |
| 487 | unsigned int len; |
| 488 | |
| 489 | if (!ecParams || !publicValue) { |
| 490 | PORT_SetError(SEC_ERROR_INVALID_ARGS); |
| 491 | return SECFailure; |
| 492 | } |
| 493 | |
| 494 | /* NOTE: We only support uncompressed points for now */ |
| 495 | len = (ecParams->fieldID.size + 7) >> 3; |
| 496 | if (publicValue->data[0] != EC_POINT_FORM_UNCOMPRESSED) { |
| 497 | PORT_SetError(SEC_ERROR_UNSUPPORTED_EC_POINT_FORM); |
| 498 | return SECFailure; |
| 499 | } else if (publicValue->len != (2 * len + 1)) { |
| 500 | PORT_SetError(SEC_ERROR_BAD_KEY); |
| 501 | return SECFailure; |
| 502 | } |
| 503 | |
| 504 | MP_DIGITS(&Px) = 0; |
| 505 | MP_DIGITS(&Py) = 0; |
| 506 | CHECK_MPI_OK( mp_init(&Px, kmflag) ); |
| 507 | CHECK_MPI_OK( mp_init(&Py, kmflag) ); |
| 508 | |
| 509 | /* Initialize Px and Py */ |
| 510 | CHECK_MPI_OK( mp_read_unsigned_octets(&Px, publicValue->data + 1, (mp_size) len) ); |
| 511 | CHECK_MPI_OK( mp_read_unsigned_octets(&Py, publicValue->data + 1 + len, (mp_size) len) ); |
| 512 | |
| 513 | /* construct from named params */ |
| 514 | group = ECGroup_fromName(ecParams->name, kmflag); |
| 515 | if (group == NULL) { |
| 516 | /* |
| 517 | * ECGroup_fromName fails if ecParams->name is not a valid |
| 518 | * ECCurveName value, or if we run out of memory, or perhaps |
| 519 | * for other reasons. Unfortunately if ecParams->name is a |
| 520 | * valid ECCurveName value, we don't know what the right error |
| 521 | * code should be because ECGroup_fromName doesn't return an |
| 522 | * error code to the caller. Set err to MP_UNDEF because |
| 523 | * that's what ECGroup_fromName uses internally. |
| 524 | */ |
| 525 | if ((ecParams->name <= ECCurve_noName) || |
| 526 | (ecParams->name >= ECCurve_pastLastCurve)) { |
| 527 | err = MP_BADARG; |
| 528 | } else { |
| 529 | err = MP_UNDEF; |
| 530 | } |
| 531 | goto cleanup; |
| 532 | } |
| 533 | |
| 534 | /* validate public point */ |
| 535 | if ((err = ECPoint_validate(group, &Px, &Py)) < MP_YES) { |
| 536 | if (err == MP_NO) { |
| 537 | PORT_SetError(SEC_ERROR_BAD_KEY); |
| 538 | rv = SECFailure; |
| 539 | err = MP_OKAY; /* don't change the error code */ |
| 540 | } |
| 541 | goto cleanup; |
| 542 | } |
| 543 | |
| 544 | rv = SECSuccess; |
| 545 | |
| 546 | cleanup: |
| 547 | ECGroup_free(group); |
| 548 | mp_clear(&Px); |
| 549 | mp_clear(&Py); |
| 550 | if (err) { |
| 551 | MP_TO_SEC_ERROR(err); |
| 552 | rv = SECFailure; |
| 553 | } |
| 554 | return rv; |
| 555 | } |
| 556 | |
| 557 | /* |
| 558 | ** Performs an ECDH key derivation by computing the scalar point |
| 559 | ** multiplication of privateValue and publicValue (with or without the |
| 560 | ** cofactor) and returns the x-coordinate of the resulting elliptic |
| 561 | ** curve point in derived secret. If successful, derivedSecret->data |
| 562 | ** is set to the address of the newly allocated buffer containing the |
| 563 | ** derived secret, and derivedSecret->len is the size of the secret |
| 564 | ** produced. It is the caller's responsibility to free the allocated |
| 565 | ** buffer containing the derived secret. |
| 566 | */ |
| 567 | SECStatus |
| 568 | ECDH_Derive(SECItem *publicValue, |
| 569 | ECParams *ecParams, |
| 570 | SECItem *privateValue, |
| 571 | PRBool withCofactor, |
| 572 | SECItem *derivedSecret, |
| 573 | int kmflag) |
| 574 | { |
| 575 | SECStatus rv = SECFailure; |
| 576 | unsigned int len = 0; |
| 577 | SECItem pointQ = {siBuffer, NULL, 0}; |
| 578 | mp_int k; /* to hold the private value */ |
| 579 | mp_int cofactor; |
| 580 | mp_err err = MP_OKAY; |
| 581 | #if EC_DEBUG |
| 582 | int i; |
| 583 | #endif |
| 584 | |
| 585 | if (!publicValue || !ecParams || !privateValue || |
| 586 | !derivedSecret) { |
| 587 | PORT_SetError(SEC_ERROR_INVALID_ARGS); |
| 588 | return SECFailure; |
| 589 | } |
| 590 | |
| 591 | if (EC_ValidatePublicKey(ecParams, publicValue, kmflag) != SECSuccess) { |
| 592 | return SECFailure; |
| 593 | } |
| 594 | |
| 595 | memset(derivedSecret, 0, sizeof *derivedSecret); |
| 596 | len = (ecParams->fieldID.size + 7) >> 3; |
| 597 | pointQ.len = 2*len + 1; |
| 598 | if ((pointQ.data = PORT_Alloc(2*len + 1, kmflag)) == NULL) goto cleanup; |
| 599 | |
| 600 | MP_DIGITS(&k) = 0; |
| 601 | CHECK_MPI_OK( mp_init(&k, kmflag) ); |
| 602 | CHECK_MPI_OK( mp_read_unsigned_octets(&k, privateValue->data, |
| 603 | (mp_size) privateValue->len) ); |
| 604 | |
| 605 | if (withCofactor && (ecParams->cofactor != 1)) { |
| 606 | /* multiply k with the cofactor */ |
| 607 | MP_DIGITS(&cofactor) = 0; |
| 608 | CHECK_MPI_OK( mp_init(&cofactor, kmflag) ); |
| 609 | mp_set(&cofactor, ecParams->cofactor); |
| 610 | CHECK_MPI_OK( mp_mul(&k, &cofactor, &k) ); |
| 611 | } |
| 612 | |
| 613 | /* Multiply our private key and peer's public point */ |
| 614 | /* ECDH doesn't support timing mitigation */ |
| 615 | if ((ec_points_mul(ecParams, NULL, &k, publicValue, &pointQ, kmflag, /*timing*/ 0) != SECSuccess) || |
| 616 | ec_point_at_infinity(&pointQ)) |
| 617 | goto cleanup; |
| 618 | |
| 619 | /* Allocate memory for the derived secret and copy |
| 620 | * the x co-ordinate of pointQ into it. |
| 621 | */ |
| 622 | SECITEM_AllocItem(NULL, derivedSecret, len, kmflag); |
| 623 | memcpy(derivedSecret->data, pointQ.data + 1, len); |
| 624 | |
| 625 | rv = SECSuccess; |
| 626 | |
| 627 | #if EC_DEBUG |
| 628 | printf("derived_secret:\n" ); |
| 629 | for (i = 0; i < derivedSecret->len; i++) |
| 630 | printf("%02x:" , derivedSecret->data[i]); |
| 631 | printf("\n" ); |
| 632 | #endif |
| 633 | |
| 634 | cleanup: |
| 635 | mp_clear(&k); |
| 636 | |
| 637 | if (pointQ.data) { |
| 638 | PORT_ZFree(pointQ.data, 2*len + 1); |
| 639 | } |
| 640 | |
| 641 | return rv; |
| 642 | } |
| 643 | |
| 644 | /* Computes the ECDSA signature (a concatenation of two values r and s) |
| 645 | * on the digest using the given key and the random value kb (used in |
| 646 | * computing s). |
| 647 | */ |
| 648 | SECStatus |
| 649 | ECDSA_SignDigestWithSeed(ECPrivateKey *key, SECItem *signature, |
| 650 | const SECItem *digest, const unsigned char *kb, const int kblen, int kmflag, |
| 651 | int timing) |
| 652 | { |
| 653 | SECStatus rv = SECFailure; |
| 654 | mp_int x1; |
| 655 | mp_int d, k; /* private key, random integer */ |
| 656 | mp_int r, s; /* tuple (r, s) is the signature */ |
| 657 | mp_int n; |
| 658 | mp_err err = MP_OKAY; |
| 659 | ECParams *ecParams = NULL; |
| 660 | SECItem kGpoint = { siBuffer, NULL, 0}; |
| 661 | int flen = 0; /* length in bytes of the field size */ |
| 662 | unsigned olen; /* length in bytes of the base point order */ |
| 663 | unsigned int orderBitSize; |
| 664 | |
| 665 | #if EC_DEBUG |
| 666 | char mpstr[256]; |
| 667 | #endif |
| 668 | |
| 669 | /* Initialize MPI integers. */ |
| 670 | /* must happen before the first potential call to cleanup */ |
| 671 | MP_DIGITS(&x1) = 0; |
| 672 | MP_DIGITS(&d) = 0; |
| 673 | MP_DIGITS(&k) = 0; |
| 674 | MP_DIGITS(&r) = 0; |
| 675 | MP_DIGITS(&s) = 0; |
| 676 | MP_DIGITS(&n) = 0; |
| 677 | |
| 678 | /* Check args */ |
| 679 | if (!key || !signature || !digest || !kb || (kblen < 0)) { |
| 680 | PORT_SetError(SEC_ERROR_INVALID_ARGS); |
| 681 | goto cleanup; |
| 682 | } |
| 683 | |
| 684 | ecParams = &(key->ecParams); |
| 685 | flen = (ecParams->fieldID.size + 7) >> 3; |
| 686 | olen = ecParams->order.len; |
| 687 | if (signature->data == NULL) { |
| 688 | /* a call to get the signature length only */ |
| 689 | goto finish; |
| 690 | } |
| 691 | if (signature->len < 2*olen) { |
| 692 | PORT_SetError(SEC_ERROR_OUTPUT_LEN); |
| 693 | rv = SECBufferTooSmall; |
| 694 | goto cleanup; |
| 695 | } |
| 696 | |
| 697 | |
| 698 | CHECK_MPI_OK( mp_init(&x1, kmflag) ); |
| 699 | CHECK_MPI_OK( mp_init(&d, kmflag) ); |
| 700 | CHECK_MPI_OK( mp_init(&k, kmflag) ); |
| 701 | CHECK_MPI_OK( mp_init(&r, kmflag) ); |
| 702 | CHECK_MPI_OK( mp_init(&s, kmflag) ); |
| 703 | CHECK_MPI_OK( mp_init(&n, kmflag) ); |
| 704 | |
| 705 | SECITEM_TO_MPINT( ecParams->order, &n ); |
| 706 | SECITEM_TO_MPINT( key->privateValue, &d ); |
| 707 | CHECK_MPI_OK( mp_read_unsigned_octets(&k, kb, kblen) ); |
| 708 | /* Make sure k is in the interval [1, n-1] */ |
| 709 | if ((mp_cmp_z(&k) <= 0) || (mp_cmp(&k, &n) >= 0)) { |
| 710 | #if EC_DEBUG |
| 711 | printf("k is outside [1, n-1]\n" ); |
| 712 | mp_tohex(&k, mpstr); |
| 713 | printf("k : %s \n" , mpstr); |
| 714 | mp_tohex(&n, mpstr); |
| 715 | printf("n : %s \n" , mpstr); |
| 716 | #endif |
| 717 | PORT_SetError(SEC_ERROR_NEED_RANDOM); |
| 718 | goto cleanup; |
| 719 | } |
| 720 | |
| 721 | /* |
| 722 | ** ANSI X9.62, Section 5.3.2, Step 2 |
| 723 | ** |
| 724 | ** Compute kG |
| 725 | */ |
| 726 | kGpoint.len = 2*flen + 1; |
| 727 | kGpoint.data = PORT_Alloc(2*flen + 1, kmflag); |
| 728 | if ((kGpoint.data == NULL) || |
| 729 | (ec_points_mul(ecParams, &k, NULL, NULL, &kGpoint, kmflag, timing) |
| 730 | != SECSuccess)) |
| 731 | goto cleanup; |
| 732 | |
| 733 | /* |
| 734 | ** ANSI X9.62, Section 5.3.3, Step 1 |
| 735 | ** |
| 736 | ** Extract the x co-ordinate of kG into x1 |
| 737 | */ |
| 738 | CHECK_MPI_OK( mp_read_unsigned_octets(&x1, kGpoint.data + 1, |
| 739 | (mp_size) flen) ); |
| 740 | |
| 741 | /* |
| 742 | ** ANSI X9.62, Section 5.3.3, Step 2 |
| 743 | ** |
| 744 | ** r = x1 mod n NOTE: n is the order of the curve |
| 745 | */ |
| 746 | CHECK_MPI_OK( mp_mod(&x1, &n, &r) ); |
| 747 | |
| 748 | /* |
| 749 | ** ANSI X9.62, Section 5.3.3, Step 3 |
| 750 | ** |
| 751 | ** verify r != 0 |
| 752 | */ |
| 753 | if (mp_cmp_z(&r) == 0) { |
| 754 | PORT_SetError(SEC_ERROR_NEED_RANDOM); |
| 755 | goto cleanup; |
| 756 | } |
| 757 | |
| 758 | /* |
| 759 | ** ANSI X9.62, Section 5.3.3, Step 4 |
| 760 | ** |
| 761 | ** s = (k**-1 * (HASH(M) + d*r)) mod n |
| 762 | */ |
| 763 | SECITEM_TO_MPINT(*digest, &s); /* s = HASH(M) */ |
| 764 | |
| 765 | /* In the definition of EC signing, digests are truncated |
| 766 | * to the order length |
| 767 | * (see SEC 1 "Elliptic Curve Digit Signature Algorithm" section 4.1.*/ |
| 768 | orderBitSize = mpl_significant_bits(&n); |
| 769 | if (digest->len*8 > orderBitSize) { |
| 770 | mpl_rsh(&s,&s,digest->len*8 - orderBitSize); |
| 771 | } |
| 772 | |
| 773 | #if EC_DEBUG |
| 774 | mp_todecimal(&n, mpstr); |
| 775 | printf("n : %s (dec)\n" , mpstr); |
| 776 | mp_todecimal(&d, mpstr); |
| 777 | printf("d : %s (dec)\n" , mpstr); |
| 778 | mp_tohex(&x1, mpstr); |
| 779 | printf("x1: %s\n" , mpstr); |
| 780 | mp_todecimal(&s, mpstr); |
| 781 | printf("digest: %s (decimal)\n" , mpstr); |
| 782 | mp_todecimal(&r, mpstr); |
| 783 | printf("r : %s (dec)\n" , mpstr); |
| 784 | mp_tohex(&r, mpstr); |
| 785 | printf("r : %s\n" , mpstr); |
| 786 | #endif |
| 787 | |
| 788 | CHECK_MPI_OK( mp_invmod(&k, &n, &k) ); /* k = k**-1 mod n */ |
| 789 | CHECK_MPI_OK( mp_mulmod(&d, &r, &n, &d) ); /* d = d * r mod n */ |
| 790 | CHECK_MPI_OK( mp_addmod(&s, &d, &n, &s) ); /* s = s + d mod n */ |
| 791 | CHECK_MPI_OK( mp_mulmod(&s, &k, &n, &s) ); /* s = s * k mod n */ |
| 792 | |
| 793 | #if EC_DEBUG |
| 794 | mp_todecimal(&s, mpstr); |
| 795 | printf("s : %s (dec)\n" , mpstr); |
| 796 | mp_tohex(&s, mpstr); |
| 797 | printf("s : %s\n" , mpstr); |
| 798 | #endif |
| 799 | |
| 800 | /* |
| 801 | ** ANSI X9.62, Section 5.3.3, Step 5 |
| 802 | ** |
| 803 | ** verify s != 0 |
| 804 | */ |
| 805 | if (mp_cmp_z(&s) == 0) { |
| 806 | PORT_SetError(SEC_ERROR_NEED_RANDOM); |
| 807 | goto cleanup; |
| 808 | } |
| 809 | |
| 810 | /* |
| 811 | ** |
| 812 | ** Signature is tuple (r, s) |
| 813 | */ |
| 814 | CHECK_MPI_OK( mp_to_fixlen_octets(&r, signature->data, olen) ); |
| 815 | CHECK_MPI_OK( mp_to_fixlen_octets(&s, signature->data + olen, olen) ); |
| 816 | finish: |
| 817 | signature->len = 2*olen; |
| 818 | |
| 819 | rv = SECSuccess; |
| 820 | err = MP_OKAY; |
| 821 | cleanup: |
| 822 | mp_clear(&x1); |
| 823 | mp_clear(&d); |
| 824 | mp_clear(&k); |
| 825 | mp_clear(&r); |
| 826 | mp_clear(&s); |
| 827 | mp_clear(&n); |
| 828 | |
| 829 | if (kGpoint.data) { |
| 830 | PORT_ZFree(kGpoint.data, 2*flen + 1); |
| 831 | } |
| 832 | |
| 833 | if (err) { |
| 834 | MP_TO_SEC_ERROR(err); |
| 835 | rv = SECFailure; |
| 836 | } |
| 837 | |
| 838 | #if EC_DEBUG |
| 839 | printf("ECDSA signing with seed %s\n" , |
| 840 | (rv == SECSuccess) ? "succeeded" : "failed" ); |
| 841 | #endif |
| 842 | |
| 843 | return rv; |
| 844 | } |
| 845 | |
| 846 | /* |
| 847 | ** Computes the ECDSA signature on the digest using the given key |
| 848 | ** and a random seed. |
| 849 | */ |
| 850 | SECStatus |
| 851 | ECDSA_SignDigest(ECPrivateKey *key, SECItem *signature, const SECItem *digest, |
| 852 | const unsigned char* random, int randomLen, int kmflag, int timing) |
| 853 | { |
| 854 | SECStatus rv = SECFailure; |
| 855 | int len; |
| 856 | unsigned char *kBytes= NULL; |
| 857 | |
| 858 | if (!key) { |
| 859 | PORT_SetError(SEC_ERROR_INVALID_ARGS); |
| 860 | return SECFailure; |
| 861 | } |
| 862 | |
| 863 | /* Generate random value k */ |
| 864 | len = key->ecParams.order.len; |
| 865 | kBytes = ec_GenerateRandomPrivateKey(key->ecParams.order.data, len, |
| 866 | random, randomLen, kmflag); |
| 867 | if (kBytes == NULL) goto cleanup; |
| 868 | |
| 869 | /* Generate ECDSA signature with the specified k value */ |
| 870 | rv = ECDSA_SignDigestWithSeed(key, signature, digest, kBytes, len, kmflag, timing); |
| 871 | |
| 872 | cleanup: |
| 873 | if (kBytes) { |
| 874 | PORT_ZFree(kBytes, len * 2); |
| 875 | } |
| 876 | |
| 877 | #if EC_DEBUG |
| 878 | printf("ECDSA signing %s\n" , |
| 879 | (rv == SECSuccess) ? "succeeded" : "failed" ); |
| 880 | #endif |
| 881 | |
| 882 | return rv; |
| 883 | } |
| 884 | |
| 885 | /* |
| 886 | ** Checks the signature on the given digest using the key provided. |
| 887 | */ |
| 888 | SECStatus |
| 889 | ECDSA_VerifyDigest(ECPublicKey *key, const SECItem *signature, |
| 890 | const SECItem *digest, int kmflag) |
| 891 | { |
| 892 | SECStatus rv = SECFailure; |
| 893 | mp_int r_, s_; /* tuple (r', s') is received signature) */ |
| 894 | mp_int c, u1, u2, v; /* intermediate values used in verification */ |
| 895 | mp_int x1; |
| 896 | mp_int n; |
| 897 | mp_err err = MP_OKAY; |
| 898 | ECParams *ecParams = NULL; |
| 899 | SECItem pointC = { siBuffer, NULL, 0 }; |
| 900 | int slen; /* length in bytes of a half signature (r or s) */ |
| 901 | int flen; /* length in bytes of the field size */ |
| 902 | unsigned olen; /* length in bytes of the base point order */ |
| 903 | unsigned int orderBitSize; |
| 904 | |
| 905 | #if EC_DEBUG |
| 906 | char mpstr[256]; |
| 907 | printf("ECDSA verification called\n" ); |
| 908 | #endif |
| 909 | |
| 910 | /* Initialize MPI integers. */ |
| 911 | /* must happen before the first potential call to cleanup */ |
| 912 | MP_DIGITS(&r_) = 0; |
| 913 | MP_DIGITS(&s_) = 0; |
| 914 | MP_DIGITS(&c) = 0; |
| 915 | MP_DIGITS(&u1) = 0; |
| 916 | MP_DIGITS(&u2) = 0; |
| 917 | MP_DIGITS(&x1) = 0; |
| 918 | MP_DIGITS(&v) = 0; |
| 919 | MP_DIGITS(&n) = 0; |
| 920 | |
| 921 | /* Check args */ |
| 922 | if (!key || !signature || !digest) { |
| 923 | PORT_SetError(SEC_ERROR_INVALID_ARGS); |
| 924 | goto cleanup; |
| 925 | } |
| 926 | |
| 927 | ecParams = &(key->ecParams); |
| 928 | flen = (ecParams->fieldID.size + 7) >> 3; |
| 929 | olen = ecParams->order.len; |
| 930 | if (signature->len == 0 || signature->len%2 != 0 || |
| 931 | signature->len > 2*olen) { |
| 932 | PORT_SetError(SEC_ERROR_INPUT_LEN); |
| 933 | goto cleanup; |
| 934 | } |
| 935 | slen = signature->len/2; |
| 936 | |
| 937 | SECITEM_AllocItem(NULL, &pointC, 2*flen + 1, kmflag); |
| 938 | if (pointC.data == NULL) |
| 939 | goto cleanup; |
| 940 | |
| 941 | CHECK_MPI_OK( mp_init(&r_, kmflag) ); |
| 942 | CHECK_MPI_OK( mp_init(&s_, kmflag) ); |
| 943 | CHECK_MPI_OK( mp_init(&c, kmflag) ); |
| 944 | CHECK_MPI_OK( mp_init(&u1, kmflag) ); |
| 945 | CHECK_MPI_OK( mp_init(&u2, kmflag) ); |
| 946 | CHECK_MPI_OK( mp_init(&x1, kmflag) ); |
| 947 | CHECK_MPI_OK( mp_init(&v, kmflag) ); |
| 948 | CHECK_MPI_OK( mp_init(&n, kmflag) ); |
| 949 | |
| 950 | /* |
| 951 | ** Convert received signature (r', s') into MPI integers. |
| 952 | */ |
| 953 | CHECK_MPI_OK( mp_read_unsigned_octets(&r_, signature->data, slen) ); |
| 954 | CHECK_MPI_OK( mp_read_unsigned_octets(&s_, signature->data + slen, slen) ); |
| 955 | |
| 956 | /* |
| 957 | ** ANSI X9.62, Section 5.4.2, Steps 1 and 2 |
| 958 | ** |
| 959 | ** Verify that 0 < r' < n and 0 < s' < n |
| 960 | */ |
| 961 | SECITEM_TO_MPINT(ecParams->order, &n); |
| 962 | if (mp_cmp_z(&r_) <= 0 || mp_cmp_z(&s_) <= 0 || |
| 963 | mp_cmp(&r_, &n) >= 0 || mp_cmp(&s_, &n) >= 0) { |
| 964 | PORT_SetError(SEC_ERROR_BAD_SIGNATURE); |
| 965 | goto cleanup; /* will return rv == SECFailure */ |
| 966 | } |
| 967 | |
| 968 | /* |
| 969 | ** ANSI X9.62, Section 5.4.2, Step 3 |
| 970 | ** |
| 971 | ** c = (s')**-1 mod n |
| 972 | */ |
| 973 | CHECK_MPI_OK( mp_invmod(&s_, &n, &c) ); /* c = (s')**-1 mod n */ |
| 974 | |
| 975 | /* |
| 976 | ** ANSI X9.62, Section 5.4.2, Step 4 |
| 977 | ** |
| 978 | ** u1 = ((HASH(M')) * c) mod n |
| 979 | */ |
| 980 | SECITEM_TO_MPINT(*digest, &u1); /* u1 = HASH(M) */ |
| 981 | |
| 982 | /* In the definition of EC signing, digests are truncated |
| 983 | * to the order length, in bits. |
| 984 | * (see SEC 1 "Elliptic Curve Digit Signature Algorithm" section 4.1.*/ |
| 985 | /* u1 = HASH(M') */ |
| 986 | orderBitSize = mpl_significant_bits(&n); |
| 987 | if (digest->len*8 > orderBitSize) { |
| 988 | mpl_rsh(&u1,&u1,digest->len*8- orderBitSize); |
| 989 | } |
| 990 | |
| 991 | #if EC_DEBUG |
| 992 | mp_todecimal(&r_, mpstr); |
| 993 | printf("r_: %s (dec)\n" , mpstr); |
| 994 | mp_todecimal(&s_, mpstr); |
| 995 | printf("s_: %s (dec)\n" , mpstr); |
| 996 | mp_todecimal(&c, mpstr); |
| 997 | printf("c : %s (dec)\n" , mpstr); |
| 998 | mp_todecimal(&u1, mpstr); |
| 999 | printf("digest: %s (dec)\n" , mpstr); |
| 1000 | #endif |
| 1001 | |
| 1002 | CHECK_MPI_OK( mp_mulmod(&u1, &c, &n, &u1) ); /* u1 = u1 * c mod n */ |
| 1003 | |
| 1004 | /* |
| 1005 | ** ANSI X9.62, Section 5.4.2, Step 4 |
| 1006 | ** |
| 1007 | ** u2 = ((r') * c) mod n |
| 1008 | */ |
| 1009 | CHECK_MPI_OK( mp_mulmod(&r_, &c, &n, &u2) ); |
| 1010 | |
| 1011 | /* |
| 1012 | ** ANSI X9.62, Section 5.4.3, Step 1 |
| 1013 | ** |
| 1014 | ** Compute u1*G + u2*Q |
| 1015 | ** Here, A = u1.G B = u2.Q and C = A + B |
| 1016 | ** If the result, C, is the point at infinity, reject the signature |
| 1017 | */ |
| 1018 | /* verification does not support timing mitigation */ |
| 1019 | if (ec_points_mul(ecParams, &u1, &u2, &key->publicValue, &pointC, kmflag, /*timing*/ 0) |
| 1020 | != SECSuccess) { |
| 1021 | rv = SECFailure; |
| 1022 | goto cleanup; |
| 1023 | } |
| 1024 | if (ec_point_at_infinity(&pointC)) { |
| 1025 | PORT_SetError(SEC_ERROR_BAD_SIGNATURE); |
| 1026 | rv = SECFailure; |
| 1027 | goto cleanup; |
| 1028 | } |
| 1029 | |
| 1030 | CHECK_MPI_OK( mp_read_unsigned_octets(&x1, pointC.data + 1, flen) ); |
| 1031 | |
| 1032 | /* |
| 1033 | ** ANSI X9.62, Section 5.4.4, Step 2 |
| 1034 | ** |
| 1035 | ** v = x1 mod n |
| 1036 | */ |
| 1037 | CHECK_MPI_OK( mp_mod(&x1, &n, &v) ); |
| 1038 | |
| 1039 | #if EC_DEBUG |
| 1040 | mp_todecimal(&r_, mpstr); |
| 1041 | printf("r_: %s (dec)\n" , mpstr); |
| 1042 | mp_todecimal(&v, mpstr); |
| 1043 | printf("v : %s (dec)\n" , mpstr); |
| 1044 | #endif |
| 1045 | |
| 1046 | /* |
| 1047 | ** ANSI X9.62, Section 5.4.4, Step 3 |
| 1048 | ** |
| 1049 | ** Verification: v == r' |
| 1050 | */ |
| 1051 | if (mp_cmp(&v, &r_)) { |
| 1052 | PORT_SetError(SEC_ERROR_BAD_SIGNATURE); |
| 1053 | rv = SECFailure; /* Signature failed to verify. */ |
| 1054 | } else { |
| 1055 | rv = SECSuccess; /* Signature verified. */ |
| 1056 | } |
| 1057 | |
| 1058 | #if EC_DEBUG |
| 1059 | mp_todecimal(&u1, mpstr); |
| 1060 | printf("u1: %s (dec)\n" , mpstr); |
| 1061 | mp_todecimal(&u2, mpstr); |
| 1062 | printf("u2: %s (dec)\n" , mpstr); |
| 1063 | mp_tohex(&x1, mpstr); |
| 1064 | printf("x1: %s\n" , mpstr); |
| 1065 | mp_todecimal(&v, mpstr); |
| 1066 | printf("v : %s (dec)\n" , mpstr); |
| 1067 | #endif |
| 1068 | |
| 1069 | cleanup: |
| 1070 | mp_clear(&r_); |
| 1071 | mp_clear(&s_); |
| 1072 | mp_clear(&c); |
| 1073 | mp_clear(&u1); |
| 1074 | mp_clear(&u2); |
| 1075 | mp_clear(&x1); |
| 1076 | mp_clear(&v); |
| 1077 | mp_clear(&n); |
| 1078 | |
| 1079 | if (pointC.data) SECITEM_FreeItem(&pointC, PR_FALSE); |
| 1080 | if (err) { |
| 1081 | MP_TO_SEC_ERROR(err); |
| 1082 | rv = SECFailure; |
| 1083 | } |
| 1084 | |
| 1085 | #if EC_DEBUG |
| 1086 | printf("ECDSA verification %s\n" , |
| 1087 | (rv == SECSuccess) ? "succeeded" : "failed" ); |
| 1088 | #endif |
| 1089 | |
| 1090 | return rv; |
| 1091 | } |
| 1092 | |