| 1 | /* $Id: CoinOslFactorization3.cpp 1448 2011-06-19 15:34:41Z stefan $ */ |
| 2 | /* |
| 3 | Copyright (C) 1987, 2009, International Business Machines |
| 4 | Corporation and others. All Rights Reserved. |
| 5 | |
| 6 | This code is licensed under the terms of the Eclipse Public License (EPL). |
| 7 | */ |
| 8 | #include "CoinOslFactorization.hpp" |
| 9 | #include "CoinOslC.h" |
| 10 | #include "CoinFinite.hpp" |
| 11 | #define GO_DENSE 70 |
| 12 | #define GO_DENSE_RATIO 1.8 |
| 13 | int c_ekkclco(const EKKfactinfo *fact,int *hcoli, |
| 14 | int *mrstrt, int *hinrow, int xnewro); |
| 15 | |
| 16 | void c_ekkclcp(const int *hcol, const double *dels, const int * mrstrt, |
| 17 | int *hrow, double *dels2, int *mcstrt, |
| 18 | int *hincol, int itype, int nnrow, int nncol, |
| 19 | int ninbas); |
| 20 | |
| 21 | int c_ekkcmfc(EKKfactinfo *fact, |
| 22 | EKKHlink *rlink, EKKHlink *clink, |
| 23 | EKKHlink *mwork, void *maction_void, |
| 24 | int nnetas, |
| 25 | int *nsingp, int *xrejctp, |
| 26 | int *xnewrop, int xnewco, |
| 27 | int *ncompactionsp); |
| 28 | |
| 29 | int c_ekkcmfy(EKKfactinfo *fact, |
| 30 | EKKHlink *rlink, EKKHlink *clink, |
| 31 | EKKHlink *mwork, void *maction_void, |
| 32 | int nnetas, |
| 33 | int *nsingp, int *xrejctp, |
| 34 | int *xnewrop, int xnewco, |
| 35 | int *ncompactionsp); |
| 36 | |
| 37 | int c_ekkcmfd(EKKfactinfo *fact, |
| 38 | int *mcol, |
| 39 | EKKHlink *rlink, EKKHlink *clink, |
| 40 | int *maction, |
| 41 | int nnetas, |
| 42 | int *nnentlp, int *nnentup, |
| 43 | int *nsingp); |
| 44 | int c_ekkford(const EKKfactinfo *fact,const int *hinrow, const int *hincol, |
| 45 | int *hpivro, int *hpivco, |
| 46 | EKKHlink *rlink, EKKHlink *clink); |
| 47 | void c_ekkrowq(int *hrow, int *hcol, double *dels, |
| 48 | int *mrstrt, |
| 49 | const int *hinrow, int nnrow, int ninbas); |
| 50 | int c_ekkrwco(const EKKfactinfo *fact,double *dluval, int *hcoli, int * |
| 51 | mrstrt, int *hinrow, int xnewro); |
| 52 | |
| 53 | int c_ekkrwcs(const EKKfactinfo *fact,double *dluval, int *hcoli, int *mrstrt, |
| 54 | const int *hinrow, const EKKHlink *mwork, |
| 55 | int nfirst); |
| 56 | |
| 57 | void c_ekkrwct(const EKKfactinfo *fact,double *dluval, int *hcoli, int *mrstrt, |
| 58 | const int *hinrow, const EKKHlink *mwork, |
| 59 | const EKKHlink *rlink, |
| 60 | const short *msort, double *dsort, |
| 61 | int nlast, int xnewro); |
| 62 | |
| 63 | int c_ekkshff(EKKfactinfo *fact, |
| 64 | EKKHlink *clink, EKKHlink *rlink, |
| 65 | int xnewro); |
| 66 | |
| 67 | void c_ekkshfv(EKKfactinfo *fact, EKKHlink *rlink, EKKHlink *clink, |
| 68 | int xnewro); |
| 69 | int c_ekktria(EKKfactinfo *fact, |
| 70 | EKKHlink * rlink, |
| 71 | EKKHlink * clink, |
| 72 | int *nsingp, |
| 73 | int *xnewcop, int *xnewrop, |
| 74 | int *nlrowtp, |
| 75 | const int ninbas); |
| 76 | #if 0 |
| 77 | static void c_ekkafpv(int *hentry, int *hcoli, |
| 78 | double *dluval, int *mrstrt, |
| 79 | int *hinrow, int nentry) |
| 80 | { |
| 81 | int j; |
| 82 | int nel, krs; |
| 83 | int koff; |
| 84 | int irow; |
| 85 | int ientry; |
| 86 | int * index; |
| 87 | |
| 88 | for (ientry = 0; ientry < nentry; ++ientry) { |
| 89 | #ifdef INTEL |
| 90 | int * els_long,maxaij_long; |
| 91 | #endif |
| 92 | double * els; |
| 93 | irow = UNSHIFT_INDEX(hentry[ientry]); |
| 94 | nel = hinrow[irow]; |
| 95 | krs = mrstrt[irow]; |
| 96 | index=&hcoli[krs]; |
| 97 | els=&dluval[krs]; |
| 98 | #ifdef INTEL |
| 99 | els_long=reinterpret_cast<int *> (els); |
| 100 | maxaij_long=0; |
| 101 | #else |
| 102 | double maxaij = 0.f; |
| 103 | #endif |
| 104 | koff = 0; |
| 105 | j=0; |
| 106 | if ((nel&1)!=0) { |
| 107 | #ifdef INTEL |
| 108 | maxaij_long = els_long[1] & 0x7fffffff; |
| 109 | #else |
| 110 | maxaij=fabs(els[0]); |
| 111 | #endif |
| 112 | j=1; |
| 113 | } |
| 114 | |
| 115 | while (j<nel) { |
| 116 | #ifdef INTEL |
| 117 | UNROLL_LOOP_BODY2({ |
| 118 | int d_long = els_long[1+(j<<1)] & 0x7fffffff; |
| 119 | if (maxaij_long < d_long) { |
| 120 | maxaij_long = d_long; |
| 121 | koff=j; |
| 122 | } |
| 123 | j++; |
| 124 | }); |
| 125 | #else |
| 126 | UNROLL_LOOP_BODY2({ |
| 127 | double d = fabs(els[j]); |
| 128 | if (maxaij < d) { |
| 129 | maxaij = d; |
| 130 | koff=j; |
| 131 | } |
| 132 | j++; |
| 133 | }); |
| 134 | #endif |
| 135 | } |
| 136 | |
| 137 | SWAP(int, index[koff], index[0]); |
| 138 | SWAP(double, els[koff], els[0]); |
| 139 | } |
| 140 | } /* c_ekkafpv */ |
| 141 | #endif |
| 142 | |
| 143 | /* Uwe H. Suhl, March 1987 */ |
| 144 | /* This routine processes col singletons during the LU-factorization. */ |
| 145 | /* Return codes (checked version 1.11): */ |
| 146 | /* 0: ok */ |
| 147 | /* 6: pivot element too small */ |
| 148 | /* -43: system error at label 420 (ipivot not found) */ |
| 149 | /* |
| 150 | * This routine processes singleton columns during factorization of the |
| 151 | * nucleus. It is very similar to the first part of c_ekktria, |
| 152 | * but is more complex, because we now have to maintain the length |
| 153 | * lists. |
| 154 | * The differences are: |
| 155 | * (1) here we use the length list for length 1 rather than a queue. |
| 156 | * This routine is only called if it is known that there is a singleton |
| 157 | * column. |
| 158 | * |
| 159 | * (2) here we maintain hrowi by moving the last entry into the pivot |
| 160 | * column entry; that means we don't have to search for the pivot row |
| 161 | * entry like we do in c_ekktria. |
| 162 | * |
| 163 | * (3) here the hlink data structure is in use for the length lists, |
| 164 | * so we maintain it as we shorten rows and removing columns altogether. |
| 165 | * |
| 166 | */ |
| 167 | int c_ekkcsin(EKKfactinfo *fact, |
| 168 | EKKHlink *rlink, EKKHlink *clink, |
| 169 | |
| 170 | int *nsingp) |
| 171 | { |
| 172 | #if 1 |
| 173 | int *hcoli = fact->xecadr; |
| 174 | double *dluval = fact->xeeadr; |
| 175 | //double *dvalpv = fact->kw3adr; |
| 176 | int *mrstrt = fact->xrsadr; |
| 177 | int *hrowi = fact->xeradr; |
| 178 | int *mcstrt = fact->xcsadr; |
| 179 | int *hinrow = fact->xrnadr; |
| 180 | int *hincol = fact->xcnadr; |
| 181 | int *hpivro = fact->krpadr; |
| 182 | int *hpivco = fact->kcpadr; |
| 183 | #endif |
| 184 | const int nrow = fact->nrow; |
| 185 | const double drtpiv = fact->drtpiv; |
| 186 | |
| 187 | |
| 188 | int j, k, kc, kce, kcs, nzj; |
| 189 | double pivot; |
| 190 | int kipis, kipie; |
| 191 | int jpivot; |
| 192 | #ifndef NDEBUG |
| 193 | int kpivot=-1; |
| 194 | #else |
| 195 | int kpivot=-1; |
| 196 | #endif |
| 197 | |
| 198 | bool small_pivot = false; |
| 199 | |
| 200 | |
| 201 | /* next singleton column. |
| 202 | * Note that when the pivot column itself was removed from the |
| 203 | * list, the column in the list after it (if any) moves to the |
| 204 | * head of the list. |
| 205 | * Also, if any column from the pivot row was reduced to length 1, |
| 206 | * then it will have been added to the list and now be in front. |
| 207 | */ |
| 208 | for (jpivot = hpivco[1]; jpivot > 0; jpivot = hpivco[1]) { |
| 209 | const int ipivot = hrowi[mcstrt[jpivot]]; /* (2) */ |
| 210 | assert(ipivot); |
| 211 | /* The pivot row is being eliminated (3) */ |
| 212 | C_EKK_REMOVE_LINK(hpivro, hinrow, rlink, ipivot); |
| 213 | |
| 214 | /* Loop over nonzeros in pivot row: */ |
| 215 | kipis = mrstrt[ipivot]; |
| 216 | kipie = kipis + hinrow[ipivot] - 1; |
| 217 | for (k = kipis; k <= kipie; ++k) { |
| 218 | j = hcoli[k]; |
| 219 | |
| 220 | /* |
| 221 | * We're eliminating column jpivot, |
| 222 | * so we're eliminating the row it occurs in, |
| 223 | * so every column in this row is becoming one shorter. |
| 224 | * |
| 225 | * I don't know why we don't do the same for rejected columns. |
| 226 | * |
| 227 | * if xrejct is false, then no column has ever been rejected |
| 228 | * and this test wouldn't have to be made. |
| 229 | * However, that means this whole loop would have to be copied. |
| 230 | */ |
| 231 | if (! (clink[j].pre > nrow)) { |
| 232 | C_EKK_REMOVE_LINK(hpivco, hincol, clink, j); /* (3) */ |
| 233 | } |
| 234 | --hincol[j]; |
| 235 | |
| 236 | kcs = mcstrt[j]; |
| 237 | kce = kcs + hincol[j]; |
| 238 | for (kc = kcs; kc <= kce; ++kc) { |
| 239 | if (ipivot == hrowi[kc]) { |
| 240 | break; |
| 241 | } |
| 242 | } |
| 243 | /* ASSERT !(kc>kce) */ |
| 244 | |
| 245 | /* (2) */ |
| 246 | hrowi[kc] = hrowi[kce]; |
| 247 | hrowi[kce] = 0; |
| 248 | |
| 249 | if (j == jpivot) { |
| 250 | /* remember the slot corresponding to the pivot column */ |
| 251 | kpivot = k; |
| 252 | } |
| 253 | else { |
| 254 | /* |
| 255 | * We just reduced the length of the column. |
| 256 | * If we haven't eliminated all of its elements completely, |
| 257 | * then we have to put it back in its new length list. |
| 258 | * |
| 259 | * If the column was rejected, we only put it back in a length |
| 260 | * list when it has been reduced to a singleton column, |
| 261 | * because it would just be rejected again. |
| 262 | */ |
| 263 | nzj = hincol[j]; |
| 264 | if (! (nzj <= 0) && |
| 265 | ! (clink[j].pre > nrow && nzj != 1)) { |
| 266 | C_EKK_ADD_LINK(hpivco, nzj, clink, j); /* (3) */ |
| 267 | } |
| 268 | } |
| 269 | } |
| 270 | assert (kpivot>0); |
| 271 | |
| 272 | /* store pivot sequence number */ |
| 273 | ++fact->npivots; |
| 274 | rlink[ipivot].pre = -fact->npivots; |
| 275 | clink[jpivot].pre = -fact->npivots; |
| 276 | |
| 277 | /* compute how much room we'll need later */ |
| 278 | fact->nuspike += hinrow[ipivot]; |
| 279 | |
| 280 | /* check the pivot */ |
| 281 | pivot = dluval[kpivot]; |
| 282 | if (fabs(pivot) < drtpiv) { |
| 283 | /* pivot element too small */ |
| 284 | small_pivot = true; |
| 285 | rlink[ipivot].pre = -nrow - 1; |
| 286 | clink[jpivot].pre = -nrow - 1; |
| 287 | ++(*nsingp); |
| 288 | } |
| 289 | |
| 290 | /* swap the pivoted column entry with the first entry in the row */ |
| 291 | dluval[kpivot] = dluval[kipis]; |
| 292 | dluval[kipis] = pivot; |
| 293 | hcoli[kpivot] = hcoli[kipis]; |
| 294 | hcoli[kipis] = jpivot; |
| 295 | } |
| 296 | |
| 297 | return (small_pivot); |
| 298 | } /* c_ekkcsin */ |
| 299 | |
| 300 | |
| 301 | /* Uwe H. Suhl, March 1987 */ |
| 302 | /* This routine processes row singletons during the computation of */ |
| 303 | /* an LU-decomposition for the nucleus. */ |
| 304 | /* Return codes (checked version 1.16): */ |
| 305 | /* -5: not enough space in row file */ |
| 306 | /* -6: not enough space in column file */ |
| 307 | /* 7: pivot element too small */ |
| 308 | /* -52: system error at label 220 (ipivot not found) */ |
| 309 | /* -53: system error at label 400 (jpivot not found) */ |
| 310 | int c_ekkrsin(EKKfactinfo *fact, |
| 311 | EKKHlink *rlink, EKKHlink *clink, |
| 312 | EKKHlink *mwork, int nfirst, |
| 313 | int *nsingp, |
| 314 | int *xnewcop, int *xnewrop, |
| 315 | int *nnentup, |
| 316 | int *kmxetap, int *ncompactionsp, |
| 317 | int *nnentlp) |
| 318 | |
| 319 | { |
| 320 | #if 1 |
| 321 | int *hcoli = fact->xecadr; |
| 322 | double *dluval = fact->xeeadr; |
| 323 | //double *dvalpv = fact->kw3adr; |
| 324 | int *mrstrt = fact->xrsadr; |
| 325 | int *hrowi = fact->xeradr; |
| 326 | int *mcstrt = fact->xcsadr; |
| 327 | int *hinrow = fact->xrnadr; |
| 328 | int *hincol = fact->xcnadr; |
| 329 | int *hpivro = fact->krpadr; |
| 330 | int *hpivco = fact->kcpadr; |
| 331 | #endif |
| 332 | const int nrow = fact->nrow; |
| 333 | const double drtpiv = fact->drtpiv; |
| 334 | |
| 335 | int xnewro = *xnewrop; |
| 336 | int xnewco = *xnewcop; |
| 337 | int kmxeta = *kmxetap; |
| 338 | int nnentu = *nnentup; |
| 339 | int ncompactions = *ncompactionsp; |
| 340 | int nnentl = *nnentlp; |
| 341 | |
| 342 | int i, j, k, kc, kr, npr, nzi; |
| 343 | double pivot; |
| 344 | int kjpis, kjpie, knprs, knpre; |
| 345 | double elemnt, maxaij; |
| 346 | int ipivot, epivco, lstart; |
| 347 | #ifndef NDEBUG |
| 348 | int kpivot=-1; |
| 349 | #else |
| 350 | int kpivot=-1; |
| 351 | #endif |
| 352 | int irtcod = 0; |
| 353 | const int nnetas = fact->nnetas; |
| 354 | |
| 355 | lstart = nnetas - nnentl + 1; |
| 356 | |
| 357 | |
| 358 | for (ipivot = hpivro[1]; ipivot > 0; ipivot = hpivro[1]) { |
| 359 | const int jpivot = hcoli[mrstrt[ipivot]]; |
| 360 | |
| 361 | kjpis = mcstrt[jpivot]; |
| 362 | kjpie = kjpis + hincol[jpivot] ; |
| 363 | for (k = kjpis; k < kjpie; ++k) { |
| 364 | i = hrowi[k]; |
| 365 | |
| 366 | /* |
| 367 | * We're eliminating row ipivot, |
| 368 | * so we're eliminating the column it occurs in, |
| 369 | * so every row in this column is becoming one shorter. |
| 370 | * |
| 371 | * No exception is made for rejected rows. |
| 372 | */ |
| 373 | C_EKK_REMOVE_LINK(hpivro, hinrow, rlink, i); |
| 374 | } |
| 375 | |
| 376 | /* The pivot column is being eliminated */ |
| 377 | /* I don't know why there is an exception for rejected columns */ |
| 378 | if (! (clink[jpivot].pre > nrow)) { |
| 379 | C_EKK_REMOVE_LINK(hpivco, hincol, clink, jpivot); |
| 380 | } |
| 381 | |
| 382 | epivco = hincol[jpivot] - 1; |
| 383 | kjpie = kjpis + epivco; |
| 384 | for (kc = kjpis; kc <= kjpie; ++kc) { |
| 385 | if (ipivot == hrowi[kc]) { |
| 386 | break; |
| 387 | } |
| 388 | } |
| 389 | /* ASSERT !(kc>kjpie) */ |
| 390 | |
| 391 | /* move the last column entry into this deleted one to keep */ |
| 392 | /* the entries compact */ |
| 393 | hrowi[kc] = hrowi[kjpie]; |
| 394 | |
| 395 | hrowi[kjpie] = 0; |
| 396 | |
| 397 | /* store pivot sequence number */ |
| 398 | ++fact->npivots; |
| 399 | rlink[ipivot].pre = -fact->npivots; |
| 400 | clink[jpivot].pre = -fact->npivots; |
| 401 | |
| 402 | /* Check if row or column files have to be compressed */ |
| 403 | if (! (xnewro + epivco < lstart)) { |
| 404 | if (! (nnentu + epivco < lstart)) { |
| 405 | return (-5); |
| 406 | } |
| 407 | { |
| 408 | int iput = c_ekkrwcs(fact,dluval, hcoli, mrstrt, hinrow, mwork, nfirst); |
| 409 | kmxeta += xnewro - iput ; |
| 410 | xnewro = iput - 1; |
| 411 | ++ncompactions; |
| 412 | } |
| 413 | } |
| 414 | if (! (xnewco + epivco < lstart)) { |
| 415 | if (! (nnentu + epivco < lstart)) { |
| 416 | return (-5); |
| 417 | } |
| 418 | xnewco = c_ekkclco(fact,hrowi, mcstrt, hincol, xnewco); |
| 419 | ++ncompactions; |
| 420 | } |
| 421 | |
| 422 | /* This column has no more entries in it */ |
| 423 | hincol[jpivot] = 0; |
| 424 | |
| 425 | /* Perform numerical part of elimination. */ |
| 426 | pivot = dluval[mrstrt[ipivot]]; |
| 427 | if (fabs(pivot) < drtpiv) { |
| 428 | irtcod = 7; |
| 429 | rlink[ipivot].pre = -nrow - 1; |
| 430 | clink[jpivot].pre = -nrow - 1; |
| 431 | ++(*nsingp); |
| 432 | } |
| 433 | |
| 434 | /* If epivco is 0, then we can treat this like a singleton column (?)*/ |
| 435 | if (! (epivco <= 0)) { |
| 436 | ++fact->xnetal; |
| 437 | mcstrt[fact->xnetal] = lstart - 1; |
| 438 | hpivco[fact->xnetal] = ipivot; |
| 439 | |
| 440 | /* Loop over nonzeros in pivot column. */ |
| 441 | kjpis = mcstrt[jpivot]; |
| 442 | kjpie = kjpis + epivco ; |
| 443 | nnentl+=epivco; |
| 444 | nnentu-=epivco; |
| 445 | for (kc = kjpis; kc < kjpie; ++kc) { |
| 446 | npr = hrowi[kc]; |
| 447 | /* zero out the row entries as we go along */ |
| 448 | hrowi[kc] = 0; |
| 449 | |
| 450 | /* each row in the column is getting shorter */ |
| 451 | --hinrow[npr]; |
| 452 | |
| 453 | /* find the entry in this row for the pivot column */ |
| 454 | knprs = mrstrt[npr]; |
| 455 | knpre = knprs + hinrow[npr]; |
| 456 | for (kr = knprs; kr <= knpre; ++kr) { |
| 457 | if (jpivot == hcoli[kr]) |
| 458 | break; |
| 459 | } |
| 460 | /* ASSERT !(kr>knpre) */ |
| 461 | |
| 462 | elemnt = dluval[kr]; |
| 463 | /* move the last pivot column entry into this one */ |
| 464 | /* to keep entries compact */ |
| 465 | dluval[kr] = dluval[knpre]; |
| 466 | hcoli[kr] = hcoli[knpre]; |
| 467 | |
| 468 | /* |
| 469 | * c_ekkmltf put the largest entries in front, and |
| 470 | * we want to maintain that property. |
| 471 | * There is only a problem if we just pivoted out the first |
| 472 | * entry, and there is more than one entry in the list. |
| 473 | */ |
| 474 | if (! (kr != knprs || hinrow[npr] <= 1)) { |
| 475 | maxaij = 0.f; |
| 476 | for (k = knprs; k <= knpre; ++k) { |
| 477 | if (! (fabs(dluval[k]) <= maxaij)) { |
| 478 | maxaij = fabs(dluval[k]); |
| 479 | kpivot = k; |
| 480 | } |
| 481 | } |
| 482 | assert (kpivot>0); |
| 483 | maxaij = dluval[kpivot]; |
| 484 | dluval[kpivot] = dluval[knprs]; |
| 485 | dluval[knprs] = maxaij; |
| 486 | |
| 487 | j = hcoli[kpivot]; |
| 488 | hcoli[kpivot] = hcoli[knprs]; |
| 489 | hcoli[knprs] = j; |
| 490 | } |
| 491 | |
| 492 | /* store elementary row transformation */ |
| 493 | --lstart; |
| 494 | dluval[lstart] = -elemnt / pivot; |
| 495 | hrowi[lstart] = SHIFT_INDEX(npr); |
| 496 | |
| 497 | /* Only add the row back in a length list if it isn't empty */ |
| 498 | nzi = hinrow[npr]; |
| 499 | if (! (nzi <= 0)) { |
| 500 | C_EKK_ADD_LINK(hpivro, nzi, rlink, npr); |
| 501 | } |
| 502 | } |
| 503 | ++fact->nuspike; |
| 504 | } |
| 505 | } |
| 506 | |
| 507 | *xnewrop = xnewro; |
| 508 | *xnewcop = xnewco; |
| 509 | *kmxetap = kmxeta; |
| 510 | *nnentup = nnentu; |
| 511 | *ncompactionsp = ncompactions; |
| 512 | *nnentlp = nnentl; |
| 513 | |
| 514 | return (irtcod); |
| 515 | } /* c_ekkrsin */ |
| 516 | |
| 517 | |
| 518 | int c_ekkfpvt(const EKKfactinfo *fact, |
| 519 | EKKHlink *rlink, EKKHlink *clink, |
| 520 | int *nsingp, int *xrejctp, |
| 521 | int *xipivtp, int *xjpivtp) |
| 522 | { |
| 523 | double zpivlu = fact->zpivlu; |
| 524 | #if 1 |
| 525 | int *hcoli = fact->xecadr; |
| 526 | double *dluval = fact->xeeadr; |
| 527 | //double *dvalpv = fact->kw3adr; |
| 528 | int *mrstrt = fact->xrsadr; |
| 529 | int *hrowi = fact->xeradr; |
| 530 | int *mcstrt = fact->xcsadr; |
| 531 | int *hinrow = fact->xrnadr; |
| 532 | int *hincol = fact->xcnadr; |
| 533 | int *hpivro = fact->krpadr; |
| 534 | int *hpivco = fact->kcpadr; |
| 535 | #endif |
| 536 | int i, j, k, ke, kk, ks, nz, nz1, kce, kcs, kre, krs; |
| 537 | double minsze; |
| 538 | int marcst, mincst, mincnt, trials, nentri; |
| 539 | int jpivot=-1; |
| 540 | bool rjectd; |
| 541 | int ipivot; |
| 542 | const int nrow = fact->nrow; |
| 543 | int irtcod = 0; |
| 544 | |
| 545 | /* this used to be initialized in c_ekklfct */ |
| 546 | const int xtrial = 1; |
| 547 | |
| 548 | trials = 0; |
| 549 | ipivot = 0; |
| 550 | mincst = COIN_INT_MAX; |
| 551 | mincnt = COIN_INT_MAX; |
| 552 | for (nz = 2; nz <= nrow; ++nz) { |
| 553 | nz1 = nz - 1; |
| 554 | if (mincnt <= nz) { |
| 555 | goto L900; |
| 556 | } |
| 557 | |
| 558 | /* Search rows for a pivot */ |
| 559 | for (i = hpivro[nz]; ! (i <= 0); i = rlink[i].suc) { |
| 560 | |
| 561 | ks = mrstrt[i]; |
| 562 | ke = ks + nz - 1; |
| 563 | /* Determine magnitude of minimal acceptable element */ |
| 564 | minsze = fabs(dluval[ks]) * zpivlu; |
| 565 | for (k = ks; k <= ke; ++k) { |
| 566 | /* Consider a column only if it passes the stability test */ |
| 567 | if (! (fabs(dluval[k]) < minsze)) { |
| 568 | j = hcoli[k]; |
| 569 | marcst = nz1 * hincol[j]; |
| 570 | if (! (marcst >= mincst)) { |
| 571 | mincst = marcst; |
| 572 | mincnt = hincol[j]; |
| 573 | ipivot = i; |
| 574 | jpivot = j; |
| 575 | if (mincnt <= nz + 1) { |
| 576 | goto L900; |
| 577 | } |
| 578 | } |
| 579 | } |
| 580 | } |
| 581 | ++trials; |
| 582 | |
| 583 | if (trials >= xtrial) { |
| 584 | goto L900; |
| 585 | } |
| 586 | } |
| 587 | |
| 588 | /* Search columns for a pivot */ |
| 589 | j = hpivco[nz]; |
| 590 | while (! (j <= 0)) { |
| 591 | /* XSEARD = XSEARD + 1 */ |
| 592 | rjectd = false; |
| 593 | kcs = mcstrt[j]; |
| 594 | kce = kcs + nz - 1; |
| 595 | for (k = kcs; k <= kce; ++k) { |
| 596 | i = hrowi[k]; |
| 597 | nentri = hinrow[i]; |
| 598 | marcst = nz1 * nentri; |
| 599 | if (! (marcst >= mincst)) { |
| 600 | /* Determine magnitude of minimal acceptable element */ |
| 601 | minsze = fabs(dluval[mrstrt[i]]) * zpivlu; |
| 602 | krs = mrstrt[i]; |
| 603 | kre = krs + nentri - 1; |
| 604 | for (kk = krs; kk <= kre; ++kk) { |
| 605 | if (hcoli[kk] == j) |
| 606 | break; |
| 607 | } |
| 608 | /* ASSERT (kk <= kre) */ |
| 609 | |
| 610 | /* perform stability test */ |
| 611 | if (! (fabs(dluval[kk]) < minsze)) { |
| 612 | mincst = marcst; |
| 613 | mincnt = nentri; |
| 614 | ipivot = i; |
| 615 | jpivot = j; |
| 616 | rjectd = false; |
| 617 | if (mincnt <= nz) { |
| 618 | goto L900; |
| 619 | } |
| 620 | } |
| 621 | else { |
| 622 | if (ipivot == 0) { |
| 623 | rjectd = true; |
| 624 | } |
| 625 | } |
| 626 | } |
| 627 | } |
| 628 | ++trials; |
| 629 | if (trials >= xtrial && ipivot > 0) { |
| 630 | goto L900; |
| 631 | } |
| 632 | if (rjectd) { |
| 633 | int jsuc = clink[j].suc; |
| 634 | ++(*xrejctp); |
| 635 | C_EKK_REMOVE_LINK(hpivco, hincol, clink, j); |
| 636 | clink[j].pre = nrow + 1; |
| 637 | j = jsuc; |
| 638 | } |
| 639 | else { |
| 640 | j = clink[j].suc; |
| 641 | } |
| 642 | } |
| 643 | } |
| 644 | |
| 645 | /* FLAG REJECTED ROWS (should this be columns ?) */ |
| 646 | for (j = 1; j <= nrow; ++j) { |
| 647 | if (hinrow[j] == 0) { |
| 648 | rlink[j].pre = -nrow - 1; |
| 649 | ++(*nsingp); |
| 650 | } |
| 651 | } |
| 652 | irtcod = 10; |
| 653 | |
| 654 | L900: |
| 655 | *xipivtp = ipivot; |
| 656 | *xjpivtp = jpivot; |
| 657 | return (irtcod); |
| 658 | } /* c_ekkfpvt */ |
| 659 | void c_ekkprpv(EKKfactinfo *fact, |
| 660 | EKKHlink *rlink, EKKHlink *clink, |
| 661 | |
| 662 | int xrejct, |
| 663 | int ipivot, int jpivot) |
| 664 | { |
| 665 | #if 1 |
| 666 | int *hcoli = fact->xecadr; |
| 667 | double *dluval = fact->xeeadr; |
| 668 | //double *dvalpv = fact->kw3adr; |
| 669 | int *mrstrt = fact->xrsadr; |
| 670 | int *hrowi = fact->xeradr; |
| 671 | int *mcstrt = fact->xcsadr; |
| 672 | int *hinrow = fact->xrnadr; |
| 673 | int *hincol = fact->xcnadr; |
| 674 | int *hpivro = fact->krpadr; |
| 675 | int *hpivco = fact->kcpadr; |
| 676 | #endif |
| 677 | int i, k; |
| 678 | int kc; |
| 679 | double pivot; |
| 680 | int kipis = mrstrt[ipivot]; |
| 681 | int kipie = kipis + hinrow[ipivot] - 1; |
| 682 | |
| 683 | #ifndef NDEBUG |
| 684 | int kpivot=-1; |
| 685 | #else |
| 686 | int kpivot=-1; |
| 687 | #endif |
| 688 | const int nrow = fact->nrow; |
| 689 | |
| 690 | /* Update data structures */ |
| 691 | { |
| 692 | int kjpis = mcstrt[jpivot]; |
| 693 | int kjpie = kjpis + hincol[jpivot] ; |
| 694 | for (k = kjpis; k < kjpie; ++k) { |
| 695 | i = hrowi[k]; |
| 696 | C_EKK_REMOVE_LINK(hpivro, hinrow, rlink, i); |
| 697 | } |
| 698 | } |
| 699 | |
| 700 | for (k = kipis; k <= kipie; ++k) { |
| 701 | int j = hcoli[k]; |
| 702 | |
| 703 | if ((xrejct == 0) || |
| 704 | ! (clink[j].pre > nrow)) { |
| 705 | C_EKK_REMOVE_LINK(hpivco, hincol, clink, j); |
| 706 | } |
| 707 | |
| 708 | --hincol[j]; |
| 709 | int kcs = mcstrt[j]; |
| 710 | int kce = kcs + hincol[j]; |
| 711 | |
| 712 | for (kc = kcs; kc < kce ; kc ++) { |
| 713 | if (hrowi[kc] == ipivot) |
| 714 | break; |
| 715 | } |
| 716 | assert (kc<kce||hrowi[kce]==ipivot); |
| 717 | hrowi[kc] = hrowi[kce]; |
| 718 | hrowi[kce] = 0; |
| 719 | if (j == jpivot) { |
| 720 | kpivot = k; |
| 721 | } |
| 722 | } |
| 723 | assert (kpivot>0); |
| 724 | |
| 725 | /* Store the pivot sequence number */ |
| 726 | ++fact->npivots; |
| 727 | rlink[ipivot].pre = -fact->npivots; |
| 728 | clink[jpivot].pre = -fact->npivots; |
| 729 | |
| 730 | pivot = dluval[kpivot]; |
| 731 | dluval[kpivot] = dluval[kipis]; |
| 732 | dluval[kipis] = pivot; |
| 733 | hcoli[kpivot] = hcoli[kipis]; |
| 734 | hcoli[kipis] = jpivot; |
| 735 | |
| 736 | } /* c_ekkprpv */ |
| 737 | |
| 738 | /* |
| 739 | * c_ekkclco is almost exactly like c_ekkrwco. |
| 740 | */ |
| 741 | int c_ekkclco(const EKKfactinfo *fact,int *hcoli, int *mrstrt, int *hinrow, int xnewro) |
| 742 | { |
| 743 | #if 0 |
| 744 | int *hcoli = fact->xecadr; |
| 745 | double *dluval = fact->xeeadr; |
| 746 | double *dvalpv = fact->kw3adr; |
| 747 | int *mrstrt = fact->xrsadr; |
| 748 | int *hrowi = fact->xeradr; |
| 749 | int *mcstrt = fact->xcsadr; |
| 750 | int *hinrow = fact->xrnadr; |
| 751 | int *hincol = fact->xcnadr; |
| 752 | int *hpivro = fact->krpadr; |
| 753 | int *hpivco = fact->kcpadr; |
| 754 | #endif |
| 755 | int i, k, nz, kold; |
| 756 | int kstart; |
| 757 | const int nrow = fact->nrow; |
| 758 | |
| 759 | for (i = 1; i <= nrow; ++i) { |
| 760 | nz = hinrow[i]; |
| 761 | if (0 < nz) { |
| 762 | /* save the last column entry of row i in hinrow */ |
| 763 | /* and replace that entry with -i */ |
| 764 | k = mrstrt[i] + nz - 1; |
| 765 | hinrow[i] = hcoli[k]; |
| 766 | hcoli[k] = -i; |
| 767 | } |
| 768 | } |
| 769 | |
| 770 | kstart = 0; |
| 771 | kold = 0; |
| 772 | for (k = 1; k <= xnewro; ++k) { |
| 773 | if (hcoli[k] != 0) { |
| 774 | ++kstart; |
| 775 | |
| 776 | /* if this is the last entry for the row... */ |
| 777 | if (hcoli[k] < 0) { |
| 778 | /* restore the entry */ |
| 779 | i = -hcoli[k]; |
| 780 | hcoli[k] = hinrow[i]; |
| 781 | |
| 782 | /* update mrstart and hinrow */ |
| 783 | mrstrt[i] = kold + 1; |
| 784 | hinrow[i] = kstart - kold; |
| 785 | kold = kstart; |
| 786 | } |
| 787 | |
| 788 | hcoli[kstart] = hcoli[k]; |
| 789 | } |
| 790 | } |
| 791 | |
| 792 | /* INSERTED INCASE CALLED FROM YTRIAN JJHF */ |
| 793 | mrstrt[nrow + 1] = kstart + 1; |
| 794 | |
| 795 | return (kstart); |
| 796 | } /* c_ekkclco */ |
| 797 | |
| 798 | |
| 799 | |
| 800 | #undef MACTION_T |
| 801 | #define COIN_OSL_CMFC |
| 802 | #define MACTION_T short int |
| 803 | int c_ekkcmfc(EKKfactinfo *fact, |
| 804 | EKKHlink *rlink, EKKHlink *clink, |
| 805 | EKKHlink *mwork, void *maction_void, |
| 806 | int nnetas, |
| 807 | int *nsingp, int *xrejctp, |
| 808 | int *xnewrop, int xnewco, |
| 809 | int *ncompactionsp) |
| 810 | |
| 811 | #include "CoinOslC.h" |
| 812 | #undef COIN_OSL_CMFC |
| 813 | #undef MACTION_T |
| 814 | static int c_ekkidmx(int n, const double *dx) |
| 815 | { |
| 816 | int ret_val; |
| 817 | int i; |
| 818 | double dmax; |
| 819 | --dx; |
| 820 | |
| 821 | /* Function Body */ |
| 822 | |
| 823 | if (n < 1) { |
| 824 | return (0); |
| 825 | } |
| 826 | |
| 827 | if (n == 1) { |
| 828 | return (1); |
| 829 | } |
| 830 | |
| 831 | ret_val = 1; |
| 832 | dmax = fabs(dx[1]); |
| 833 | for (i = 2; i <= n; ++i) { |
| 834 | if (fabs(dx[i]) > dmax) { |
| 835 | ret_val = i; |
| 836 | dmax = fabs(dx[i]); |
| 837 | } |
| 838 | } |
| 839 | |
| 840 | return ret_val; |
| 841 | } /* c_ekkidmx */ |
| 842 | /* Return codes in IRTCOD/IRTCOD are */ |
| 843 | /* 4: numerical problems */ |
| 844 | /* 5: not enough space in row file */ |
| 845 | /* 6: not enough space in column file */ |
| 846 | int c_ekkcmfd(EKKfactinfo *fact, |
| 847 | int *mcol, |
| 848 | EKKHlink *rlink, EKKHlink *clink, |
| 849 | int *maction, |
| 850 | int nnetas, |
| 851 | int *nnentlp, int *nnentup, |
| 852 | int *nsingp) |
| 853 | { |
| 854 | int *hcoli = fact->xecadr; |
| 855 | double *dluval = fact->xeeadr; |
| 856 | int *mrstrt = fact->xrsadr; |
| 857 | int *hrowi = fact->xeradr; |
| 858 | int *mcstrt = fact->xcsadr; |
| 859 | int *hinrow = fact->xrnadr; |
| 860 | int *hincol = fact->xcnadr; |
| 861 | int *hpivro = fact->krpadr; |
| 862 | int *hpivco = fact->kcpadr; |
| 863 | int nnentl = *nnentlp; |
| 864 | int nnentu = *nnentup; |
| 865 | int storeZero = fact->ndenuc; |
| 866 | |
| 867 | int mkrs[8]; |
| 868 | double dpivyy[8]; |
| 869 | |
| 870 | /* Local variables */ |
| 871 | int i, j; |
| 872 | double d0, dx; |
| 873 | int nz, ndo, krs; |
| 874 | int kend, jcol; |
| 875 | int irow, iput, jrow, krxs; |
| 876 | int mjcol[8]; |
| 877 | double pivot; |
| 878 | int count; |
| 879 | int ilast, isort; |
| 880 | double dpivx, dsave; |
| 881 | double dpivxx[8]; |
| 882 | double multip; |
| 883 | int lstart, ndense, krlast, ifirst, krfirst, kcount, idense, ipivot, |
| 884 | jdense, kchunk, jpivot; |
| 885 | |
| 886 | const int nrow = fact->nrow; |
| 887 | |
| 888 | int irtcod = 0; |
| 889 | |
| 890 | lstart = nnetas - nnentl + 1; |
| 891 | |
| 892 | /* put list of columns in last HROWI */ |
| 893 | /* fix row order once for all */ |
| 894 | ndense = nrow - fact->npivots; |
| 895 | iput = ndense + 1; |
| 896 | for (i = 1; i <= nrow; ++i) { |
| 897 | if (hpivro[i] > 0) { |
| 898 | irow = hpivro[i]; |
| 899 | for (j = 1; j <= nrow; ++j) { |
| 900 | --iput; |
| 901 | maction[iput] = irow; |
| 902 | irow = rlink[irow].suc; |
| 903 | if (irow == 0) { |
| 904 | break; |
| 905 | } |
| 906 | } |
| 907 | } |
| 908 | } |
| 909 | if (iput != 1) { |
| 910 | ++(*nsingp); |
| 911 | } |
| 912 | else { |
| 913 | /* Use HCOLI just for last row */ |
| 914 | ilast = maction[1]; |
| 915 | krlast = mrstrt[ilast]; |
| 916 | ifirst = maction[ndense]; |
| 917 | krfirst = mrstrt[ifirst]; |
| 918 | /* put list of columns in last HCOLI */ |
| 919 | iput = 0; |
| 920 | for (i = 1; i <= nrow; ++i) { |
| 921 | if (clink[i].pre >= 0) { |
| 922 | hcoli[krlast + iput] = i; |
| 923 | ++iput; |
| 924 | } |
| 925 | } |
| 926 | if (iput != ndense) { |
| 927 | ++(*nsingp); |
| 928 | } |
| 929 | else { |
| 930 | ndo = ndense / 8; |
| 931 | /* do most */ |
| 932 | for (kcount = 1; kcount <= ndo; ++kcount) { |
| 933 | idense = ndense; |
| 934 | isort = 8; |
| 935 | for (count = ndense; count >= ndense - 7; --count) { |
| 936 | ipivot = maction[count]; |
| 937 | krs = mrstrt[ipivot]; |
| 938 | --isort; |
| 939 | mkrs[isort] = krs; |
| 940 | } |
| 941 | isort = 8; |
| 942 | for (count = ndense; count >= ndense - 7; --count) { |
| 943 | /* Find a pivot element */ |
| 944 | --isort; |
| 945 | ipivot = maction[count]; |
| 946 | krs = mkrs[isort]; |
| 947 | jcol = c_ekkidmx(idense, &dluval[krs]) - 1; |
| 948 | pivot = dluval[krs + jcol]; |
| 949 | --idense; |
| 950 | mcol[count] = jcol; |
| 951 | mjcol[isort] = mcol[count]; |
| 952 | dluval[krs + jcol] = dluval[krs + idense]; |
| 953 | if (fabs(pivot) < fact->zeroTolerance) { |
| 954 | pivot = 0.; |
| 955 | dpivx = 0.; |
| 956 | } else { |
| 957 | dpivx = 1. / pivot; |
| 958 | } |
| 959 | dluval[krs + idense] = pivot; |
| 960 | dpivxx[isort] = dpivx; |
| 961 | for (j = isort - 1; j >= 0; --j) { |
| 962 | krxs = mkrs[j]; |
| 963 | multip = -dluval[krxs + jcol] * dpivx; |
| 964 | dluval[krxs + jcol] = dluval[krxs + idense]; |
| 965 | /* for moment skip if zero */ |
| 966 | if (fabs(multip) > fact->zeroTolerance) { |
| 967 | for (i = 0; i < idense; ++i) { |
| 968 | dluval[krxs + i] += multip * dluval[krs + i]; |
| 969 | } |
| 970 | } else { |
| 971 | multip = 0.; |
| 972 | } |
| 973 | dluval[krxs + idense] = multip; |
| 974 | } |
| 975 | } |
| 976 | /* sort all U in rows already done */ |
| 977 | for (i = 7; i >= 0; --i) { |
| 978 | /* **** this is important bit */ |
| 979 | krs = mkrs[i]; |
| 980 | for (j = i - 1; j >= 0; --j) { |
| 981 | jcol = mjcol[j]; |
| 982 | dsave = dluval[krs + jcol]; |
| 983 | dluval[krs + jcol] = dluval[krs + idense + j]; |
| 984 | dluval[krs + idense + j] = dsave; |
| 985 | } |
| 986 | } |
| 987 | /* leave IDENSE as it is */ |
| 988 | if (ndense <= 400) { |
| 989 | for (jrow = ndense - 8; jrow >= 1; --jrow) { |
| 990 | irow = maction[jrow]; |
| 991 | krxs = mrstrt[irow]; |
| 992 | for (j = 7; j >= 0; --j) { |
| 993 | jcol = mjcol[j]; |
| 994 | dsave = dluval[krxs + jcol]; |
| 995 | dluval[krxs + jcol] = dluval[krxs + idense + j]; |
| 996 | dluval[krxs + idense + j] = dsave; |
| 997 | } |
| 998 | for (j = 7; j >= 0; --j) { |
| 999 | krs = mkrs[j]; |
| 1000 | jdense = idense + j; |
| 1001 | dpivx = dpivxx[j]; |
| 1002 | multip = -dluval[krxs + jdense] * dpivx; |
| 1003 | if (fabs(multip) <= fact->zeroTolerance) { |
| 1004 | multip = 0.; |
| 1005 | } |
| 1006 | dpivyy[j] = multip; |
| 1007 | dluval[krxs + jdense] = multip; |
| 1008 | for (i = idense; i < jdense; ++i) { |
| 1009 | dluval[krxs + i] += multip * dluval[krs + i]; |
| 1010 | } |
| 1011 | } |
| 1012 | for (i = 0; i < idense; ++i) { |
| 1013 | dx = dluval[krxs + i]; |
| 1014 | d0 = dpivyy[0] * dluval[mkrs[0] + i]; |
| 1015 | dx += dpivyy[1] * dluval[mkrs[1] + i]; |
| 1016 | d0 += dpivyy[2] * dluval[mkrs[2] + i]; |
| 1017 | dx += dpivyy[3] * dluval[mkrs[3] + i]; |
| 1018 | d0 += dpivyy[4] * dluval[mkrs[4] + i]; |
| 1019 | dx += dpivyy[5] * dluval[mkrs[5] + i]; |
| 1020 | d0 += dpivyy[6] * dluval[mkrs[6] + i]; |
| 1021 | dx += dpivyy[7] * dluval[mkrs[7] + i]; |
| 1022 | dluval[krxs + i] = d0 + dx; |
| 1023 | } |
| 1024 | } |
| 1025 | } else { |
| 1026 | for (jrow = ndense - 8; jrow >= 1; --jrow) { |
| 1027 | irow = maction[jrow]; |
| 1028 | krxs = mrstrt[irow]; |
| 1029 | for (j = 7; j >= 0; --j) { |
| 1030 | jcol = mjcol[j]; |
| 1031 | dsave = dluval[krxs + jcol]; |
| 1032 | dluval[krxs + jcol] = dluval[krxs + idense + j]; |
| 1033 | dluval[krxs + idense + j] = dsave; |
| 1034 | } |
| 1035 | for (j = 7; j >= 0; --j) { |
| 1036 | krs = mkrs[j]; |
| 1037 | jdense = idense + j; |
| 1038 | dpivx = dpivxx[j]; |
| 1039 | multip = -dluval[krxs + jdense] * dpivx; |
| 1040 | if (fabs(multip) <= fact->zeroTolerance) { |
| 1041 | multip = 0.; |
| 1042 | } |
| 1043 | dluval[krxs + jdense] = multip; |
| 1044 | for (i = idense; i < jdense; ++i) { |
| 1045 | dluval[krxs + i] += multip * dluval[krs + i]; |
| 1046 | } |
| 1047 | } |
| 1048 | } |
| 1049 | for (kchunk = 0; kchunk < idense; kchunk += 400) { |
| 1050 | kend = CoinMin(idense - 1, kchunk + 399); |
| 1051 | for (jrow = ndense - 8; jrow >= 1; --jrow) { |
| 1052 | irow = maction[jrow]; |
| 1053 | krxs = mrstrt[irow]; |
| 1054 | for (j = 7; j >= 0; --j) { |
| 1055 | dpivyy[j] = dluval[krxs + idense + j]; |
| 1056 | } |
| 1057 | for (i = kchunk; i <= kend; ++i) { |
| 1058 | dx = dluval[krxs + i]; |
| 1059 | d0 = dpivyy[0] * dluval[mkrs[0] + i]; |
| 1060 | dx += dpivyy[1] * dluval[mkrs[1] + i]; |
| 1061 | d0 += dpivyy[2] * dluval[mkrs[2] + i]; |
| 1062 | dx += dpivyy[3] * dluval[mkrs[3] + i]; |
| 1063 | d0 += dpivyy[4] * dluval[mkrs[4] + i]; |
| 1064 | dx += dpivyy[5] * dluval[mkrs[5] + i]; |
| 1065 | d0 += dpivyy[6] * dluval[mkrs[6] + i]; |
| 1066 | dx += dpivyy[7] * dluval[mkrs[7] + i]; |
| 1067 | dluval[krxs + i] = d0 + dx; |
| 1068 | } |
| 1069 | } |
| 1070 | } |
| 1071 | } |
| 1072 | /* resort all U in rows already done */ |
| 1073 | for (i = 7; i >= 0; --i) { |
| 1074 | krs = mkrs[i]; |
| 1075 | for (j = 0; j < i; ++j) { |
| 1076 | jcol = mjcol[j]; |
| 1077 | dsave = dluval[krs + jcol]; |
| 1078 | dluval[krs + jcol] = dluval[krs + idense + j]; |
| 1079 | dluval[krs + idense + j] = dsave; |
| 1080 | } |
| 1081 | } |
| 1082 | ndense += -8; |
| 1083 | } |
| 1084 | idense = ndense; |
| 1085 | /* do remainder */ |
| 1086 | for (count = ndense; count >= 1; --count) { |
| 1087 | /* Find a pivot element */ |
| 1088 | ipivot = maction[count]; |
| 1089 | krs = mrstrt[ipivot]; |
| 1090 | jcol = c_ekkidmx(idense, &dluval[krs]) - 1; |
| 1091 | pivot = dluval[krs + jcol]; |
| 1092 | --idense; |
| 1093 | mcol[count] = jcol; |
| 1094 | dluval[krs + jcol] = dluval[krs + idense]; |
| 1095 | if (fabs(pivot) < fact->zeroTolerance) { |
| 1096 | dluval[krs + idense] = 0.; |
| 1097 | } else { |
| 1098 | dpivx = 1. / pivot; |
| 1099 | dluval[krs + idense] = pivot; |
| 1100 | for (jrow = idense; jrow >= 1; --jrow) { |
| 1101 | irow = maction[jrow]; |
| 1102 | krxs = mrstrt[irow]; |
| 1103 | multip = -dluval[krxs + jcol] * dpivx; |
| 1104 | dluval[krxs + jcol] = dluval[krxs + idense]; |
| 1105 | /* for moment skip if zero */ |
| 1106 | if (fabs(multip) > fact->zeroTolerance) { |
| 1107 | dluval[krxs + idense] = multip; |
| 1108 | for (i = 0; i < idense; ++i) { |
| 1109 | dluval[krxs + i] += multip * dluval[krs + i]; |
| 1110 | } |
| 1111 | } else { |
| 1112 | dluval[krxs + idense] = 0.; |
| 1113 | } |
| 1114 | } |
| 1115 | } |
| 1116 | } |
| 1117 | /* now create in form for OSL */ |
| 1118 | ndense = nrow - fact->npivots; |
| 1119 | idense = ndense; |
| 1120 | for (count = ndense; count >= 1; --count) { |
| 1121 | /* Find a pivot element */ |
| 1122 | ipivot = maction[count]; |
| 1123 | krs = mrstrt[ipivot]; |
| 1124 | --idense; |
| 1125 | jcol = mcol[count]; |
| 1126 | jpivot = hcoli[krlast + jcol]; |
| 1127 | ++fact->npivots; |
| 1128 | pivot = dluval[krs + idense]; |
| 1129 | if (pivot == 0.) { |
| 1130 | hinrow[ipivot] = 0; |
| 1131 | rlink[ipivot].pre = -nrow - 1; |
| 1132 | ++(*nsingp); |
| 1133 | irtcod = 10; |
| 1134 | } else { |
| 1135 | rlink[ipivot].pre = -fact->npivots; |
| 1136 | clink[jpivot].pre = -fact->npivots; |
| 1137 | hincol[jpivot] = 0; |
| 1138 | ++fact->xnetal; |
| 1139 | mcstrt[fact->xnetal] = lstart - 1; |
| 1140 | hpivco[fact->xnetal] = ipivot; |
| 1141 | for (jrow = idense; jrow >= 1; --jrow) { |
| 1142 | irow = maction[jrow]; |
| 1143 | krxs = mrstrt[irow]; |
| 1144 | multip = dluval[krxs + idense]; |
| 1145 | /* for moment skip if zero */ |
| 1146 | if (multip != 0.||storeZero) { |
| 1147 | /* Store elementary row transformation */ |
| 1148 | ++nnentl; |
| 1149 | --nnentu; |
| 1150 | --lstart; |
| 1151 | dluval[lstart] = multip; |
| 1152 | hrowi[lstart] = SHIFT_INDEX(irow); |
| 1153 | } |
| 1154 | } |
| 1155 | hcoli[krlast + jcol] = hcoli[krlast + idense]; |
| 1156 | /* update pivot row and last row HCOLI */ |
| 1157 | dluval[krs + idense] = dluval[krs]; |
| 1158 | hcoli[krlast + idense] = hcoli[krlast]; |
| 1159 | nz = 1; |
| 1160 | dluval[krs] = pivot; |
| 1161 | hcoli[krs] = jpivot; |
| 1162 | if (!storeZero) { |
| 1163 | for (i = 1; i <= idense; ++i) { |
| 1164 | if (fabs(dluval[krs + i]) > fact->zeroTolerance) { |
| 1165 | ++nz; |
| 1166 | hcoli[krs + nz - 1] = hcoli[krlast + i]; |
| 1167 | dluval[krs + nz - 1] = dluval[krs + i]; |
| 1168 | } |
| 1169 | } |
| 1170 | hinrow[ipivot] = nz; |
| 1171 | } else { |
| 1172 | for (i = 1; i <= idense; ++i) { |
| 1173 | ++nz; |
| 1174 | hcoli[krs + nz - 1] = hcoli[krlast + i]; |
| 1175 | dluval[krs + nz - 1] = dluval[krs + i]; |
| 1176 | } |
| 1177 | hinrow[ipivot] = nz; |
| 1178 | } |
| 1179 | } |
| 1180 | } |
| 1181 | } |
| 1182 | } |
| 1183 | |
| 1184 | *nnentlp = nnentl; |
| 1185 | *nnentup = nnentu; |
| 1186 | |
| 1187 | return (irtcod); |
| 1188 | } /* c_ekkcmfd */ |
| 1189 | /* ***C_EKKCMFC */ |
| 1190 | |
| 1191 | /* |
| 1192 | * Generate a variant of c_ekkcmfc that uses an maction array of type |
| 1193 | * int rather than short. |
| 1194 | */ |
| 1195 | #undef MACTION_T |
| 1196 | #define C_EKKCMFY |
| 1197 | #define COIN_OSL_CMFC |
| 1198 | #define MACTION_T int |
| 1199 | int c_ekkcmfy(EKKfactinfo *fact, |
| 1200 | EKKHlink *rlink, EKKHlink *clink, |
| 1201 | EKKHlink *mwork, void *maction_void, |
| 1202 | int nnetas, |
| 1203 | int *nsingp, int *xrejctp, |
| 1204 | int *xnewrop, int xnewco, |
| 1205 | int *ncompactionsp) |
| 1206 | |
| 1207 | #include "CoinOslC.h" |
| 1208 | #undef COIN_OSL_CMFC |
| 1209 | #undef C_EKKCMFY |
| 1210 | #undef MACTION_T |
| 1211 | int c_ekkford(const EKKfactinfo *fact,const int *hinrow, const int *hincol, |
| 1212 | int *hpivro, int *hpivco, |
| 1213 | EKKHlink *rlink, EKKHlink *clink) |
| 1214 | { |
| 1215 | int i, iri, nzi; |
| 1216 | const int nrow = fact->nrow; |
| 1217 | int nsing = 0; |
| 1218 | |
| 1219 | /* Uwe H. Suhl, August 1986 */ |
| 1220 | /* Builds linked lists of rows and cols of nucleus for efficient */ |
| 1221 | /* pivot searching. */ |
| 1222 | |
| 1223 | memset(hpivro+1,0,nrow*sizeof(int)); |
| 1224 | memset(hpivco+1,0,nrow*sizeof(int)); |
| 1225 | for (i = 1; i <= nrow; ++i) { |
| 1226 | //hpivro[i] = 0; |
| 1227 | //hpivco[i] = 0; |
| 1228 | assert(rlink[i].suc == 0); |
| 1229 | assert(clink[i].suc == 0); |
| 1230 | } |
| 1231 | |
| 1232 | /* Generate double linked list of rows having equal numbers of */ |
| 1233 | /* nonzeros in each row. Skip pivotal rows. */ |
| 1234 | for (i = 1; i <= nrow; ++i) { |
| 1235 | if (! (rlink[i].pre < 0)) { |
| 1236 | nzi = hinrow[i]; |
| 1237 | if (nzi <= 0) { |
| 1238 | ++nsing; |
| 1239 | rlink[i].pre = -nrow - 1; |
| 1240 | } |
| 1241 | else { |
| 1242 | iri = hpivro[nzi]; |
| 1243 | hpivro[nzi] = i; |
| 1244 | rlink[i].suc = iri; |
| 1245 | rlink[i].pre = 0; |
| 1246 | if (iri != 0) { |
| 1247 | rlink[iri].pre = i; |
| 1248 | } |
| 1249 | } |
| 1250 | } |
| 1251 | } |
| 1252 | |
| 1253 | /* Generate double linked list of cols having equal numbers of */ |
| 1254 | /* nonzeros in each col. Skip pivotal cols. */ |
| 1255 | for (i = 1; i <= nrow; ++i) { |
| 1256 | if (! (clink[i].pre < 0)) { |
| 1257 | nzi = hincol[i]; |
| 1258 | if (nzi <= 0) { |
| 1259 | ++nsing; |
| 1260 | clink[i].pre = -nrow - 1; |
| 1261 | } |
| 1262 | else { |
| 1263 | iri = hpivco[nzi]; |
| 1264 | hpivco[nzi] = i; |
| 1265 | clink[i].suc = iri; |
| 1266 | clink[i].pre = 0; |
| 1267 | if (iri != 0) { |
| 1268 | clink[iri].pre = i; |
| 1269 | } |
| 1270 | } |
| 1271 | } |
| 1272 | } |
| 1273 | |
| 1274 | return (nsing); |
| 1275 | } /* c_ekkford */ |
| 1276 | |
| 1277 | /* c version of OSL from 36100 */ |
| 1278 | |
| 1279 | /* Assumes that a basis exists in correct form */ |
| 1280 | /* Calls Uwe's routines (approximately) */ |
| 1281 | /* Then if OK shuffles U into column order */ |
| 1282 | /* Return codes: */ |
| 1283 | |
| 1284 | /* 0: everything ok */ |
| 1285 | /* 1: everything ok but performance would be better if more space */ |
| 1286 | /* would be make available */ |
| 1287 | /* 4: growth rate of element in U too big */ |
| 1288 | /* 5: not enough space in row file */ |
| 1289 | /* 6: not enough space in column file */ |
| 1290 | /* 7: pivot too small - col sing */ |
| 1291 | /* 8: pivot too small - row sing */ |
| 1292 | /* 10: matrix is singular */ |
| 1293 | |
| 1294 | /* I suspect c_ekklfct never returns 1 */ |
| 1295 | /* |
| 1296 | * layout of data |
| 1297 | * |
| 1298 | * dluval/hcoli: (L^-1)B - hole - L factors |
| 1299 | * |
| 1300 | * The L factors are written from high to low, starting from nnetas. |
| 1301 | * There are nnentl factors in L. lstart the next entry to use for the |
| 1302 | * L factors. Eventually, (L^-1)B turns into U. |
| 1303 | |
| 1304 | * The ninbas coefficients of matrix B are originally in the start of |
| 1305 | * dluval/hcoli. As L transforms it, rows may have to be expanded. |
| 1306 | * If there is room, they are copied to the start of the hole, |
| 1307 | * otherwise the first part of this area is compacted, and hopefully |
| 1308 | * there is then room. |
| 1309 | * There are nnentu coefficients in (L^-1)B. |
| 1310 | * nnentu + nnentl >= ninbas. |
| 1311 | * nnentu + nnentl == ninbas if there has been no fill-in. |
| 1312 | * nnentu is decreased when the pivot eliminates elements |
| 1313 | * (in which case there is a corresponding increase in nnentl), |
| 1314 | * and if pivoting happens to cancel out factors (in which case |
| 1315 | * there is no corresponding increase in L). |
| 1316 | * nnentu is increased if there is fill-in (no decrease in L). |
| 1317 | * If nnentu + nnentl >= nnetas, then we've run out of room. |
| 1318 | * It is not the case that the elements of (L^-1)B are all in the |
| 1319 | * first nnentu positions of dluval/hcoli, but that is of course |
| 1320 | * the lower bound on the number of positions needed to store it. |
| 1321 | * nuspik is roughly the sum of the row lengths of the rows that were pivoted |
| 1322 | * out. singleton rows in c_ekktria do not change nuspik, but |
| 1323 | * c_ekkrsin does increment it for each singleton row. |
| 1324 | * That is, there are nuspik elements that in the upper part of (L^-1)B, |
| 1325 | * and (nnentu - nuspik) elements left in B. |
| 1326 | */ |
| 1327 | /* |
| 1328 | * As part of factorization, we test candidate pivots for numerical |
| 1329 | * stability; if the largest element in a row/col is much larger than |
| 1330 | * the smallest, this generally causes problems. To easily determine |
| 1331 | * what the largest element is, we ensure that it is always in front. |
| 1332 | * This establishes this property; later on we take steps to preserve it. |
| 1333 | */ |
| 1334 | static void c_ekkmltf(const EKKfactinfo *fact,double *dluval, int *hcoli, |
| 1335 | const int *mrstrt, const int *hinrow, |
| 1336 | const EKKHlink *rlink) |
| 1337 | { |
| 1338 | #if 0 |
| 1339 | int *hcoli = fact->xecadr; |
| 1340 | double *dluval = fact->xeeadr; |
| 1341 | double *dvalpv = fact->kw3adr; |
| 1342 | int *mrstrt = fact->xrsadr; |
| 1343 | int *hrowi = fact->xeradr; |
| 1344 | int *mcstrt = fact->xcsadr; |
| 1345 | int *hinrow = fact->xrnadr; |
| 1346 | int *hincol = fact->xcnadr; |
| 1347 | int *hpivro = fact->krpadr; |
| 1348 | int *hpivco = fact->kcpadr; |
| 1349 | #endif |
| 1350 | int i, j, k; |
| 1351 | #ifndef NDEBUG |
| 1352 | int koff=-1; |
| 1353 | #else |
| 1354 | int koff; |
| 1355 | #endif |
| 1356 | const int nrow = fact->nrow; |
| 1357 | |
| 1358 | |
| 1359 | for (i = 1; i <= nrow; ++i) { |
| 1360 | /* ignore rows that have already been pivoted */ |
| 1361 | /* if it is a singleton row, the property trivially holds */ |
| 1362 | if (! (rlink[i].pre < 0 || hinrow[i] <= 1)) { |
| 1363 | const int krs = mrstrt[i]; |
| 1364 | const int kre = krs + hinrow[i] - 1; |
| 1365 | |
| 1366 | double maxaij = 0.f; |
| 1367 | |
| 1368 | /* this assumes that at least one of the dluvals is non-zero. */ |
| 1369 | for (k = krs; k <= kre; ++k) { |
| 1370 | if (! (fabs(dluval[k]) <= maxaij)) { |
| 1371 | maxaij = fabs(dluval[k]); |
| 1372 | koff = k; |
| 1373 | } |
| 1374 | } |
| 1375 | assert (koff>0); |
| 1376 | maxaij = dluval[koff]; |
| 1377 | j = hcoli[koff]; |
| 1378 | |
| 1379 | dluval[koff] = dluval[krs]; |
| 1380 | hcoli[koff] = hcoli[krs]; |
| 1381 | |
| 1382 | dluval[krs] = maxaij; |
| 1383 | hcoli[krs] = j; |
| 1384 | } |
| 1385 | } |
| 1386 | } /* c_ekkmltf */ |
| 1387 | int c_ekklfct(EKKfactinfo *fact) |
| 1388 | { |
| 1389 | const int nrow = fact->nrow; |
| 1390 | int ninbas = fact->xcsadr[nrow+1]-1; |
| 1391 | int ifvsol = fact->ifvsol; |
| 1392 | int *hcoli = fact->xecadr; |
| 1393 | double *dluval = fact->xeeadr; |
| 1394 | int *mrstrt = fact->xrsadr; |
| 1395 | int *hrowi = fact->xeradr; |
| 1396 | int *mcstrt = fact->xcsadr; |
| 1397 | int *hinrow = fact->xrnadr; |
| 1398 | int *hincol = fact->xcnadr; |
| 1399 | int *hpivro = fact->krpadr; |
| 1400 | int *hpivco = fact->kcpadr; |
| 1401 | |
| 1402 | |
| 1403 | EKKHlink *rlink = fact->kp1adr; |
| 1404 | EKKHlink *clink = fact->kp2adr; |
| 1405 | EKKHlink *mwork = (reinterpret_cast<EKKHlink*>(fact->kw1adr))-1; |
| 1406 | |
| 1407 | int nsing, kdnspt, xnewro, xnewco; |
| 1408 | int i; |
| 1409 | int xrejct; |
| 1410 | int irtcod; |
| 1411 | const int nnetas = fact->nnetas; |
| 1412 | |
| 1413 | int ncompactions; |
| 1414 | double save_drtpiv = fact->drtpiv; |
| 1415 | double save_zpivlu = fact->zpivlu; |
| 1416 | if (ifvsol > 0 && fact->invok < 0) { |
| 1417 | fact->zpivlu = CoinMin(0.9, fact->zpivlu * 10.); |
| 1418 | fact->drtpiv=1.0e-8; |
| 1419 | } |
| 1420 | |
| 1421 | rlink --; |
| 1422 | clink --; |
| 1423 | |
| 1424 | /* Function Body */ |
| 1425 | hcoli[nnetas] = 1; |
| 1426 | hrowi[nnetas] = 1; |
| 1427 | dluval[nnetas] = 0.0; |
| 1428 | /* set amount of work */ |
| 1429 | xrejct = 0; |
| 1430 | nsing = 0; |
| 1431 | kdnspt = nnetas + 1; |
| 1432 | fact->ndenuc = 0; |
| 1433 | /* Triangularize */ |
| 1434 | irtcod = c_ekktria(fact,rlink,clink, |
| 1435 | &nsing, |
| 1436 | &xnewco, &xnewro, |
| 1437 | &ncompactions, ninbas); |
| 1438 | fact->nnentl = ninbas - fact->nnentu; |
| 1439 | |
| 1440 | if (irtcod < 0) { |
| 1441 | /* no space or system error */ |
| 1442 | goto L8000; |
| 1443 | } |
| 1444 | |
| 1445 | if (irtcod != 0 && fact->invok >= 0) { |
| 1446 | goto L8500; /* 7 or 8 - pivot too small */ |
| 1447 | } |
| 1448 | #if 0 |
| 1449 | /* is this necessary ? */ |
| 1450 | lstart = nnetas - fact->nnentl + 1; |
| 1451 | for (i = lstart; i <= nnetas; ++i) { |
| 1452 | hrowi[i] = (hcoli[i] << 3); |
| 1453 | } |
| 1454 | #endif |
| 1455 | |
| 1456 | /* See if finished */ |
| 1457 | if (! (fact->npivots >= nrow)) { |
| 1458 | int nsing1; |
| 1459 | |
| 1460 | /* No - do nucleus */ |
| 1461 | |
| 1462 | nsing1 = c_ekkford(fact,hinrow, hincol, hpivro, hpivco, rlink, clink); |
| 1463 | nsing+= nsing1; |
| 1464 | if (nsing1 != 0 && fact->invok >= 0) { |
| 1465 | irtcod=7; |
| 1466 | goto L8500; |
| 1467 | } |
| 1468 | c_ekkmltf(fact,dluval, hcoli, mrstrt, hinrow, rlink); |
| 1469 | |
| 1470 | { |
| 1471 | bool callcmfy = false; |
| 1472 | |
| 1473 | if (nrow > 32767) { |
| 1474 | int count = 0; |
| 1475 | for (i = 1; i <= nrow; ++i) { |
| 1476 | count = CoinMax(count,hinrow[i]); |
| 1477 | } |
| 1478 | if (count + nrow - fact->npivots > 32767) { |
| 1479 | /* will have to use I*4 version of CMFC */ |
| 1480 | /* no changes to pointer params */ |
| 1481 | callcmfy = true; |
| 1482 | } |
| 1483 | } |
| 1484 | |
| 1485 | irtcod = (callcmfy ? c_ekkcmfy : c_ekkcmfc) |
| 1486 | (fact, |
| 1487 | rlink, clink, |
| 1488 | mwork, &mwork[nrow + 1], |
| 1489 | nnetas, |
| 1490 | &nsing, &xrejct, |
| 1491 | &xnewro, xnewco, |
| 1492 | &ncompactions); |
| 1493 | |
| 1494 | /* irtcod one of 0,-5,7,10 */ |
| 1495 | } |
| 1496 | |
| 1497 | if (irtcod < 0) { |
| 1498 | goto L8000; |
| 1499 | } |
| 1500 | kdnspt = nnetas - fact->nnentl; |
| 1501 | } |
| 1502 | |
| 1503 | /* return if error */ |
| 1504 | if (nsing > 0 || irtcod == 10) { |
| 1505 | irtcod = 99; |
| 1506 | } |
| 1507 | /* irtcod one of 0,7,99 */ |
| 1508 | |
| 1509 | if (irtcod != 0) { |
| 1510 | goto L8500; |
| 1511 | } |
| 1512 | ++fact->xnetal; |
| 1513 | mcstrt[fact->xnetal] = nnetas - fact->nnentl; |
| 1514 | |
| 1515 | /* give message if tight on memory */ |
| 1516 | if (ncompactions > 2 ) { |
| 1517 | if (1) { |
| 1518 | int etasize =CoinMax(4*fact->nnentu+(nnetas-fact->nnentl)+1000,fact->eta_size); |
| 1519 | fact->eta_size=CoinMin(static_cast<int>(1.2*fact->eta_size),etasize); |
| 1520 | if (fact->maxNNetas>0&&fact->eta_size> |
| 1521 | fact->maxNNetas) { |
| 1522 | fact->eta_size=fact->maxNNetas; |
| 1523 | } |
| 1524 | } /* endif */ |
| 1525 | } |
| 1526 | /* Shuffle U and multiply L by 8 (if assembler) */ |
| 1527 | { |
| 1528 | int jrtcod = c_ekkshff(fact, clink, rlink, |
| 1529 | xnewro); |
| 1530 | |
| 1531 | /* nR_etas is the number of R transforms; |
| 1532 | * it is incremented only in c_ekketsj. |
| 1533 | */ |
| 1534 | fact->nR_etas = 0; |
| 1535 | /*fact->R_etas_start = mcstrt+nrow+fact->nnentl+3;*/ |
| 1536 | fact->R_etas_start[1] = /*kdnspt - 1*/0; /* magic */ |
| 1537 | fact->R_etas_index = &fact->xeradr[kdnspt - 1]; |
| 1538 | fact->R_etas_element = &fact->xeeadr[kdnspt - 1]; |
| 1539 | |
| 1540 | |
| 1541 | |
| 1542 | if (jrtcod != 0) { |
| 1543 | irtcod = jrtcod; |
| 1544 | /* irtcod == 2 */ |
| 1545 | } |
| 1546 | } |
| 1547 | goto L8500; |
| 1548 | |
| 1549 | /* Fatal error */ |
| 1550 | L8000: |
| 1551 | |
| 1552 | if (1) { |
| 1553 | if (fact->maxNNetas != fact->eta_size && |
| 1554 | nnetas) { |
| 1555 | /* return and get more space */ |
| 1556 | |
| 1557 | /* double eta_size, unless that exceeds max (if there is one) */ |
| 1558 | fact->eta_size = fact->eta_size<<1; |
| 1559 | if (fact->maxNNetas > 0 && |
| 1560 | fact->eta_size > fact->maxNNetas) { |
| 1561 | fact->eta_size = fact->maxNNetas; |
| 1562 | } |
| 1563 | return (5); |
| 1564 | } |
| 1565 | } |
| 1566 | /*c_ekkmesg_no_i1(121, -irtcod);*/ |
| 1567 | irtcod = 3; |
| 1568 | |
| 1569 | L8500: |
| 1570 | /* restore pivot tolerance */ |
| 1571 | fact->drtpiv=save_drtpiv; |
| 1572 | fact->zpivlu=save_zpivlu; |
| 1573 | #ifndef NDEBUG |
| 1574 | if (fact->rows_ok) { |
| 1575 | int * hinrow=fact->xrnadr; |
| 1576 | if (!fact->xe2adr) { |
| 1577 | for (int i=1;i<=fact->nrow;i++) { |
| 1578 | assert (hinrow[i]>=0&&hinrow[i]<=fact->nrow); |
| 1579 | } |
| 1580 | } |
| 1581 | } |
| 1582 | #endif |
| 1583 | return (irtcod); |
| 1584 | } /* c_ekklfct */ |
| 1585 | |
| 1586 | |
| 1587 | /* |
| 1588 | summary of return codes |
| 1589 | |
| 1590 | c_ekktria: |
| 1591 | 7 small pivot |
| 1592 | -5 no memory |
| 1593 | |
| 1594 | c_ekkcsin: |
| 1595 | returns true if small pivot |
| 1596 | |
| 1597 | c_ekkrsin: |
| 1598 | -5 no memory |
| 1599 | 7 small pivot |
| 1600 | |
| 1601 | c_ekkfpvt: |
| 1602 | 10: no pivots found (singular) |
| 1603 | |
| 1604 | c_ekkcmfd: |
| 1605 | 10: zero pivot (not just small) |
| 1606 | |
| 1607 | c_ekkcmfc: |
| 1608 | -5: no memory |
| 1609 | any non-zero code from c_ekkcsin, c_ekkrsin, c_ekkfpvt, c_ekkprpv, c_ekkcmfd |
| 1610 | |
| 1611 | c_ekkshff: |
| 1612 | 2: singular |
| 1613 | |
| 1614 | c_ekklfct: |
| 1615 | any positive code from c_ekktria, c_ekkcmfc, c_ekkshff (2,7,10) |
| 1616 | *except* 10, which is changed to 99. |
| 1617 | all negative return codes are changed to 5 or 3 |
| 1618 | (5 == ran out of memory but could get more, |
| 1619 | 3 == ran out of memory, no luck) |
| 1620 | so: 2,3,5,7,99 |
| 1621 | |
| 1622 | c_ekklfct1: |
| 1623 | 1: c_ekksmem_invert failed |
| 1624 | 2: c_ekkslcf/c_ekkslct ran out of room |
| 1625 | any return code from c_ekklfct, except 2 and 5 |
| 1626 | */ |
| 1627 | |
| 1628 | void c_ekkrowq(int *hrow, int *hcol, double *dels, |
| 1629 | int *mrstrt, |
| 1630 | const int *hinrow, int nnrow, int ninbas) |
| 1631 | { |
| 1632 | int i, k, iak, jak; |
| 1633 | double daik; |
| 1634 | int iloc; |
| 1635 | double dsave; |
| 1636 | int isave, jsave; |
| 1637 | |
| 1638 | /* Order matrix rowwise using MRSTRT, DELS, HCOL */ |
| 1639 | |
| 1640 | k = 1; |
| 1641 | /* POSITION AFTER END OF ROW */ |
| 1642 | for (i = 1; i <= nnrow; ++i) { |
| 1643 | k += hinrow[i]; |
| 1644 | mrstrt[i] = k; |
| 1645 | } |
| 1646 | |
| 1647 | for (k = ninbas; k >= 1; --k) { |
| 1648 | iak = hrow[k]; |
| 1649 | if (iak != 0) { |
| 1650 | daik = dels[k]; |
| 1651 | jak = hcol[k]; |
| 1652 | hrow[k] = 0; |
| 1653 | while (1) { |
| 1654 | --mrstrt[iak]; |
| 1655 | |
| 1656 | iloc = mrstrt[iak]; |
| 1657 | |
| 1658 | dsave = dels[iloc]; |
| 1659 | isave = hrow[iloc]; |
| 1660 | jsave = hcol[iloc]; |
| 1661 | dels[iloc] = daik; |
| 1662 | hrow[iloc] = 0; |
| 1663 | hcol[iloc] = jak; |
| 1664 | |
| 1665 | if (isave == 0) |
| 1666 | break; |
| 1667 | daik = dsave; |
| 1668 | iak = isave; |
| 1669 | jak = jsave; |
| 1670 | } |
| 1671 | |
| 1672 | } |
| 1673 | } |
| 1674 | } /* c_ekkrowq */ |
| 1675 | |
| 1676 | |
| 1677 | |
| 1678 | int c_ekkrwco(const EKKfactinfo *fact,double *dluval, |
| 1679 | int *hcoli, int *mrstrt, int *hinrow, int xnewro) |
| 1680 | { |
| 1681 | int i, k, nz, kold; |
| 1682 | int kstart; |
| 1683 | const int nrow = fact->nrow; |
| 1684 | |
| 1685 | for (i = 1; i <= nrow; ++i) { |
| 1686 | nz = hinrow[i]; |
| 1687 | if (0 < nz) { |
| 1688 | /* save the last column entry of row i in hinrow */ |
| 1689 | /* and replace that entry with -i */ |
| 1690 | k = mrstrt[i] + nz - 1; |
| 1691 | hinrow[i] = hcoli[k]; |
| 1692 | hcoli[k] = -i; |
| 1693 | } |
| 1694 | } |
| 1695 | |
| 1696 | kstart = 0; |
| 1697 | kold = 0; |
| 1698 | for (k = 1; k <= xnewro; ++k) { |
| 1699 | if (hcoli[k] != 0) { |
| 1700 | ++kstart; |
| 1701 | |
| 1702 | /* if this is the last entry for the row... */ |
| 1703 | if (hcoli[k] < 0) { |
| 1704 | /* restore the entry */ |
| 1705 | i = -hcoli[k]; |
| 1706 | hcoli[k] = hinrow[i]; |
| 1707 | |
| 1708 | /* update mrstart and hinrow */ |
| 1709 | /* ACTUALLY, hinrow should already be accurate */ |
| 1710 | mrstrt[i] = kold + 1; |
| 1711 | hinrow[i] = kstart - kold; |
| 1712 | kold = kstart; |
| 1713 | } |
| 1714 | |
| 1715 | /* move the entry */ |
| 1716 | dluval[kstart] = dluval[k]; |
| 1717 | hcoli[kstart] = hcoli[k]; |
| 1718 | } |
| 1719 | } |
| 1720 | |
| 1721 | return (kstart); |
| 1722 | } /* c_ekkrwco */ |
| 1723 | |
| 1724 | |
| 1725 | |
| 1726 | int c_ekkrwcs(const EKKfactinfo *fact,double *dluval, int *hcoli, int *mrstrt, |
| 1727 | const int *hinrow, const EKKHlink *mwork, |
| 1728 | int nfirst) |
| 1729 | { |
| 1730 | #if 0 |
| 1731 | int *hcoli = fact->xecadr; |
| 1732 | double *dluval = fact->xeeadr; |
| 1733 | double *dvalpv = fact->kw3adr; |
| 1734 | int *mrstrt = fact->xrsadr; |
| 1735 | int *hrowi = fact->xeradr; |
| 1736 | int *mcstrt = fact->xcsadr; |
| 1737 | int *hinrow = fact->xrnadr; |
| 1738 | int *hincol = fact->xcnadr; |
| 1739 | int *hpivro = fact->krpadr; |
| 1740 | int *hpivco = fact->kcpadr; |
| 1741 | #endif |
| 1742 | int i, k, k1, k2, nz; |
| 1743 | int irow, iput; |
| 1744 | const int nrow = fact->nrow; |
| 1745 | |
| 1746 | /* Compress row file */ |
| 1747 | |
| 1748 | iput = 1; |
| 1749 | irow = nfirst; |
| 1750 | for (i = 1; i <= nrow; ++i) { |
| 1751 | nz = hinrow[irow]; |
| 1752 | k1 = mrstrt[irow]; |
| 1753 | if (k1 != iput) { |
| 1754 | mrstrt[irow] = iput; |
| 1755 | k2 = k1 + nz - 1; |
| 1756 | for (k = k1; k <= k2; ++k) { |
| 1757 | dluval[iput] = dluval[k]; |
| 1758 | hcoli[iput] = hcoli[k]; |
| 1759 | ++iput; |
| 1760 | } |
| 1761 | } else { |
| 1762 | iput += nz; |
| 1763 | } |
| 1764 | irow = mwork[irow].suc; |
| 1765 | } |
| 1766 | |
| 1767 | return (iput); |
| 1768 | } /* c_ekkrwcs */ |
| 1769 | void c_ekkrwct(const EKKfactinfo *fact,double *dluval, int *hcoli, int *mrstrt, |
| 1770 | const int *hinrow, const EKKHlink *mwork, |
| 1771 | const EKKHlink *rlink, |
| 1772 | const short *msort, double *dsort, |
| 1773 | int nlast, int xnewro) |
| 1774 | { |
| 1775 | #if 0 |
| 1776 | int *hcoli = fact->xecadr; |
| 1777 | double *dluval = fact->xeeadr; |
| 1778 | double *dvalpv = fact->kw3adr; |
| 1779 | int *mrstrt = fact->xrsadr; |
| 1780 | int *hrowi = fact->xeradr; |
| 1781 | int *mcstrt = fact->xcsadr; |
| 1782 | int *hinrow = fact->xrnadr; |
| 1783 | int *hincol = fact->xcnadr; |
| 1784 | int *hpivro = fact->krpadr; |
| 1785 | int *hpivco = fact->kcpadr; |
| 1786 | #endif |
| 1787 | int i, k, k1, nz, icol; |
| 1788 | int kmax; |
| 1789 | int irow, iput; |
| 1790 | int ilook; |
| 1791 | const int nrow = fact->nrow; |
| 1792 | |
| 1793 | iput = xnewro; |
| 1794 | irow = nlast; |
| 1795 | kmax = nrow - fact->npivots; |
| 1796 | for (i = 1; i <= nrow; ++i) { |
| 1797 | nz = hinrow[irow]; |
| 1798 | k1 = mrstrt[irow] - 1; |
| 1799 | if (rlink[irow].pre < 0) { |
| 1800 | /* pivoted on already */ |
| 1801 | iput -= nz; |
| 1802 | if (k1 != iput) { |
| 1803 | mrstrt[irow] = iput + 1; |
| 1804 | for (k = nz; k >= 1; --k) { |
| 1805 | dluval[iput + k] = dluval[k1 + k]; |
| 1806 | hcoli[iput + k] = hcoli[k1 + k]; |
| 1807 | } |
| 1808 | } |
| 1809 | } else { |
| 1810 | /* not pivoted - going dense */ |
| 1811 | iput -= kmax; |
| 1812 | mrstrt[irow] = iput + 1; |
| 1813 | c_ekkdzero( kmax, &dsort[1]); |
| 1814 | for (k = 1; k <= nz; ++k) { |
| 1815 | icol = hcoli[k1 + k]; |
| 1816 | ilook = msort[icol]; |
| 1817 | dsort[ilook] = dluval[k1 + k]; |
| 1818 | } |
| 1819 | c_ekkdcpy(kmax, |
| 1820 | (dsort+1), (dluval+iput + 1)); |
| 1821 | } |
| 1822 | irow = mwork[irow].pre; |
| 1823 | } |
| 1824 | } /* c_ekkrwct */ |
| 1825 | /* takes Uwe's modern structures and puts them back 20 years */ |
| 1826 | int c_ekkshff(EKKfactinfo *fact, |
| 1827 | EKKHlink *clink, EKKHlink *rlink, |
| 1828 | int xnewro) |
| 1829 | { |
| 1830 | int *hpivro = fact->krpadr; |
| 1831 | |
| 1832 | int i, j; |
| 1833 | int nbas, icol; |
| 1834 | int ipiv; |
| 1835 | const int nrow = fact->nrow; |
| 1836 | int nsing; |
| 1837 | |
| 1838 | for (i = 1; i <= nrow; ++i) { |
| 1839 | j = -rlink[i].pre; |
| 1840 | rlink[i].pre = j; |
| 1841 | if (j > 0 && j <= nrow) { |
| 1842 | hpivro[j] = i; |
| 1843 | } |
| 1844 | j = -clink[i].pre; |
| 1845 | clink[i].pre = j; |
| 1846 | } |
| 1847 | /* hpivro[j] is now (hopefully) the row that was pivoted on step j */ |
| 1848 | /* rlink[i].pre is the step in which row i was pivoted */ |
| 1849 | |
| 1850 | nbas = 0; |
| 1851 | nsing = 0; |
| 1852 | /* Decide if permutation wanted */ |
| 1853 | fact->first_dense=nrow-fact->ndenuc+1+1; |
| 1854 | fact->last_dense=nrow; |
| 1855 | |
| 1856 | /* rlink[].suc is dead at this point */ |
| 1857 | |
| 1858 | /* |
| 1859 | * replace the the basis index |
| 1860 | * with the pivot (or permuted) index generated by factorization. |
| 1861 | * This eventually goes into mpermu. |
| 1862 | */ |
| 1863 | for (icol = 1; icol <= nrow; ++icol) { |
| 1864 | int ibasis = icol; |
| 1865 | ipiv = clink[ibasis].pre; |
| 1866 | |
| 1867 | if (0 < ipiv && ipiv <= nrow) { |
| 1868 | rlink[ibasis].suc = ipiv; |
| 1869 | ++nbas; |
| 1870 | } |
| 1871 | } |
| 1872 | |
| 1873 | nsing = nrow - nbas; |
| 1874 | if (nsing > 0) { |
| 1875 | abort(); |
| 1876 | } |
| 1877 | |
| 1878 | /* if we reach here, then rlink[1..nrow].suc == clink[1..nrow].pre */ |
| 1879 | |
| 1880 | /* switch off sparse update if any dense section */ |
| 1881 | { |
| 1882 | const int notMuchRoom = (fact->nnentu + xnewro + 10 > fact->nnetas - fact->nnentl); |
| 1883 | |
| 1884 | /* must be same as in c_ekkshfv */ |
| 1885 | if (fact->ndenuc || notMuchRoom||nrow<C_EKK_GO_SPARSE) { |
| 1886 | #if PRINT_DEBUG |
| 1887 | if (fact->if_sparse_update) { |
| 1888 | printf("**** Switching off sparse update - dense - c_ekkshff\n" ); |
| 1889 | } |
| 1890 | #endif |
| 1891 | fact->if_sparse_update=0; |
| 1892 | } |
| 1893 | } |
| 1894 | |
| 1895 | /* hpivro[1..nrow] is not read by c_ekkshfv */ |
| 1896 | c_ekkshfv(fact, |
| 1897 | rlink, clink, |
| 1898 | xnewro); |
| 1899 | |
| 1900 | return (0); |
| 1901 | } /* c_ekkshff */ |
| 1902 | /* sorts on indices dragging elements with */ |
| 1903 | static void c_ekk_sort2(int * key , double * array2,int number) |
| 1904 | { |
| 1905 | int minsize=10; |
| 1906 | int n = number; |
| 1907 | int sp; |
| 1908 | int *v = key; |
| 1909 | int *m, t; |
| 1910 | int * ls[32] , * rs[32]; |
| 1911 | int *l , *r , c; |
| 1912 | double it; |
| 1913 | int j; |
| 1914 | /*check already sorted */ |
| 1915 | #ifndef LONG_MAX |
| 1916 | #define LONG_MAX 0x7fffffff; |
| 1917 | #endif |
| 1918 | int last=-LONG_MAX; |
| 1919 | for (j=0;j<number;j++) { |
| 1920 | if (key[j]>=last) { |
| 1921 | last=key[j]; |
| 1922 | } else { |
| 1923 | break; |
| 1924 | } /* endif */ |
| 1925 | } /* endfor */ |
| 1926 | if (j==number) { |
| 1927 | return; |
| 1928 | } /* endif */ |
| 1929 | sp = 0 ; ls[sp] = v ; rs[sp] = v + (n-1) ; |
| 1930 | while( sp >= 0 ) |
| 1931 | { |
| 1932 | if ( rs[sp] - ls[sp] > minsize ) |
| 1933 | { |
| 1934 | l = ls[sp] ; r = rs[sp] ; m = l + (r-l)/2 ; |
| 1935 | if ( *l > *m ) |
| 1936 | { |
| 1937 | t = *l ; *l = *m ; *m = t ; |
| 1938 | it = array2[l-v] ; array2[l-v] = array2[m-v] ; array2[m-v] = it ; |
| 1939 | } |
| 1940 | if ( *m > *r ) |
| 1941 | { |
| 1942 | t = *m ; *m = *r ; *r = t ; |
| 1943 | it = array2[m-v] ; array2[m-v] = array2[r-v] ; array2[r-v] = it ; |
| 1944 | if ( *l > *m ) |
| 1945 | { |
| 1946 | t = *l ; *l = *m ; *m = t ; |
| 1947 | it = array2[l-v] ; array2[l-v] = array2[m-v] ; array2[m-v] = it ; |
| 1948 | } |
| 1949 | } |
| 1950 | c = *m ; |
| 1951 | while ( r - l > 1 ) |
| 1952 | { |
| 1953 | while ( *(++l) < c ) ; |
| 1954 | while ( *(--r) > c ) ; |
| 1955 | t = *l ; *l = *r ; *r = t ; |
| 1956 | it = array2[l-v] ; array2[l-v] = array2[r-v] ; array2[r-v] = it ; |
| 1957 | } |
| 1958 | l = r - 1 ; |
| 1959 | if ( l < m ) |
| 1960 | { ls[sp+1] = ls[sp] ; |
| 1961 | rs[sp+1] = l ; |
| 1962 | ls[sp ] = r ; |
| 1963 | } |
| 1964 | else |
| 1965 | { ls[sp+1] = r ; |
| 1966 | rs[sp+1] = rs[sp] ; |
| 1967 | rs[sp ] = l ; |
| 1968 | } |
| 1969 | sp++ ; |
| 1970 | } |
| 1971 | else sp-- ; |
| 1972 | } |
| 1973 | for ( l = v , m = v + (n-1) ; l < m ; l++ ) |
| 1974 | { if ( *l > *(l+1) ) |
| 1975 | { |
| 1976 | c = *(l+1) ; |
| 1977 | it = array2[(l-v)+1] ; |
| 1978 | for ( r = l ; r >= v && *r > c ; r-- ) |
| 1979 | { |
| 1980 | *(r+1) = *r ; |
| 1981 | array2[(r-v)+1] = array2[(r-v)] ; |
| 1982 | } |
| 1983 | *(r+1) = c ; |
| 1984 | array2[(r-v)+1] = it ; |
| 1985 | } |
| 1986 | } |
| 1987 | } |
| 1988 | /* For each row compute reciprocal of pivot element and take out of */ |
| 1989 | /* Also use HLINK(1 to permute column numbers */ |
| 1990 | /* and HPIVRO to permute row numbers */ |
| 1991 | /* Sort into column order as was stored by row */ |
| 1992 | /* If Assembler then shift row numbers in L by 3 */ |
| 1993 | /* Put column numbers in U for L-U update */ |
| 1994 | /* and multiply U elements by - reciprocal of pivot element */ |
| 1995 | /* and set up backward pointers for pivot rows */ |
| 1996 | void c_ekkshfv(EKKfactinfo *fact, |
| 1997 | EKKHlink *rlink, EKKHlink *clink, |
| 1998 | int xnewro) |
| 1999 | { |
| 2000 | int *hcoli = fact->xecadr; |
| 2001 | double *dluval = fact->xeeadr; |
| 2002 | double *dvalpv = fact->kw3adr; |
| 2003 | int *mrstrt = fact->xrsadr; |
| 2004 | int *hrowi = fact->xeradr; |
| 2005 | int *mcstrt = fact->xcsadr; |
| 2006 | int *hinrow = fact->xrnadr; |
| 2007 | int *hincol = fact->xcnadr; |
| 2008 | int *hpivro = fact->krpadr; |
| 2009 | int *hpivco = fact->kcpadr; |
| 2010 | double *dpermu = fact->kadrpm; |
| 2011 | double * de2val = fact->xe2adr ? fact->xe2adr-1: 0; |
| 2012 | int nnentu = fact->nnentu; |
| 2013 | int xnetal = fact->xnetal; |
| 2014 | |
| 2015 | int numberSlacks; /* numberSlacks not read */ |
| 2016 | |
| 2017 | int i, j, k, kk, nel; |
| 2018 | int nroom; |
| 2019 | bool need_more_space; |
| 2020 | int ndenuc=fact->ndenuc; |
| 2021 | int if_sparse_update=fact->if_sparse_update; |
| 2022 | int nnentl = fact->nnentl; |
| 2023 | int nnetas = fact->nnetas; |
| 2024 | |
| 2025 | int *ihlink = (reinterpret_cast<int*> (clink))+1; /* can't use rlink for simple loop below */ |
| 2026 | |
| 2027 | const int nrow = fact->nrow; |
| 2028 | const int maxinv = fact->maxinv; |
| 2029 | |
| 2030 | /* this is not just a temporary - c_ekkbtrn etc use this */ |
| 2031 | int *mpermu = (reinterpret_cast<int*> (dpermu+nrow))+1; |
| 2032 | |
| 2033 | int * temp = ihlink+nrow; |
| 2034 | int * temp2 = temp+nrow; |
| 2035 | const int notMuchRoom = (nnentu + xnewro + 10 > nnetas - nnentl); |
| 2036 | |
| 2037 | /* compress hlink and make simpler */ |
| 2038 | for (i = 1; i <= nrow; ++i) { |
| 2039 | mpermu[i] = rlink[i].pre; |
| 2040 | ihlink[i] = rlink[i].suc; |
| 2041 | } |
| 2042 | /* mpermu[i] == the step in which row i was pivoted */ |
| 2043 | /* ihlink[i] == the step in which col i was pivoted */ |
| 2044 | |
| 2045 | /* must be same as in c_ekkshff */ |
| 2046 | if (fact->ndenuc||notMuchRoom||nrow<C_EKK_GO_SPARSE) { |
| 2047 | int ninbas; |
| 2048 | |
| 2049 | /* CHANGE COLUMN NUMBERS AND FILL IN RECIPROCALS */ |
| 2050 | /* ALSO RECOMPUTE NUMBER IN COLUMN */ |
| 2051 | /* initialize with a fake pivot in each column */ |
| 2052 | c_ekkscpy_0_1(nrow, 1, &hincol[1]); |
| 2053 | |
| 2054 | if (notMuchRoom) { |
| 2055 | fact->eta_size=static_cast<int>(1.05*fact->eta_size); |
| 2056 | |
| 2057 | /* eta_size can be no larger than maxNNetas */ |
| 2058 | if (fact->maxNNetas > 0 && |
| 2059 | fact->eta_size > fact->maxNNetas) { |
| 2060 | fact->eta_size=fact->maxNNetas; |
| 2061 | } |
| 2062 | } /* endif */ |
| 2063 | |
| 2064 | /* For each row compute reciprocal of pivot element and take out of U */ |
| 2065 | /* Also use ihlink to permute column numbers */ |
| 2066 | /* the rows are not stored compactly or in order, |
| 2067 | * so we have to find out where the last one is stored */ |
| 2068 | ninbas=0; |
| 2069 | for (i = 1; i <= nrow; ++i) { |
| 2070 | int jpiv=mpermu[i]; |
| 2071 | int nin=hinrow[i]; |
| 2072 | int krs = mrstrt[i]; |
| 2073 | int kre = krs + nin; |
| 2074 | |
| 2075 | temp[jpiv]=krs; |
| 2076 | temp2[jpiv]=nin; |
| 2077 | |
| 2078 | ninbas = CoinMax(kre, ninbas); |
| 2079 | |
| 2080 | /* c_ekktria etc ensure that the first row entry is the pivot */ |
| 2081 | dvalpv[jpiv] = 1. / dluval[krs]; |
| 2082 | hcoli[krs] = 0; /* probably needed for c_ekkrowq */ |
| 2083 | /* room for the pivot has already been allocated, so hincol ok */ |
| 2084 | |
| 2085 | for (kk = krs + 1; kk < kre; ++kk) { |
| 2086 | int j = ihlink[hcoli[kk]]; |
| 2087 | hcoli[kk] = j; /* permute the col index */ |
| 2088 | hrowi[kk] = jpiv; /* permute the row index */ |
| 2089 | ++hincol[j]; |
| 2090 | } |
| 2091 | } |
| 2092 | /* temp [mpermu[i]] == mrstrt[i] */ |
| 2093 | /* temp2[mpermu[i]] == hinrow[i] */ |
| 2094 | |
| 2095 | ninbas--; /* ???? */ |
| 2096 | c_ekkscpy(nrow, &temp[1], &mrstrt[1]); |
| 2097 | c_ekkscpy(nrow, &temp2[1], &hinrow[1]); |
| 2098 | |
| 2099 | /* now mrstrt, hinrow, hcoli and hrowi have been permuted */ |
| 2100 | |
| 2101 | /* Sort into column order as was stored by row */ |
| 2102 | /* There will be an empty entry in front of each each column, |
| 2103 | * because we initialized hincol to 1s, and c_ekkrowq fills in |
| 2104 | * entries from the back */ |
| 2105 | c_ekkrowq(hcoli, hrowi, dluval, mcstrt, hincol, nrow, ninbas); |
| 2106 | |
| 2107 | |
| 2108 | /* The shuffle zeroed out column pointers */ |
| 2109 | /* Put them back for L-U update */ |
| 2110 | /* Also multiply U elements by - reciprocal of pivot element */ |
| 2111 | /* Also decrement mcstrt/hincol to give "real" sizes */ |
| 2112 | for (i = 1; i <= nrow; ++i) { |
| 2113 | int kx = --mcstrt[i]; |
| 2114 | nel = --hincol[i]; |
| 2115 | hrowi[kx] = nel; |
| 2116 | dluval[kx] = dvalpv[i]; |
| 2117 | #ifndef NO_SHIFT |
| 2118 | for (int j=kx+1;j<=kx+nel;j++) |
| 2119 | hrowi[j] = SHIFT_INDEX(hrowi[j]); |
| 2120 | #endif |
| 2121 | } |
| 2122 | |
| 2123 | /* sort dense part */ |
| 2124 | for (i=nrow-ndenuc+1; i<=nrow; i++) { |
| 2125 | int kx = mcstrt[i]+1; /* "real" entries start after pivot */ |
| 2126 | int nel = hincol[i]; |
| 2127 | c_ekk_sort2(&hrowi[kx],&dluval[kx],nel); |
| 2128 | } |
| 2129 | |
| 2130 | /* Recompute number in U */ |
| 2131 | nnentu = mcstrt[nrow] + hincol[nrow]; |
| 2132 | mcstrt[nrow + 4] = nnentu + 1; /* magic - AND DEAD */ |
| 2133 | |
| 2134 | /* as not much room switch off fast etas */ |
| 2135 | mrstrt[1] = 0; /* magic */ |
| 2136 | fact->rows_ok = false; |
| 2137 | i = nrow + maxinv + 5; /* DEAD */ |
| 2138 | } else { |
| 2139 | /* *************************************** */ |
| 2140 | /* enough memory to do a bit faster */ |
| 2141 | /* For each row compute reciprocal of pivot element and */ |
| 2142 | /* take out of U */ |
| 2143 | /* Also use HLINK(1 to permute column numbers */ |
| 2144 | int ninbas=0; |
| 2145 | int ilast; /* last available entry */ |
| 2146 | int spareSpace; |
| 2147 | int * hcoli2; |
| 2148 | double * dluval2; |
| 2149 | /*int * hlink2 = ihlink+nrow; |
| 2150 | int * mrstrt2 = hlink2+nrow;*/ |
| 2151 | int =10000; |
| 2152 | /* mwork has order of row copy */ |
| 2153 | EKKHlink *mwork = (reinterpret_cast<EKKHlink*>(fact->kw1adr))-1; |
| 2154 | fact->rows_ok = true; |
| 2155 | |
| 2156 | if (if_sparse_update) { |
| 2157 | ilast=nnetas-nnentl; |
| 2158 | } else { |
| 2159 | /* missing out nnentl stuff */ |
| 2160 | ilast=nnetas; |
| 2161 | } |
| 2162 | spareSpace=ilast-nnentu; |
| 2163 | need_more_space=false; |
| 2164 | hcoli2 = hcoli+spareSpace; |
| 2165 | /* save clean row copy if enough room */ |
| 2166 | nroom = (spareSpace) / nrow; |
| 2167 | if ((nnentu<<3)>150*maxinv) { |
| 2168 | extraSpace=150*maxinv; |
| 2169 | } else { |
| 2170 | extraSpace=nnentu<<3; |
| 2171 | } |
| 2172 | if (nrow<10000) { |
| 2173 | if (nroom < 10) { |
| 2174 | need_more_space=true; |
| 2175 | } |
| 2176 | } else { |
| 2177 | if (nroom < 5&&!if_sparse_update) { |
| 2178 | need_more_space=true; |
| 2179 | } |
| 2180 | } |
| 2181 | if (nroom > CoinMin(50,maxinv)) { |
| 2182 | need_more_space=false; |
| 2183 | } |
| 2184 | if (need_more_space) { |
| 2185 | if (if_sparse_update) { |
| 2186 | int i1=fact->eta_size+10*nrow; |
| 2187 | fact->eta_size=static_cast<int>(1.2*fact->eta_size); |
| 2188 | if (i1>fact->eta_size) { |
| 2189 | fact->eta_size=i1; |
| 2190 | } |
| 2191 | } else { |
| 2192 | fact->eta_size=static_cast<int>(1.05*fact->eta_size); |
| 2193 | } |
| 2194 | } else { |
| 2195 | if (nroom<11) { |
| 2196 | if (if_sparse_update) { |
| 2197 | int i1=fact->eta_size+(11-nroom)*nrow; |
| 2198 | fact->eta_size=static_cast<int>(1.2*fact->eta_size); |
| 2199 | if (i1>fact->eta_size) { |
| 2200 | fact->eta_size=i1; |
| 2201 | } |
| 2202 | } |
| 2203 | } |
| 2204 | } |
| 2205 | if (fact->maxNNetas>0&&fact->eta_size> |
| 2206 | fact->maxNNetas) { |
| 2207 | fact->eta_size=fact->maxNNetas; |
| 2208 | } |
| 2209 | { |
| 2210 | /* we can swap de2val and dluval to save copying */ |
| 2211 | int * eta_last=mpermu+nrow*2+3; |
| 2212 | int * eta_next=eta_last+nrow+2; |
| 2213 | int last=0; |
| 2214 | eta_last[0]=-1; |
| 2215 | if (nnentl) { |
| 2216 | /* went into c_ekkcmfc - if not then in order */ |
| 2217 | int next; |
| 2218 | /*next=mwork[((nrow+1)<<1)+1];*/ |
| 2219 | next=mwork[nrow+1].pre; |
| 2220 | #ifdef DEBUG |
| 2221 | j=mrstrt[next]; |
| 2222 | #endif |
| 2223 | for (i = 1; i <= nrow; ++i) { |
| 2224 | int iperm=mpermu[next]; |
| 2225 | eta_next[last]=iperm; |
| 2226 | eta_last[iperm]=last; |
| 2227 | temp[iperm] = mrstrt[next]; |
| 2228 | temp2[iperm] = hinrow[next]; |
| 2229 | #ifdef DEBUG |
| 2230 | if (mrstrt[next]!=j) abort(); |
| 2231 | j=mrstrt[next]+hinrow[next]; |
| 2232 | #endif |
| 2233 | /*next= mwork[(next<<1)+2];*/ |
| 2234 | next= mwork[next].suc; |
| 2235 | last=iperm; |
| 2236 | } |
| 2237 | } else { |
| 2238 | #ifdef DEBUG |
| 2239 | j=0; |
| 2240 | #endif |
| 2241 | for (i = 1; i <= nrow; ++i) { |
| 2242 | int iperm=mpermu[i]; |
| 2243 | eta_next[last]=iperm; |
| 2244 | eta_last[iperm]=last; |
| 2245 | temp[iperm] = mrstrt[i]; |
| 2246 | temp2[iperm] = hinrow[i]; |
| 2247 | last=iperm; |
| 2248 | #ifdef DEBUG |
| 2249 | if (mrstrt[i]<=j) abort(); |
| 2250 | if (i>1&&mrstrt[i]!=j+hinrow[i-1]) abort(); |
| 2251 | j=mrstrt[i]; |
| 2252 | #endif |
| 2253 | } |
| 2254 | } |
| 2255 | eta_next[last]=nrow+1; |
| 2256 | eta_last[nrow+1]=last; |
| 2257 | eta_next[nrow+1]=nrow+2; |
| 2258 | c_ekkscpy(nrow, &temp[1], &mrstrt[1]); |
| 2259 | c_ekkscpy(nrow, &temp2[1], &hinrow[1]); |
| 2260 | i=eta_last[nrow+1]; |
| 2261 | ninbas=mrstrt[i]+hinrow[i]-1; |
| 2262 | #ifdef DEBUG |
| 2263 | if (spareSpace<ninbas) { |
| 2264 | abort(); |
| 2265 | } |
| 2266 | #endif |
| 2267 | c_ekkizero( nrow, &hincol[1]); |
| 2268 | #ifdef DEBUG |
| 2269 | for (i=nrow; i>0; i--) { |
| 2270 | int krs = mrstrt[i]; |
| 2271 | int jpiv = hcoli[krs]; |
| 2272 | if (ihlink[jpiv]!=i) abort(); |
| 2273 | } |
| 2274 | #endif |
| 2275 | for (i = 1; i <= ninbas; ++i) { |
| 2276 | k = hcoli[i]; |
| 2277 | k = ihlink[k]; |
| 2278 | #ifdef DEBUG |
| 2279 | if (k<=0||k>nrow) abort(); |
| 2280 | #endif |
| 2281 | hcoli[i]=k; |
| 2282 | hincol[k]++; |
| 2283 | } |
| 2284 | #ifdef DEBUG |
| 2285 | for (i=nrow; i>0; i--) { |
| 2286 | int krs = mrstrt[i]; |
| 2287 | int jpiv = hcoli[krs]; |
| 2288 | if (jpiv!=i) abort(); |
| 2289 | if (krs>ninbas) abort(); |
| 2290 | } |
| 2291 | #endif |
| 2292 | /* Sort into column order as was stored by row */ |
| 2293 | k = 1; |
| 2294 | /* Position */ |
| 2295 | for (kk = 1; kk <= nrow; ++kk) { |
| 2296 | nel=hincol[kk]; |
| 2297 | mcstrt[kk] = k; |
| 2298 | hrowi[k]=nel-1; |
| 2299 | k += hincol[kk]; |
| 2300 | hincol[kk]=0; |
| 2301 | } |
| 2302 | if (de2val) { |
| 2303 | dluval2=de2val; |
| 2304 | } else { |
| 2305 | dluval2=dluval+ninbas; |
| 2306 | } |
| 2307 | nnentu = k-1; |
| 2308 | mcstrt[nrow + 4] = nnentu + 1; |
| 2309 | /* create column copy */ |
| 2310 | for (i=nrow; i>0; i--) { |
| 2311 | int krs = mrstrt[i]; |
| 2312 | int kre = krs + hinrow[i]; |
| 2313 | hinrow[i]--; |
| 2314 | mrstrt[i]++; |
| 2315 | { |
| 2316 | int kx = mcstrt[i]; |
| 2317 | /*nel = hincol[i]; |
| 2318 | if (hrowi[kx]!=nel) abort(); |
| 2319 | hrowi[kx] = nel-1;*/ |
| 2320 | dluval2[kx] = 1.0 /dluval[krs]; |
| 2321 | /*hincol[i]=0;*/ |
| 2322 | for (kk = krs + 1; kk < kre; ++kk) { |
| 2323 | int j = hcoli[kk]; |
| 2324 | int iput = hincol[j]+1; |
| 2325 | hincol[j]=iput; |
| 2326 | iput+= mcstrt[j]; |
| 2327 | hrowi[iput] = SHIFT_INDEX(i); |
| 2328 | dluval2[iput] = dluval[kk]; |
| 2329 | } |
| 2330 | } |
| 2331 | } |
| 2332 | if (de2val) { |
| 2333 | double * a=dluval; |
| 2334 | double * address; |
| 2335 | /* move first down */ |
| 2336 | i=eta_next[0]; |
| 2337 | { |
| 2338 | int krs=mrstrt[i]; |
| 2339 | nel=hinrow[i]; |
| 2340 | for (j=1;j<=nel;j++) { |
| 2341 | hcoli[j]=hcoli[j+krs-1]; |
| 2342 | dluval[j]=dluval[j+krs-1]; |
| 2343 | } |
| 2344 | } |
| 2345 | mrstrt[i]=1; |
| 2346 | /****** swap dluval and de2val !!!! ******/ |
| 2347 | /* should work even for dspace */ |
| 2348 | /* move L part across */ |
| 2349 | address=fact->xeeadr+1; |
| 2350 | fact->xeeadr=fact->xe2adr-1; |
| 2351 | fact->xe2adr=address; |
| 2352 | if (nnentl) { |
| 2353 | int n=xnetal-nrow-maxinv-5; |
| 2354 | int j1,j2; |
| 2355 | int * mcstrt2=mcstrt+nrow+maxinv+4; |
| 2356 | j2 = mcstrt2[1]; |
| 2357 | j1 = mcstrt2[n+1]+1; |
| 2358 | #if 0 |
| 2359 | memcpy(de2val+j1,dluval+j1,(j2-j1+1)*sizeof(double)); |
| 2360 | #else |
| 2361 | c_ekkdcpy(j2-j1+1, |
| 2362 | (dluval+j1),(de2val+j1)); |
| 2363 | #endif |
| 2364 | } |
| 2365 | dluval = de2val; |
| 2366 | de2val = a; |
| 2367 | } else { |
| 2368 | /* copy down dluval */ |
| 2369 | #if 0 |
| 2370 | memcpy(&dluval[1],&dluval2[1],ninbas*sizeof(double)); |
| 2371 | #else |
| 2372 | c_ekkdcpy(ninbas, |
| 2373 | (dluval2+1),(dluval+1)); |
| 2374 | #endif |
| 2375 | } |
| 2376 | /* sort dense part */ |
| 2377 | for (i=nrow-ndenuc+1;i<=nrow;i++) { |
| 2378 | int kx = mcstrt[i]+1; |
| 2379 | int nel = hincol[i]; |
| 2380 | c_ekk_sort2(&hrowi[kx],&dluval[kx],nel); |
| 2381 | } |
| 2382 | } |
| 2383 | mrstrt[nrow + 1] = ilast + 1; |
| 2384 | } |
| 2385 | /* Find first non slack */ |
| 2386 | for (i = 1; i <= nrow; ++i) { |
| 2387 | int kcs = mcstrt[i]; |
| 2388 | if (hincol[i] != 0 || dluval[kcs] != SLACK_VALUE) { |
| 2389 | break; |
| 2390 | } |
| 2391 | } |
| 2392 | numberSlacks = i - 1; |
| 2393 | { |
| 2394 | /* set slacks to 1 */ |
| 2395 | int * array = fact->krpadr + ( fact->nrowmx+2); |
| 2396 | int nSet = (numberSlacks)>>5; |
| 2397 | int n2 = (fact->nrowmx+32)>>5; |
| 2398 | int i; |
| 2399 | memset(array,0xff,nSet*sizeof(int)); |
| 2400 | memset(array+nSet,0,(n2-nSet)*sizeof(int)); |
| 2401 | for (i=nSet<<5;i<=numberSlacks;i++) |
| 2402 | c_ekk_Set(array,i); |
| 2403 | c_ekk_Unset(array,fact->nrow+1); /* make sure off end not slack */ |
| 2404 | #ifndef NDEBUG |
| 2405 | for (i=1;i<=numberSlacks;i++) |
| 2406 | assert (c_ekk_IsSet(array,i)); |
| 2407 | for (;i<=fact->nrow;i++) |
| 2408 | assert (!c_ekk_IsSet(array,i)); |
| 2409 | #endif |
| 2410 | } |
| 2411 | |
| 2412 | /* and set up backward pointers */ |
| 2413 | /* clean up HPIVCO for fancy assembler stuff */ |
| 2414 | /* xnetal was initialized to nrow + maxinv + 4 in c_ekktria, and grows */ |
| 2415 | c_ekkscpy_0_1(maxinv + 1, 1, &hpivco[nrow+4]); /* magic */ |
| 2416 | |
| 2417 | hpivco[xnetal] = 1; |
| 2418 | /* shuffle down for gaps so can get rid of hpivco for L */ |
| 2419 | { |
| 2420 | const int lstart = nrow + maxinv + 5; |
| 2421 | int n=xnetal-lstart ; /* number of L entries */ |
| 2422 | int add,iel; |
| 2423 | int * hpivco_L = &hpivco[lstart]; |
| 2424 | int * mcstrt_L = &mcstrt[lstart]; |
| 2425 | if (nnentl) { |
| 2426 | /* elements of L were stored in descending order in dluval/hcoli */ |
| 2427 | int kle = mcstrt_L[0]; |
| 2428 | int kls = mcstrt_L[n]+1; |
| 2429 | |
| 2430 | if(if_sparse_update) { |
| 2431 | int i2,iel; |
| 2432 | int * mrstrt2 = &mrstrt[nrow]; |
| 2433 | |
| 2434 | /* need row copy of L */ |
| 2435 | /* hpivro is spare for counts; just used as a temp buffer */ |
| 2436 | c_ekkizero( nrow, &hpivro[1]); |
| 2437 | |
| 2438 | /* permute L indices; count L row lengths */ |
| 2439 | for (iel = kls; iel <= kle; ++iel) { |
| 2440 | int jrow = mpermu[UNSHIFT_INDEX(hrowi[iel])]; |
| 2441 | hpivro[jrow]++; |
| 2442 | hrowi[iel] = SHIFT_INDEX(jrow); |
| 2443 | } |
| 2444 | { |
| 2445 | int ibase=nnetas-nnentl+1; |
| 2446 | int firstDoRow=0; |
| 2447 | for (i=1;i<=nrow;i++) { |
| 2448 | mrstrt2[i]=ibase; |
| 2449 | if (hpivro[i]&&!firstDoRow) { |
| 2450 | firstDoRow=i; |
| 2451 | } |
| 2452 | ibase+=hpivro[i]; |
| 2453 | hpivro[i]=mrstrt2[i]; |
| 2454 | } |
| 2455 | if (!firstDoRow) { |
| 2456 | firstDoRow=nrow+1; |
| 2457 | } |
| 2458 | mrstrt2[i]=ibase; |
| 2459 | fact->firstDoRow = firstDoRow; |
| 2460 | } |
| 2461 | i2=mcstrt_L[n]; |
| 2462 | for (i = n-1; i >= 0; --i) { |
| 2463 | int i1 = mcstrt_L[i]; |
| 2464 | int ipiv=hpivco_L[i]; |
| 2465 | ipiv=mpermu[ipiv]; |
| 2466 | hpivco_L[i]=ipiv; |
| 2467 | for (iel=i2 ; iel < i1; iel++) { |
| 2468 | int irow = UNSHIFT_INDEX(hrowi[iel+1]); |
| 2469 | int iput=hpivro[irow]; |
| 2470 | hpivro[irow]=iput+1; |
| 2471 | hcoli[iput]=ipiv; |
| 2472 | de2val[iput]=dluval[iel+1]; |
| 2473 | } |
| 2474 | i2=i1; |
| 2475 | } |
| 2476 | } else { |
| 2477 | /* just permute row numbers */ |
| 2478 | |
| 2479 | for (j = 0; j < n; ++j) { |
| 2480 | hpivco_L[j] = mpermu[hpivco_L[j]]; |
| 2481 | } |
| 2482 | for (iel = kls; iel <= kle; ++iel) { |
| 2483 | int jrow = mpermu[UNSHIFT_INDEX(hrowi[iel])]; |
| 2484 | hrowi[iel] = SHIFT_INDEX(jrow); |
| 2485 | } |
| 2486 | } |
| 2487 | |
| 2488 | add=hpivco_L[n-1]-hpivco_L[0]-n+1; |
| 2489 | if (add) { |
| 2490 | int i; |
| 2491 | int last = hpivco_L[n-1]; |
| 2492 | int laststart = mcstrt_L[n]; |
| 2493 | int base=hpivco_L[0]-1; |
| 2494 | /* adjust so numbers match */ |
| 2495 | mcstrt_L-=base; |
| 2496 | hpivco_L-=base; |
| 2497 | mcstrt_L[last]=laststart; |
| 2498 | for (i=n-1;i>=0;i--) { |
| 2499 | int ipiv=hpivco_L[i+base]; |
| 2500 | while (ipiv<last) { |
| 2501 | mcstrt_L[last-1]=laststart; |
| 2502 | hpivco_L[last-1]=last; |
| 2503 | last--; |
| 2504 | } |
| 2505 | laststart=mcstrt_L[i+base]; |
| 2506 | mcstrt_L[last-1]=laststart; |
| 2507 | hpivco_L[last-1]=last; |
| 2508 | last--; |
| 2509 | } |
| 2510 | xnetal+=add; |
| 2511 | } |
| 2512 | } |
| 2513 | //int lstart=fact->lstart; |
| 2514 | //const int * COIN_RESTRICT hpivco = fact->kcpadr; |
| 2515 | fact->firstLRow = hpivco[lstart]; |
| 2516 | } |
| 2517 | fact->nnentu = nnentu; |
| 2518 | fact->xnetal = xnetal; |
| 2519 | /* now we have xnetal * we can set up pointers */ |
| 2520 | clp_setup_pointers(fact); |
| 2521 | |
| 2522 | /* this is the array used in c_ekkbtrn; it is passed to c_ekkbtju as hpivco. |
| 2523 | * this gets modified by F-T as we pivot columns in and out. |
| 2524 | */ |
| 2525 | { |
| 2526 | /* do new hpivco */ |
| 2527 | int * hpivco_new = fact->kcpadr+1; |
| 2528 | int * back = &fact->kcpadr[2*nrow+maxinv+4]; |
| 2529 | /* set zeroth to stop illegal read */ |
| 2530 | back[0]=1; |
| 2531 | |
| 2532 | hpivco_new[nrow+1]=nrow+1; /* deliberate loop for dense tests */ |
| 2533 | hpivco_new[0]=1; |
| 2534 | |
| 2535 | for (i=1;i<=nrow;i++) { |
| 2536 | hpivco_new[i]=i+1; |
| 2537 | back[i+1]=i; |
| 2538 | } |
| 2539 | back[1]=0; |
| 2540 | |
| 2541 | fact->first_dense = CoinMax(fact->first_dense,4); |
| 2542 | fact->numberSlacks=numberSlacks; |
| 2543 | fact->lastSlack=numberSlacks; |
| 2544 | fact->firstNonSlack=hpivco_new[numberSlacks]; |
| 2545 | } |
| 2546 | |
| 2547 | /* also zero out permute region and nonzero */ |
| 2548 | c_ekkdzero( nrow, (dpermu+1)); |
| 2549 | |
| 2550 | if (if_sparse_update) { |
| 2551 | char * nonzero = reinterpret_cast<char *> (&mpermu[nrow+1]); /* used in c_ekkbtrn */ |
| 2552 | /*c_ekkizero(nrow,(int *)nonzero);*/ |
| 2553 | c_ekkczero(nrow,nonzero); |
| 2554 | /*memset(nonzero,0,nrow*sizeof(int));*/ /* for faster method */ |
| 2555 | } |
| 2556 | for (i = 1; i <= nrow; ++i) { |
| 2557 | hpivro[mpermu[i]] = i; |
| 2558 | } |
| 2559 | |
| 2560 | } /* c_ekkshfv */ |
| 2561 | |
| 2562 | |
| 2563 | static void c_ekkclcp1(const int *hcol, const int * mrstrt, |
| 2564 | int *hrow, int *mcstrt, |
| 2565 | int *hincol, int nnrow, int nncol, |
| 2566 | int ninbas) |
| 2567 | { |
| 2568 | int i, j, kc, kr, kre, krs, icol; |
| 2569 | int iput; |
| 2570 | |
| 2571 | /* Create columnwise storage of row indices */ |
| 2572 | |
| 2573 | kc = 1; |
| 2574 | for (j = 1; j <= nncol; ++j) { |
| 2575 | mcstrt[j] = kc; |
| 2576 | kc += hincol[j]; |
| 2577 | hincol[j] = 0; |
| 2578 | } |
| 2579 | mcstrt[nncol + 1] = ninbas + 1; |
| 2580 | |
| 2581 | for (i = 1; i <= nnrow; ++i) { |
| 2582 | krs = mrstrt[i]; |
| 2583 | kre = mrstrt[i + 1] - 1; |
| 2584 | for (kr = krs; kr <= kre; ++kr) { |
| 2585 | icol = hcol[kr]; |
| 2586 | iput = hincol[icol]; |
| 2587 | hincol[icol] = iput + 1; |
| 2588 | iput += mcstrt[icol]; |
| 2589 | hrow[iput] = i; |
| 2590 | } |
| 2591 | } |
| 2592 | } /* c_ekkclcp */ |
| 2593 | inline void c_ekkclcp2(const int *hcol, const double *dels, const int * mrstrt, |
| 2594 | int *hrow, double *dels2, int *mcstrt, |
| 2595 | int *hincol, int nnrow, int nncol, |
| 2596 | int ninbas) |
| 2597 | { |
| 2598 | int i, j, kc, kr, kre, krs, icol; |
| 2599 | int iput; |
| 2600 | |
| 2601 | /* Create columnwise storage of row indices */ |
| 2602 | |
| 2603 | kc = 1; |
| 2604 | for (j = 1; j <= nncol; ++j) { |
| 2605 | mcstrt[j] = kc; |
| 2606 | kc += hincol[j]; |
| 2607 | hincol[j] = 0; |
| 2608 | } |
| 2609 | mcstrt[nncol + 1] = ninbas + 1; |
| 2610 | |
| 2611 | for (i = 1; i <= nnrow; ++i) { |
| 2612 | krs = mrstrt[i]; |
| 2613 | kre = mrstrt[i + 1] - 1; |
| 2614 | for (kr = krs; kr <= kre; ++kr) { |
| 2615 | icol = hcol[kr]; |
| 2616 | iput = hincol[icol]; |
| 2617 | hincol[icol] = iput + 1; |
| 2618 | iput += mcstrt[icol]; |
| 2619 | hrow[iput] = i; |
| 2620 | dels2[iput] = dels[kr]; |
| 2621 | } |
| 2622 | } |
| 2623 | } /* c_ekkclcp */ |
| 2624 | int c_ekkslcf(const EKKfactinfo *fact) |
| 2625 | { |
| 2626 | int * hrow = fact->xeradr; |
| 2627 | int * hcol = fact->xecadr; |
| 2628 | double * dels = fact->xeeadr; |
| 2629 | int * hinrow = fact->xrnadr; |
| 2630 | int * hincol = fact->xcnadr; |
| 2631 | int * mrstrt = fact->xrsadr; |
| 2632 | int * mcstrt = fact->xcsadr; |
| 2633 | const int nrow = fact->nrow; |
| 2634 | int ninbas; |
| 2635 | /* space for etas */ |
| 2636 | const int nnetas = fact->nnetas; |
| 2637 | ninbas=mcstrt[nrow+1]-1; |
| 2638 | |
| 2639 | /* Now sort */ |
| 2640 | if (ninbas << 1 > nnetas) { |
| 2641 | /* Put it in row order */ |
| 2642 | int i,k; |
| 2643 | c_ekkrowq(hrow, hcol, dels, mrstrt, hinrow, nrow, ninbas); |
| 2644 | k = 1; |
| 2645 | for (i = 1; i <= nrow; ++i) { |
| 2646 | mrstrt[i] = k; |
| 2647 | k += hinrow[i]; |
| 2648 | } |
| 2649 | mrstrt[nrow + 1] = k; |
| 2650 | |
| 2651 | /* make a column copy without the extra values */ |
| 2652 | c_ekkclcp1(hcol, mrstrt, hrow, mcstrt, hincol, nrow, nrow, ninbas); |
| 2653 | } else { |
| 2654 | /* Move elements up memory */ |
| 2655 | c_ekkdcpy(ninbas, |
| 2656 | (dels+1), (dels+ninbas + 1)); |
| 2657 | |
| 2658 | /* make a row copy with the extra values */ |
| 2659 | c_ekkclcp2(hrow, &dels[ninbas], mcstrt, hcol, dels, mrstrt, hinrow, nrow, nrow, ninbas); |
| 2660 | } |
| 2661 | return (ninbas); |
| 2662 | } /* c_ekkslcf */ |
| 2663 | /* Uwe H. Suhl, September 1986 */ |
| 2664 | /* Removes lower and upper triangular factors from the matrix. */ |
| 2665 | /* Code for routine: 102 */ |
| 2666 | /* Return codes: */ |
| 2667 | /* 0: ok */ |
| 2668 | /* -5: not enough space in row file */ |
| 2669 | /* 7: pivot too small - col sing */ |
| 2670 | /* |
| 2671 | * This selects singleton columns and rows for the LU factorization. |
| 2672 | * Singleton columns require no |
| 2673 | * |
| 2674 | * (1) Note that columns are processed using a queue, not a stack; |
| 2675 | * this produces better pivots. |
| 2676 | * |
| 2677 | * (2) At most nrows elements are ever entered into the queue. |
| 2678 | * |
| 2679 | * (3) When pivoting singleton columns, every column that is part of |
| 2680 | * the pivot row is shortened by one, including the singleton column |
| 2681 | * itself; the hincol entries are updated appropriately. |
| 2682 | * Thus, pivoting on a singleton column may create other singleton columns |
| 2683 | * (but not singleton rows). |
| 2684 | * The dual property is true for rows. |
| 2685 | * |
| 2686 | * (4) Row entries (hrowi) are not changed when pivoting singleton columns. |
| 2687 | * Singleton columns that are created as a result of pivoting the |
| 2688 | * rows of other singleton columns will therefore have row entries |
| 2689 | * corresponding to those pivoted rows. Since we need to find the |
| 2690 | * row entry for the row being pivoted, we have to |
| 2691 | * search its row entries for the one whose hlink entry indicates |
| 2692 | * that it has not yet been pivoted. |
| 2693 | * |
| 2694 | * (9) As a result of pivoting columns, sections in hrowi corresponding to |
| 2695 | * pivoted columns are no longer needed, and entries in sections |
| 2696 | * for non-pivoted columns may have entries corresponding to pivoted rows. |
| 2697 | * This is why hrowi needs to be compacted. |
| 2698 | * |
| 2699 | * (5) When the row_pre and col_pre fields of the hlink struct contain |
| 2700 | * negative values, they indicate that the row has been pivoted, and |
| 2701 | * the negative of that value is the pivot order. |
| 2702 | * That is the only use for these fields in this routine. |
| 2703 | * |
| 2704 | * (6) This routine assumes that hlink is initialized to zeroes. |
| 2705 | * Under this assumption, the following is an invariant in this routine: |
| 2706 | * |
| 2707 | * (clink[i].pre < 0) ==> (hincol[i]==0) |
| 2708 | * |
| 2709 | * The converse is not true; see (15). |
| 2710 | * |
| 2711 | * The dual is also true, but only while pivoting singletong rows, |
| 2712 | * since we don't update hinrow while pivoting columns; |
| 2713 | * THESE VALUES ARE USED LATER, BUT I DON'T UNDERSTAND HOW YET. |
| 2714 | * |
| 2715 | * (7) hpivco is used for two purposes. The low end is used to implement the |
| 2716 | * queue when pivoting columns; the high end is used to hold eta-matrix |
| 2717 | * entries. |
| 2718 | * |
| 2719 | * (8) As a result of pivoting columns, for all i:1<=i<=nrow, either |
| 2720 | * hinrow[i] has not changed |
| 2721 | * or |
| 2722 | * hinrow[i] = 0 |
| 2723 | * This is another way of saying that pivoting singleton columns cannot |
| 2724 | * create singleton rows. |
| 2725 | * The dual holds for hincol after pivoting rows. |
| 2726 | * |
| 2727 | * (10) In constrast to (4), while pivoting rows we |
| 2728 | * do not let the hcoli get out-of-date. That is because as part of |
| 2729 | * the process of numerical pivoting we have to find the row entries |
| 2730 | * for all the rows in the pivot column, so we may as well keep the |
| 2731 | * entries up to date. This is done by moving the last column entry |
| 2732 | * for each row into the entry that was used for the pivot column. |
| 2733 | * |
| 2734 | * (11) When pivoting a column, we must find the pivot row entry in |
| 2735 | * its row table. Sometimes we search for other things at the same time. |
| 2736 | * The same is true for pivoting columns. This search should never |
| 2737 | * fail. |
| 2738 | * |
| 2739 | * (12) Information concerning the eta matrices is stored in the high |
| 2740 | * ends of arrays that are also used to store information concerning |
| 2741 | * the basis; these arrays are: hpivco, mcstrt, dluval and hcoli. |
| 2742 | * Information is only stored in these arrays as a part of pivoting |
| 2743 | * singleton rows, since the only thing that needs to be saved as |
| 2744 | * a part of pivoting singleton columns is which rows and columns were chosen, |
| 2745 | * and this is stored in hlink. |
| 2746 | * Since they have to share the same array, the eta information grows |
| 2747 | * downward instead of upward. Eventually, eta information may grow |
| 2748 | * down to the top of the basis information. As pivoting proceeds, |
| 2749 | * more and more of this information is no longer needed, so when this |
| 2750 | * happens we can try compacting the arrays to see if we can recover |
| 2751 | * enough space. lstart points at the bottom entry in the arrays, |
| 2752 | * xnewro/xnewco at the top of the basis information, and each time we |
| 2753 | * pivot a singleton row we know that we will need exactly as many new |
| 2754 | * entries as there are rows in the pivot column, so we can easily |
| 2755 | * determine if we need more room. The variable maxinv may be used |
| 2756 | * to reserve extra room when inversion starts. |
| 2757 | * |
| 2758 | * (13) Eta information is stored in a fashion that is similar to how |
| 2759 | * matrices are stored. There is one entry in hpivco and mcstrt for |
| 2760 | * each eta (other than the initial ones for singleton columns and |
| 2761 | * for singleton rows that turn out to be singleton columns), |
| 2762 | * in the order they were chosen. hpivco records the pivot row, |
| 2763 | * and mcstrt points at the first entry in the other two arrays |
| 2764 | * for this row. dluval contains the actual eta values for the column, |
| 2765 | * and hcoli the rows these values were in. |
| 2766 | * These entries in mcstrt and hpivco grow upward; they start above |
| 2767 | * the entries used to store basis information. |
| 2768 | * (Actually, I don't see why they need to start maxinv+4 entries past the top). |
| 2769 | * |
| 2770 | * (14) c_ekkrwco assumes that invalidated hrowi/hcoli entries contain 0. |
| 2771 | * |
| 2772 | * (15) When pivoting singleton columns, it may possibly happen |
| 2773 | * that a row with all singleton column entries is created. |
| 2774 | * In this case, all of the columns will be enqueued, and pivoting |
| 2775 | * on any of them eliminates the rest, without their being chosen |
| 2776 | * as pivots. The dual holds for singleton rows. |
| 2777 | * DOES THIS INDICATE A SINGULARITY? |
| 2778 | * |
| 2779 | * (15) There are some aspects of the implementation that I find odd. |
| 2780 | * hrowi is not set to 0 for pivot rows while pivoting singleton columns, |
| 2781 | * which would make sense to me. Things don't work if this isn't done, |
| 2782 | * so the information is used somehow later on. Also, the information |
| 2783 | * for the pivot column is shifted to the front of the pivot row |
| 2784 | * when pivoting singleton columns; this is also necessary for reasons |
| 2785 | * I don't understand. |
| 2786 | */ |
| 2787 | int c_ekktria(EKKfactinfo *fact, |
| 2788 | EKKHlink * rlink, |
| 2789 | EKKHlink * clink, |
| 2790 | int *nsingp, |
| 2791 | int *xnewcop, int *xnewrop, |
| 2792 | int *ncompactionsp, |
| 2793 | const int ninbas) |
| 2794 | { |
| 2795 | const int nrow = fact->nrow; |
| 2796 | const int maxinv = fact->maxinv; |
| 2797 | int *hcoli = fact->xecadr; |
| 2798 | double *dluval = fact->xeeadr; |
| 2799 | int *mrstrt = fact->xrsadr; |
| 2800 | int *hrowi = fact->xeradr; |
| 2801 | int *mcstrt = fact->xcsadr; |
| 2802 | int *hinrow = fact->xrnadr; |
| 2803 | int *hincol = fact->xcnadr; |
| 2804 | int *stack = fact->krpadr; /* normally hpivro */ |
| 2805 | int *hpivco = fact->kcpadr; |
| 2806 | const double drtpiv = fact->drtpiv; |
| 2807 | CoinZeroN(reinterpret_cast<int *>(rlink+1),static_cast<int>(nrow*(sizeof(EKKHlink)/sizeof(int)))); |
| 2808 | CoinZeroN(reinterpret_cast<int *>(clink+1),static_cast<int>(nrow*(sizeof(EKKHlink)/sizeof(int)))); |
| 2809 | |
| 2810 | fact->npivots = 0; |
| 2811 | /* Use NUSPIK to keep sum of deactivated row counts */ |
| 2812 | fact->nuspike = 0; |
| 2813 | int xnetal = nrow + maxinv + 4; |
| 2814 | int xnewro = mrstrt[nrow] + hinrow[nrow] - 1; |
| 2815 | int xnewco = xnewro; |
| 2816 | int kmxeta = ninbas; |
| 2817 | int ncompactions = 0; |
| 2818 | |
| 2819 | int i, j, k, kc, kce, kcs, npr; |
| 2820 | double pivot; |
| 2821 | int kipis, kipie, kjpis, kjpie, knprs, knpre; |
| 2822 | int ipivot, jpivot, stackc, stackr; |
| 2823 | #ifndef NDEBUG |
| 2824 | int kpivot=-1; |
| 2825 | #else |
| 2826 | int kpivot=-1; |
| 2827 | #endif |
| 2828 | int epivco, kstart, maxstk; |
| 2829 | int irtcod = 0; |
| 2830 | int lastSlack=0; |
| 2831 | |
| 2832 | int lstart = fact->nnetas + 1; |
| 2833 | /*int nnentu = ninbas; */ |
| 2834 | int lstart_minus_nnentu=lstart-ninbas; |
| 2835 | /* do initial column singletons - as can do faster */ |
| 2836 | for (jpivot = 1; jpivot <= nrow; ++jpivot) { |
| 2837 | if (hincol[jpivot] == 1) { |
| 2838 | ipivot = hrowi[mcstrt[jpivot]]; |
| 2839 | if (ipivot>lastSlack) { |
| 2840 | lastSlack=ipivot; |
| 2841 | } else { |
| 2842 | /* so we can't put a structural over a slack */ |
| 2843 | break; |
| 2844 | } |
| 2845 | kipis = mrstrt[ipivot]; |
| 2846 | #if 1 |
| 2847 | assert (hcoli[kipis]==jpivot); |
| 2848 | #else |
| 2849 | if (hcoli[kipis]!=jpivot) { |
| 2850 | kpivot=kipis+1; |
| 2851 | while(hcoli[kpivot]!=jpivot) kpivot++; |
| 2852 | #ifdef DEBUG |
| 2853 | kipie = kipis + hinrow[ipivot] ; |
| 2854 | if (kpivot>=kipie) { |
| 2855 | abort(); |
| 2856 | } |
| 2857 | #endif |
| 2858 | pivot=dluval[kpivot]; |
| 2859 | dluval[kpivot] = dluval[kipis]; |
| 2860 | dluval[kipis] = pivot; |
| 2861 | hcoli[kpivot] = hcoli[kipis]; |
| 2862 | hcoli[kipis] = jpivot; |
| 2863 | } |
| 2864 | #endif |
| 2865 | if (dluval[kipis]==SLACK_VALUE) { |
| 2866 | /* record the new pivot row and column */ |
| 2867 | ++fact->npivots; |
| 2868 | rlink[ipivot].pre = -fact->npivots; |
| 2869 | clink[jpivot].pre = -fact->npivots; |
| 2870 | hincol[jpivot]=0; |
| 2871 | fact->nuspike += hinrow[ipivot]; |
| 2872 | } else { |
| 2873 | break; |
| 2874 | } |
| 2875 | } else { |
| 2876 | break; |
| 2877 | } |
| 2878 | } |
| 2879 | /* Fill queue with other column singletons and clean up */ |
| 2880 | maxstk = 0; |
| 2881 | for (j = 1; j <= nrow; ++j) { |
| 2882 | if (hincol[j]) { |
| 2883 | int n=0; |
| 2884 | kcs = mcstrt[j]; |
| 2885 | kce = mcstrt[j + 1]; |
| 2886 | for (k = kcs; k < kce; ++k) { |
| 2887 | if (! (rlink[hrowi[k]].pre < 0)) { |
| 2888 | n++; |
| 2889 | } |
| 2890 | } |
| 2891 | hincol[j] = n; |
| 2892 | if (n == 1) { |
| 2893 | /* we just created a new singleton column - enqueue it */ |
| 2894 | ++maxstk; |
| 2895 | stack[maxstk] = j; |
| 2896 | } |
| 2897 | } |
| 2898 | } |
| 2899 | stackc = 0; /* (1) */ |
| 2900 | |
| 2901 | while (! (stackc >= maxstk)) { /* (1) */ |
| 2902 | /* dequeue the next entry */ |
| 2903 | ++stackc; |
| 2904 | jpivot = stack[stackc]; |
| 2905 | |
| 2906 | /* (15) */ |
| 2907 | if (hincol[jpivot] != 0) { |
| 2908 | |
| 2909 | for (k = mcstrt[jpivot]; rlink[hrowi[k]].pre < 0; k++) { |
| 2910 | /* (4) */ |
| 2911 | } |
| 2912 | ipivot = hrowi[k]; |
| 2913 | |
| 2914 | /* All the columns in this row are being shortened. */ |
| 2915 | kipis = mrstrt[ipivot]; |
| 2916 | kipie = kipis + hinrow[ipivot] ; |
| 2917 | for (k = kipis; k < kipie; ++k) { |
| 2918 | j = hcoli[k]; |
| 2919 | --hincol[j]; /* (3) (6) */ |
| 2920 | |
| 2921 | if (j == jpivot) { |
| 2922 | kpivot = k; /* (11) */ |
| 2923 | } else if (hincol[j] == 1) { |
| 2924 | /* we just created a new singleton column - enqueue it */ |
| 2925 | ++maxstk; |
| 2926 | stack[maxstk] = j; |
| 2927 | } |
| 2928 | } |
| 2929 | |
| 2930 | /* record the new pivot row and column */ |
| 2931 | ++fact->npivots; |
| 2932 | rlink[ipivot].pre = -fact->npivots; |
| 2933 | clink[jpivot].pre = -fact->npivots; |
| 2934 | |
| 2935 | fact->nuspike += hinrow[ipivot]; |
| 2936 | |
| 2937 | /* check the pivot */ |
| 2938 | assert (kpivot>0); |
| 2939 | pivot = dluval[kpivot]; |
| 2940 | if (fabs(pivot) < drtpiv) { |
| 2941 | irtcod = 7; |
| 2942 | ++(*nsingp); |
| 2943 | rlink[ipivot].pre = -nrow - 1; |
| 2944 | clink[jpivot].pre = -nrow - 1; |
| 2945 | } |
| 2946 | |
| 2947 | /* swap the pivot column entry with the first one. */ |
| 2948 | /* I don't know why. */ |
| 2949 | dluval[kpivot] = dluval[kipis]; |
| 2950 | dluval[kipis] = pivot; |
| 2951 | hcoli[kpivot] = hcoli[kipis]; |
| 2952 | hcoli[kipis] = jpivot; |
| 2953 | } |
| 2954 | } |
| 2955 | /* (8) */ |
| 2956 | |
| 2957 | /* The entire basis may already be triangular */ |
| 2958 | if (fact->npivots < nrow) { |
| 2959 | |
| 2960 | /* (9) */ |
| 2961 | kstart = 0; |
| 2962 | for (j = 1; j <= nrow; ++j) { |
| 2963 | if (! (clink[j].pre < 0)) { |
| 2964 | kcs = mcstrt[j]; |
| 2965 | kce = mcstrt[j + 1]; |
| 2966 | |
| 2967 | mcstrt[j] = kstart + 1; |
| 2968 | |
| 2969 | for (k = kcs; k < kce; ++k) { |
| 2970 | if (! (rlink[hrowi[k]].pre < 0)) { |
| 2971 | ++kstart; |
| 2972 | hrowi[kstart] = hrowi[k]; |
| 2973 | } |
| 2974 | } |
| 2975 | hincol[j] = kstart - mcstrt[j] + 1; |
| 2976 | } |
| 2977 | } |
| 2978 | xnewco = kstart; |
| 2979 | |
| 2980 | |
| 2981 | /* Fill stack with initial row singletons that haven't been pivoted away */ |
| 2982 | stackr = 0; |
| 2983 | for (i = 1; i <= nrow; ++i) { |
| 2984 | if (! (rlink[i].pre < 0) && |
| 2985 | (hinrow[i] == 1)) { |
| 2986 | ++stackr; |
| 2987 | stack[stackr] = i; |
| 2988 | } |
| 2989 | } |
| 2990 | |
| 2991 | while (! (stackr <= 0)) { |
| 2992 | ipivot = stack[stackr]; |
| 2993 | assert (ipivot); |
| 2994 | --stackr; |
| 2995 | |
| 2996 | #if 1 |
| 2997 | assert (rlink[ipivot].pre>=0); |
| 2998 | #else |
| 2999 | /* This test is probably unnecessary: rlink[i].pre < 0 ==> hinrow[i]==0 */ |
| 3000 | if (rlink[ipivot].pre < 0) { |
| 3001 | continue; |
| 3002 | } |
| 3003 | #endif |
| 3004 | |
| 3005 | /* (15) */ |
| 3006 | if (hinrow[ipivot] != 0) { |
| 3007 | |
| 3008 | /* This is a singleton row, which means it has exactly one column */ |
| 3009 | jpivot = hcoli[mrstrt[ipivot]]; |
| 3010 | |
| 3011 | kjpis = mcstrt[jpivot]; |
| 3012 | epivco = hincol[jpivot] - 1; |
| 3013 | hincol[jpivot] = 0; /* this column is being pivoted away */ |
| 3014 | |
| 3015 | /* (11) */ |
| 3016 | kjpie = kjpis + epivco; |
| 3017 | for (k = kjpis; k <= kjpie; ++k) { |
| 3018 | if (ipivot == hrowi[k]) |
| 3019 | break; |
| 3020 | } |
| 3021 | /* ASSERT (k <= kjpie) */ |
| 3022 | |
| 3023 | /* move the last row entry for the pivot column into the pivot row's entry */ |
| 3024 | /* I don't know why */ |
| 3025 | hrowi[k] = hrowi[kjpie]; |
| 3026 | |
| 3027 | /* invalidate the (old) last row entry of the pivot column */ |
| 3028 | /* I don't know why */ |
| 3029 | hrowi[kjpie] = 0; |
| 3030 | |
| 3031 | /* (12) */ |
| 3032 | if (! (xnewro + epivco < lstart)) { |
| 3033 | int kstart; |
| 3034 | |
| 3035 | if (! (epivco < lstart_minus_nnentu)) { |
| 3036 | irtcod = -5; |
| 3037 | break; |
| 3038 | } |
| 3039 | kstart = c_ekkrwco(fact,dluval, hcoli, mrstrt, hinrow, xnewro); |
| 3040 | ++ncompactions; |
| 3041 | kmxeta += (xnewro - kstart) << 1; |
| 3042 | xnewro = kstart; |
| 3043 | } |
| 3044 | if (! (xnewco + epivco < lstart)) { |
| 3045 | if (! (epivco < lstart_minus_nnentu)) { |
| 3046 | irtcod = -5; |
| 3047 | break; |
| 3048 | } |
| 3049 | xnewco = c_ekkclco(fact,hrowi, mcstrt, hincol, xnewco); |
| 3050 | ++ncompactions; |
| 3051 | |
| 3052 | /* HINCOL MAY HAVE CHANGED ??? (JJHF) */ |
| 3053 | epivco = hincol[jpivot]; |
| 3054 | } |
| 3055 | |
| 3056 | /* record the new pivot row and column */ |
| 3057 | ++fact->npivots; |
| 3058 | rlink[ipivot].pre = -fact->npivots; |
| 3059 | clink[jpivot].pre = -fact->npivots; |
| 3060 | |
| 3061 | /* no update for nuspik */ |
| 3062 | |
| 3063 | /* check the pivot */ |
| 3064 | pivot = dluval[mrstrt[ipivot]]; |
| 3065 | if (fabs(pivot) < drtpiv) { |
| 3066 | /* If the pivot is too small, reject it, but keep going */ |
| 3067 | irtcod = 7; |
| 3068 | rlink[ipivot].pre = -nrow - 1; |
| 3069 | clink[jpivot].pre = -nrow - 1; |
| 3070 | } |
| 3071 | |
| 3072 | /* Perform numerical part of elimination. */ |
| 3073 | if (! (epivco <= 0)) { |
| 3074 | ++xnetal; |
| 3075 | mcstrt[xnetal] = lstart - 1; |
| 3076 | hpivco[xnetal] = ipivot; |
| 3077 | pivot = -1.f / pivot; |
| 3078 | |
| 3079 | kcs = mcstrt[jpivot]; |
| 3080 | kce = kcs + epivco - 1; |
| 3081 | hincol[jpivot] = 0; |
| 3082 | |
| 3083 | for (kc = kcs; kc <= kce; ++kc) { |
| 3084 | npr = hrowi[kc]; |
| 3085 | |
| 3086 | /* why bother? */ |
| 3087 | hrowi[kc] = 0; |
| 3088 | |
| 3089 | --hinrow[npr]; /* (3) */ |
| 3090 | if (hinrow[npr] == 1) { |
| 3091 | /* this may create new singleton rows */ |
| 3092 | ++stackr; |
| 3093 | stack[stackr] = npr; |
| 3094 | } |
| 3095 | |
| 3096 | /* (11) */ |
| 3097 | knprs = mrstrt[npr]; |
| 3098 | knpre = knprs + hinrow[npr]; |
| 3099 | for (k = knprs; k <= knpre; ++k) { |
| 3100 | if (jpivot == hcoli[k]) { |
| 3101 | kpivot = k; |
| 3102 | break; |
| 3103 | } |
| 3104 | } |
| 3105 | /* ASSERT (kpivot <= knpre) */ |
| 3106 | |
| 3107 | { |
| 3108 | /* (10) */ |
| 3109 | double elemnt = dluval[kpivot]; |
| 3110 | dluval[kpivot] = dluval[knpre]; |
| 3111 | hcoli[kpivot] = hcoli[knpre]; |
| 3112 | |
| 3113 | hcoli[knpre] = 0; /* (14) */ |
| 3114 | |
| 3115 | /* store elementary row transformation */ |
| 3116 | --lstart; |
| 3117 | dluval[lstart] = elemnt * pivot; |
| 3118 | hcoli[lstart] = npr; |
| 3119 | } |
| 3120 | } |
| 3121 | } |
| 3122 | } |
| 3123 | } |
| 3124 | } |
| 3125 | /* (8) */ |
| 3126 | |
| 3127 | *xnewcop = xnewco; |
| 3128 | *xnewrop = xnewro; |
| 3129 | fact->xnetal = xnetal; |
| 3130 | fact->nnentu = lstart - lstart_minus_nnentu; |
| 3131 | fact->kmxeta = kmxeta; |
| 3132 | *ncompactionsp = ncompactions; |
| 3133 | |
| 3134 | return (irtcod); |
| 3135 | } /* c_ekktria */ |
| 3136 | |