| 1 | /** \file |
| 2 | * \brief Definition of coffman graham ranking algorithm for Sugiyama |
| 3 | * |
| 4 | * \author Till Schäfer |
| 5 | * |
| 6 | * \par License: |
| 7 | * This file is part of the Open Graph Drawing Framework (OGDF). |
| 8 | * |
| 9 | * \par |
| 10 | * Copyright (C)<br> |
| 11 | * See README.md in the OGDF root directory for details. |
| 12 | * |
| 13 | * \par |
| 14 | * This program is free software; you can redistribute it and/or |
| 15 | * modify it under the terms of the GNU General Public License |
| 16 | * Version 2 or 3 as published by the Free Software Foundation; |
| 17 | * see the file LICENSE.txt included in the packaging of this file |
| 18 | * for details. |
| 19 | * |
| 20 | * \par |
| 21 | * This program is distributed in the hope that it will be useful, |
| 22 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 23 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 24 | * GNU General Public License for more details. |
| 25 | * |
| 26 | * \par |
| 27 | * You should have received a copy of the GNU General Public |
| 28 | * License along with this program; if not, see |
| 29 | * http://www.gnu.org/copyleft/gpl.html |
| 30 | */ |
| 31 | |
| 32 | #include <ogdf/layered/CoffmanGrahamRanking.h> |
| 33 | #include <ogdf/layered/DfsAcyclicSubgraph.h> |
| 34 | #include <ogdf/basic/GraphCopy.h> |
| 35 | |
| 36 | namespace ogdf { |
| 37 | |
| 38 | CoffmanGrahamRanking::CoffmanGrahamRanking() : m_w(3) |
| 39 | { |
| 40 | m_subgraph.reset(new DfsAcyclicSubgraph()); |
| 41 | } |
| 42 | |
| 43 | |
| 44 | void CoffmanGrahamRanking::call (const Graph& G, NodeArray<int>& rank) |
| 45 | { |
| 46 | rank.init(G); |
| 47 | GraphCopy gc(G); |
| 48 | |
| 49 | m_subgraph->callAndReverse(gc); |
| 50 | removeTransitiveEdges(gc); |
| 51 | |
| 52 | List<Tuple2<node, int> > ready_nodes; |
| 53 | NodeArray<int> deg(gc); |
| 54 | NodeArray<int> pi(gc); |
| 55 | m_s.init(gc); |
| 56 | |
| 57 | List<edge> edges; |
| 58 | |
| 59 | for(node v : gc.nodes) { |
| 60 | edges.clear(); |
| 61 | v->inEdges(edges); |
| 62 | deg[v] = edges.size(); |
| 63 | if (deg[v] == 0) { |
| 64 | ready_nodes.pushBack(Tuple2<node,int>(v,0)); |
| 65 | } |
| 66 | m_s[v].init(deg[v]); |
| 67 | } |
| 68 | |
| 69 | int i = 1; |
| 70 | while(!ready_nodes.empty()) { |
| 71 | node v = ready_nodes.popFrontRet().x1(); |
| 72 | pi[v] = i++; |
| 73 | |
| 74 | for(adjEntry adj : v->adjEntries) { |
| 75 | if ((adj->theEdge()->source()) == v) { |
| 76 | node u = adj->twinNode(); |
| 77 | m_s[u].insert(pi[v]); |
| 78 | if (--deg[u] == 0) { |
| 79 | insert(u,ready_nodes); |
| 80 | } |
| 81 | } |
| 82 | } |
| 83 | } |
| 84 | |
| 85 | |
| 86 | List<node> ready, waiting; |
| 87 | |
| 88 | for(node v : gc.nodes) { |
| 89 | edges.clear(); |
| 90 | v->outEdges(edges); |
| 91 | deg[v] = edges.size(); |
| 92 | if (deg[v] == 0) { |
| 93 | insert(v,ready,pi); // ready.append(v); |
| 94 | } |
| 95 | } |
| 96 | |
| 97 | int k; |
| 98 | // for all ranks |
| 99 | for (k = 1; !ready.empty(); k++) { |
| 100 | |
| 101 | for (i = 1; i <= m_w && !ready.empty(); i++) { |
| 102 | node u = ready.popFrontRet(); |
| 103 | rank[gc.original(u)] = k; |
| 104 | |
| 105 | u->inEdges<List<edge>>(edges); |
| 106 | for (edge e : edges) { |
| 107 | if (--deg[e->source()] == 0){ |
| 108 | waiting.pushBack(e->source()); |
| 109 | } |
| 110 | } |
| 111 | } |
| 112 | |
| 113 | while (!waiting.empty()) { |
| 114 | insert(waiting.popFrontRet(), ready, pi); |
| 115 | } |
| 116 | } |
| 117 | |
| 118 | k--; |
| 119 | for(node v : G.nodes) { |
| 120 | rank[v] = k - rank[v]; |
| 121 | } |
| 122 | |
| 123 | m_s.init(); |
| 124 | } |
| 125 | |
| 126 | |
| 127 | void CoffmanGrahamRanking::insert (node u, List<Tuple2<node,int> > &ready_nodes) |
| 128 | { |
| 129 | int j = 0; |
| 130 | |
| 131 | for( ListReverseIterator<Tuple2<node,int> > it = ready_nodes.rbegin(); it.valid(); ++it) { |
| 132 | node v = (*it).x1(); |
| 133 | int sigma = (*it).x2(); |
| 134 | |
| 135 | if (sigma < j) { |
| 136 | ready_nodes.insertAfter(Tuple2<node,int>(u,j), it); |
| 137 | return; |
| 138 | } |
| 139 | |
| 140 | if (sigma > j) continue; |
| 141 | |
| 142 | const _int_set &x = m_s[u], &y = m_s[v]; |
| 143 | int k = min(x.length(), y.length()); |
| 144 | |
| 145 | while (j < k && x[j] == y[j]) { |
| 146 | j++; |
| 147 | } |
| 148 | |
| 149 | if (j == k) { |
| 150 | if (x.length() < y.length()) continue; |
| 151 | |
| 152 | (*it).x2() = k; |
| 153 | ready_nodes.insertAfter(Tuple2<node,int>(u,sigma), it); |
| 154 | return; |
| 155 | } |
| 156 | |
| 157 | if (x[j] < y[j]) continue; |
| 158 | |
| 159 | (*it).x2() = j; |
| 160 | ready_nodes.insert(Tuple2<node,int>(u,sigma), it); |
| 161 | return; |
| 162 | } |
| 163 | |
| 164 | ready_nodes.pushFront(Tuple2<node,int>(u,j)); |
| 165 | } |
| 166 | |
| 167 | |
| 168 | void CoffmanGrahamRanking::insert (node v, List<node> &ready, const NodeArray<int> &pi) |
| 169 | { |
| 170 | for( ListReverseIterator<node> it = ready.rbegin(); it.valid(); ++it) { |
| 171 | if (pi[v] <= pi[*it]) { |
| 172 | ready.insertAfter(v, it); |
| 173 | return; |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | ready.pushFront(v); |
| 178 | } |
| 179 | |
| 180 | |
| 181 | void CoffmanGrahamRanking::dfs(node v) |
| 182 | { |
| 183 | ArrayBuffer<node> stack; |
| 184 | stack.push(v); |
| 185 | |
| 186 | while (!stack.empty()) { |
| 187 | node w = stack.popRet(); |
| 188 | m_mark[w] |= 1; // Mark w as visited. |
| 189 | |
| 190 | // Set 4-bit for every successor u of w with set 2-bit. |
| 191 | for (adjEntry adj : w->adjEntries) { |
| 192 | if (adj->isSource()) { |
| 193 | node u = adj->twinNode(); |
| 194 | if (m_mark[u] & 2) { |
| 195 | m_mark[u] |= 4; |
| 196 | } |
| 197 | |
| 198 | // If u is unvisited, push it to the stack. |
| 199 | if ((m_mark[u] & 1) == 0) { |
| 200 | stack.push(u); |
| 201 | } |
| 202 | } |
| 203 | } |
| 204 | } |
| 205 | } |
| 206 | |
| 207 | |
| 208 | void CoffmanGrahamRanking::removeTransitiveEdges(Graph& G) |
| 209 | { |
| 210 | List<edge> vout; |
| 211 | |
| 212 | m_mark.init(G,0); |
| 213 | ArrayBuffer<node> visited; |
| 214 | |
| 215 | for (node v : G.nodes) { |
| 216 | v->outEdges<List<edge>>(vout); |
| 217 | |
| 218 | // Mark all successors of v with the 2-bit. |
| 219 | for (edge e : vout) { |
| 220 | node w = e->target(); |
| 221 | m_mark[w] = 2; |
| 222 | } |
| 223 | |
| 224 | // Call dfs for all unvisited successors of v. |
| 225 | for (edge e : vout) { |
| 226 | node w = e->target(); |
| 227 | if ((m_mark[w] & 1) == 0) { |
| 228 | dfs(w); |
| 229 | } |
| 230 | } |
| 231 | |
| 232 | // Delete all edges from v to nodes with set 4-bit. |
| 233 | for (edge e : vout) { |
| 234 | node w = e->target(); |
| 235 | if (m_mark[w] & 4) { |
| 236 | G.delEdge(e); |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | // Reset mark-bits for all visited nodes. |
| 241 | while (!visited.empty()) { |
| 242 | m_mark[visited.popRet()] = 0; |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | m_mark.init(); |
| 247 | } |
| 248 | |
| 249 | } |
| 250 | |