| 1 | /* |
| 2 | * Copyright (c) 2015, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | */ |
| 23 | |
| 24 | #include "precompiled.hpp" |
| 25 | #include "opto/castnode.hpp" |
| 26 | #include "opto/compile.hpp" |
| 27 | #include "opto/escape.hpp" |
| 28 | #include "opto/graphKit.hpp" |
| 29 | #include "opto/loopnode.hpp" |
| 30 | #include "opto/machnode.hpp" |
| 31 | #include "opto/macro.hpp" |
| 32 | #include "opto/memnode.hpp" |
| 33 | #include "opto/movenode.hpp" |
| 34 | #include "opto/node.hpp" |
| 35 | #include "opto/phase.hpp" |
| 36 | #include "opto/phaseX.hpp" |
| 37 | #include "opto/rootnode.hpp" |
| 38 | #include "opto/type.hpp" |
| 39 | #include "utilities/copy.hpp" |
| 40 | #include "utilities/growableArray.hpp" |
| 41 | #include "utilities/macros.hpp" |
| 42 | #include "gc/z/zBarrierSet.hpp" |
| 43 | #include "gc/z/c2/zBarrierSetC2.hpp" |
| 44 | #include "gc/z/zThreadLocalData.hpp" |
| 45 | #include "gc/z/zBarrierSetRuntime.hpp" |
| 46 | |
| 47 | ZBarrierSetC2State::ZBarrierSetC2State(Arena* comp_arena) : |
| 48 | _load_barrier_nodes(new (comp_arena) GrowableArray<LoadBarrierNode*>(comp_arena, 8, 0, NULL)) {} |
| 49 | |
| 50 | int ZBarrierSetC2State::load_barrier_count() const { |
| 51 | return _load_barrier_nodes->length(); |
| 52 | } |
| 53 | |
| 54 | void ZBarrierSetC2State::add_load_barrier_node(LoadBarrierNode * n) { |
| 55 | assert(!_load_barrier_nodes->contains(n), " duplicate entry in expand list" ); |
| 56 | _load_barrier_nodes->append(n); |
| 57 | } |
| 58 | |
| 59 | void ZBarrierSetC2State::remove_load_barrier_node(LoadBarrierNode * n) { |
| 60 | // this function may be called twice for a node so check |
| 61 | // that the node is in the array before attempting to remove it |
| 62 | if (_load_barrier_nodes->contains(n)) { |
| 63 | _load_barrier_nodes->remove(n); |
| 64 | } |
| 65 | } |
| 66 | |
| 67 | LoadBarrierNode* ZBarrierSetC2State::load_barrier_node(int idx) const { |
| 68 | return _load_barrier_nodes->at(idx); |
| 69 | } |
| 70 | |
| 71 | void* ZBarrierSetC2::create_barrier_state(Arena* comp_arena) const { |
| 72 | return new(comp_arena) ZBarrierSetC2State(comp_arena); |
| 73 | } |
| 74 | |
| 75 | ZBarrierSetC2State* ZBarrierSetC2::state() const { |
| 76 | return reinterpret_cast<ZBarrierSetC2State*>(Compile::current()->barrier_set_state()); |
| 77 | } |
| 78 | |
| 79 | bool ZBarrierSetC2::is_gc_barrier_node(Node* node) const { |
| 80 | // 1. This step follows potential oop projections of a load barrier before expansion |
| 81 | if (node->is_Proj()) { |
| 82 | node = node->in(0); |
| 83 | } |
| 84 | |
| 85 | // 2. This step checks for unexpanded load barriers |
| 86 | if (node->is_LoadBarrier()) { |
| 87 | return true; |
| 88 | } |
| 89 | |
| 90 | // 3. This step checks for the phi corresponding to an optimized load barrier expansion |
| 91 | if (node->is_Phi()) { |
| 92 | PhiNode* phi = node->as_Phi(); |
| 93 | Node* n = phi->in(1); |
| 94 | if (n != NULL && n->is_LoadBarrierSlowReg()) { |
| 95 | return true; |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | return false; |
| 100 | } |
| 101 | |
| 102 | void ZBarrierSetC2::register_potential_barrier_node(Node* node) const { |
| 103 | if (node->is_LoadBarrier()) { |
| 104 | state()->add_load_barrier_node(node->as_LoadBarrier()); |
| 105 | } |
| 106 | } |
| 107 | |
| 108 | void ZBarrierSetC2::unregister_potential_barrier_node(Node* node) const { |
| 109 | if (node->is_LoadBarrier()) { |
| 110 | state()->remove_load_barrier_node(node->as_LoadBarrier()); |
| 111 | } |
| 112 | } |
| 113 | |
| 114 | void ZBarrierSetC2::eliminate_useless_gc_barriers(Unique_Node_List &useful, Compile* C) const { |
| 115 | // Remove useless LoadBarrier nodes |
| 116 | ZBarrierSetC2State* s = state(); |
| 117 | for (int i = s->load_barrier_count()-1; i >= 0; i--) { |
| 118 | LoadBarrierNode* n = s->load_barrier_node(i); |
| 119 | if (!useful.member(n)) { |
| 120 | unregister_potential_barrier_node(n); |
| 121 | } |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | void ZBarrierSetC2::enqueue_useful_gc_barrier(PhaseIterGVN* igvn, Node* node) const { |
| 126 | if (node->is_LoadBarrier() && !node->as_LoadBarrier()->has_true_uses()) { |
| 127 | igvn->_worklist.push(node); |
| 128 | } |
| 129 | } |
| 130 | |
| 131 | const uint NoBarrier = 0; |
| 132 | const uint RequireBarrier = 1; |
| 133 | const uint WeakBarrier = 2; |
| 134 | const uint ExpandedBarrier = 4; |
| 135 | |
| 136 | static bool load_require_barrier(LoadNode* load) { return (load->barrier_data() & RequireBarrier) == RequireBarrier; } |
| 137 | static bool load_has_weak_barrier(LoadNode* load) { return (load->barrier_data() & WeakBarrier) == WeakBarrier; } |
| 138 | static bool load_has_expanded_barrier(LoadNode* load) { return (load->barrier_data() & ExpandedBarrier) == ExpandedBarrier; } |
| 139 | static void load_set_expanded_barrier(LoadNode* load) { return load->set_barrier_data(ExpandedBarrier); } |
| 140 | |
| 141 | static void load_set_barrier(LoadNode* load, bool weak) { |
| 142 | if (weak) { |
| 143 | load->set_barrier_data(RequireBarrier | WeakBarrier); |
| 144 | } else { |
| 145 | load->set_barrier_data(RequireBarrier); |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | // == LoadBarrierNode == |
| 150 | |
| 151 | LoadBarrierNode::LoadBarrierNode(Compile* C, |
| 152 | Node* c, |
| 153 | Node* mem, |
| 154 | Node* val, |
| 155 | Node* adr, |
| 156 | bool weak) : |
| 157 | MultiNode(Number_of_Inputs), |
| 158 | _weak(weak) { |
| 159 | init_req(Control, c); |
| 160 | init_req(Memory, mem); |
| 161 | init_req(Oop, val); |
| 162 | init_req(Address, adr); |
| 163 | init_req(Similar, C->top()); |
| 164 | |
| 165 | init_class_id(Class_LoadBarrier); |
| 166 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); |
| 167 | bs->register_potential_barrier_node(this); |
| 168 | } |
| 169 | |
| 170 | uint LoadBarrierNode::size_of() const { |
| 171 | return sizeof(*this); |
| 172 | } |
| 173 | |
| 174 | bool LoadBarrierNode::cmp(const Node& n) const { |
| 175 | ShouldNotReachHere(); |
| 176 | return false; |
| 177 | } |
| 178 | |
| 179 | const Type *LoadBarrierNode::bottom_type() const { |
| 180 | const Type** floadbarrier = (const Type **)(Compile::current()->type_arena()->Amalloc_4((Number_of_Outputs)*sizeof(Type*))); |
| 181 | Node* in_oop = in(Oop); |
| 182 | floadbarrier[Control] = Type::CONTROL; |
| 183 | floadbarrier[Memory] = Type::MEMORY; |
| 184 | floadbarrier[Oop] = in_oop == NULL ? Type::TOP : in_oop->bottom_type(); |
| 185 | return TypeTuple::make(Number_of_Outputs, floadbarrier); |
| 186 | } |
| 187 | |
| 188 | const TypePtr* LoadBarrierNode::adr_type() const { |
| 189 | ShouldNotReachHere(); |
| 190 | return NULL; |
| 191 | } |
| 192 | |
| 193 | const Type *LoadBarrierNode::Value(PhaseGVN *phase) const { |
| 194 | const Type** floadbarrier = (const Type **)(phase->C->type_arena()->Amalloc_4((Number_of_Outputs)*sizeof(Type*))); |
| 195 | const Type* val_t = phase->type(in(Oop)); |
| 196 | floadbarrier[Control] = Type::CONTROL; |
| 197 | floadbarrier[Memory] = Type::MEMORY; |
| 198 | floadbarrier[Oop] = val_t; |
| 199 | return TypeTuple::make(Number_of_Outputs, floadbarrier); |
| 200 | } |
| 201 | |
| 202 | bool LoadBarrierNode::is_dominator(PhaseIdealLoop* phase, bool linear_only, Node *d, Node *n) { |
| 203 | if (phase != NULL) { |
| 204 | return phase->is_dominator(d, n); |
| 205 | } |
| 206 | |
| 207 | for (int i = 0; i < 10 && n != NULL; i++) { |
| 208 | n = IfNode::up_one_dom(n, linear_only); |
| 209 | if (n == d) { |
| 210 | return true; |
| 211 | } |
| 212 | } |
| 213 | |
| 214 | return false; |
| 215 | } |
| 216 | |
| 217 | LoadBarrierNode* LoadBarrierNode::has_dominating_barrier(PhaseIdealLoop* phase, bool linear_only, bool look_for_similar) { |
| 218 | if (is_weak()) { |
| 219 | // Weak barriers can't be eliminated |
| 220 | return NULL; |
| 221 | } |
| 222 | |
| 223 | Node* val = in(LoadBarrierNode::Oop); |
| 224 | if (in(Similar)->is_Proj() && in(Similar)->in(0)->is_LoadBarrier()) { |
| 225 | LoadBarrierNode* lb = in(Similar)->in(0)->as_LoadBarrier(); |
| 226 | assert(lb->in(Address) == in(Address), "" ); |
| 227 | // Load barrier on Similar edge dominates so if it now has the Oop field it can replace this barrier. |
| 228 | if (lb->in(Oop) == in(Oop)) { |
| 229 | return lb; |
| 230 | } |
| 231 | // Follow chain of load barrier through Similar edges |
| 232 | while (!lb->in(Similar)->is_top()) { |
| 233 | lb = lb->in(Similar)->in(0)->as_LoadBarrier(); |
| 234 | assert(lb->in(Address) == in(Address), "" ); |
| 235 | } |
| 236 | if (lb != in(Similar)->in(0)) { |
| 237 | return lb; |
| 238 | } |
| 239 | } |
| 240 | for (DUIterator_Fast imax, i = val->fast_outs(imax); i < imax; i++) { |
| 241 | Node* u = val->fast_out(i); |
| 242 | if (u != this && u->is_LoadBarrier() && u->in(Oop) == val && u->as_LoadBarrier()->has_true_uses()) { |
| 243 | Node* this_ctrl = in(LoadBarrierNode::Control); |
| 244 | Node* other_ctrl = u->in(LoadBarrierNode::Control); |
| 245 | if (is_dominator(phase, linear_only, other_ctrl, this_ctrl)) { |
| 246 | return u->as_LoadBarrier(); |
| 247 | } |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | if (can_be_eliminated()) { |
| 252 | return NULL; |
| 253 | } |
| 254 | |
| 255 | if (!look_for_similar) { |
| 256 | return NULL; |
| 257 | } |
| 258 | |
| 259 | Node* addr = in(LoadBarrierNode::Address); |
| 260 | for (DUIterator_Fast imax, i = addr->fast_outs(imax); i < imax; i++) { |
| 261 | Node* u = addr->fast_out(i); |
| 262 | if (u != this && u->is_LoadBarrier() && u->as_LoadBarrier()->has_true_uses()) { |
| 263 | Node* this_ctrl = in(LoadBarrierNode::Control); |
| 264 | Node* other_ctrl = u->in(LoadBarrierNode::Control); |
| 265 | if (is_dominator(phase, linear_only, other_ctrl, this_ctrl)) { |
| 266 | ResourceMark rm; |
| 267 | Unique_Node_List wq; |
| 268 | wq.push(in(LoadBarrierNode::Control)); |
| 269 | bool ok = true; |
| 270 | bool dom_found = false; |
| 271 | for (uint next = 0; next < wq.size(); ++next) { |
| 272 | Node *n = wq.at(next); |
| 273 | if (n->is_top()) { |
| 274 | return NULL; |
| 275 | } |
| 276 | assert(n->is_CFG(), "" ); |
| 277 | if (n->is_SafePoint()) { |
| 278 | ok = false; |
| 279 | break; |
| 280 | } |
| 281 | if (n == u) { |
| 282 | dom_found = true; |
| 283 | continue; |
| 284 | } |
| 285 | if (n->is_Region()) { |
| 286 | for (uint i = 1; i < n->req(); i++) { |
| 287 | Node* m = n->in(i); |
| 288 | if (m != NULL) { |
| 289 | wq.push(m); |
| 290 | } |
| 291 | } |
| 292 | } else { |
| 293 | Node* m = n->in(0); |
| 294 | if (m != NULL) { |
| 295 | wq.push(m); |
| 296 | } |
| 297 | } |
| 298 | } |
| 299 | if (ok) { |
| 300 | assert(dom_found, "" ); |
| 301 | return u->as_LoadBarrier(); |
| 302 | } |
| 303 | break; |
| 304 | } |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | return NULL; |
| 309 | } |
| 310 | |
| 311 | void LoadBarrierNode::push_dominated_barriers(PhaseIterGVN* igvn) const { |
| 312 | // Change to that barrier may affect a dominated barrier so re-push those |
| 313 | assert(!is_weak(), "sanity" ); |
| 314 | Node* val = in(LoadBarrierNode::Oop); |
| 315 | |
| 316 | for (DUIterator_Fast imax, i = val->fast_outs(imax); i < imax; i++) { |
| 317 | Node* u = val->fast_out(i); |
| 318 | if (u != this && u->is_LoadBarrier() && u->in(Oop) == val) { |
| 319 | Node* this_ctrl = in(Control); |
| 320 | Node* other_ctrl = u->in(Control); |
| 321 | if (is_dominator(NULL, false, this_ctrl, other_ctrl)) { |
| 322 | igvn->_worklist.push(u); |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | Node* addr = in(LoadBarrierNode::Address); |
| 327 | for (DUIterator_Fast imax, i = addr->fast_outs(imax); i < imax; i++) { |
| 328 | Node* u = addr->fast_out(i); |
| 329 | if (u != this && u->is_LoadBarrier() && u->in(Similar)->is_top()) { |
| 330 | Node* this_ctrl = in(Control); |
| 331 | Node* other_ctrl = u->in(Control); |
| 332 | if (is_dominator(NULL, false, this_ctrl, other_ctrl)) { |
| 333 | igvn->_worklist.push(u); |
| 334 | } |
| 335 | } |
| 336 | } |
| 337 | } |
| 338 | } |
| 339 | |
| 340 | Node *LoadBarrierNode::Identity(PhaseGVN *phase) { |
| 341 | LoadBarrierNode* dominating_barrier = has_dominating_barrier(NULL, true, false); |
| 342 | if (dominating_barrier != NULL) { |
| 343 | assert(!is_weak(), "Weak barriers cant be eliminated" ); |
| 344 | assert(dominating_barrier->in(Oop) == in(Oop), "" ); |
| 345 | return dominating_barrier; |
| 346 | } |
| 347 | |
| 348 | return this; |
| 349 | } |
| 350 | |
| 351 | Node *LoadBarrierNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| 352 | if (remove_dead_region(phase, can_reshape)) { |
| 353 | return this; |
| 354 | } |
| 355 | |
| 356 | Node *val = in(Oop); |
| 357 | Node *mem = in(Memory); |
| 358 | Node *ctrl = in(Control); |
| 359 | |
| 360 | assert(val->Opcode() != Op_LoadN, "" ); |
| 361 | assert(val->Opcode() != Op_DecodeN, "" ); |
| 362 | |
| 363 | if (mem->is_MergeMem()) { |
| 364 | Node *new_mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw); |
| 365 | set_req(Memory, new_mem); |
| 366 | if (mem->outcnt() == 0 && can_reshape) { |
| 367 | phase->is_IterGVN()->_worklist.push(mem); |
| 368 | } |
| 369 | return this; |
| 370 | } |
| 371 | |
| 372 | LoadBarrierNode *dominating_barrier = NULL; |
| 373 | if (!is_weak()) { |
| 374 | dominating_barrier = has_dominating_barrier(NULL, !can_reshape, !phase->C->major_progress()); |
| 375 | if (dominating_barrier != NULL && dominating_barrier->in(Oop) != in(Oop)) { |
| 376 | assert(in(Address) == dominating_barrier->in(Address), "" ); |
| 377 | set_req(Similar, dominating_barrier->proj_out(Oop)); |
| 378 | return this; |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | bool eliminate = can_reshape && (dominating_barrier != NULL || !has_true_uses()); |
| 383 | if (eliminate) { |
| 384 | if (can_reshape) { |
| 385 | PhaseIterGVN* igvn = phase->is_IterGVN(); |
| 386 | Node* out_ctrl = proj_out_or_null(Control); |
| 387 | Node* out_res = proj_out_or_null(Oop); |
| 388 | |
| 389 | if (out_ctrl != NULL) { |
| 390 | igvn->replace_node(out_ctrl, ctrl); |
| 391 | } |
| 392 | |
| 393 | // That transformation may cause the Similar edge on the load barrier to be invalid |
| 394 | fix_similar_in_uses(igvn); |
| 395 | if (out_res != NULL) { |
| 396 | if (dominating_barrier != NULL) { |
| 397 | assert(!is_weak(), "Sanity" ); |
| 398 | igvn->replace_node(out_res, dominating_barrier->proj_out(Oop)); |
| 399 | } else { |
| 400 | igvn->replace_node(out_res, val); |
| 401 | } |
| 402 | } |
| 403 | } |
| 404 | return new ConINode(TypeInt::ZERO); |
| 405 | } |
| 406 | |
| 407 | // If the Similar edge is no longer a load barrier, clear it |
| 408 | Node* similar = in(Similar); |
| 409 | if (!similar->is_top() && !(similar->is_Proj() && similar->in(0)->is_LoadBarrier())) { |
| 410 | set_req(Similar, phase->C->top()); |
| 411 | return this; |
| 412 | } |
| 413 | |
| 414 | if (can_reshape && !is_weak()) { |
| 415 | // If this barrier is linked through the Similar edge by a |
| 416 | // dominated barrier and both barriers have the same Oop field, |
| 417 | // the dominated barrier can go away, so push it for reprocessing. |
| 418 | // We also want to avoid a barrier to depend on another dominating |
| 419 | // barrier through its Similar edge that itself depend on another |
| 420 | // barrier through its Similar edge and rather have the first |
| 421 | // depend on the third. |
| 422 | PhaseIterGVN* igvn = phase->is_IterGVN(); |
| 423 | Node* out_res = proj_out(Oop); |
| 424 | for (DUIterator_Fast imax, i = out_res->fast_outs(imax); i < imax; i++) { |
| 425 | Node* u = out_res->fast_out(i); |
| 426 | if (u->is_LoadBarrier() && u->in(Similar) == out_res && |
| 427 | (u->in(Oop) == val || !u->in(Similar)->is_top())) { |
| 428 | assert(!u->as_LoadBarrier()->is_weak(), "Sanity" ); |
| 429 | igvn->_worklist.push(u); |
| 430 | } |
| 431 | } |
| 432 | push_dominated_barriers(igvn); |
| 433 | } |
| 434 | |
| 435 | return NULL; |
| 436 | } |
| 437 | |
| 438 | uint LoadBarrierNode::match_edge(uint idx) const { |
| 439 | ShouldNotReachHere(); |
| 440 | return 0; |
| 441 | } |
| 442 | |
| 443 | void LoadBarrierNode::fix_similar_in_uses(PhaseIterGVN* igvn) { |
| 444 | Node* out_res = proj_out_or_null(Oop); |
| 445 | if (out_res == NULL) { |
| 446 | return; |
| 447 | } |
| 448 | |
| 449 | for (DUIterator_Fast imax, i = out_res->fast_outs(imax); i < imax; i++) { |
| 450 | Node* u = out_res->fast_out(i); |
| 451 | if (u->is_LoadBarrier() && u->in(Similar) == out_res) { |
| 452 | igvn->replace_input_of(u, Similar, igvn->C->top()); |
| 453 | --i; |
| 454 | --imax; |
| 455 | } |
| 456 | } |
| 457 | } |
| 458 | |
| 459 | bool LoadBarrierNode::has_true_uses() const { |
| 460 | Node* out_res = proj_out_or_null(Oop); |
| 461 | if (out_res != NULL) { |
| 462 | for (DUIterator_Fast imax, i = out_res->fast_outs(imax); i < imax; i++) { |
| 463 | Node *u = out_res->fast_out(i); |
| 464 | if (!u->is_LoadBarrier() || u->in(Similar) != out_res) { |
| 465 | return true; |
| 466 | } |
| 467 | } |
| 468 | } |
| 469 | return false; |
| 470 | } |
| 471 | |
| 472 | static bool barrier_needed(C2Access& access) { |
| 473 | return ZBarrierSet::barrier_needed(access.decorators(), access.type()); |
| 474 | } |
| 475 | |
| 476 | Node* ZBarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const { |
| 477 | Node* p = BarrierSetC2::load_at_resolved(access, val_type); |
| 478 | if (!barrier_needed(access)) { |
| 479 | return p; |
| 480 | } |
| 481 | |
| 482 | bool weak = (access.decorators() & ON_WEAK_OOP_REF) != 0; |
| 483 | if (p->isa_Load()) { |
| 484 | load_set_barrier(p->as_Load(), weak); |
| 485 | } |
| 486 | return p; |
| 487 | } |
| 488 | |
| 489 | Node* ZBarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val, |
| 490 | Node* new_val, const Type* val_type) const { |
| 491 | Node* result = BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, val_type); |
| 492 | LoadStoreNode* lsn = result->as_LoadStore(); |
| 493 | if (barrier_needed(access)) { |
| 494 | lsn->set_has_barrier(); |
| 495 | } |
| 496 | return lsn; |
| 497 | } |
| 498 | |
| 499 | Node* ZBarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val, |
| 500 | Node* new_val, const Type* value_type) const { |
| 501 | Node* result = BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type); |
| 502 | LoadStoreNode* lsn = result->as_LoadStore(); |
| 503 | if (barrier_needed(access)) { |
| 504 | lsn->set_has_barrier(); |
| 505 | } |
| 506 | return lsn; |
| 507 | } |
| 508 | |
| 509 | Node* ZBarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* new_val, const Type* val_type) const { |
| 510 | Node* result = BarrierSetC2::atomic_xchg_at_resolved(access, new_val, val_type); |
| 511 | LoadStoreNode* lsn = result->as_LoadStore(); |
| 512 | if (barrier_needed(access)) { |
| 513 | lsn->set_has_barrier(); |
| 514 | } |
| 515 | return lsn; |
| 516 | } |
| 517 | |
| 518 | // == Macro Expansion == |
| 519 | |
| 520 | // Optimized, low spill, loadbarrier variant using stub specialized on register used |
| 521 | void ZBarrierSetC2::expand_loadbarrier_node(PhaseMacroExpand* phase, LoadBarrierNode* barrier) const { |
| 522 | PhaseIterGVN &igvn = phase->igvn(); |
| 523 | float unlikely = PROB_UNLIKELY(0.999); |
| 524 | |
| 525 | Node* in_ctrl = barrier->in(LoadBarrierNode::Control); |
| 526 | Node* in_mem = barrier->in(LoadBarrierNode::Memory); |
| 527 | Node* in_val = barrier->in(LoadBarrierNode::Oop); |
| 528 | Node* in_adr = barrier->in(LoadBarrierNode::Address); |
| 529 | |
| 530 | Node* out_ctrl = barrier->proj_out(LoadBarrierNode::Control); |
| 531 | Node* out_res = barrier->proj_out(LoadBarrierNode::Oop); |
| 532 | |
| 533 | assert(barrier->in(LoadBarrierNode::Oop) != NULL, "oop to loadbarrier node cannot be null" ); |
| 534 | |
| 535 | Node* jthread = igvn.transform(new ThreadLocalNode()); |
| 536 | Node* adr = phase->basic_plus_adr(jthread, in_bytes(ZThreadLocalData::address_bad_mask_offset())); |
| 537 | Node* bad_mask = igvn.transform(LoadNode::make(igvn, in_ctrl, in_mem, adr, |
| 538 | TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), |
| 539 | MemNode::unordered)); |
| 540 | Node* cast = igvn.transform(new CastP2XNode(in_ctrl, in_val)); |
| 541 | Node* obj_masked = igvn.transform(new AndXNode(cast, bad_mask)); |
| 542 | Node* cmp = igvn.transform(new CmpXNode(obj_masked, igvn.zerocon(TypeX_X->basic_type()))); |
| 543 | Node *bol = igvn.transform(new BoolNode(cmp, BoolTest::ne))->as_Bool(); |
| 544 | IfNode* iff = igvn.transform(new IfNode(in_ctrl, bol, unlikely, COUNT_UNKNOWN))->as_If(); |
| 545 | Node* then = igvn.transform(new IfTrueNode(iff)); |
| 546 | Node* elsen = igvn.transform(new IfFalseNode(iff)); |
| 547 | |
| 548 | Node* new_loadp = igvn.transform(new LoadBarrierSlowRegNode(then, in_adr, in_val, |
| 549 | (const TypePtr*) in_val->bottom_type(), barrier->is_weak())); |
| 550 | |
| 551 | // Create the final region/phi pair to converge cntl/data paths to downstream code |
| 552 | Node* result_region = igvn.transform(new RegionNode(3)); |
| 553 | result_region->set_req(1, then); |
| 554 | result_region->set_req(2, elsen); |
| 555 | |
| 556 | Node* result_phi = igvn.transform(new PhiNode(result_region, TypeInstPtr::BOTTOM)); |
| 557 | result_phi->set_req(1, new_loadp); |
| 558 | result_phi->set_req(2, barrier->in(LoadBarrierNode::Oop)); |
| 559 | |
| 560 | |
| 561 | igvn.replace_node(out_ctrl, result_region); |
| 562 | igvn.replace_node(out_res, result_phi); |
| 563 | |
| 564 | assert(barrier->outcnt() == 0,"LoadBarrier macro node has non-null outputs after expansion!" ); |
| 565 | |
| 566 | igvn.remove_dead_node(barrier); |
| 567 | igvn.remove_dead_node(out_ctrl); |
| 568 | igvn.remove_dead_node(out_res); |
| 569 | |
| 570 | assert(is_gc_barrier_node(result_phi), "sanity" ); |
| 571 | assert(step_over_gc_barrier(result_phi) == in_val, "sanity" ); |
| 572 | |
| 573 | phase->C->print_method(PHASE_BARRIER_EXPANSION, 4, barrier->_idx); |
| 574 | } |
| 575 | |
| 576 | bool ZBarrierSetC2::expand_barriers(Compile* C, PhaseIterGVN& igvn) const { |
| 577 | ZBarrierSetC2State* s = state(); |
| 578 | if (s->load_barrier_count() > 0) { |
| 579 | PhaseMacroExpand macro(igvn); |
| 580 | |
| 581 | int skipped = 0; |
| 582 | while (s->load_barrier_count() > skipped) { |
| 583 | int load_barrier_count = s->load_barrier_count(); |
| 584 | LoadBarrierNode * n = s->load_barrier_node(load_barrier_count-1-skipped); |
| 585 | if (igvn.type(n) == Type::TOP || (n->in(0) != NULL && n->in(0)->is_top())) { |
| 586 | // Node is unreachable, so don't try to expand it |
| 587 | s->remove_load_barrier_node(n); |
| 588 | continue; |
| 589 | } |
| 590 | if (!n->can_be_eliminated()) { |
| 591 | skipped++; |
| 592 | continue; |
| 593 | } |
| 594 | expand_loadbarrier_node(¯o, n); |
| 595 | assert(s->load_barrier_count() < load_barrier_count, "must have deleted a node from load barrier list" ); |
| 596 | if (C->failing()) { |
| 597 | return true; |
| 598 | } |
| 599 | } |
| 600 | while (s->load_barrier_count() > 0) { |
| 601 | int load_barrier_count = s->load_barrier_count(); |
| 602 | LoadBarrierNode* n = s->load_barrier_node(load_barrier_count - 1); |
| 603 | assert(!(igvn.type(n) == Type::TOP || (n->in(0) != NULL && n->in(0)->is_top())), "should have been processed already" ); |
| 604 | assert(!n->can_be_eliminated(), "should have been processed already" ); |
| 605 | expand_loadbarrier_node(¯o, n); |
| 606 | assert(s->load_barrier_count() < load_barrier_count, "must have deleted a node from load barrier list" ); |
| 607 | if (C->failing()) { |
| 608 | return true; |
| 609 | } |
| 610 | } |
| 611 | igvn.set_delay_transform(false); |
| 612 | igvn.optimize(); |
| 613 | if (C->failing()) { |
| 614 | return true; |
| 615 | } |
| 616 | } |
| 617 | |
| 618 | return false; |
| 619 | } |
| 620 | |
| 621 | Node* ZBarrierSetC2::step_over_gc_barrier(Node* c) const { |
| 622 | Node* node = c; |
| 623 | |
| 624 | // 1. This step follows potential oop projections of a load barrier before expansion |
| 625 | if (node->is_Proj()) { |
| 626 | node = node->in(0); |
| 627 | } |
| 628 | |
| 629 | // 2. This step checks for unexpanded load barriers |
| 630 | if (node->is_LoadBarrier()) { |
| 631 | return node->in(LoadBarrierNode::Oop); |
| 632 | } |
| 633 | |
| 634 | // 3. This step checks for the phi corresponding to an optimized load barrier expansion |
| 635 | if (node->is_Phi()) { |
| 636 | PhiNode* phi = node->as_Phi(); |
| 637 | Node* n = phi->in(1); |
| 638 | if (n != NULL && n->is_LoadBarrierSlowReg()) { |
| 639 | assert(c == node, "projections from step 1 should only be seen before macro expansion" ); |
| 640 | return phi->in(2); |
| 641 | } |
| 642 | } |
| 643 | |
| 644 | return c; |
| 645 | } |
| 646 | |
| 647 | Node* ZBarrierSetC2::step_over_gc_barrier_ctrl(Node* c) const { |
| 648 | Node* node = c; |
| 649 | |
| 650 | // 1. This step follows potential ctrl projections of a load barrier before expansion |
| 651 | if (node->is_Proj()) { |
| 652 | node = node->in(0); |
| 653 | } |
| 654 | |
| 655 | // 2. This step checks for unexpanded load barriers |
| 656 | if (node->is_LoadBarrier()) { |
| 657 | return node->in(LoadBarrierNode::Control); |
| 658 | } |
| 659 | |
| 660 | return c; |
| 661 | } |
| 662 | |
| 663 | bool ZBarrierSetC2::array_copy_requires_gc_barriers(bool tightly_coupled_alloc, BasicType type, bool is_clone, ArrayCopyPhase phase) const { |
| 664 | return type == T_OBJECT || type == T_ARRAY; |
| 665 | } |
| 666 | |
| 667 | bool ZBarrierSetC2::final_graph_reshaping(Compile* compile, Node* n, uint opcode) const { |
| 668 | switch (opcode) { |
| 669 | case Op_LoadBarrier: |
| 670 | assert(0, "There should be no load barriers left" ); |
| 671 | case Op_ZGetAndSetP: |
| 672 | case Op_ZCompareAndExchangeP: |
| 673 | case Op_ZCompareAndSwapP: |
| 674 | case Op_ZWeakCompareAndSwapP: |
| 675 | #ifdef ASSERT |
| 676 | if (VerifyOptoOopOffsets) { |
| 677 | MemNode *mem = n->as_Mem(); |
| 678 | // Check to see if address types have grounded out somehow. |
| 679 | const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr(); |
| 680 | ciInstanceKlass *k = tp->klass()->as_instance_klass(); |
| 681 | bool oop_offset_is_sane = k->contains_field_offset(tp->offset()); |
| 682 | assert(!tp || oop_offset_is_sane, "" ); |
| 683 | } |
| 684 | #endif |
| 685 | return true; |
| 686 | default: |
| 687 | return false; |
| 688 | } |
| 689 | } |
| 690 | |
| 691 | bool ZBarrierSetC2::matcher_find_shared_visit(Matcher* matcher, Matcher::MStack& mstack, Node* n, uint opcode, bool& mem_op, int& mem_addr_idx) const { |
| 692 | switch(opcode) { |
| 693 | case Op_CallLeaf: |
| 694 | if (n->as_Call()->entry_point() == ZBarrierSetRuntime::load_barrier_on_oop_field_preloaded_addr() || |
| 695 | n->as_Call()->entry_point() == ZBarrierSetRuntime::load_barrier_on_weak_oop_field_preloaded_addr()) { |
| 696 | mem_op = true; |
| 697 | mem_addr_idx = TypeFunc::Parms + 1; |
| 698 | return true; |
| 699 | } |
| 700 | return false; |
| 701 | default: |
| 702 | return false; |
| 703 | } |
| 704 | } |
| 705 | |
| 706 | bool ZBarrierSetC2::matcher_find_shared_post_visit(Matcher* matcher, Node* n, uint opcode) const { |
| 707 | switch(opcode) { |
| 708 | case Op_ZCompareAndExchangeP: |
| 709 | case Op_ZCompareAndSwapP: |
| 710 | case Op_ZWeakCompareAndSwapP: { |
| 711 | Node *mem = n->in(MemNode::Address); |
| 712 | Node *keepalive = n->in(5); |
| 713 | Node *pair1 = new BinaryNode(mem, keepalive); |
| 714 | |
| 715 | Node *newval = n->in(MemNode::ValueIn); |
| 716 | Node *oldval = n->in(LoadStoreConditionalNode::ExpectedIn); |
| 717 | Node *pair2 = new BinaryNode(oldval, newval); |
| 718 | |
| 719 | n->set_req(MemNode::Address, pair1); |
| 720 | n->set_req(MemNode::ValueIn, pair2); |
| 721 | n->del_req(5); |
| 722 | n->del_req(LoadStoreConditionalNode::ExpectedIn); |
| 723 | return true; |
| 724 | } |
| 725 | case Op_ZGetAndSetP: { |
| 726 | Node *keepalive = n->in(4); |
| 727 | Node *newval = n->in(MemNode::ValueIn); |
| 728 | Node *pair = new BinaryNode(newval, keepalive); |
| 729 | n->set_req(MemNode::ValueIn, pair); |
| 730 | n->del_req(4); |
| 731 | return true; |
| 732 | } |
| 733 | |
| 734 | default: |
| 735 | return false; |
| 736 | } |
| 737 | } |
| 738 | |
| 739 | // == Verification == |
| 740 | |
| 741 | #ifdef ASSERT |
| 742 | |
| 743 | static bool look_for_barrier(Node* n, bool post_parse, VectorSet& visited) { |
| 744 | if (visited.test_set(n->_idx)) { |
| 745 | return true; |
| 746 | } |
| 747 | |
| 748 | for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { |
| 749 | Node* u = n->fast_out(i); |
| 750 | if (u->is_LoadBarrier()) { |
| 751 | } else if ((u->is_Phi() || u->is_CMove()) && !post_parse) { |
| 752 | if (!look_for_barrier(u, post_parse, visited)) { |
| 753 | return false; |
| 754 | } |
| 755 | } else if (u->Opcode() == Op_EncodeP || u->Opcode() == Op_DecodeN) { |
| 756 | if (!look_for_barrier(u, post_parse, visited)) { |
| 757 | return false; |
| 758 | } |
| 759 | } else if (u->Opcode() != Op_SCMemProj) { |
| 760 | tty->print("bad use" ); u->dump(); |
| 761 | return false; |
| 762 | } |
| 763 | } |
| 764 | |
| 765 | return true; |
| 766 | } |
| 767 | |
| 768 | void ZBarrierSetC2::verify_gc_barriers(Compile* compile, CompilePhase phase) const { |
| 769 | switch(phase) { |
| 770 | case BarrierSetC2::BeforeOptimize: |
| 771 | case BarrierSetC2::BeforeLateInsertion: |
| 772 | assert(state()->load_barrier_count() == 0, "No barriers inserted yet" ); |
| 773 | break; |
| 774 | case BarrierSetC2::BeforeMacroExpand: |
| 775 | // Barrier placement should be set by now. |
| 776 | verify_gc_barriers(false /*post_parse*/); |
| 777 | break; |
| 778 | case BarrierSetC2::BeforeCodeGen: |
| 779 | // Barriers has been fully expanded. |
| 780 | assert(state()->load_barrier_count() == 0, "No more macro barriers" ); |
| 781 | break; |
| 782 | default: |
| 783 | assert(0, "Phase without verification" ); |
| 784 | } |
| 785 | } |
| 786 | |
| 787 | // post_parse implies that there might be load barriers without uses after parsing |
| 788 | // That only applies when adding barriers at parse time. |
| 789 | void ZBarrierSetC2::verify_gc_barriers(bool post_parse) const { |
| 790 | ZBarrierSetC2State* s = state(); |
| 791 | Compile* C = Compile::current(); |
| 792 | ResourceMark rm; |
| 793 | VectorSet visited(Thread::current()->resource_area()); |
| 794 | |
| 795 | for (int i = 0; i < s->load_barrier_count(); i++) { |
| 796 | LoadBarrierNode* n = s->load_barrier_node(i); |
| 797 | |
| 798 | // The dominating barrier on the same address if it exists and |
| 799 | // this barrier must not be applied on the value from the same |
| 800 | // load otherwise the value is not reloaded before it's used the |
| 801 | // second time. |
| 802 | assert(n->in(LoadBarrierNode::Similar)->is_top() || |
| 803 | (n->in(LoadBarrierNode::Similar)->in(0)->is_LoadBarrier() && |
| 804 | n->in(LoadBarrierNode::Similar)->in(0)->in(LoadBarrierNode::Address) == n->in(LoadBarrierNode::Address) && |
| 805 | n->in(LoadBarrierNode::Similar)->in(0)->in(LoadBarrierNode::Oop) != n->in(LoadBarrierNode::Oop)), |
| 806 | "broken similar edge" ); |
| 807 | |
| 808 | assert(n->as_LoadBarrier()->has_true_uses(), |
| 809 | "found unneeded load barrier" ); |
| 810 | |
| 811 | // Several load barrier nodes chained through their Similar edge |
| 812 | // break the code that remove the barriers in final graph reshape. |
| 813 | assert(n->in(LoadBarrierNode::Similar)->is_top() || |
| 814 | (n->in(LoadBarrierNode::Similar)->in(0)->is_LoadBarrier() && |
| 815 | n->in(LoadBarrierNode::Similar)->in(0)->in(LoadBarrierNode::Similar)->is_top()), |
| 816 | "chain of Similar load barriers" ); |
| 817 | |
| 818 | if (!n->in(LoadBarrierNode::Similar)->is_top()) { |
| 819 | ResourceMark rm; |
| 820 | Unique_Node_List wq; |
| 821 | Node* other = n->in(LoadBarrierNode::Similar)->in(0); |
| 822 | wq.push(n); |
| 823 | for (uint next = 0; next < wq.size(); ++next) { |
| 824 | Node *nn = wq.at(next); |
| 825 | assert(nn->is_CFG(), "" ); |
| 826 | assert(!nn->is_SafePoint(), "" ); |
| 827 | |
| 828 | if (nn == other) { |
| 829 | continue; |
| 830 | } |
| 831 | |
| 832 | if (nn->is_Region()) { |
| 833 | for (uint i = 1; i < nn->req(); i++) { |
| 834 | Node* m = nn->in(i); |
| 835 | if (m != NULL) { |
| 836 | wq.push(m); |
| 837 | } |
| 838 | } |
| 839 | } else { |
| 840 | Node* m = nn->in(0); |
| 841 | if (m != NULL) { |
| 842 | wq.push(m); |
| 843 | } |
| 844 | } |
| 845 | } |
| 846 | } |
| 847 | } |
| 848 | } |
| 849 | |
| 850 | #endif // end verification code |
| 851 | |
| 852 | static void call_catch_cleanup_one(PhaseIdealLoop* phase, LoadNode* load, Node* ctrl); |
| 853 | |
| 854 | // This code is cloning all uses of a load that is between a call and the catch blocks, |
| 855 | // to each use. |
| 856 | |
| 857 | static bool fixup_uses_in_catch(PhaseIdealLoop *phase, Node *start_ctrl, Node *node) { |
| 858 | |
| 859 | if (!phase->has_ctrl(node)) { |
| 860 | // This node is floating - doesn't need to be cloned. |
| 861 | assert(node != start_ctrl, "check" ); |
| 862 | return false; |
| 863 | } |
| 864 | |
| 865 | Node* ctrl = phase->get_ctrl(node); |
| 866 | if (ctrl != start_ctrl) { |
| 867 | // We are in a successor block - the node is ok. |
| 868 | return false; // Unwind |
| 869 | } |
| 870 | |
| 871 | // Process successor nodes |
| 872 | int outcnt = node->outcnt(); |
| 873 | for (int i = 0; i < outcnt; i++) { |
| 874 | Node* n = node->raw_out(0); |
| 875 | assert(!n->is_LoadBarrier(), "Sanity" ); |
| 876 | // Calling recursively, visiting leafs first |
| 877 | fixup_uses_in_catch(phase, start_ctrl, n); |
| 878 | } |
| 879 | |
| 880 | // Now all successors are outside |
| 881 | // - Clone this node to both successors |
| 882 | int no_succs = node->outcnt(); |
| 883 | assert(!node->is_Store(), "Stores not expected here" ); |
| 884 | |
| 885 | // In some very rare cases a load that doesn't need a barrier will end up here |
| 886 | // Treat it as a LoadP and the insertion of phis will be done correctly. |
| 887 | if (node->is_Load()) { |
| 888 | call_catch_cleanup_one(phase, node->as_Load(), phase->get_ctrl(node)); |
| 889 | } else { |
| 890 | for (DUIterator_Fast jmax, i = node->fast_outs(jmax); i < jmax; i++) { |
| 891 | Node* use = node->fast_out(i); |
| 892 | Node* clone = node->clone(); |
| 893 | assert(clone->outcnt() == 0, "" ); |
| 894 | |
| 895 | assert(use->find_edge(node) != -1, "check" ); |
| 896 | phase->igvn().rehash_node_delayed(use); |
| 897 | use->replace_edge(node, clone); |
| 898 | |
| 899 | Node* new_ctrl; |
| 900 | if (use->is_block_start()) { |
| 901 | new_ctrl = use; |
| 902 | } else if (use->is_CFG()) { |
| 903 | new_ctrl = use->in(0); |
| 904 | assert (new_ctrl != NULL, "" ); |
| 905 | } else { |
| 906 | new_ctrl = phase->get_ctrl(use); |
| 907 | } |
| 908 | |
| 909 | phase->set_ctrl(clone, new_ctrl); |
| 910 | |
| 911 | if (phase->C->directive()->ZTraceLoadBarriersOption) tty->print_cr(" Clone op %i as %i to control %i" , node->_idx, clone->_idx, new_ctrl->_idx); |
| 912 | phase->igvn().register_new_node_with_optimizer(clone); |
| 913 | --i, --jmax; |
| 914 | } |
| 915 | assert(node->outcnt() == 0, "must be empty now" ); |
| 916 | |
| 917 | // Node node is dead. |
| 918 | phase->igvn().remove_dead_node(node); |
| 919 | } |
| 920 | return true; // unwind - return if a use was processed |
| 921 | } |
| 922 | |
| 923 | // Clone a load to a specific catch_proj |
| 924 | static Node* clone_load_to_catchproj(PhaseIdealLoop* phase, Node* load, Node* catch_proj) { |
| 925 | Node* cloned_load = load->clone(); |
| 926 | cloned_load->set_req(0, catch_proj); // set explicit control |
| 927 | phase->set_ctrl(cloned_load, catch_proj); // update |
| 928 | if (phase->C->directive()->ZTraceLoadBarriersOption) tty->print_cr(" Clone LOAD %i as %i to control %i" , load->_idx, cloned_load->_idx, catch_proj->_idx); |
| 929 | phase->igvn().register_new_node_with_optimizer(cloned_load); |
| 930 | return cloned_load; |
| 931 | } |
| 932 | |
| 933 | static Node* get_dominating_region(PhaseIdealLoop* phase, Node* node, Node* stop) { |
| 934 | Node* region = node; |
| 935 | while (!region->isa_Region()) { |
| 936 | Node *up = phase->idom(region); |
| 937 | assert(up != region, "Must not loop" ); |
| 938 | assert(up != stop, "Must not find original control" ); |
| 939 | region = up; |
| 940 | } |
| 941 | return region; |
| 942 | } |
| 943 | |
| 944 | // Clone this load to each catch block |
| 945 | static void call_catch_cleanup_one(PhaseIdealLoop* phase, LoadNode* load, Node* ctrl) { |
| 946 | bool trace = phase->C->directive()->ZTraceLoadBarriersOption; |
| 947 | phase->igvn().set_delay_transform(true); |
| 948 | |
| 949 | // Verify pre conditions |
| 950 | assert(ctrl->isa_Proj() && ctrl->in(0)->isa_Call(), "Must be a call proj" ); |
| 951 | assert(ctrl->raw_out(0)->isa_Catch(), "Must be a catch" ); |
| 952 | |
| 953 | if (ctrl->raw_out(0)->isa_Catch()->outcnt() == 1) { |
| 954 | if (trace) tty->print_cr("Cleaning up catch: Skipping load %i, call with single catch" , load->_idx); |
| 955 | return; |
| 956 | } |
| 957 | |
| 958 | // Process the loads successor nodes - if any is between |
| 959 | // the call and the catch blocks, they need to be cloned to. |
| 960 | // This is done recursively |
| 961 | int outcnt = load->outcnt(); |
| 962 | uint index = 0; |
| 963 | for (int i = 0; i < outcnt; i++) { |
| 964 | if (index < load->outcnt()) { |
| 965 | Node *n = load->raw_out(index); |
| 966 | assert(!n->is_LoadBarrier(), "Sanity" ); |
| 967 | if (!fixup_uses_in_catch(phase, ctrl, n)) { |
| 968 | // if no successor was cloned, progress to next out. |
| 969 | index++; |
| 970 | } |
| 971 | } |
| 972 | } |
| 973 | |
| 974 | // Now all the loads uses has been cloned down |
| 975 | // Only thing left is to clone the loads, but they must end up |
| 976 | // first in the catch blocks. |
| 977 | |
| 978 | // We clone the loads oo the catch blocks only when needed. |
| 979 | // An array is used to map the catch blocks to each lazily cloned load. |
| 980 | // In that way no extra unnecessary loads are cloned. |
| 981 | |
| 982 | // Any use dominated by original block must have an phi and a region added |
| 983 | |
| 984 | Node* catch_node = ctrl->raw_out(0); |
| 985 | int number_of_catch_projs = catch_node->outcnt(); |
| 986 | Node** proj_to_load_mapping = NEW_RESOURCE_ARRAY(Node*, number_of_catch_projs); |
| 987 | Copy::zero_to_bytes(proj_to_load_mapping, sizeof(Node*) * number_of_catch_projs); |
| 988 | |
| 989 | // The phi_map is used to keep track of where phis have already been inserted |
| 990 | int phi_map_len = phase->C->unique(); |
| 991 | Node** phi_map = NEW_RESOURCE_ARRAY(Node*, phi_map_len); |
| 992 | Copy::zero_to_bytes(phi_map, sizeof(Node*) * phi_map_len); |
| 993 | |
| 994 | for (unsigned int i = 0; i < load->outcnt(); i++) { |
| 995 | Node* load_use_control = NULL; |
| 996 | Node* load_use = load->raw_out(i); |
| 997 | |
| 998 | if (phase->has_ctrl(load_use)) { |
| 999 | load_use_control = phase->get_ctrl(load_use); |
| 1000 | } else { |
| 1001 | load_use_control = load_use->in(0); |
| 1002 | } |
| 1003 | assert(load_use_control != NULL, "sanity" ); |
| 1004 | if (trace) tty->print_cr(" Handling use: %i, with control: %i" , load_use->_idx, load_use_control->_idx); |
| 1005 | |
| 1006 | // Some times the loads use is a phi. For them we need to determine from which catch block |
| 1007 | // the use is defined. |
| 1008 | bool load_use_is_phi = false; |
| 1009 | unsigned int load_use_phi_index = 0; |
| 1010 | Node* phi_ctrl = NULL; |
| 1011 | if (load_use->is_Phi()) { |
| 1012 | // Find phi input that matches load |
| 1013 | for (unsigned int u = 1; u < load_use->req(); u++) { |
| 1014 | if (load_use->in(u) == load) { |
| 1015 | load_use_is_phi = true; |
| 1016 | load_use_phi_index = u; |
| 1017 | assert(load_use->in(0)->is_Region(), "Region or broken" ); |
| 1018 | phi_ctrl = load_use->in(0)->in(u); |
| 1019 | assert(phi_ctrl->is_CFG(), "check" ); |
| 1020 | assert(phi_ctrl != load, "check" ); |
| 1021 | break; |
| 1022 | } |
| 1023 | } |
| 1024 | assert(load_use_is_phi, "must find" ); |
| 1025 | assert(load_use_phi_index > 0, "sanity" ); |
| 1026 | } |
| 1027 | |
| 1028 | // For each load use, see which catch projs dominates, create load clone lazily and reconnect |
| 1029 | bool found_dominating_catchproj = false; |
| 1030 | for (int c = 0; c < number_of_catch_projs; c++) { |
| 1031 | Node* catchproj = catch_node->raw_out(c); |
| 1032 | assert(catchproj != NULL && catchproj->isa_CatchProj(), "Sanity" ); |
| 1033 | |
| 1034 | if (!phase->is_dominator(catchproj, load_use_control)) { |
| 1035 | if (load_use_is_phi && phase->is_dominator(catchproj, phi_ctrl)) { |
| 1036 | // The loads use is local to the catchproj. |
| 1037 | // fall out and replace load with catch-local load clone. |
| 1038 | } else { |
| 1039 | continue; |
| 1040 | } |
| 1041 | } |
| 1042 | assert(!found_dominating_catchproj, "Max one should match" ); |
| 1043 | |
| 1044 | // Clone loads to catch projs |
| 1045 | Node* load_clone = proj_to_load_mapping[c]; |
| 1046 | if (load_clone == NULL) { |
| 1047 | load_clone = clone_load_to_catchproj(phase, load, catchproj); |
| 1048 | proj_to_load_mapping[c] = load_clone; |
| 1049 | } |
| 1050 | phase->igvn().rehash_node_delayed(load_use); |
| 1051 | |
| 1052 | if (load_use_is_phi) { |
| 1053 | // phis are special - the load is defined from a specific control flow |
| 1054 | load_use->set_req(load_use_phi_index, load_clone); |
| 1055 | } else { |
| 1056 | // Multipe edges can be replaced at once - on calls for example |
| 1057 | load_use->replace_edge(load, load_clone); |
| 1058 | } |
| 1059 | --i; // more than one edge can have been removed, but the next is in later iterations |
| 1060 | |
| 1061 | // We could break the for-loop after finding a dominating match. |
| 1062 | // But keep iterating to catch any bad idom early. |
| 1063 | found_dominating_catchproj = true; |
| 1064 | } |
| 1065 | |
| 1066 | // We found no single catchproj that dominated the use - The use is at a point after |
| 1067 | // where control flow from multiple catch projs have merged. We will have to create |
| 1068 | // phi nodes before the use and tie the output from the cloned loads together. It |
| 1069 | // can be a single phi or a number of chained phis, depending on control flow |
| 1070 | if (!found_dominating_catchproj) { |
| 1071 | |
| 1072 | // Use phi-control if use is a phi |
| 1073 | if (load_use_is_phi) { |
| 1074 | load_use_control = phi_ctrl; |
| 1075 | } |
| 1076 | assert(phase->is_dominator(ctrl, load_use_control), "Common use but no dominator" ); |
| 1077 | |
| 1078 | // Clone a load on all paths |
| 1079 | for (int c = 0; c < number_of_catch_projs; c++) { |
| 1080 | Node* catchproj = catch_node->raw_out(c); |
| 1081 | Node* load_clone = proj_to_load_mapping[c]; |
| 1082 | if (load_clone == NULL) { |
| 1083 | load_clone = clone_load_to_catchproj(phase, load, catchproj); |
| 1084 | proj_to_load_mapping[c] = load_clone; |
| 1085 | } |
| 1086 | } |
| 1087 | |
| 1088 | // Move up dominator tree from use until dom front is reached |
| 1089 | Node* next_region = get_dominating_region(phase, load_use_control, ctrl); |
| 1090 | while (phase->idom(next_region) != catch_node) { |
| 1091 | next_region = phase->idom(next_region); |
| 1092 | if (trace) tty->print_cr("Moving up idom to region ctrl %i" , next_region->_idx); |
| 1093 | } |
| 1094 | assert(phase->is_dominator(catch_node, next_region), "Sanity" ); |
| 1095 | |
| 1096 | // Create or reuse phi node that collect all cloned loads and feed it to the use. |
| 1097 | Node* test_phi = phi_map[next_region->_idx]; |
| 1098 | if ((test_phi != NULL) && test_phi->is_Phi()) { |
| 1099 | // Reuse an already created phi |
| 1100 | if (trace) tty->print_cr(" Using cached Phi %i on load_use %i" , test_phi->_idx, load_use->_idx); |
| 1101 | phase->igvn().rehash_node_delayed(load_use); |
| 1102 | load_use->replace_edge(load, test_phi); |
| 1103 | // Now this use is done |
| 1104 | } else { |
| 1105 | // Otherwise we need to create one or more phis |
| 1106 | PhiNode* next_phi = new PhiNode(next_region, load->type()); |
| 1107 | phi_map[next_region->_idx] = next_phi; // cache new phi |
| 1108 | phase->igvn().rehash_node_delayed(load_use); |
| 1109 | load_use->replace_edge(load, next_phi); |
| 1110 | |
| 1111 | int dominators_of_region = 0; |
| 1112 | do { |
| 1113 | // New phi, connect to region and add all loads as in. |
| 1114 | Node* region = next_region; |
| 1115 | assert(region->isa_Region() && region->req() > 2, "Catch dead region nodes" ); |
| 1116 | PhiNode* new_phi = next_phi; |
| 1117 | |
| 1118 | if (trace) tty->print_cr("Created Phi %i on load %i with control %i" , new_phi->_idx, load->_idx, region->_idx); |
| 1119 | |
| 1120 | // Need to add all cloned loads to the phi, taking care that the right path is matched |
| 1121 | dominators_of_region = 0; // reset for new region |
| 1122 | for (unsigned int reg_i = 1; reg_i < region->req(); reg_i++) { |
| 1123 | Node* region_pred = region->in(reg_i); |
| 1124 | assert(region_pred->is_CFG(), "check" ); |
| 1125 | bool pred_has_dominator = false; |
| 1126 | for (int c = 0; c < number_of_catch_projs; c++) { |
| 1127 | Node* catchproj = catch_node->raw_out(c); |
| 1128 | if (phase->is_dominator(catchproj, region_pred)) { |
| 1129 | new_phi->set_req(reg_i, proj_to_load_mapping[c]); |
| 1130 | if (trace) tty->print_cr(" - Phi in(%i) set to load %i" , reg_i, proj_to_load_mapping[c]->_idx); |
| 1131 | pred_has_dominator = true; |
| 1132 | dominators_of_region++; |
| 1133 | break; |
| 1134 | } |
| 1135 | } |
| 1136 | |
| 1137 | // Sometimes we need to chain several phis. |
| 1138 | if (!pred_has_dominator) { |
| 1139 | assert(dominators_of_region <= 1, "More than one region can't require extra phi" ); |
| 1140 | if (trace) tty->print_cr(" - Region %i pred %i not dominated by catch proj" , region->_idx, region_pred->_idx); |
| 1141 | // Continue search on on this region_pred |
| 1142 | // - walk up to next region |
| 1143 | // - create a new phi and connect to first new_phi |
| 1144 | next_region = get_dominating_region(phase, region_pred, ctrl); |
| 1145 | |
| 1146 | // Lookup if there already is a phi, create a new otherwise |
| 1147 | Node* test_phi = phi_map[next_region->_idx]; |
| 1148 | if ((test_phi != NULL) && test_phi->is_Phi()) { |
| 1149 | next_phi = test_phi->isa_Phi(); |
| 1150 | dominators_of_region++; // record that a match was found and that we are done |
| 1151 | if (trace) tty->print_cr(" Using cached phi Phi %i on control %i" , next_phi->_idx, next_region->_idx); |
| 1152 | } else { |
| 1153 | next_phi = new PhiNode(next_region, load->type()); |
| 1154 | phi_map[next_region->_idx] = next_phi; |
| 1155 | } |
| 1156 | new_phi->set_req(reg_i, next_phi); |
| 1157 | } |
| 1158 | } |
| 1159 | |
| 1160 | new_phi->set_req(0, region); |
| 1161 | phase->igvn().register_new_node_with_optimizer(new_phi); |
| 1162 | phase->set_ctrl(new_phi, region); |
| 1163 | |
| 1164 | assert(dominators_of_region != 0, "Must have found one this iteration" ); |
| 1165 | } while (dominators_of_region == 1); |
| 1166 | } |
| 1167 | --i; |
| 1168 | } |
| 1169 | } // end of loop over uses |
| 1170 | |
| 1171 | assert(load->outcnt() == 0, "All uses should be handled" ); |
| 1172 | phase->igvn().remove_dead_node(load); |
| 1173 | phase->C->print_method(PHASE_CALL_CATCH_CLEANUP, 4, load->_idx); |
| 1174 | |
| 1175 | // Now we should be home |
| 1176 | phase->igvn().set_delay_transform(false); |
| 1177 | } |
| 1178 | |
| 1179 | // Sort out the loads that are between a call ant its catch blocks |
| 1180 | static void process_catch_cleanup_candidate(PhaseIdealLoop* phase, LoadNode* load) { |
| 1181 | bool trace = phase->C->directive()->ZTraceLoadBarriersOption; |
| 1182 | |
| 1183 | Node* ctrl = phase->get_ctrl(load); |
| 1184 | if (!ctrl->is_Proj() || (ctrl->in(0) == NULL) || !ctrl->in(0)->isa_Call()) { |
| 1185 | return; |
| 1186 | } |
| 1187 | |
| 1188 | Node* catch_node = ctrl->isa_Proj()->raw_out(0); |
| 1189 | if (catch_node->is_Catch()) { |
| 1190 | if (catch_node->outcnt() > 1) { |
| 1191 | call_catch_cleanup_one(phase, load, ctrl); |
| 1192 | } else { |
| 1193 | if (trace) tty->print_cr("Call catch cleanup with only one catch: load %i " , load->_idx); |
| 1194 | } |
| 1195 | } |
| 1196 | } |
| 1197 | |
| 1198 | void ZBarrierSetC2::barrier_insertion_phase(Compile* C, PhaseIterGVN& igvn) const { |
| 1199 | PhaseIdealLoop::optimize(igvn, LoopOptsZBarrierInsertion); |
| 1200 | if (C->failing()) return; |
| 1201 | } |
| 1202 | |
| 1203 | bool ZBarrierSetC2::optimize_loops(PhaseIdealLoop* phase, LoopOptsMode mode, VectorSet& visited, Node_Stack& nstack, Node_List& worklist) const { |
| 1204 | |
| 1205 | if (mode == LoopOptsZBarrierInsertion) { |
| 1206 | // First make sure all loads between call and catch are moved to the catch block |
| 1207 | clean_catch_blocks(phase); |
| 1208 | |
| 1209 | // Then expand barriers on all loads |
| 1210 | insert_load_barriers(phase); |
| 1211 | |
| 1212 | // Handle all Unsafe that need barriers. |
| 1213 | insert_barriers_on_unsafe(phase); |
| 1214 | |
| 1215 | phase->C->clear_major_progress(); |
| 1216 | return true; |
| 1217 | } else { |
| 1218 | return false; |
| 1219 | } |
| 1220 | } |
| 1221 | |
| 1222 | static bool can_simplify_cas(LoadStoreNode* node) { |
| 1223 | if (node->isa_LoadStoreConditional()) { |
| 1224 | Node *expected_in = node->as_LoadStoreConditional()->in(LoadStoreConditionalNode::ExpectedIn); |
| 1225 | return (expected_in->get_ptr_type() == TypePtr::NULL_PTR); |
| 1226 | } else { |
| 1227 | return false; |
| 1228 | } |
| 1229 | } |
| 1230 | |
| 1231 | static void insert_barrier_before_unsafe(PhaseIdealLoop* phase, LoadStoreNode* old_node) { |
| 1232 | |
| 1233 | Compile *C = phase->C; |
| 1234 | PhaseIterGVN &igvn = phase->igvn(); |
| 1235 | LoadStoreNode* zclone = NULL; |
| 1236 | |
| 1237 | Node *in_ctrl = old_node->in(MemNode::Control); |
| 1238 | Node *in_mem = old_node->in(MemNode::Memory); |
| 1239 | Node *in_adr = old_node->in(MemNode::Address); |
| 1240 | Node *in_val = old_node->in(MemNode::ValueIn); |
| 1241 | const TypePtr *adr_type = old_node->adr_type(); |
| 1242 | const TypePtr* load_type = TypeOopPtr::BOTTOM; // The type for the load we are adding |
| 1243 | |
| 1244 | switch (old_node->Opcode()) { |
| 1245 | case Op_CompareAndExchangeP: { |
| 1246 | zclone = new ZCompareAndExchangePNode(in_ctrl, in_mem, in_adr, in_val, old_node->in(LoadStoreConditionalNode::ExpectedIn), |
| 1247 | adr_type, old_node->get_ptr_type(), ((CompareAndExchangeNode*)old_node)->order()); |
| 1248 | load_type = old_node->bottom_type()->is_ptr(); |
| 1249 | break; |
| 1250 | } |
| 1251 | case Op_WeakCompareAndSwapP: { |
| 1252 | if (can_simplify_cas(old_node)) { |
| 1253 | break; |
| 1254 | } |
| 1255 | zclone = new ZWeakCompareAndSwapPNode(in_ctrl, in_mem, in_adr, in_val, old_node->in(LoadStoreConditionalNode::ExpectedIn), |
| 1256 | ((CompareAndSwapNode*)old_node)->order()); |
| 1257 | adr_type = TypePtr::BOTTOM; |
| 1258 | break; |
| 1259 | } |
| 1260 | case Op_CompareAndSwapP: { |
| 1261 | if (can_simplify_cas(old_node)) { |
| 1262 | break; |
| 1263 | } |
| 1264 | zclone = new ZCompareAndSwapPNode(in_ctrl, in_mem, in_adr, in_val, old_node->in(LoadStoreConditionalNode::ExpectedIn), |
| 1265 | ((CompareAndSwapNode*)old_node)->order()); |
| 1266 | adr_type = TypePtr::BOTTOM; |
| 1267 | break; |
| 1268 | } |
| 1269 | case Op_GetAndSetP: { |
| 1270 | zclone = new ZGetAndSetPNode(in_ctrl, in_mem, in_adr, in_val, old_node->adr_type(), old_node->get_ptr_type()); |
| 1271 | load_type = old_node->bottom_type()->is_ptr(); |
| 1272 | break; |
| 1273 | } |
| 1274 | } |
| 1275 | if (zclone != NULL) { |
| 1276 | igvn.register_new_node_with_optimizer(zclone, old_node); |
| 1277 | |
| 1278 | // Make load |
| 1279 | LoadPNode *load = new LoadPNode(NULL, in_mem, in_adr, adr_type, load_type, MemNode::unordered, |
| 1280 | LoadNode::DependsOnlyOnTest); |
| 1281 | load_set_expanded_barrier(load); |
| 1282 | igvn.register_new_node_with_optimizer(load); |
| 1283 | igvn.replace_node(old_node, zclone); |
| 1284 | |
| 1285 | Node *barrier = new LoadBarrierNode(C, NULL, in_mem, load, in_adr, false /* weak */); |
| 1286 | Node *barrier_val = new ProjNode(barrier, LoadBarrierNode::Oop); |
| 1287 | Node *barrier_ctrl = new ProjNode(barrier, LoadBarrierNode::Control); |
| 1288 | |
| 1289 | igvn.register_new_node_with_optimizer(barrier); |
| 1290 | igvn.register_new_node_with_optimizer(barrier_val); |
| 1291 | igvn.register_new_node_with_optimizer(barrier_ctrl); |
| 1292 | |
| 1293 | // loop over all of in_ctrl usages and move to barrier_ctrl |
| 1294 | for (DUIterator_Last imin, i = in_ctrl->last_outs(imin); i >= imin; --i) { |
| 1295 | Node *use = in_ctrl->last_out(i); |
| 1296 | uint l; |
| 1297 | for (l = 0; use->in(l) != in_ctrl; l++) {} |
| 1298 | igvn.replace_input_of(use, l, barrier_ctrl); |
| 1299 | } |
| 1300 | |
| 1301 | load->set_req(MemNode::Control, in_ctrl); |
| 1302 | barrier->set_req(LoadBarrierNode::Control, in_ctrl); |
| 1303 | zclone->add_req(barrier_val); // add req as keep alive. |
| 1304 | |
| 1305 | C->print_method(PHASE_ADD_UNSAFE_BARRIER, 4, zclone->_idx); |
| 1306 | } |
| 1307 | } |
| 1308 | |
| 1309 | void ZBarrierSetC2::insert_barriers_on_unsafe(PhaseIdealLoop* phase) const { |
| 1310 | Compile *C = phase->C; |
| 1311 | PhaseIterGVN &igvn = phase->igvn(); |
| 1312 | uint new_ids = C->unique(); |
| 1313 | VectorSet visited(Thread::current()->resource_area()); |
| 1314 | GrowableArray<Node *> nodeStack(Thread::current()->resource_area(), 0, 0, NULL); |
| 1315 | nodeStack.push(C->root()); |
| 1316 | visited.test_set(C->root()->_idx); |
| 1317 | |
| 1318 | // Traverse all nodes, visit all unsafe ops that require a barrier |
| 1319 | while (nodeStack.length() > 0) { |
| 1320 | Node *n = nodeStack.pop(); |
| 1321 | |
| 1322 | bool is_old_node = (n->_idx < new_ids); // don't process nodes that were created during cleanup |
| 1323 | if (is_old_node) { |
| 1324 | if (n->is_LoadStore()) { |
| 1325 | LoadStoreNode* lsn = n->as_LoadStore(); |
| 1326 | if (lsn->has_barrier()) { |
| 1327 | BasicType bt = lsn->in(MemNode::Address)->bottom_type()->basic_type(); |
| 1328 | assert ((bt == T_OBJECT || bt == T_ARRAY), "Sanity test" ); |
| 1329 | insert_barrier_before_unsafe(phase, lsn); |
| 1330 | } |
| 1331 | } |
| 1332 | } |
| 1333 | for (uint i = 0; i < n->len(); i++) { |
| 1334 | if (n->in(i)) { |
| 1335 | if (!visited.test_set(n->in(i)->_idx)) { |
| 1336 | nodeStack.push(n->in(i)); |
| 1337 | } |
| 1338 | } |
| 1339 | } |
| 1340 | } |
| 1341 | |
| 1342 | igvn.optimize(); |
| 1343 | C->print_method(PHASE_ADD_UNSAFE_BARRIER, 2); |
| 1344 | } |
| 1345 | |
| 1346 | // The purpose of ZBarrierSetC2::clean_catch_blocks is to prepare the IR for |
| 1347 | // splicing in load barrier nodes. |
| 1348 | // |
| 1349 | // The problem is that we might have instructions between a call and its catch nodes. |
| 1350 | // (This is usually handled in PhaseCFG:call_catch_cleanup, which clones mach nodes in |
| 1351 | // already scheduled blocks.) We can't have loads that require barriers there, |
| 1352 | // because we need to splice in new control flow, and that would violate the IR. |
| 1353 | // |
| 1354 | // clean_catch_blocks find all Loads that require a barrier and clone them and any |
| 1355 | // dependent instructions to each use. The loads must be in the beginning of the catch block |
| 1356 | // before any store. |
| 1357 | // |
| 1358 | // Sometimes the loads use will be at a place dominated by all catch blocks, then we need |
| 1359 | // a load in each catch block, and a Phi at the dominated use. |
| 1360 | |
| 1361 | void ZBarrierSetC2::clean_catch_blocks(PhaseIdealLoop* phase) const { |
| 1362 | |
| 1363 | Compile *C = phase->C; |
| 1364 | uint new_ids = C->unique(); |
| 1365 | PhaseIterGVN &igvn = phase->igvn(); |
| 1366 | VectorSet visited(Thread::current()->resource_area()); |
| 1367 | GrowableArray<Node *> nodeStack(Thread::current()->resource_area(), 0, 0, NULL); |
| 1368 | nodeStack.push(C->root()); |
| 1369 | visited.test_set(C->root()->_idx); |
| 1370 | |
| 1371 | // Traverse all nodes, visit all loads that require a barrier |
| 1372 | while(nodeStack.length() > 0) { |
| 1373 | Node *n = nodeStack.pop(); |
| 1374 | |
| 1375 | for (uint i = 0; i < n->len(); i++) { |
| 1376 | if (n->in(i)) { |
| 1377 | if (!visited.test_set(n->in(i)->_idx)) { |
| 1378 | nodeStack.push(n->in(i)); |
| 1379 | } |
| 1380 | } |
| 1381 | } |
| 1382 | |
| 1383 | bool is_old_node = (n->_idx < new_ids); // don't process nodes that were created during cleanup |
| 1384 | if (n->is_Load() && is_old_node) { |
| 1385 | LoadNode* load = n->isa_Load(); |
| 1386 | // only care about loads that will have a barrier |
| 1387 | if (load_require_barrier(load)) { |
| 1388 | process_catch_cleanup_candidate(phase, load); |
| 1389 | } |
| 1390 | } |
| 1391 | } |
| 1392 | |
| 1393 | C->print_method(PHASE_CALL_CATCH_CLEANUP, 2); |
| 1394 | } |
| 1395 | |
| 1396 | class DomDepthCompareClosure : public CompareClosure<LoadNode*> { |
| 1397 | PhaseIdealLoop* _phase; |
| 1398 | |
| 1399 | public: |
| 1400 | DomDepthCompareClosure(PhaseIdealLoop* phase) : _phase(phase) { } |
| 1401 | |
| 1402 | int do_compare(LoadNode* const &n1, LoadNode* const &n2) { |
| 1403 | int d1 = _phase->dom_depth(_phase->get_ctrl(n1)); |
| 1404 | int d2 = _phase->dom_depth(_phase->get_ctrl(n2)); |
| 1405 | if (d1 == d2) { |
| 1406 | // Compare index if the depth is the same, ensures all entries are unique. |
| 1407 | return n1->_idx - n2->_idx; |
| 1408 | } else { |
| 1409 | return d2 - d1; |
| 1410 | } |
| 1411 | } |
| 1412 | }; |
| 1413 | |
| 1414 | // Traverse graph and add all loadPs to list, sorted by dom depth |
| 1415 | void gather_loadnodes_sorted(PhaseIdealLoop* phase, GrowableArray<LoadNode*>* loadList) { |
| 1416 | |
| 1417 | VectorSet visited(Thread::current()->resource_area()); |
| 1418 | GrowableArray<Node *> nodeStack(Thread::current()->resource_area(), 0, 0, NULL); |
| 1419 | DomDepthCompareClosure ddcc(phase); |
| 1420 | |
| 1421 | nodeStack.push(phase->C->root()); |
| 1422 | while(nodeStack.length() > 0) { |
| 1423 | Node *n = nodeStack.pop(); |
| 1424 | if (visited.test(n->_idx)) { |
| 1425 | continue; |
| 1426 | } |
| 1427 | |
| 1428 | if (n->isa_Load()) { |
| 1429 | LoadNode *load = n->as_Load(); |
| 1430 | if (load_require_barrier(load)) { |
| 1431 | assert(phase->get_ctrl(load) != NULL, "sanity" ); |
| 1432 | assert(phase->dom_depth(phase->get_ctrl(load)) != 0, "sanity" ); |
| 1433 | loadList->insert_sorted(&ddcc, load); |
| 1434 | } |
| 1435 | } |
| 1436 | |
| 1437 | visited.set(n->_idx); |
| 1438 | for (uint i = 0; i < n->req(); i++) { |
| 1439 | if (n->in(i)) { |
| 1440 | if (!visited.test(n->in(i)->_idx)) { |
| 1441 | nodeStack.push(n->in(i)); |
| 1442 | } |
| 1443 | } |
| 1444 | } |
| 1445 | } |
| 1446 | } |
| 1447 | |
| 1448 | // Add LoadBarriers to all LoadPs |
| 1449 | void ZBarrierSetC2::insert_load_barriers(PhaseIdealLoop* phase) const { |
| 1450 | |
| 1451 | bool trace = phase->C->directive()->ZTraceLoadBarriersOption; |
| 1452 | GrowableArray<LoadNode *> loadList(Thread::current()->resource_area(), 0, 0, NULL); |
| 1453 | gather_loadnodes_sorted(phase, &loadList); |
| 1454 | |
| 1455 | PhaseIterGVN &igvn = phase->igvn(); |
| 1456 | int count = 0; |
| 1457 | |
| 1458 | for (GrowableArrayIterator<LoadNode *> loadIter = loadList.begin(); loadIter != loadList.end(); ++loadIter) { |
| 1459 | LoadNode *load = *loadIter; |
| 1460 | |
| 1461 | if (load_has_expanded_barrier(load)) { |
| 1462 | continue; |
| 1463 | } |
| 1464 | |
| 1465 | do { |
| 1466 | // Insert a barrier on a loadP |
| 1467 | // if another load is found that needs to be expanded first, retry on that one |
| 1468 | LoadNode* result = insert_one_loadbarrier(phase, load, phase->get_ctrl(load)); |
| 1469 | while (result != NULL) { |
| 1470 | result = insert_one_loadbarrier(phase, result, phase->get_ctrl(result)); |
| 1471 | } |
| 1472 | } while (!load_has_expanded_barrier(load)); |
| 1473 | } |
| 1474 | |
| 1475 | phase->C->print_method(PHASE_INSERT_BARRIER, 2); |
| 1476 | } |
| 1477 | |
| 1478 | void push_antidependent_stores(PhaseIdealLoop* phase, Node_Stack& nodestack, LoadNode* start_load) { |
| 1479 | // push all stores on the same mem, that can_alias |
| 1480 | // Any load found must be handled first |
| 1481 | PhaseIterGVN &igvn = phase->igvn(); |
| 1482 | int load_alias_idx = igvn.C->get_alias_index(start_load->adr_type()); |
| 1483 | |
| 1484 | Node *mem = start_load->in(1); |
| 1485 | for (DUIterator_Fast imax, u = mem->fast_outs(imax); u < imax; u++) { |
| 1486 | Node *mem_use = mem->fast_out(u); |
| 1487 | |
| 1488 | if (mem_use == start_load) continue; |
| 1489 | if (!mem_use->is_Store()) continue; |
| 1490 | if (!phase->has_ctrl(mem_use)) continue; |
| 1491 | if (phase->get_ctrl(mem_use) != phase->get_ctrl(start_load)) continue; |
| 1492 | |
| 1493 | // add any aliasing store in this block |
| 1494 | StoreNode *store = mem_use->isa_Store(); |
| 1495 | const TypePtr *adr_type = store->adr_type(); |
| 1496 | if (igvn.C->can_alias(adr_type, load_alias_idx)) { |
| 1497 | nodestack.push(store, 0); |
| 1498 | } |
| 1499 | } |
| 1500 | } |
| 1501 | |
| 1502 | LoadNode* ZBarrierSetC2::insert_one_loadbarrier(PhaseIdealLoop* phase, LoadNode* start_load, Node* ctrl) const { |
| 1503 | bool trace = phase->C->directive()->ZTraceLoadBarriersOption; |
| 1504 | PhaseIterGVN &igvn = phase->igvn(); |
| 1505 | |
| 1506 | // Check for other loadPs at the same loop depth that is reachable by a DFS |
| 1507 | // - if found - return it. It needs to be inserted first |
| 1508 | // - otherwise proceed and insert barrier |
| 1509 | |
| 1510 | VectorSet visited(Thread::current()->resource_area()); |
| 1511 | Node_Stack nodestack(100); |
| 1512 | |
| 1513 | nodestack.push(start_load, 0); |
| 1514 | push_antidependent_stores(phase, nodestack, start_load); |
| 1515 | |
| 1516 | while(!nodestack.is_empty()) { |
| 1517 | Node* n = nodestack.node(); // peek |
| 1518 | nodestack.pop(); |
| 1519 | if (visited.test(n->_idx)) { |
| 1520 | continue; |
| 1521 | } |
| 1522 | |
| 1523 | if (n->is_Load() && n != start_load && load_require_barrier(n->as_Load()) && !load_has_expanded_barrier(n->as_Load())) { |
| 1524 | // Found another load that needs a barrier in the same block. Must expand later loads first. |
| 1525 | if (trace) tty->print_cr(" * Found LoadP %i on DFS" , n->_idx); |
| 1526 | return n->as_Load(); // return node that should be expanded first |
| 1527 | } |
| 1528 | |
| 1529 | if (!phase->has_ctrl(n)) continue; |
| 1530 | if (phase->get_ctrl(n) != phase->get_ctrl(start_load)) continue; |
| 1531 | if (n->is_Phi()) continue; |
| 1532 | |
| 1533 | visited.set(n->_idx); |
| 1534 | // push all children |
| 1535 | for (DUIterator_Fast imax, ii = n->fast_outs(imax); ii < imax; ii++) { |
| 1536 | Node* c = n->fast_out(ii); |
| 1537 | if (c != NULL) { |
| 1538 | nodestack.push(c, 0); |
| 1539 | } |
| 1540 | } |
| 1541 | } |
| 1542 | |
| 1543 | insert_one_loadbarrier_inner(phase, start_load, ctrl, visited); |
| 1544 | return NULL; |
| 1545 | } |
| 1546 | |
| 1547 | void ZBarrierSetC2::insert_one_loadbarrier_inner(PhaseIdealLoop* phase, LoadNode* load, Node* ctrl, VectorSet visited2) const { |
| 1548 | PhaseIterGVN &igvn = phase->igvn(); |
| 1549 | Compile* C = igvn.C; |
| 1550 | bool trace = C->directive()->ZTraceLoadBarriersOption; |
| 1551 | |
| 1552 | // create barrier |
| 1553 | Node* barrier = new LoadBarrierNode(C, NULL, load->in(LoadNode::Memory), NULL, load->in(LoadNode::Address), load_has_weak_barrier(load)); |
| 1554 | Node* barrier_val = new ProjNode(barrier, LoadBarrierNode::Oop); |
| 1555 | Node* barrier_ctrl = new ProjNode(barrier, LoadBarrierNode::Control); |
| 1556 | |
| 1557 | if (trace) tty->print_cr("Insert load %i with barrier: %i and ctrl : %i" , load->_idx, barrier->_idx, ctrl->_idx); |
| 1558 | |
| 1559 | // Splice control |
| 1560 | // - insert barrier control diamond between loads ctrl and ctrl successor on path to block end. |
| 1561 | // - If control successor is a catch, step over to next. |
| 1562 | Node* ctrl_succ = NULL; |
| 1563 | for (DUIterator_Fast imax, j = ctrl->fast_outs(imax); j < imax; j++) { |
| 1564 | Node* tmp = ctrl->fast_out(j); |
| 1565 | |
| 1566 | // - CFG nodes is the ones we are going to splice (1 only!) |
| 1567 | // - Phi nodes will continue to hang from the region node! |
| 1568 | // - self loops should be skipped |
| 1569 | if (tmp->is_Phi() || tmp == ctrl) { |
| 1570 | continue; |
| 1571 | } |
| 1572 | |
| 1573 | if (tmp->is_CFG()) { |
| 1574 | assert(ctrl_succ == NULL, "There can be only one" ); |
| 1575 | ctrl_succ = tmp; |
| 1576 | continue; |
| 1577 | } |
| 1578 | } |
| 1579 | |
| 1580 | // Now splice control |
| 1581 | assert(ctrl_succ != load, "sanity" ); |
| 1582 | assert(ctrl_succ != NULL, "Broken IR" ); |
| 1583 | bool found = false; |
| 1584 | for(uint k = 0; k < ctrl_succ->req(); k++) { |
| 1585 | if (ctrl_succ->in(k) == ctrl) { |
| 1586 | assert(!found, "sanity" ); |
| 1587 | if (trace) tty->print_cr(" Move CFG ctrl_succ %i to barrier_ctrl" , ctrl_succ->_idx); |
| 1588 | igvn.replace_input_of(ctrl_succ, k, barrier_ctrl); |
| 1589 | found = true; |
| 1590 | k--; |
| 1591 | } |
| 1592 | } |
| 1593 | |
| 1594 | // For all successors of ctrl - move all visited to become successors of barrier_ctrl instead |
| 1595 | for (DUIterator_Fast imax, r = ctrl->fast_outs(imax); r < imax; r++) { |
| 1596 | Node* tmp = ctrl->fast_out(r); |
| 1597 | if (visited2.test(tmp->_idx) && (tmp != load)) { |
| 1598 | if (trace) tty->print_cr(" Move ctrl_succ %i to barrier_ctrl" , tmp->_idx); |
| 1599 | igvn.replace_input_of(tmp, 0, barrier_ctrl); |
| 1600 | --r; --imax; |
| 1601 | } |
| 1602 | } |
| 1603 | |
| 1604 | // Move the loads user to the barrier |
| 1605 | for (DUIterator_Fast imax, i = load->fast_outs(imax); i < imax; i++) { |
| 1606 | Node* u = load->fast_out(i); |
| 1607 | if (u->isa_LoadBarrier()) { |
| 1608 | continue; |
| 1609 | } |
| 1610 | |
| 1611 | // find correct input - replace with iterator? |
| 1612 | for(uint j = 0; j < u->req(); j++) { |
| 1613 | if (u->in(j) == load) { |
| 1614 | igvn.replace_input_of(u, j, barrier_val); |
| 1615 | --i; --imax; // Adjust the iterator of the *outer* loop |
| 1616 | break; // some nodes (calls) might have several uses from the same node |
| 1617 | } |
| 1618 | } |
| 1619 | } |
| 1620 | |
| 1621 | // Connect barrier to load and control |
| 1622 | barrier->set_req(LoadBarrierNode::Oop, load); |
| 1623 | barrier->set_req(LoadBarrierNode::Control, ctrl); |
| 1624 | |
| 1625 | igvn.rehash_node_delayed(load); |
| 1626 | igvn.register_new_node_with_optimizer(barrier); |
| 1627 | igvn.register_new_node_with_optimizer(barrier_val); |
| 1628 | igvn.register_new_node_with_optimizer(barrier_ctrl); |
| 1629 | load_set_expanded_barrier(load); |
| 1630 | |
| 1631 | C->print_method(PHASE_INSERT_BARRIER, 3, load->_idx); |
| 1632 | } |
| 1633 | |
| 1634 | // The bad_mask in the ThreadLocalData shouldn't have an anti-dep-check. |
| 1635 | // The bad_mask address if of type TypeRawPtr, but that will alias |
| 1636 | // InitializeNodes until the type system is expanded. |
| 1637 | bool ZBarrierSetC2::needs_anti_dependence_check(const Node* node) const { |
| 1638 | MachNode* mnode = node->as_Mach(); |
| 1639 | if (mnode != NULL) { |
| 1640 | intptr_t offset = 0; |
| 1641 | const TypePtr *adr_type2 = NULL; |
| 1642 | const Node* base = mnode->get_base_and_disp(offset, adr_type2); |
| 1643 | if ((base != NULL) && |
| 1644 | (base->is_Mach() && base->as_Mach()->ideal_Opcode() == Op_ThreadLocal) && |
| 1645 | (offset == in_bytes(ZThreadLocalData::address_bad_mask_offset()))) { |
| 1646 | return false; |
| 1647 | } |
| 1648 | } |
| 1649 | return true; |
| 1650 | } |
| 1651 | |