| 1 | /* |
| 2 | * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "libadt/vectset.hpp" |
| 27 | #include "memory/allocation.inline.hpp" |
| 28 | #include "memory/resourceArea.inline.hpp" |
| 29 | #include "opto/addnode.hpp" |
| 30 | #include "opto/c2compiler.hpp" |
| 31 | #include "opto/callnode.hpp" |
| 32 | #include "opto/cfgnode.hpp" |
| 33 | #include "opto/chaitin.hpp" |
| 34 | #include "opto/loopnode.hpp" |
| 35 | #include "opto/machnode.hpp" |
| 36 | |
| 37 | //------------------------------Split-------------------------------------- |
| 38 | // Walk the graph in RPO and for each lrg which spills, propagate reaching |
| 39 | // definitions. During propagation, split the live range around regions of |
| 40 | // High Register Pressure (HRP). If a Def is in a region of Low Register |
| 41 | // Pressure (LRP), it will not get spilled until we encounter a region of |
| 42 | // HRP between it and one of its uses. We will spill at the transition |
| 43 | // point between LRP and HRP. Uses in the HRP region will use the spilled |
| 44 | // Def. The first Use outside the HRP region will generate a SpillCopy to |
| 45 | // hoist the live range back up into a register, and all subsequent uses |
| 46 | // will use that new Def until another HRP region is encountered. Defs in |
| 47 | // HRP regions will get trailing SpillCopies to push the LRG down into the |
| 48 | // stack immediately. |
| 49 | // |
| 50 | // As a side effect, unlink from (hence make dead) coalesced copies. |
| 51 | // |
| 52 | |
| 53 | static const char out_of_nodes[] = "out of nodes during split" ; |
| 54 | |
| 55 | //------------------------------get_spillcopy_wide----------------------------- |
| 56 | // Get a SpillCopy node with wide-enough masks. Use the 'wide-mask', the |
| 57 | // wide ideal-register spill-mask if possible. If the 'wide-mask' does |
| 58 | // not cover the input (or output), use the input (or output) mask instead. |
| 59 | Node *PhaseChaitin::get_spillcopy_wide(MachSpillCopyNode::SpillType spill_type, Node *def, Node *use, uint uidx) { |
| 60 | // If ideal reg doesn't exist we've got a bad schedule happening |
| 61 | // that is forcing us to spill something that isn't spillable. |
| 62 | // Bail rather than abort |
| 63 | uint ireg = def->ideal_reg(); |
| 64 | if (ireg == 0 || ireg == Op_RegFlags) { |
| 65 | assert(false, "attempted to spill a non-spillable item: %d: %s <- %d: %s, ireg = %u, spill_type: %s" , |
| 66 | def->_idx, def->Name(), use->_idx, use->Name(), ireg, |
| 67 | MachSpillCopyNode::spill_type(spill_type)); |
| 68 | C->record_method_not_compilable("attempted to spill a non-spillable item" ); |
| 69 | return NULL; |
| 70 | } |
| 71 | if (C->check_node_count(NodeLimitFudgeFactor, out_of_nodes)) { |
| 72 | return NULL; |
| 73 | } |
| 74 | const RegMask *i_mask = &def->out_RegMask(); |
| 75 | const RegMask *w_mask = C->matcher()->idealreg2spillmask[ireg]; |
| 76 | const RegMask *o_mask = use ? &use->in_RegMask(uidx) : w_mask; |
| 77 | const RegMask *w_i_mask = w_mask->overlap( *i_mask ) ? w_mask : i_mask; |
| 78 | const RegMask *w_o_mask; |
| 79 | |
| 80 | int num_regs = RegMask::num_registers(ireg); |
| 81 | bool is_vect = RegMask::is_vector(ireg); |
| 82 | if( w_mask->overlap( *o_mask ) && // Overlap AND |
| 83 | (num_regs == 1 // Single use or aligned |
| 84 | || is_vect // or vector |
| 85 | || (!is_vect && o_mask->is_aligned_pairs())) ) { |
| 86 | assert(!is_vect || o_mask->is_aligned_sets(num_regs), "vectors are aligned" ); |
| 87 | // Don't come here for mis-aligned doubles |
| 88 | w_o_mask = w_mask; |
| 89 | } else { // wide ideal mask does not overlap with o_mask |
| 90 | // Mis-aligned doubles come here and XMM->FPR moves on x86. |
| 91 | w_o_mask = o_mask; // Must target desired registers |
| 92 | // Does the ideal-reg-mask overlap with o_mask? I.e., can I use |
| 93 | // a reg-reg move or do I need a trip across register classes |
| 94 | // (and thus through memory)? |
| 95 | if( !C->matcher()->idealreg2regmask[ireg]->overlap( *o_mask) && o_mask->is_UP() ) |
| 96 | // Here we assume a trip through memory is required. |
| 97 | w_i_mask = &C->FIRST_STACK_mask(); |
| 98 | } |
| 99 | return new MachSpillCopyNode(spill_type, def, *w_i_mask, *w_o_mask ); |
| 100 | } |
| 101 | |
| 102 | //------------------------------insert_proj------------------------------------ |
| 103 | // Insert the spill at chosen location. Skip over any intervening Proj's or |
| 104 | // Phis. Skip over a CatchNode and projs, inserting in the fall-through block |
| 105 | // instead. Update high-pressure indices. Create a new live range. |
| 106 | void PhaseChaitin::insert_proj( Block *b, uint i, Node *spill, uint maxlrg ) { |
| 107 | // Skip intervening ProjNodes. Do not insert between a ProjNode and |
| 108 | // its definer. |
| 109 | while( i < b->number_of_nodes() && |
| 110 | (b->get_node(i)->is_Proj() || |
| 111 | b->get_node(i)->is_Phi() ) ) |
| 112 | i++; |
| 113 | |
| 114 | // Do not insert between a call and his Catch |
| 115 | if( b->get_node(i)->is_Catch() ) { |
| 116 | // Put the instruction at the top of the fall-thru block. |
| 117 | // Find the fall-thru projection |
| 118 | while( 1 ) { |
| 119 | const CatchProjNode *cp = b->get_node(++i)->as_CatchProj(); |
| 120 | if( cp->_con == CatchProjNode::fall_through_index ) |
| 121 | break; |
| 122 | } |
| 123 | int sidx = i - b->end_idx()-1; |
| 124 | b = b->_succs[sidx]; // Switch to successor block |
| 125 | i = 1; // Right at start of block |
| 126 | } |
| 127 | |
| 128 | b->insert_node(spill, i); // Insert node in block |
| 129 | _cfg.map_node_to_block(spill, b); // Update node->block mapping to reflect |
| 130 | // Adjust the point where we go hi-pressure |
| 131 | if( i <= b->_ihrp_index ) b->_ihrp_index++; |
| 132 | if( i <= b->_fhrp_index ) b->_fhrp_index++; |
| 133 | |
| 134 | // Assign a new Live Range Number to the SpillCopy and grow |
| 135 | // the node->live range mapping. |
| 136 | new_lrg(spill,maxlrg); |
| 137 | } |
| 138 | |
| 139 | //------------------------------split_DEF-------------------------------------- |
| 140 | // There are four categories of Split; UP/DOWN x DEF/USE |
| 141 | // Only three of these really occur as DOWN/USE will always color |
| 142 | // Any Split with a DEF cannot CISC-Spill now. Thus we need |
| 143 | // two helper routines, one for Split DEFS (insert after instruction), |
| 144 | // one for Split USES (insert before instruction). DEF insertion |
| 145 | // happens inside Split, where the Leaveblock array is updated. |
| 146 | uint PhaseChaitin::split_DEF( Node *def, Block *b, int loc, uint maxlrg, Node **Reachblock, Node **debug_defs, GrowableArray<uint> splits, int slidx ) { |
| 147 | #ifdef ASSERT |
| 148 | // Increment the counter for this lrg |
| 149 | splits.at_put(slidx, splits.at(slidx)+1); |
| 150 | #endif |
| 151 | // If we are spilling the memory op for an implicit null check, at the |
| 152 | // null check location (ie - null check is in HRP block) we need to do |
| 153 | // the null-check first, then spill-down in the following block. |
| 154 | // (The implicit_null_check function ensures the use is also dominated |
| 155 | // by the branch-not-taken block.) |
| 156 | Node *be = b->end(); |
| 157 | if( be->is_MachNullCheck() && be->in(1) == def && def == b->get_node(loc)) { |
| 158 | // Spill goes in the branch-not-taken block |
| 159 | b = b->_succs[b->get_node(b->end_idx()+1)->Opcode() == Op_IfTrue]; |
| 160 | loc = 0; // Just past the Region |
| 161 | } |
| 162 | assert( loc >= 0, "must insert past block head" ); |
| 163 | |
| 164 | // Get a def-side SpillCopy |
| 165 | Node *spill = get_spillcopy_wide(MachSpillCopyNode::Definition, def, NULL, 0); |
| 166 | // Did we fail to split?, then bail |
| 167 | if (!spill) { |
| 168 | return 0; |
| 169 | } |
| 170 | |
| 171 | // Insert the spill at chosen location |
| 172 | insert_proj( b, loc+1, spill, maxlrg++); |
| 173 | |
| 174 | // Insert new node into Reaches array |
| 175 | Reachblock[slidx] = spill; |
| 176 | // Update debug list of reaching down definitions by adding this one |
| 177 | debug_defs[slidx] = spill; |
| 178 | |
| 179 | // return updated count of live ranges |
| 180 | return maxlrg; |
| 181 | } |
| 182 | |
| 183 | //------------------------------split_USE-------------------------------------- |
| 184 | // Splits at uses can involve redeffing the LRG, so no CISC Spilling there. |
| 185 | // Debug uses want to know if def is already stack enabled. |
| 186 | uint PhaseChaitin::split_USE(MachSpillCopyNode::SpillType spill_type, Node *def, Block *b, Node *use, uint useidx, uint maxlrg, bool def_down, bool cisc_sp, GrowableArray<uint> splits, int slidx ) { |
| 187 | #ifdef ASSERT |
| 188 | // Increment the counter for this lrg |
| 189 | splits.at_put(slidx, splits.at(slidx)+1); |
| 190 | #endif |
| 191 | |
| 192 | // Some setup stuff for handling debug node uses |
| 193 | JVMState* jvms = use->jvms(); |
| 194 | uint debug_start = jvms ? jvms->debug_start() : 999999; |
| 195 | uint debug_end = jvms ? jvms->debug_end() : 999999; |
| 196 | |
| 197 | //------------------------------------------- |
| 198 | // Check for use of debug info |
| 199 | if (useidx >= debug_start && useidx < debug_end) { |
| 200 | // Actually it's perfectly legal for constant debug info to appear |
| 201 | // just unlikely. In this case the optimizer left a ConI of a 4 |
| 202 | // as both inputs to a Phi with only a debug use. It's a single-def |
| 203 | // live range of a rematerializable value. The live range spills, |
| 204 | // rematerializes and now the ConI directly feeds into the debug info. |
| 205 | // assert(!def->is_Con(), "constant debug info already constructed directly"); |
| 206 | |
| 207 | // Special split handling for Debug Info |
| 208 | // If DEF is DOWN, just hook the edge and return |
| 209 | // If DEF is UP, Split it DOWN for this USE. |
| 210 | if( def->is_Mach() ) { |
| 211 | if( def_down ) { |
| 212 | // DEF is DOWN, so connect USE directly to the DEF |
| 213 | use->set_req(useidx, def); |
| 214 | } else { |
| 215 | // Block and index where the use occurs. |
| 216 | Block *b = _cfg.get_block_for_node(use); |
| 217 | // Put the clone just prior to use |
| 218 | int bindex = b->find_node(use); |
| 219 | // DEF is UP, so must copy it DOWN and hook in USE |
| 220 | // Insert SpillCopy before the USE, which uses DEF as its input, |
| 221 | // and defs a new live range, which is used by this node. |
| 222 | Node *spill = get_spillcopy_wide(spill_type, def,use,useidx); |
| 223 | // did we fail to split? |
| 224 | if (!spill) { |
| 225 | // Bail |
| 226 | return 0; |
| 227 | } |
| 228 | // insert into basic block |
| 229 | insert_proj( b, bindex, spill, maxlrg++ ); |
| 230 | // Use the new split |
| 231 | use->set_req(useidx,spill); |
| 232 | } |
| 233 | // No further split handling needed for this use |
| 234 | return maxlrg; |
| 235 | } // End special splitting for debug info live range |
| 236 | } // If debug info |
| 237 | |
| 238 | // CISC-SPILLING |
| 239 | // Finally, check to see if USE is CISC-Spillable, and if so, |
| 240 | // gather_lrg_masks will add the flags bit to its mask, and |
| 241 | // no use side copy is needed. This frees up the live range |
| 242 | // register choices without causing copy coalescing, etc. |
| 243 | if( UseCISCSpill && cisc_sp ) { |
| 244 | int inp = use->cisc_operand(); |
| 245 | if( inp != AdlcVMDeps::Not_cisc_spillable ) |
| 246 | // Convert operand number to edge index number |
| 247 | inp = use->as_Mach()->operand_index(inp); |
| 248 | if( inp == (int)useidx ) { |
| 249 | use->set_req(useidx, def); |
| 250 | #ifndef PRODUCT |
| 251 | if( TraceCISCSpill ) { |
| 252 | tty->print(" set_split: " ); |
| 253 | use->dump(); |
| 254 | } |
| 255 | #endif |
| 256 | return maxlrg; |
| 257 | } |
| 258 | } |
| 259 | |
| 260 | //------------------------------------------- |
| 261 | // Insert a Copy before the use |
| 262 | |
| 263 | // Block and index where the use occurs. |
| 264 | int bindex; |
| 265 | // Phi input spill-copys belong at the end of the prior block |
| 266 | if( use->is_Phi() ) { |
| 267 | b = _cfg.get_block_for_node(b->pred(useidx)); |
| 268 | bindex = b->end_idx(); |
| 269 | } else { |
| 270 | // Put the clone just prior to use |
| 271 | bindex = b->find_node(use); |
| 272 | } |
| 273 | |
| 274 | Node *spill = get_spillcopy_wide(spill_type, def, use, useidx ); |
| 275 | if( !spill ) return 0; // Bailed out |
| 276 | // Insert SpillCopy before the USE, which uses the reaching DEF as |
| 277 | // its input, and defs a new live range, which is used by this node. |
| 278 | insert_proj( b, bindex, spill, maxlrg++ ); |
| 279 | // Use the spill/clone |
| 280 | use->set_req(useidx,spill); |
| 281 | |
| 282 | // return updated live range count |
| 283 | return maxlrg; |
| 284 | } |
| 285 | |
| 286 | //------------------------------clone_node---------------------------- |
| 287 | // Clone node with anti dependence check. |
| 288 | Node* clone_node(Node* def, Block *b, Compile* C) { |
| 289 | if (def->needs_anti_dependence_check()) { |
| 290 | #ifdef ASSERT |
| 291 | if (PrintOpto && WizardMode) { |
| 292 | tty->print_cr("RA attempts to clone node with anti_dependence:" ); |
| 293 | def->dump(-1); tty->cr(); |
| 294 | tty->print_cr("into block:" ); |
| 295 | b->dump(); |
| 296 | } |
| 297 | #endif |
| 298 | if (C->subsume_loads() == true && !C->failing()) { |
| 299 | // Retry with subsume_loads == false |
| 300 | // If this is the first failure, the sentinel string will "stick" |
| 301 | // to the Compile object, and the C2Compiler will see it and retry. |
| 302 | C->record_failure(C2Compiler::retry_no_subsuming_loads()); |
| 303 | } else { |
| 304 | // Bailout without retry |
| 305 | C->record_method_not_compilable("RA Split failed: attempt to clone node with anti_dependence" ); |
| 306 | } |
| 307 | return 0; |
| 308 | } |
| 309 | return def->clone(); |
| 310 | } |
| 311 | |
| 312 | //------------------------------split_Rematerialize---------------------------- |
| 313 | // Clone a local copy of the def. |
| 314 | Node *PhaseChaitin::split_Rematerialize(Node *def, Block *b, uint insidx, uint &maxlrg, |
| 315 | GrowableArray<uint> splits, int slidx, uint *lrg2reach, |
| 316 | Node **Reachblock, bool walkThru) { |
| 317 | // The input live ranges will be stretched to the site of the new |
| 318 | // instruction. They might be stretched past a def and will thus |
| 319 | // have the old and new values of the same live range alive at the |
| 320 | // same time - a definite no-no. Split out private copies of |
| 321 | // the inputs. |
| 322 | if (def->req() > 1) { |
| 323 | for (uint i = 1; i < def->req(); i++) { |
| 324 | Node *in = def->in(i); |
| 325 | uint lidx = _lrg_map.live_range_id(in); |
| 326 | // We do not need this for live ranges that are only defined once. |
| 327 | // However, this is not true for spill copies that are added in this |
| 328 | // Split() pass, since they might get coalesced later on in this pass. |
| 329 | if (lidx < _lrg_map.max_lrg_id() && lrgs(lidx).is_singledef()) { |
| 330 | continue; |
| 331 | } |
| 332 | |
| 333 | Block *b_def = _cfg.get_block_for_node(def); |
| 334 | int idx_def = b_def->find_node(def); |
| 335 | // Cannot spill Op_RegFlags. |
| 336 | Node *in_spill; |
| 337 | if (in->ideal_reg() != Op_RegFlags) { |
| 338 | in_spill = get_spillcopy_wide(MachSpillCopyNode::InputToRematerialization, in, def, i); |
| 339 | if (!in_spill) { return 0; } // Bailed out |
| 340 | insert_proj(b_def, idx_def, in_spill, maxlrg++); |
| 341 | if (b_def == b) { |
| 342 | insidx++; |
| 343 | } |
| 344 | def->set_req(i, in_spill); |
| 345 | } else { |
| 346 | // The 'in' defines a flag register. Flag registers can not be spilled. |
| 347 | // Register allocation handles live ranges with flag registers |
| 348 | // by rematerializing the def (in this case 'in'). Thus, this is not |
| 349 | // critical if the input can be rematerialized, too. |
| 350 | if (!in->rematerialize()) { |
| 351 | assert(false, "Can not rematerialize %d: %s. Prolongs RegFlags live" |
| 352 | " range and defining node %d: %s may not be rematerialized." , |
| 353 | def->_idx, def->Name(), in->_idx, in->Name()); |
| 354 | C->record_method_not_compilable("attempted to spill a non-spillable item with RegFlags input" ); |
| 355 | return 0; // Bailed out |
| 356 | } |
| 357 | } |
| 358 | } |
| 359 | } |
| 360 | |
| 361 | Node *spill = clone_node(def, b, C); |
| 362 | if (spill == NULL || C->check_node_count(NodeLimitFudgeFactor, out_of_nodes)) { |
| 363 | // Check when generating nodes |
| 364 | return 0; |
| 365 | } |
| 366 | |
| 367 | // See if any inputs are currently being spilled, and take the |
| 368 | // latest copy of spilled inputs. |
| 369 | if( spill->req() > 1 ) { |
| 370 | for( uint i = 1; i < spill->req(); i++ ) { |
| 371 | Node *in = spill->in(i); |
| 372 | uint lidx = _lrg_map.find_id(in); |
| 373 | |
| 374 | // Walk backwards thru spill copy node intermediates |
| 375 | if (walkThru) { |
| 376 | while (in->is_SpillCopy() && lidx >= _lrg_map.max_lrg_id()) { |
| 377 | in = in->in(1); |
| 378 | lidx = _lrg_map.find_id(in); |
| 379 | } |
| 380 | |
| 381 | if (lidx < _lrg_map.max_lrg_id() && lrgs(lidx).is_multidef()) { |
| 382 | // walkThru found a multidef LRG, which is unsafe to use, so |
| 383 | // just keep the original def used in the clone. |
| 384 | in = spill->in(i); |
| 385 | lidx = _lrg_map.find_id(in); |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | if (lidx < _lrg_map.max_lrg_id() && lrgs(lidx).reg() >= LRG::SPILL_REG) { |
| 390 | Node *rdef = Reachblock[lrg2reach[lidx]]; |
| 391 | if (rdef) { |
| 392 | spill->set_req(i, rdef); |
| 393 | } |
| 394 | } |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | |
| 399 | assert( spill->out_RegMask().is_UP(), "rematerialize to a reg" ); |
| 400 | // Rematerialized op is def->spilled+1 |
| 401 | set_was_spilled(spill); |
| 402 | if( _spilled_once.test(def->_idx) ) |
| 403 | set_was_spilled(spill); |
| 404 | |
| 405 | insert_proj( b, insidx, spill, maxlrg++ ); |
| 406 | #ifdef ASSERT |
| 407 | // Increment the counter for this lrg |
| 408 | splits.at_put(slidx, splits.at(slidx)+1); |
| 409 | #endif |
| 410 | // See if the cloned def kills any flags, and copy those kills as well |
| 411 | uint i = insidx+1; |
| 412 | int found_projs = clone_projs( b, i, def, spill, maxlrg); |
| 413 | if (found_projs > 0) { |
| 414 | // Adjust the point where we go hi-pressure |
| 415 | if (i <= b->_ihrp_index) { |
| 416 | b->_ihrp_index += found_projs; |
| 417 | } |
| 418 | if (i <= b->_fhrp_index) { |
| 419 | b->_fhrp_index += found_projs; |
| 420 | } |
| 421 | } |
| 422 | |
| 423 | return spill; |
| 424 | } |
| 425 | |
| 426 | //------------------------------is_high_pressure------------------------------- |
| 427 | // Function to compute whether or not this live range is "high pressure" |
| 428 | // in this block - whether it spills eagerly or not. |
| 429 | bool PhaseChaitin::is_high_pressure( Block *b, LRG *lrg, uint insidx ) { |
| 430 | if( lrg->_was_spilled1 ) return true; |
| 431 | // Forced spilling due to conflict? Then split only at binding uses |
| 432 | // or defs, not for supposed capacity problems. |
| 433 | // CNC - Turned off 7/8/99, causes too much spilling |
| 434 | // if( lrg->_is_bound ) return false; |
| 435 | |
| 436 | // Use float pressure numbers for vectors. |
| 437 | bool is_float_or_vector = lrg->_is_float || lrg->_is_vector; |
| 438 | // Not yet reached the high-pressure cutoff point, so low pressure |
| 439 | uint hrp_idx = is_float_or_vector ? b->_fhrp_index : b->_ihrp_index; |
| 440 | if( insidx < hrp_idx ) return false; |
| 441 | // Register pressure for the block as a whole depends on reg class |
| 442 | int block_pres = is_float_or_vector ? b->_freg_pressure : b->_reg_pressure; |
| 443 | // Bound live ranges will split at the binding points first; |
| 444 | // Intermediate splits should assume the live range's register set |
| 445 | // got "freed up" and that num_regs will become INT_PRESSURE. |
| 446 | int bound_pres = is_float_or_vector ? FLOATPRESSURE : INTPRESSURE; |
| 447 | // Effective register pressure limit. |
| 448 | int lrg_pres = (lrg->get_invalid_mask_size() > lrg->num_regs()) |
| 449 | ? (lrg->get_invalid_mask_size() >> (lrg->num_regs()-1)) : bound_pres; |
| 450 | // High pressure if block pressure requires more register freedom |
| 451 | // than live range has. |
| 452 | return block_pres >= lrg_pres; |
| 453 | } |
| 454 | |
| 455 | |
| 456 | //------------------------------prompt_use--------------------------------- |
| 457 | // True if lidx is used before any real register is def'd in the block |
| 458 | bool PhaseChaitin::prompt_use( Block *b, uint lidx ) { |
| 459 | if (lrgs(lidx)._was_spilled2) { |
| 460 | return false; |
| 461 | } |
| 462 | |
| 463 | // Scan block for 1st use. |
| 464 | for( uint i = 1; i <= b->end_idx(); i++ ) { |
| 465 | Node *n = b->get_node(i); |
| 466 | // Ignore PHI use, these can be up or down |
| 467 | if (n->is_Phi()) { |
| 468 | continue; |
| 469 | } |
| 470 | for (uint j = 1; j < n->req(); j++) { |
| 471 | if (_lrg_map.find_id(n->in(j)) == lidx) { |
| 472 | return true; // Found 1st use! |
| 473 | } |
| 474 | } |
| 475 | if (n->out_RegMask().is_NotEmpty()) { |
| 476 | return false; |
| 477 | } |
| 478 | } |
| 479 | return false; |
| 480 | } |
| 481 | |
| 482 | //------------------------------Split-------------------------------------- |
| 483 | //----------Split Routine---------- |
| 484 | // ***** NEW SPLITTING HEURISTIC ***** |
| 485 | // DEFS: If the DEF is in a High Register Pressure(HRP) Block, split there. |
| 486 | // Else, no split unless there is a HRP block between a DEF and |
| 487 | // one of its uses, and then split at the HRP block. |
| 488 | // |
| 489 | // USES: If USE is in HRP, split at use to leave main LRG on stack. |
| 490 | // Else, hoist LRG back up to register only (ie - split is also DEF) |
| 491 | // We will compute a new maxlrg as we go |
| 492 | uint PhaseChaitin::Split(uint maxlrg, ResourceArea* split_arena) { |
| 493 | Compile::TracePhase tp("regAllocSplit" , &timers[_t_regAllocSplit]); |
| 494 | |
| 495 | // Free thread local resources used by this method on exit. |
| 496 | ResourceMark rm(split_arena); |
| 497 | |
| 498 | uint bidx, pidx, slidx, insidx, inpidx, twoidx; |
| 499 | uint non_phi = 1, spill_cnt = 0; |
| 500 | Node *n1, *n2, *n3; |
| 501 | Node_List *defs,*phis; |
| 502 | bool *UPblock; |
| 503 | bool u1, u2, u3; |
| 504 | Block *b, *pred; |
| 505 | PhiNode *phi; |
| 506 | GrowableArray<uint> lidxs(split_arena, maxlrg, 0, 0); |
| 507 | |
| 508 | // Array of counters to count splits per live range |
| 509 | GrowableArray<uint> splits(split_arena, maxlrg, 0, 0); |
| 510 | |
| 511 | #define NEW_SPLIT_ARRAY(type, size)\ |
| 512 | (type*) split_arena->allocate_bytes((size) * sizeof(type)) |
| 513 | |
| 514 | //----------Setup Code---------- |
| 515 | // Create a convenient mapping from lrg numbers to reaches/leaves indices |
| 516 | uint *lrg2reach = NEW_SPLIT_ARRAY(uint, maxlrg); |
| 517 | // Keep track of DEFS & Phis for later passes |
| 518 | defs = new Node_List(); |
| 519 | phis = new Node_List(); |
| 520 | // Gather info on which LRG's are spilling, and build maps |
| 521 | for (bidx = 1; bidx < maxlrg; bidx++) { |
| 522 | if (lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG) { |
| 523 | assert(!lrgs(bidx).mask().is_AllStack(),"AllStack should color" ); |
| 524 | lrg2reach[bidx] = spill_cnt; |
| 525 | spill_cnt++; |
| 526 | lidxs.append(bidx); |
| 527 | #ifdef ASSERT |
| 528 | // Initialize the split counts to zero |
| 529 | splits.append(0); |
| 530 | #endif |
| 531 | if (PrintOpto && WizardMode && lrgs(bidx)._was_spilled1) { |
| 532 | tty->print_cr("Warning, 2nd spill of L%d" ,bidx); |
| 533 | } |
| 534 | } |
| 535 | } |
| 536 | |
| 537 | // Create side arrays for propagating reaching defs info. |
| 538 | // Each block needs a node pointer for each spilling live range for the |
| 539 | // Def which is live into the block. Phi nodes handle multiple input |
| 540 | // Defs by querying the output of their predecessor blocks and resolving |
| 541 | // them to a single Def at the phi. The pointer is updated for each |
| 542 | // Def in the block, and then becomes the output for the block when |
| 543 | // processing of the block is complete. We also need to track whether |
| 544 | // a Def is UP or DOWN. UP means that it should get a register (ie - |
| 545 | // it is always in LRP regions), and DOWN means that it is probably |
| 546 | // on the stack (ie - it crosses HRP regions). |
| 547 | Node ***Reaches = NEW_SPLIT_ARRAY( Node**, _cfg.number_of_blocks() + 1); |
| 548 | bool **UP = NEW_SPLIT_ARRAY( bool*, _cfg.number_of_blocks() + 1); |
| 549 | Node **debug_defs = NEW_SPLIT_ARRAY( Node*, spill_cnt ); |
| 550 | VectorSet **UP_entry= NEW_SPLIT_ARRAY( VectorSet*, spill_cnt ); |
| 551 | |
| 552 | // Initialize Reaches & UP |
| 553 | for (bidx = 0; bidx < _cfg.number_of_blocks() + 1; bidx++) { |
| 554 | Reaches[bidx] = NEW_SPLIT_ARRAY( Node*, spill_cnt ); |
| 555 | UP[bidx] = NEW_SPLIT_ARRAY( bool, spill_cnt ); |
| 556 | Node **Reachblock = Reaches[bidx]; |
| 557 | bool *UPblock = UP[bidx]; |
| 558 | for( slidx = 0; slidx < spill_cnt; slidx++ ) { |
| 559 | UPblock[slidx] = true; // Assume they start in registers |
| 560 | Reachblock[slidx] = NULL; // Assume that no def is present |
| 561 | } |
| 562 | } |
| 563 | |
| 564 | #undef NEW_SPLIT_ARRAY |
| 565 | |
| 566 | // Initialize to array of empty vectorsets |
| 567 | for( slidx = 0; slidx < spill_cnt; slidx++ ) |
| 568 | UP_entry[slidx] = new VectorSet(split_arena); |
| 569 | |
| 570 | //----------PASS 1---------- |
| 571 | //----------Propagation & Node Insertion Code---------- |
| 572 | // Walk the Blocks in RPO for DEF & USE info |
| 573 | for( bidx = 0; bidx < _cfg.number_of_blocks(); bidx++ ) { |
| 574 | |
| 575 | if (C->check_node_count(spill_cnt, out_of_nodes)) { |
| 576 | return 0; |
| 577 | } |
| 578 | |
| 579 | b = _cfg.get_block(bidx); |
| 580 | // Reaches & UP arrays for this block |
| 581 | Node** Reachblock = Reaches[b->_pre_order]; |
| 582 | UPblock = UP[b->_pre_order]; |
| 583 | // Reset counter of start of non-Phi nodes in block |
| 584 | non_phi = 1; |
| 585 | //----------Block Entry Handling---------- |
| 586 | // Check for need to insert a new phi |
| 587 | // Cycle through this block's predecessors, collecting Reaches |
| 588 | // info for each spilled LRG. If they are identical, no phi is |
| 589 | // needed. If they differ, check for a phi, and insert if missing, |
| 590 | // or update edges if present. Set current block's Reaches set to |
| 591 | // be either the phi's or the reaching def, as appropriate. |
| 592 | // If no Phi is needed, check if the LRG needs to spill on entry |
| 593 | // to the block due to HRP. |
| 594 | for( slidx = 0; slidx < spill_cnt; slidx++ ) { |
| 595 | // Grab the live range number |
| 596 | uint lidx = lidxs.at(slidx); |
| 597 | // Do not bother splitting or putting in Phis for single-def |
| 598 | // rematerialized live ranges. This happens alot to constants |
| 599 | // with long live ranges. |
| 600 | if( lrgs(lidx).is_singledef() && |
| 601 | lrgs(lidx)._def->rematerialize() ) { |
| 602 | // reset the Reaches & UP entries |
| 603 | Reachblock[slidx] = lrgs(lidx)._def; |
| 604 | UPblock[slidx] = true; |
| 605 | // Record following instruction in case 'n' rematerializes and |
| 606 | // kills flags |
| 607 | Block *pred1 = _cfg.get_block_for_node(b->pred(1)); |
| 608 | continue; |
| 609 | } |
| 610 | |
| 611 | // Initialize needs_phi and needs_split |
| 612 | bool needs_phi = false; |
| 613 | bool needs_split = false; |
| 614 | bool has_phi = false; |
| 615 | // Walk the predecessor blocks to check inputs for that live range |
| 616 | // Grab predecessor block header |
| 617 | n1 = b->pred(1); |
| 618 | // Grab the appropriate reaching def info for inpidx |
| 619 | pred = _cfg.get_block_for_node(n1); |
| 620 | pidx = pred->_pre_order; |
| 621 | Node **Ltmp = Reaches[pidx]; |
| 622 | bool *Utmp = UP[pidx]; |
| 623 | n1 = Ltmp[slidx]; |
| 624 | u1 = Utmp[slidx]; |
| 625 | // Initialize node for saving type info |
| 626 | n3 = n1; |
| 627 | u3 = u1; |
| 628 | |
| 629 | // Compare inputs to see if a Phi is needed |
| 630 | for( inpidx = 2; inpidx < b->num_preds(); inpidx++ ) { |
| 631 | // Grab predecessor block headers |
| 632 | n2 = b->pred(inpidx); |
| 633 | // Grab the appropriate reaching def info for inpidx |
| 634 | pred = _cfg.get_block_for_node(n2); |
| 635 | pidx = pred->_pre_order; |
| 636 | Ltmp = Reaches[pidx]; |
| 637 | Utmp = UP[pidx]; |
| 638 | n2 = Ltmp[slidx]; |
| 639 | u2 = Utmp[slidx]; |
| 640 | // For each LRG, decide if a phi is necessary |
| 641 | if( n1 != n2 ) { |
| 642 | needs_phi = true; |
| 643 | } |
| 644 | // See if the phi has mismatched inputs, UP vs. DOWN |
| 645 | if( n1 && n2 && (u1 != u2) ) { |
| 646 | needs_split = true; |
| 647 | } |
| 648 | // Move n2/u2 to n1/u1 for next iteration |
| 649 | n1 = n2; |
| 650 | u1 = u2; |
| 651 | // Preserve a non-NULL predecessor for later type referencing |
| 652 | if( (n3 == NULL) && (n2 != NULL) ){ |
| 653 | n3 = n2; |
| 654 | u3 = u2; |
| 655 | } |
| 656 | } // End for all potential Phi inputs |
| 657 | |
| 658 | // check block for appropriate phinode & update edges |
| 659 | for( insidx = 1; insidx <= b->end_idx(); insidx++ ) { |
| 660 | n1 = b->get_node(insidx); |
| 661 | // bail if this is not a phi |
| 662 | phi = n1->is_Phi() ? n1->as_Phi() : NULL; |
| 663 | if( phi == NULL ) { |
| 664 | // Keep track of index of first non-PhiNode instruction in block |
| 665 | non_phi = insidx; |
| 666 | // break out of the for loop as we have handled all phi nodes |
| 667 | break; |
| 668 | } |
| 669 | // must be looking at a phi |
| 670 | if (_lrg_map.find_id(n1) == lidxs.at(slidx)) { |
| 671 | // found the necessary phi |
| 672 | needs_phi = false; |
| 673 | has_phi = true; |
| 674 | // initialize the Reaches entry for this LRG |
| 675 | Reachblock[slidx] = phi; |
| 676 | break; |
| 677 | } // end if found correct phi |
| 678 | } // end for all phi's |
| 679 | |
| 680 | // If a phi is needed or exist, check for it |
| 681 | if( needs_phi || has_phi ) { |
| 682 | // add new phinode if one not already found |
| 683 | if( needs_phi ) { |
| 684 | // create a new phi node and insert it into the block |
| 685 | // type is taken from left over pointer to a predecessor |
| 686 | guarantee(n3, "No non-NULL reaching DEF for a Phi" ); |
| 687 | phi = new PhiNode(b->head(), n3->bottom_type()); |
| 688 | // initialize the Reaches entry for this LRG |
| 689 | Reachblock[slidx] = phi; |
| 690 | |
| 691 | // add node to block & node_to_block mapping |
| 692 | insert_proj(b, insidx++, phi, maxlrg++); |
| 693 | non_phi++; |
| 694 | // Reset new phi's mapping to be the spilling live range |
| 695 | _lrg_map.map(phi->_idx, lidx); |
| 696 | assert(_lrg_map.find_id(phi) == lidx, "Bad update on Union-Find mapping" ); |
| 697 | } // end if not found correct phi |
| 698 | // Here you have either found or created the Phi, so record it |
| 699 | assert(phi != NULL,"Must have a Phi Node here" ); |
| 700 | phis->push(phi); |
| 701 | // PhiNodes should either force the LRG UP or DOWN depending |
| 702 | // on its inputs and the register pressure in the Phi's block. |
| 703 | UPblock[slidx] = true; // Assume new DEF is UP |
| 704 | // If entering a high-pressure area with no immediate use, |
| 705 | // assume Phi is DOWN |
| 706 | if( is_high_pressure( b, &lrgs(lidx), b->end_idx()) && !prompt_use(b,lidx) ) |
| 707 | UPblock[slidx] = false; |
| 708 | // If we are not split up/down and all inputs are down, then we |
| 709 | // are down |
| 710 | if( !needs_split && !u3 ) |
| 711 | UPblock[slidx] = false; |
| 712 | } // end if phi is needed |
| 713 | |
| 714 | // Do not need a phi, so grab the reaching DEF |
| 715 | else { |
| 716 | // Grab predecessor block header |
| 717 | n1 = b->pred(1); |
| 718 | // Grab the appropriate reaching def info for k |
| 719 | pred = _cfg.get_block_for_node(n1); |
| 720 | pidx = pred->_pre_order; |
| 721 | Node **Ltmp = Reaches[pidx]; |
| 722 | bool *Utmp = UP[pidx]; |
| 723 | // reset the Reaches & UP entries |
| 724 | Reachblock[slidx] = Ltmp[slidx]; |
| 725 | UPblock[slidx] = Utmp[slidx]; |
| 726 | } // end else no Phi is needed |
| 727 | } // end for all spilling live ranges |
| 728 | // DEBUG |
| 729 | #ifndef PRODUCT |
| 730 | if(trace_spilling()) { |
| 731 | tty->print("/`\nBlock %d: " , b->_pre_order); |
| 732 | tty->print("Reaching Definitions after Phi handling\n" ); |
| 733 | for( uint x = 0; x < spill_cnt; x++ ) { |
| 734 | tty->print("Spill Idx %d: UP %d: Node\n" ,x,UPblock[x]); |
| 735 | if( Reachblock[x] ) |
| 736 | Reachblock[x]->dump(); |
| 737 | else |
| 738 | tty->print("Undefined\n" ); |
| 739 | } |
| 740 | } |
| 741 | #endif |
| 742 | |
| 743 | //----------Non-Phi Node Splitting---------- |
| 744 | // Since phi-nodes have now been handled, the Reachblock array for this |
| 745 | // block is initialized with the correct starting value for the defs which |
| 746 | // reach non-phi instructions in this block. Thus, process non-phi |
| 747 | // instructions normally, inserting SpillCopy nodes for all spill |
| 748 | // locations. |
| 749 | |
| 750 | // Memoize any DOWN reaching definitions for use as DEBUG info |
| 751 | for( insidx = 0; insidx < spill_cnt; insidx++ ) { |
| 752 | debug_defs[insidx] = (UPblock[insidx]) ? NULL : Reachblock[insidx]; |
| 753 | if( UPblock[insidx] ) // Memoize UP decision at block start |
| 754 | UP_entry[insidx]->set( b->_pre_order ); |
| 755 | } |
| 756 | |
| 757 | //----------Walk Instructions in the Block and Split---------- |
| 758 | // For all non-phi instructions in the block |
| 759 | for( insidx = 1; insidx <= b->end_idx(); insidx++ ) { |
| 760 | Node *n = b->get_node(insidx); |
| 761 | // Find the defining Node's live range index |
| 762 | uint defidx = _lrg_map.find_id(n); |
| 763 | uint cnt = n->req(); |
| 764 | |
| 765 | if (n->is_Phi()) { |
| 766 | // Skip phi nodes after removing dead copies. |
| 767 | if (defidx < _lrg_map.max_lrg_id()) { |
| 768 | // Check for useless Phis. These appear if we spill, then |
| 769 | // coalesce away copies. Dont touch Phis in spilling live |
| 770 | // ranges; they are busy getting modifed in this pass. |
| 771 | if( lrgs(defidx).reg() < LRG::SPILL_REG ) { |
| 772 | uint i; |
| 773 | Node *u = NULL; |
| 774 | // Look for the Phi merging 2 unique inputs |
| 775 | for( i = 1; i < cnt; i++ ) { |
| 776 | // Ignore repeats and self |
| 777 | if( n->in(i) != u && n->in(i) != n ) { |
| 778 | // Found a unique input |
| 779 | if( u != NULL ) // If it's the 2nd, bail out |
| 780 | break; |
| 781 | u = n->in(i); // Else record it |
| 782 | } |
| 783 | } |
| 784 | assert( u, "at least 1 valid input expected" ); |
| 785 | if (i >= cnt) { // Found one unique input |
| 786 | assert(_lrg_map.find_id(n) == _lrg_map.find_id(u), "should be the same lrg" ); |
| 787 | n->replace_by(u); // Then replace with unique input |
| 788 | n->disconnect_inputs(NULL, C); |
| 789 | b->remove_node(insidx); |
| 790 | insidx--; |
| 791 | b->_ihrp_index--; |
| 792 | b->_fhrp_index--; |
| 793 | } |
| 794 | } |
| 795 | } |
| 796 | continue; |
| 797 | } |
| 798 | assert( insidx > b->_ihrp_index || |
| 799 | (b->_reg_pressure < (uint)INTPRESSURE) || |
| 800 | b->_ihrp_index > 4000000 || |
| 801 | b->_ihrp_index >= b->end_idx() || |
| 802 | !b->get_node(b->_ihrp_index)->is_Proj(), "" ); |
| 803 | assert( insidx > b->_fhrp_index || |
| 804 | (b->_freg_pressure < (uint)FLOATPRESSURE) || |
| 805 | b->_fhrp_index > 4000000 || |
| 806 | b->_fhrp_index >= b->end_idx() || |
| 807 | !b->get_node(b->_fhrp_index)->is_Proj(), "" ); |
| 808 | |
| 809 | // ********** Handle Crossing HRP Boundry ********** |
| 810 | if( (insidx == b->_ihrp_index) || (insidx == b->_fhrp_index) ) { |
| 811 | for( slidx = 0; slidx < spill_cnt; slidx++ ) { |
| 812 | // Check for need to split at HRP boundary - split if UP |
| 813 | n1 = Reachblock[slidx]; |
| 814 | // bail out if no reaching DEF |
| 815 | if( n1 == NULL ) continue; |
| 816 | // bail out if live range is 'isolated' around inner loop |
| 817 | uint lidx = lidxs.at(slidx); |
| 818 | // If live range is currently UP |
| 819 | if( UPblock[slidx] ) { |
| 820 | // set location to insert spills at |
| 821 | // SPLIT DOWN HERE - NO CISC SPILL |
| 822 | if( is_high_pressure( b, &lrgs(lidx), insidx ) && |
| 823 | !n1->rematerialize() ) { |
| 824 | // If there is already a valid stack definition available, use it |
| 825 | if( debug_defs[slidx] != NULL ) { |
| 826 | Reachblock[slidx] = debug_defs[slidx]; |
| 827 | } |
| 828 | else { |
| 829 | // Insert point is just past last use or def in the block |
| 830 | int insert_point = insidx-1; |
| 831 | while( insert_point > 0 ) { |
| 832 | Node *n = b->get_node(insert_point); |
| 833 | // Hit top of block? Quit going backwards |
| 834 | if (n->is_Phi()) { |
| 835 | break; |
| 836 | } |
| 837 | // Found a def? Better split after it. |
| 838 | if (_lrg_map.live_range_id(n) == lidx) { |
| 839 | break; |
| 840 | } |
| 841 | // Look for a use |
| 842 | uint i; |
| 843 | for( i = 1; i < n->req(); i++ ) { |
| 844 | if (_lrg_map.live_range_id(n->in(i)) == lidx) { |
| 845 | break; |
| 846 | } |
| 847 | } |
| 848 | // Found a use? Better split after it. |
| 849 | if (i < n->req()) { |
| 850 | break; |
| 851 | } |
| 852 | insert_point--; |
| 853 | } |
| 854 | uint orig_eidx = b->end_idx(); |
| 855 | maxlrg = split_DEF( n1, b, insert_point, maxlrg, Reachblock, debug_defs, splits, slidx); |
| 856 | // If it wasn't split bail |
| 857 | if (!maxlrg) { |
| 858 | return 0; |
| 859 | } |
| 860 | // Spill of NULL check mem op goes into the following block. |
| 861 | if (b->end_idx() > orig_eidx) { |
| 862 | insidx++; |
| 863 | } |
| 864 | } |
| 865 | // This is a new DEF, so update UP |
| 866 | UPblock[slidx] = false; |
| 867 | #ifndef PRODUCT |
| 868 | // DEBUG |
| 869 | if( trace_spilling() ) { |
| 870 | tty->print("\nNew Split DOWN DEF of Spill Idx " ); |
| 871 | tty->print("%d, UP %d:\n" ,slidx,false); |
| 872 | n1->dump(); |
| 873 | } |
| 874 | #endif |
| 875 | } |
| 876 | } // end if LRG is UP |
| 877 | } // end for all spilling live ranges |
| 878 | assert( b->get_node(insidx) == n, "got insidx set incorrectly" ); |
| 879 | } // end if crossing HRP Boundry |
| 880 | |
| 881 | // If the LRG index is oob, then this is a new spillcopy, skip it. |
| 882 | if (defidx >= _lrg_map.max_lrg_id()) { |
| 883 | continue; |
| 884 | } |
| 885 | LRG &deflrg = lrgs(defidx); |
| 886 | uint copyidx = n->is_Copy(); |
| 887 | // Remove coalesced copy from CFG |
| 888 | if (copyidx && defidx == _lrg_map.live_range_id(n->in(copyidx))) { |
| 889 | n->replace_by( n->in(copyidx) ); |
| 890 | n->set_req( copyidx, NULL ); |
| 891 | b->remove_node(insidx--); |
| 892 | b->_ihrp_index--; // Adjust the point where we go hi-pressure |
| 893 | b->_fhrp_index--; |
| 894 | continue; |
| 895 | } |
| 896 | |
| 897 | #define DERIVED 0 |
| 898 | |
| 899 | // ********** Handle USES ********** |
| 900 | bool nullcheck = false; |
| 901 | // Implicit null checks never use the spilled value |
| 902 | if( n->is_MachNullCheck() ) |
| 903 | nullcheck = true; |
| 904 | if( !nullcheck ) { |
| 905 | // Search all inputs for a Spill-USE |
| 906 | JVMState* jvms = n->jvms(); |
| 907 | uint oopoff = jvms ? jvms->oopoff() : cnt; |
| 908 | uint old_last = cnt - 1; |
| 909 | for( inpidx = 1; inpidx < cnt; inpidx++ ) { |
| 910 | // Derived/base pairs may be added to our inputs during this loop. |
| 911 | // If inpidx > old_last, then one of these new inputs is being |
| 912 | // handled. Skip the derived part of the pair, but process |
| 913 | // the base like any other input. |
| 914 | if (inpidx > old_last && ((inpidx - oopoff) & 1) == DERIVED) { |
| 915 | continue; // skip derived_debug added below |
| 916 | } |
| 917 | // Get lidx of input |
| 918 | uint useidx = _lrg_map.find_id(n->in(inpidx)); |
| 919 | // Not a brand-new split, and it is a spill use |
| 920 | if (useidx < _lrg_map.max_lrg_id() && lrgs(useidx).reg() >= LRG::SPILL_REG) { |
| 921 | // Check for valid reaching DEF |
| 922 | slidx = lrg2reach[useidx]; |
| 923 | Node *def = Reachblock[slidx]; |
| 924 | assert( def != NULL, "Using Undefined Value in Split()\n" ); |
| 925 | |
| 926 | // (+++) %%%% remove this in favor of pre-pass in matcher.cpp |
| 927 | // monitor references do not care where they live, so just hook |
| 928 | if ( jvms && jvms->is_monitor_use(inpidx) ) { |
| 929 | // The effect of this clone is to drop the node out of the block, |
| 930 | // so that the allocator does not see it anymore, and therefore |
| 931 | // does not attempt to assign it a register. |
| 932 | def = clone_node(def, b, C); |
| 933 | if (def == NULL || C->check_node_count(NodeLimitFudgeFactor, out_of_nodes)) { |
| 934 | return 0; |
| 935 | } |
| 936 | _lrg_map.extend(def->_idx, 0); |
| 937 | _cfg.map_node_to_block(def, b); |
| 938 | n->set_req(inpidx, def); |
| 939 | continue; |
| 940 | } |
| 941 | |
| 942 | // Rematerializable? Then clone def at use site instead |
| 943 | // of store/load |
| 944 | if( def->rematerialize() ) { |
| 945 | int old_size = b->number_of_nodes(); |
| 946 | def = split_Rematerialize( def, b, insidx, maxlrg, splits, slidx, lrg2reach, Reachblock, true ); |
| 947 | if( !def ) return 0; // Bail out |
| 948 | insidx += b->number_of_nodes()-old_size; |
| 949 | } |
| 950 | |
| 951 | MachNode *mach = n->is_Mach() ? n->as_Mach() : NULL; |
| 952 | // Base pointers and oopmap references do not care where they live. |
| 953 | if ((inpidx >= oopoff) || |
| 954 | (mach && mach->ideal_Opcode() == Op_AddP && inpidx == AddPNode::Base)) { |
| 955 | if (def->rematerialize() && lrgs(useidx)._was_spilled2) { |
| 956 | // This def has been rematerialized a couple of times without |
| 957 | // progress. It doesn't care if it lives UP or DOWN, so |
| 958 | // spill it down now. |
| 959 | maxlrg = split_USE(MachSpillCopyNode::BasePointerToMem, def,b,n,inpidx,maxlrg,false,false,splits,slidx); |
| 960 | // If it wasn't split bail |
| 961 | if (!maxlrg) { |
| 962 | return 0; |
| 963 | } |
| 964 | insidx++; // Reset iterator to skip USE side split |
| 965 | } else { |
| 966 | // Just hook the def edge |
| 967 | n->set_req(inpidx, def); |
| 968 | } |
| 969 | |
| 970 | if (inpidx >= oopoff) { |
| 971 | // After oopoff, we have derived/base pairs. We must mention all |
| 972 | // derived pointers here as derived/base pairs for GC. If the |
| 973 | // derived value is spilling and we have a copy both in Reachblock |
| 974 | // (called here 'def') and debug_defs[slidx] we need to mention |
| 975 | // both in derived/base pairs or kill one. |
| 976 | Node *derived_debug = debug_defs[slidx]; |
| 977 | if( ((inpidx - oopoff) & 1) == DERIVED && // derived vs base? |
| 978 | mach && mach->ideal_Opcode() != Op_Halt && |
| 979 | derived_debug != NULL && |
| 980 | derived_debug != def ) { // Actual 2nd value appears |
| 981 | // We have already set 'def' as a derived value. |
| 982 | // Also set debug_defs[slidx] as a derived value. |
| 983 | uint k; |
| 984 | for( k = oopoff; k < cnt; k += 2 ) |
| 985 | if( n->in(k) == derived_debug ) |
| 986 | break; // Found an instance of debug derived |
| 987 | if( k == cnt ) {// No instance of debug_defs[slidx] |
| 988 | // Add a derived/base pair to cover the debug info. |
| 989 | // We have to process the added base later since it is not |
| 990 | // handled yet at this point but skip derived part. |
| 991 | assert(((n->req() - oopoff) & 1) == DERIVED, |
| 992 | "must match skip condition above" ); |
| 993 | n->add_req( derived_debug ); // this will be skipped above |
| 994 | n->add_req( n->in(inpidx+1) ); // this will be processed |
| 995 | // Increment cnt to handle added input edges on |
| 996 | // subsequent iterations. |
| 997 | cnt += 2; |
| 998 | } |
| 999 | } |
| 1000 | } |
| 1001 | continue; |
| 1002 | } |
| 1003 | // Special logic for DEBUG info |
| 1004 | if( jvms && b->_freq > BLOCK_FREQUENCY(0.5) ) { |
| 1005 | uint debug_start = jvms->debug_start(); |
| 1006 | // If this is debug info use & there is a reaching DOWN def |
| 1007 | if ((debug_start <= inpidx) && (debug_defs[slidx] != NULL)) { |
| 1008 | assert(inpidx < oopoff, "handle only debug info here" ); |
| 1009 | // Just hook it in & move on |
| 1010 | n->set_req(inpidx, debug_defs[slidx]); |
| 1011 | // (Note that this can make two sides of a split live at the |
| 1012 | // same time: The debug def on stack, and another def in a |
| 1013 | // register. The GC needs to know about both of them, but any |
| 1014 | // derived pointers after oopoff will refer to only one of the |
| 1015 | // two defs and the GC would therefore miss the other. Thus |
| 1016 | // this hack is only allowed for debug info which is Java state |
| 1017 | // and therefore never a derived pointer.) |
| 1018 | continue; |
| 1019 | } |
| 1020 | } |
| 1021 | // Grab register mask info |
| 1022 | const RegMask &dmask = def->out_RegMask(); |
| 1023 | const RegMask &umask = n->in_RegMask(inpidx); |
| 1024 | bool is_vect = RegMask::is_vector(def->ideal_reg()); |
| 1025 | assert(inpidx < oopoff, "cannot use-split oop map info" ); |
| 1026 | |
| 1027 | bool dup = UPblock[slidx]; |
| 1028 | bool uup = umask.is_UP(); |
| 1029 | |
| 1030 | // Need special logic to handle bound USES. Insert a split at this |
| 1031 | // bound use if we can't rematerialize the def, or if we need the |
| 1032 | // split to form a misaligned pair. |
| 1033 | if( !umask.is_AllStack() && |
| 1034 | (int)umask.Size() <= lrgs(useidx).num_regs() && |
| 1035 | (!def->rematerialize() || |
| 1036 | (!is_vect && umask.is_misaligned_pair()))) { |
| 1037 | // These need a Split regardless of overlap or pressure |
| 1038 | // SPLIT - NO DEF - NO CISC SPILL |
| 1039 | maxlrg = split_USE(MachSpillCopyNode::Bound, def,b,n,inpidx,maxlrg,dup,false, splits,slidx); |
| 1040 | // If it wasn't split bail |
| 1041 | if (!maxlrg) { |
| 1042 | return 0; |
| 1043 | } |
| 1044 | insidx++; // Reset iterator to skip USE side split |
| 1045 | continue; |
| 1046 | } |
| 1047 | |
| 1048 | if (UseFPUForSpilling && n->is_MachCall() && !uup && !dup ) { |
| 1049 | // The use at the call can force the def down so insert |
| 1050 | // a split before the use to allow the def more freedom. |
| 1051 | maxlrg = split_USE(MachSpillCopyNode::CallUse, def,b,n,inpidx,maxlrg,dup,false, splits,slidx); |
| 1052 | // If it wasn't split bail |
| 1053 | if (!maxlrg) { |
| 1054 | return 0; |
| 1055 | } |
| 1056 | insidx++; // Reset iterator to skip USE side split |
| 1057 | continue; |
| 1058 | } |
| 1059 | |
| 1060 | // Here is the logic chart which describes USE Splitting: |
| 1061 | // 0 = false or DOWN, 1 = true or UP |
| 1062 | // |
| 1063 | // Overlap | DEF | USE | Action |
| 1064 | //------------------------------------------------------- |
| 1065 | // 0 | 0 | 0 | Copy - mem -> mem |
| 1066 | // 0 | 0 | 1 | Split-UP - Check HRP |
| 1067 | // 0 | 1 | 0 | Split-DOWN - Debug Info? |
| 1068 | // 0 | 1 | 1 | Copy - reg -> reg |
| 1069 | // 1 | 0 | 0 | Reset Input Edge (no Split) |
| 1070 | // 1 | 0 | 1 | Split-UP - Check HRP |
| 1071 | // 1 | 1 | 0 | Split-DOWN - Debug Info? |
| 1072 | // 1 | 1 | 1 | Reset Input Edge (no Split) |
| 1073 | // |
| 1074 | // So, if (dup == uup), then overlap test determines action, |
| 1075 | // with true being no split, and false being copy. Else, |
| 1076 | // if DEF is DOWN, Split-UP, and check HRP to decide on |
| 1077 | // resetting DEF. Finally if DEF is UP, Split-DOWN, with |
| 1078 | // special handling for Debug Info. |
| 1079 | if( dup == uup ) { |
| 1080 | if( dmask.overlap(umask) ) { |
| 1081 | // Both are either up or down, and there is overlap, No Split |
| 1082 | n->set_req(inpidx, def); |
| 1083 | } |
| 1084 | else { // Both are either up or down, and there is no overlap |
| 1085 | if( dup ) { // If UP, reg->reg copy |
| 1086 | // COPY ACROSS HERE - NO DEF - NO CISC SPILL |
| 1087 | maxlrg = split_USE(MachSpillCopyNode::RegToReg, def,b,n,inpidx,maxlrg,false,false, splits,slidx); |
| 1088 | // If it wasn't split bail |
| 1089 | if (!maxlrg) { |
| 1090 | return 0; |
| 1091 | } |
| 1092 | insidx++; // Reset iterator to skip USE side split |
| 1093 | } |
| 1094 | else { // DOWN, mem->mem copy |
| 1095 | // COPY UP & DOWN HERE - NO DEF - NO CISC SPILL |
| 1096 | // First Split-UP to move value into Register |
| 1097 | uint def_ideal = def->ideal_reg(); |
| 1098 | const RegMask* tmp_rm = Matcher::idealreg2regmask[def_ideal]; |
| 1099 | Node *spill = new MachSpillCopyNode(MachSpillCopyNode::MemToReg, def, dmask, *tmp_rm); |
| 1100 | insert_proj( b, insidx, spill, maxlrg ); |
| 1101 | // Then Split-DOWN as if previous Split was DEF |
| 1102 | maxlrg = split_USE(MachSpillCopyNode::RegToMem, spill,b,n,inpidx,maxlrg,false,false, splits,slidx); |
| 1103 | // If it wasn't split bail |
| 1104 | if (!maxlrg) { |
| 1105 | return 0; |
| 1106 | } |
| 1107 | insidx += 2; // Reset iterator to skip USE side splits |
| 1108 | } |
| 1109 | } // End else no overlap |
| 1110 | } // End if dup == uup |
| 1111 | // dup != uup, so check dup for direction of Split |
| 1112 | else { |
| 1113 | if( dup ) { // If UP, Split-DOWN and check Debug Info |
| 1114 | // If this node is already a SpillCopy, just patch the edge |
| 1115 | // except the case of spilling to stack. |
| 1116 | if( n->is_SpillCopy() ) { |
| 1117 | RegMask tmp_rm(umask); |
| 1118 | tmp_rm.SUBTRACT(Matcher::STACK_ONLY_mask); |
| 1119 | if( dmask.overlap(tmp_rm) ) { |
| 1120 | if( def != n->in(inpidx) ) { |
| 1121 | n->set_req(inpidx, def); |
| 1122 | } |
| 1123 | continue; |
| 1124 | } |
| 1125 | } |
| 1126 | // COPY DOWN HERE - NO DEF - NO CISC SPILL |
| 1127 | maxlrg = split_USE(MachSpillCopyNode::RegToMem, def,b,n,inpidx,maxlrg,false,false, splits,slidx); |
| 1128 | // If it wasn't split bail |
| 1129 | if (!maxlrg) { |
| 1130 | return 0; |
| 1131 | } |
| 1132 | insidx++; // Reset iterator to skip USE side split |
| 1133 | // Check for debug-info split. Capture it for later |
| 1134 | // debug splits of the same value |
| 1135 | if (jvms && jvms->debug_start() <= inpidx && inpidx < oopoff) |
| 1136 | debug_defs[slidx] = n->in(inpidx); |
| 1137 | |
| 1138 | } |
| 1139 | else { // DOWN, Split-UP and check register pressure |
| 1140 | if( is_high_pressure( b, &lrgs(useidx), insidx ) ) { |
| 1141 | // COPY UP HERE - NO DEF - CISC SPILL |
| 1142 | maxlrg = split_USE(MachSpillCopyNode::MemToReg, def,b,n,inpidx,maxlrg,true,true, splits,slidx); |
| 1143 | // If it wasn't split bail |
| 1144 | if (!maxlrg) { |
| 1145 | return 0; |
| 1146 | } |
| 1147 | insidx++; // Reset iterator to skip USE side split |
| 1148 | } else { // LRP |
| 1149 | // COPY UP HERE - WITH DEF - NO CISC SPILL |
| 1150 | maxlrg = split_USE(MachSpillCopyNode::MemToReg, def,b,n,inpidx,maxlrg,true,false, splits,slidx); |
| 1151 | // If it wasn't split bail |
| 1152 | if (!maxlrg) { |
| 1153 | return 0; |
| 1154 | } |
| 1155 | // Flag this lift-up in a low-pressure block as |
| 1156 | // already-spilled, so if it spills again it will |
| 1157 | // spill hard (instead of not spilling hard and |
| 1158 | // coalescing away). |
| 1159 | set_was_spilled(n->in(inpidx)); |
| 1160 | // Since this is a new DEF, update Reachblock & UP |
| 1161 | Reachblock[slidx] = n->in(inpidx); |
| 1162 | UPblock[slidx] = true; |
| 1163 | insidx++; // Reset iterator to skip USE side split |
| 1164 | } |
| 1165 | } // End else DOWN |
| 1166 | } // End dup != uup |
| 1167 | } // End if Spill USE |
| 1168 | } // End For All Inputs |
| 1169 | } // End If not nullcheck |
| 1170 | |
| 1171 | // ********** Handle DEFS ********** |
| 1172 | // DEFS either Split DOWN in HRP regions or when the LRG is bound, or |
| 1173 | // just reset the Reaches info in LRP regions. DEFS must always update |
| 1174 | // UP info. |
| 1175 | if( deflrg.reg() >= LRG::SPILL_REG ) { // Spilled? |
| 1176 | uint slidx = lrg2reach[defidx]; |
| 1177 | // Add to defs list for later assignment of new live range number |
| 1178 | defs->push(n); |
| 1179 | // Set a flag on the Node indicating it has already spilled. |
| 1180 | // Only do it for capacity spills not conflict spills. |
| 1181 | if( !deflrg._direct_conflict ) |
| 1182 | set_was_spilled(n); |
| 1183 | assert(!n->is_Phi(),"Cannot insert Phi into DEFS list" ); |
| 1184 | // Grab UP info for DEF |
| 1185 | const RegMask &dmask = n->out_RegMask(); |
| 1186 | bool defup = dmask.is_UP(); |
| 1187 | uint ireg = n->ideal_reg(); |
| 1188 | bool is_vect = RegMask::is_vector(ireg); |
| 1189 | // Only split at Def if this is a HRP block or bound (and spilled once) |
| 1190 | if( !n->rematerialize() && |
| 1191 | (((dmask.is_bound(ireg) || (!is_vect && dmask.is_misaligned_pair())) && |
| 1192 | (deflrg._direct_conflict || deflrg._must_spill)) || |
| 1193 | // Check for LRG being up in a register and we are inside a high |
| 1194 | // pressure area. Spill it down immediately. |
| 1195 | (defup && is_high_pressure(b,&deflrg,insidx) && !n->is_SpillCopy())) ) { |
| 1196 | assert( !n->rematerialize(), "" ); |
| 1197 | // Do a split at the def site. |
| 1198 | maxlrg = split_DEF( n, b, insidx, maxlrg, Reachblock, debug_defs, splits, slidx ); |
| 1199 | // If it wasn't split bail |
| 1200 | if (!maxlrg) { |
| 1201 | return 0; |
| 1202 | } |
| 1203 | // Split DEF's Down |
| 1204 | UPblock[slidx] = 0; |
| 1205 | #ifndef PRODUCT |
| 1206 | // DEBUG |
| 1207 | if( trace_spilling() ) { |
| 1208 | tty->print("\nNew Split DOWN DEF of Spill Idx " ); |
| 1209 | tty->print("%d, UP %d:\n" ,slidx,false); |
| 1210 | n->dump(); |
| 1211 | } |
| 1212 | #endif |
| 1213 | } |
| 1214 | else { // Neither bound nor HRP, must be LRP |
| 1215 | // otherwise, just record the def |
| 1216 | Reachblock[slidx] = n; |
| 1217 | // UP should come from the outRegmask() of the DEF |
| 1218 | UPblock[slidx] = defup; |
| 1219 | // Update debug list of reaching down definitions, kill if DEF is UP |
| 1220 | debug_defs[slidx] = defup ? NULL : n; |
| 1221 | #ifndef PRODUCT |
| 1222 | // DEBUG |
| 1223 | if( trace_spilling() ) { |
| 1224 | tty->print("\nNew DEF of Spill Idx " ); |
| 1225 | tty->print("%d, UP %d:\n" ,slidx,defup); |
| 1226 | n->dump(); |
| 1227 | } |
| 1228 | #endif |
| 1229 | } // End else LRP |
| 1230 | } // End if spill def |
| 1231 | |
| 1232 | // ********** Split Left Over Mem-Mem Moves ********** |
| 1233 | // Check for mem-mem copies and split them now. Do not do this |
| 1234 | // to copies about to be spilled; they will be Split shortly. |
| 1235 | if (copyidx) { |
| 1236 | Node *use = n->in(copyidx); |
| 1237 | uint useidx = _lrg_map.find_id(use); |
| 1238 | if (useidx < _lrg_map.max_lrg_id() && // This is not a new split |
| 1239 | OptoReg::is_stack(deflrg.reg()) && |
| 1240 | deflrg.reg() < LRG::SPILL_REG ) { // And DEF is from stack |
| 1241 | LRG &uselrg = lrgs(useidx); |
| 1242 | if( OptoReg::is_stack(uselrg.reg()) && |
| 1243 | uselrg.reg() < LRG::SPILL_REG && // USE is from stack |
| 1244 | deflrg.reg() != uselrg.reg() ) { // Not trivially removed |
| 1245 | uint def_ideal_reg = n->bottom_type()->ideal_reg(); |
| 1246 | const RegMask &def_rm = *Matcher::idealreg2regmask[def_ideal_reg]; |
| 1247 | const RegMask &use_rm = n->in_RegMask(copyidx); |
| 1248 | if( def_rm.overlap(use_rm) && n->is_SpillCopy() ) { // Bug 4707800, 'n' may be a storeSSL |
| 1249 | if (C->check_node_count(NodeLimitFudgeFactor, out_of_nodes)) { // Check when generating nodes |
| 1250 | return 0; |
| 1251 | } |
| 1252 | Node *spill = new MachSpillCopyNode(MachSpillCopyNode::MemToReg, use,use_rm,def_rm); |
| 1253 | n->set_req(copyidx,spill); |
| 1254 | n->as_MachSpillCopy()->set_in_RegMask(def_rm); |
| 1255 | // Put the spill just before the copy |
| 1256 | insert_proj( b, insidx++, spill, maxlrg++ ); |
| 1257 | } |
| 1258 | } |
| 1259 | } |
| 1260 | } |
| 1261 | } // End For All Instructions in Block - Non-PHI Pass |
| 1262 | |
| 1263 | // Check if each LRG is live out of this block so as not to propagate |
| 1264 | // beyond the last use of a LRG. |
| 1265 | for( slidx = 0; slidx < spill_cnt; slidx++ ) { |
| 1266 | uint defidx = lidxs.at(slidx); |
| 1267 | IndexSet *liveout = _live->live(b); |
| 1268 | if( !liveout->member(defidx) ) { |
| 1269 | #ifdef ASSERT |
| 1270 | // The index defidx is not live. Check the liveout array to ensure that |
| 1271 | // it contains no members which compress to defidx. Finding such an |
| 1272 | // instance may be a case to add liveout adjustment in compress_uf_map(). |
| 1273 | // See 5063219. |
| 1274 | uint member; |
| 1275 | IndexSetIterator isi(liveout); |
| 1276 | while ((member = isi.next()) != 0) { |
| 1277 | assert(defidx != _lrg_map.find_const(member), "Live out member has not been compressed" ); |
| 1278 | } |
| 1279 | #endif |
| 1280 | Reachblock[slidx] = NULL; |
| 1281 | } else { |
| 1282 | assert(Reachblock[slidx] != NULL,"No reaching definition for liveout value" ); |
| 1283 | } |
| 1284 | } |
| 1285 | #ifndef PRODUCT |
| 1286 | if( trace_spilling() ) |
| 1287 | b->dump(); |
| 1288 | #endif |
| 1289 | } // End For All Blocks |
| 1290 | |
| 1291 | //----------PASS 2---------- |
| 1292 | // Reset all DEF live range numbers here |
| 1293 | for( insidx = 0; insidx < defs->size(); insidx++ ) { |
| 1294 | // Grab the def |
| 1295 | n1 = defs->at(insidx); |
| 1296 | // Set new lidx for DEF |
| 1297 | new_lrg(n1, maxlrg++); |
| 1298 | } |
| 1299 | //----------Phi Node Splitting---------- |
| 1300 | // Clean up a phi here, and assign a new live range number |
| 1301 | // Cycle through this block's predecessors, collecting Reaches |
| 1302 | // info for each spilled LRG and update edges. |
| 1303 | // Walk the phis list to patch inputs, split phis, and name phis |
| 1304 | uint lrgs_before_phi_split = maxlrg; |
| 1305 | for( insidx = 0; insidx < phis->size(); insidx++ ) { |
| 1306 | Node *phi = phis->at(insidx); |
| 1307 | assert(phi->is_Phi(),"This list must only contain Phi Nodes" ); |
| 1308 | Block *b = _cfg.get_block_for_node(phi); |
| 1309 | // Grab the live range number |
| 1310 | uint lidx = _lrg_map.find_id(phi); |
| 1311 | uint slidx = lrg2reach[lidx]; |
| 1312 | // Update node to lidx map |
| 1313 | new_lrg(phi, maxlrg++); |
| 1314 | // Get PASS1's up/down decision for the block. |
| 1315 | int phi_up = !!UP_entry[slidx]->test(b->_pre_order); |
| 1316 | |
| 1317 | // Force down if double-spilling live range |
| 1318 | if( lrgs(lidx)._was_spilled1 ) |
| 1319 | phi_up = false; |
| 1320 | |
| 1321 | // When splitting a Phi we an split it normal or "inverted". |
| 1322 | // An inverted split makes the splits target the Phi's UP/DOWN |
| 1323 | // sense inverted; then the Phi is followed by a final def-side |
| 1324 | // split to invert back. It changes which blocks the spill code |
| 1325 | // goes in. |
| 1326 | |
| 1327 | // Walk the predecessor blocks and assign the reaching def to the Phi. |
| 1328 | // Split Phi nodes by placing USE side splits wherever the reaching |
| 1329 | // DEF has the wrong UP/DOWN value. |
| 1330 | for( uint i = 1; i < b->num_preds(); i++ ) { |
| 1331 | // Get predecessor block pre-order number |
| 1332 | Block *pred = _cfg.get_block_for_node(b->pred(i)); |
| 1333 | pidx = pred->_pre_order; |
| 1334 | // Grab reaching def |
| 1335 | Node *def = Reaches[pidx][slidx]; |
| 1336 | Node** Reachblock = Reaches[pidx]; |
| 1337 | assert( def, "must have reaching def" ); |
| 1338 | // If input up/down sense and reg-pressure DISagree |
| 1339 | if (def->rematerialize()) { |
| 1340 | // Place the rematerialized node above any MSCs created during |
| 1341 | // phi node splitting. end_idx points at the insertion point |
| 1342 | // so look at the node before it. |
| 1343 | int insert = pred->end_idx(); |
| 1344 | while (insert >= 1 && |
| 1345 | pred->get_node(insert - 1)->is_SpillCopy() && |
| 1346 | _lrg_map.find(pred->get_node(insert - 1)) >= lrgs_before_phi_split) { |
| 1347 | insert--; |
| 1348 | } |
| 1349 | def = split_Rematerialize(def, pred, insert, maxlrg, splits, slidx, lrg2reach, Reachblock, false); |
| 1350 | if (!def) { |
| 1351 | return 0; // Bail out |
| 1352 | } |
| 1353 | } |
| 1354 | // Update the Phi's input edge array |
| 1355 | phi->set_req(i,def); |
| 1356 | // Grab the UP/DOWN sense for the input |
| 1357 | u1 = UP[pidx][slidx]; |
| 1358 | if( u1 != (phi_up != 0)) { |
| 1359 | maxlrg = split_USE(MachSpillCopyNode::PhiLocationDifferToInputLocation, def, b, phi, i, maxlrg, !u1, false, splits,slidx); |
| 1360 | // If it wasn't split bail |
| 1361 | if (!maxlrg) { |
| 1362 | return 0; |
| 1363 | } |
| 1364 | } |
| 1365 | } // End for all inputs to the Phi |
| 1366 | } // End for all Phi Nodes |
| 1367 | // Update _maxlrg to save Union asserts |
| 1368 | _lrg_map.set_max_lrg_id(maxlrg); |
| 1369 | |
| 1370 | |
| 1371 | //----------PASS 3---------- |
| 1372 | // Pass over all Phi's to union the live ranges |
| 1373 | for( insidx = 0; insidx < phis->size(); insidx++ ) { |
| 1374 | Node *phi = phis->at(insidx); |
| 1375 | assert(phi->is_Phi(),"This list must only contain Phi Nodes" ); |
| 1376 | // Walk all inputs to Phi and Union input live range with Phi live range |
| 1377 | for( uint i = 1; i < phi->req(); i++ ) { |
| 1378 | // Grab the input node |
| 1379 | Node *n = phi->in(i); |
| 1380 | assert(n, "node should exist" ); |
| 1381 | uint lidx = _lrg_map.find(n); |
| 1382 | uint pidx = _lrg_map.find(phi); |
| 1383 | if (lidx < pidx) { |
| 1384 | Union(n, phi); |
| 1385 | } |
| 1386 | else if(lidx > pidx) { |
| 1387 | Union(phi, n); |
| 1388 | } |
| 1389 | } // End for all inputs to the Phi Node |
| 1390 | } // End for all Phi Nodes |
| 1391 | // Now union all two address instructions |
| 1392 | for (insidx = 0; insidx < defs->size(); insidx++) { |
| 1393 | // Grab the def |
| 1394 | n1 = defs->at(insidx); |
| 1395 | // Set new lidx for DEF & handle 2-addr instructions |
| 1396 | if (n1->is_Mach() && ((twoidx = n1->as_Mach()->two_adr()) != 0)) { |
| 1397 | assert(_lrg_map.find(n1->in(twoidx)) < maxlrg,"Assigning bad live range index" ); |
| 1398 | // Union the input and output live ranges |
| 1399 | uint lr1 = _lrg_map.find(n1); |
| 1400 | uint lr2 = _lrg_map.find(n1->in(twoidx)); |
| 1401 | if (lr1 < lr2) { |
| 1402 | Union(n1, n1->in(twoidx)); |
| 1403 | } |
| 1404 | else if (lr1 > lr2) { |
| 1405 | Union(n1->in(twoidx), n1); |
| 1406 | } |
| 1407 | } // End if two address |
| 1408 | } // End for all defs |
| 1409 | // DEBUG |
| 1410 | #ifdef ASSERT |
| 1411 | // Validate all live range index assignments |
| 1412 | for (bidx = 0; bidx < _cfg.number_of_blocks(); bidx++) { |
| 1413 | b = _cfg.get_block(bidx); |
| 1414 | for (insidx = 0; insidx <= b->end_idx(); insidx++) { |
| 1415 | Node *n = b->get_node(insidx); |
| 1416 | uint defidx = _lrg_map.find(n); |
| 1417 | assert(defidx < _lrg_map.max_lrg_id(), "Bad live range index in Split" ); |
| 1418 | assert(defidx < maxlrg,"Bad live range index in Split" ); |
| 1419 | } |
| 1420 | } |
| 1421 | // Issue a warning if splitting made no progress |
| 1422 | int noprogress = 0; |
| 1423 | for (slidx = 0; slidx < spill_cnt; slidx++) { |
| 1424 | if (PrintOpto && WizardMode && splits.at(slidx) == 0) { |
| 1425 | tty->print_cr("Failed to split live range %d" , lidxs.at(slidx)); |
| 1426 | //BREAKPOINT; |
| 1427 | } |
| 1428 | else { |
| 1429 | noprogress++; |
| 1430 | } |
| 1431 | } |
| 1432 | if(!noprogress) { |
| 1433 | tty->print_cr("Failed to make progress in Split" ); |
| 1434 | //BREAKPOINT; |
| 1435 | } |
| 1436 | #endif |
| 1437 | // Return updated count of live ranges |
| 1438 | return maxlrg; |
| 1439 | } |
| 1440 | |