| 1 | /* $Id: ClpNetworkMatrix.cpp 1665 2011-01-04 17:55:54Z lou $ */ |
| 2 | // Copyright (C) 2003, International Business Machines |
| 3 | // Corporation and others. All Rights Reserved. |
| 4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
| 5 | |
| 6 | |
| 7 | #include <cstdio> |
| 8 | |
| 9 | #include "CoinPragma.hpp" |
| 10 | #include "CoinIndexedVector.hpp" |
| 11 | #include "CoinHelperFunctions.hpp" |
| 12 | #include "CoinPackedVector.hpp" |
| 13 | |
| 14 | #include "ClpSimplex.hpp" |
| 15 | #include "ClpFactorization.hpp" |
| 16 | // at end to get min/max! |
| 17 | #include "ClpNetworkMatrix.hpp" |
| 18 | #include "ClpPlusMinusOneMatrix.hpp" |
| 19 | #include "ClpMessage.hpp" |
| 20 | #include <iostream> |
| 21 | #include <cassert> |
| 22 | |
| 23 | //############################################################################# |
| 24 | // Constructors / Destructor / Assignment |
| 25 | //############################################################################# |
| 26 | |
| 27 | //------------------------------------------------------------------- |
| 28 | // Default Constructor |
| 29 | //------------------------------------------------------------------- |
| 30 | ClpNetworkMatrix::ClpNetworkMatrix () |
| 31 | : ClpMatrixBase() |
| 32 | { |
| 33 | setType(11); |
| 34 | matrix_ = NULL; |
| 35 | lengths_ = NULL; |
| 36 | indices_ = NULL; |
| 37 | numberRows_ = 0; |
| 38 | numberColumns_ = 0; |
| 39 | trueNetwork_ = false; |
| 40 | } |
| 41 | |
| 42 | /* Constructor from two arrays */ |
| 43 | ClpNetworkMatrix::ClpNetworkMatrix(int numberColumns, const int * head, |
| 44 | const int * tail) |
| 45 | : ClpMatrixBase() |
| 46 | { |
| 47 | setType(11); |
| 48 | matrix_ = NULL; |
| 49 | lengths_ = NULL; |
| 50 | indices_ = new int[2*numberColumns]; |
| 51 | numberRows_ = -1; |
| 52 | numberColumns_ = numberColumns; |
| 53 | trueNetwork_ = true; |
| 54 | int iColumn; |
| 55 | CoinBigIndex j = 0; |
| 56 | for (iColumn = 0; iColumn < numberColumns_; iColumn++, j += 2) { |
| 57 | int iRow = head[iColumn]; |
| 58 | numberRows_ = CoinMax(numberRows_, iRow); |
| 59 | indices_[j] = iRow; |
| 60 | iRow = tail[iColumn]; |
| 61 | numberRows_ = CoinMax(numberRows_, iRow); |
| 62 | indices_[j+1] = iRow; |
| 63 | } |
| 64 | numberRows_++; |
| 65 | } |
| 66 | //------------------------------------------------------------------- |
| 67 | // Copy constructor |
| 68 | //------------------------------------------------------------------- |
| 69 | ClpNetworkMatrix::ClpNetworkMatrix (const ClpNetworkMatrix & rhs) |
| 70 | : ClpMatrixBase(rhs) |
| 71 | { |
| 72 | matrix_ = NULL; |
| 73 | lengths_ = NULL; |
| 74 | indices_ = NULL; |
| 75 | numberRows_ = rhs.numberRows_; |
| 76 | numberColumns_ = rhs.numberColumns_; |
| 77 | trueNetwork_ = rhs.trueNetwork_; |
| 78 | if (numberColumns_) { |
| 79 | indices_ = new int [ 2*numberColumns_]; |
| 80 | CoinMemcpyN(rhs.indices_, 2 * numberColumns_, indices_); |
| 81 | } |
| 82 | int numberRows = getNumRows(); |
| 83 | if (rhs.rhsOffset_ && numberRows) { |
| 84 | rhsOffset_ = ClpCopyOfArray(rhs.rhsOffset_, numberRows); |
| 85 | } else { |
| 86 | rhsOffset_ = NULL; |
| 87 | } |
| 88 | } |
| 89 | |
| 90 | ClpNetworkMatrix::ClpNetworkMatrix (const CoinPackedMatrix & rhs) |
| 91 | : ClpMatrixBase() |
| 92 | { |
| 93 | setType(11); |
| 94 | matrix_ = NULL; |
| 95 | lengths_ = NULL; |
| 96 | indices_ = NULL; |
| 97 | int iColumn; |
| 98 | assert (rhs.isColOrdered()); |
| 99 | // get matrix data pointers |
| 100 | const int * row = rhs.getIndices(); |
| 101 | const CoinBigIndex * columnStart = rhs.getVectorStarts(); |
| 102 | const int * columnLength = rhs.getVectorLengths(); |
| 103 | const double * elementByColumn = rhs.getElements(); |
| 104 | numberColumns_ = rhs.getNumCols(); |
| 105 | int goodNetwork = 1; |
| 106 | numberRows_ = -1; |
| 107 | indices_ = new int[2*numberColumns_]; |
| 108 | CoinBigIndex j = 0; |
| 109 | for (iColumn = 0; iColumn < numberColumns_; iColumn++, j += 2) { |
| 110 | CoinBigIndex k = columnStart[iColumn]; |
| 111 | int iRow; |
| 112 | switch (columnLength[iColumn]) { |
| 113 | case 0: |
| 114 | goodNetwork = -1; // not classic network |
| 115 | indices_[j] = -1; |
| 116 | indices_[j+1] = -1; |
| 117 | break; |
| 118 | |
| 119 | case 1: |
| 120 | goodNetwork = -1; // not classic network |
| 121 | if (fabs(elementByColumn[k] - 1.0) < 1.0e-10) { |
| 122 | indices_[j] = -1; |
| 123 | iRow = row[k]; |
| 124 | numberRows_ = CoinMax(numberRows_, iRow); |
| 125 | indices_[j+1] = iRow; |
| 126 | } else if (fabs(elementByColumn[k] + 1.0) < 1.0e-10) { |
| 127 | indices_[j+1] = -1; |
| 128 | iRow = row[k]; |
| 129 | numberRows_ = CoinMax(numberRows_, iRow); |
| 130 | indices_[j] = iRow; |
| 131 | } else { |
| 132 | goodNetwork = 0; // not a network |
| 133 | } |
| 134 | break; |
| 135 | |
| 136 | case 2: |
| 137 | if (fabs(elementByColumn[k] - 1.0) < 1.0e-10) { |
| 138 | if (fabs(elementByColumn[k+1] + 1.0) < 1.0e-10) { |
| 139 | iRow = row[k]; |
| 140 | numberRows_ = CoinMax(numberRows_, iRow); |
| 141 | indices_[j+1] = iRow; |
| 142 | iRow = row[k+1]; |
| 143 | numberRows_ = CoinMax(numberRows_, iRow); |
| 144 | indices_[j] = iRow; |
| 145 | } else { |
| 146 | goodNetwork = 0; // not a network |
| 147 | } |
| 148 | } else if (fabs(elementByColumn[k] + 1.0) < 1.0e-10) { |
| 149 | if (fabs(elementByColumn[k+1] - 1.0) < 1.0e-10) { |
| 150 | iRow = row[k]; |
| 151 | numberRows_ = CoinMax(numberRows_, iRow); |
| 152 | indices_[j] = iRow; |
| 153 | iRow = row[k+1]; |
| 154 | numberRows_ = CoinMax(numberRows_, iRow); |
| 155 | indices_[j+1] = iRow; |
| 156 | } else { |
| 157 | goodNetwork = 0; // not a network |
| 158 | } |
| 159 | } else { |
| 160 | goodNetwork = 0; // not a network |
| 161 | } |
| 162 | break; |
| 163 | |
| 164 | default: |
| 165 | goodNetwork = 0; // not a network |
| 166 | break; |
| 167 | } |
| 168 | if (!goodNetwork) |
| 169 | break; |
| 170 | } |
| 171 | if (!goodNetwork) { |
| 172 | delete [] indices_; |
| 173 | // put in message |
| 174 | printf("Not a network - can test if indices_ null\n" ); |
| 175 | indices_ = NULL; |
| 176 | numberRows_ = 0; |
| 177 | numberColumns_ = 0; |
| 178 | } else { |
| 179 | numberRows_ ++; // correct |
| 180 | trueNetwork_ = goodNetwork > 0; |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | //------------------------------------------------------------------- |
| 185 | // Destructor |
| 186 | //------------------------------------------------------------------- |
| 187 | ClpNetworkMatrix::~ClpNetworkMatrix () |
| 188 | { |
| 189 | delete matrix_; |
| 190 | delete [] lengths_; |
| 191 | delete [] indices_; |
| 192 | } |
| 193 | |
| 194 | //---------------------------------------------------------------- |
| 195 | // Assignment operator |
| 196 | //------------------------------------------------------------------- |
| 197 | ClpNetworkMatrix & |
| 198 | ClpNetworkMatrix::operator=(const ClpNetworkMatrix& rhs) |
| 199 | { |
| 200 | if (this != &rhs) { |
| 201 | ClpMatrixBase::operator=(rhs); |
| 202 | delete matrix_; |
| 203 | delete [] lengths_; |
| 204 | delete [] indices_; |
| 205 | matrix_ = NULL; |
| 206 | lengths_ = NULL; |
| 207 | indices_ = NULL; |
| 208 | numberRows_ = rhs.numberRows_; |
| 209 | numberColumns_ = rhs.numberColumns_; |
| 210 | trueNetwork_ = rhs.trueNetwork_; |
| 211 | if (numberColumns_) { |
| 212 | indices_ = new int [ 2*numberColumns_]; |
| 213 | CoinMemcpyN(rhs.indices_, 2 * numberColumns_, indices_); |
| 214 | } |
| 215 | } |
| 216 | return *this; |
| 217 | } |
| 218 | //------------------------------------------------------------------- |
| 219 | // Clone |
| 220 | //------------------------------------------------------------------- |
| 221 | ClpMatrixBase * ClpNetworkMatrix::clone() const |
| 222 | { |
| 223 | return new ClpNetworkMatrix(*this); |
| 224 | } |
| 225 | |
| 226 | /* Returns a new matrix in reverse order without gaps */ |
| 227 | ClpMatrixBase * |
| 228 | ClpNetworkMatrix::reverseOrderedCopy() const |
| 229 | { |
| 230 | // count number in each row |
| 231 | CoinBigIndex * tempP = new CoinBigIndex [numberRows_]; |
| 232 | CoinBigIndex * tempN = new CoinBigIndex [numberRows_]; |
| 233 | memset(tempP, 0, numberRows_ * sizeof(CoinBigIndex)); |
| 234 | memset(tempN, 0, numberRows_ * sizeof(CoinBigIndex)); |
| 235 | CoinBigIndex j = 0; |
| 236 | int i; |
| 237 | for (i = 0; i < numberColumns_; i++, j += 2) { |
| 238 | int iRow = indices_[j]; |
| 239 | tempN[iRow]++; |
| 240 | iRow = indices_[j+1]; |
| 241 | tempP[iRow]++; |
| 242 | } |
| 243 | int * newIndices = new int [2*numberColumns_]; |
| 244 | CoinBigIndex * newP = new CoinBigIndex [numberRows_+1]; |
| 245 | CoinBigIndex * newN = new CoinBigIndex[numberRows_]; |
| 246 | int iRow; |
| 247 | j = 0; |
| 248 | // do starts |
| 249 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 250 | newP[iRow] = j; |
| 251 | j += tempP[iRow]; |
| 252 | tempP[iRow] = newP[iRow]; |
| 253 | newN[iRow] = j; |
| 254 | j += tempN[iRow]; |
| 255 | tempN[iRow] = newN[iRow]; |
| 256 | } |
| 257 | newP[numberRows_] = j; |
| 258 | j = 0; |
| 259 | for (i = 0; i < numberColumns_; i++, j += 2) { |
| 260 | int iRow = indices_[j]; |
| 261 | CoinBigIndex put = tempN[iRow]; |
| 262 | newIndices[put++] = i; |
| 263 | tempN[iRow] = put; |
| 264 | iRow = indices_[j+1]; |
| 265 | put = tempP[iRow]; |
| 266 | newIndices[put++] = i; |
| 267 | tempP[iRow] = put; |
| 268 | } |
| 269 | delete [] tempP; |
| 270 | delete [] tempN; |
| 271 | ClpPlusMinusOneMatrix * newCopy = new ClpPlusMinusOneMatrix(); |
| 272 | newCopy->passInCopy(numberRows_, numberColumns_, |
| 273 | false, newIndices, newP, newN); |
| 274 | return newCopy; |
| 275 | } |
| 276 | //unscaled versions |
| 277 | void |
| 278 | ClpNetworkMatrix::times(double scalar, |
| 279 | const double * x, double * y) const |
| 280 | { |
| 281 | int iColumn; |
| 282 | CoinBigIndex j = 0; |
| 283 | if (trueNetwork_) { |
| 284 | for (iColumn = 0; iColumn < numberColumns_; iColumn++, j += 2) { |
| 285 | double value = scalar * x[iColumn]; |
| 286 | if (value) { |
| 287 | int iRowM = indices_[j]; |
| 288 | int iRowP = indices_[j+1]; |
| 289 | y[iRowM] -= value; |
| 290 | y[iRowP] += value; |
| 291 | } |
| 292 | } |
| 293 | } else { |
| 294 | // skip negative rows |
| 295 | for (iColumn = 0; iColumn < numberColumns_; iColumn++, j += 2) { |
| 296 | double value = scalar * x[iColumn]; |
| 297 | if (value) { |
| 298 | int iRowM = indices_[j]; |
| 299 | int iRowP = indices_[j+1]; |
| 300 | if (iRowM >= 0) |
| 301 | y[iRowM] -= value; |
| 302 | if (iRowP >= 0) |
| 303 | y[iRowP] += value; |
| 304 | } |
| 305 | } |
| 306 | } |
| 307 | } |
| 308 | void |
| 309 | ClpNetworkMatrix::transposeTimes(double scalar, |
| 310 | const double * x, double * y) const |
| 311 | { |
| 312 | int iColumn; |
| 313 | CoinBigIndex j = 0; |
| 314 | if (trueNetwork_) { |
| 315 | for (iColumn = 0; iColumn < numberColumns_; iColumn++, j += 2) { |
| 316 | double value = y[iColumn]; |
| 317 | int iRowM = indices_[j]; |
| 318 | int iRowP = indices_[j+1]; |
| 319 | value -= scalar * x[iRowM]; |
| 320 | value += scalar * x[iRowP]; |
| 321 | y[iColumn] = value; |
| 322 | } |
| 323 | } else { |
| 324 | // skip negative rows |
| 325 | for (iColumn = 0; iColumn < numberColumns_; iColumn++, j += 2) { |
| 326 | double value = y[iColumn]; |
| 327 | int iRowM = indices_[j]; |
| 328 | int iRowP = indices_[j+1]; |
| 329 | if (iRowM >= 0) |
| 330 | value -= scalar * x[iRowM]; |
| 331 | if (iRowP >= 0) |
| 332 | value += scalar * x[iRowP]; |
| 333 | y[iColumn] = value; |
| 334 | } |
| 335 | } |
| 336 | } |
| 337 | void |
| 338 | ClpNetworkMatrix::times(double scalar, |
| 339 | const double * x, double * y, |
| 340 | const double * /*rowScale*/, |
| 341 | const double * /*columnScale*/) const |
| 342 | { |
| 343 | // we know it is not scaled |
| 344 | times(scalar, x, y); |
| 345 | } |
| 346 | void |
| 347 | ClpNetworkMatrix::transposeTimes( double scalar, |
| 348 | const double * x, double * y, |
| 349 | const double * /*rowScale*/, |
| 350 | const double * /*columnScale*/, |
| 351 | double * /*spare*/) const |
| 352 | { |
| 353 | // we know it is not scaled |
| 354 | transposeTimes(scalar, x, y); |
| 355 | } |
| 356 | /* Return <code>x * A + y</code> in <code>z</code>. |
| 357 | Squashes small elements and knows about ClpSimplex */ |
| 358 | void |
| 359 | ClpNetworkMatrix::transposeTimes(const ClpSimplex * model, double scalar, |
| 360 | const CoinIndexedVector * rowArray, |
| 361 | CoinIndexedVector * y, |
| 362 | CoinIndexedVector * columnArray) const |
| 363 | { |
| 364 | // we know it is not scaled |
| 365 | columnArray->clear(); |
| 366 | double * pi = rowArray->denseVector(); |
| 367 | int numberNonZero = 0; |
| 368 | int * index = columnArray->getIndices(); |
| 369 | double * array = columnArray->denseVector(); |
| 370 | int numberInRowArray = rowArray->getNumElements(); |
| 371 | // maybe I need one in OsiSimplex |
| 372 | double zeroTolerance = model->zeroTolerance(); |
| 373 | int numberRows = model->numberRows(); |
| 374 | #ifndef NO_RTTI |
| 375 | ClpPlusMinusOneMatrix* rowCopy = |
| 376 | dynamic_cast< ClpPlusMinusOneMatrix*>(model->rowCopy()); |
| 377 | #else |
| 378 | ClpPlusMinusOneMatrix* rowCopy = |
| 379 | static_cast< ClpPlusMinusOneMatrix*>(model->rowCopy()); |
| 380 | #endif |
| 381 | bool packed = rowArray->packedMode(); |
| 382 | double factor = 0.3; |
| 383 | // We may not want to do by row if there may be cache problems |
| 384 | int numberColumns = model->numberColumns(); |
| 385 | // It would be nice to find L2 cache size - for moment 512K |
| 386 | // Be slightly optimistic |
| 387 | if (numberColumns * sizeof(double) > 1000000) { |
| 388 | if (numberRows * 10 < numberColumns) |
| 389 | factor = 0.1; |
| 390 | else if (numberRows * 4 < numberColumns) |
| 391 | factor = 0.15; |
| 392 | else if (numberRows * 2 < numberColumns) |
| 393 | factor = 0.2; |
| 394 | //if (model->numberIterations()%50==0) |
| 395 | //printf("%d nonzero\n",numberInRowArray); |
| 396 | } |
| 397 | if (numberInRowArray > factor * numberRows || !rowCopy) { |
| 398 | // do by column |
| 399 | int iColumn; |
| 400 | assert (!y->getNumElements()); |
| 401 | CoinBigIndex j = 0; |
| 402 | if (packed) { |
| 403 | // need to expand pi into y |
| 404 | assert(y->capacity() >= numberRows); |
| 405 | double * piOld = pi; |
| 406 | pi = y->denseVector(); |
| 407 | const int * whichRow = rowArray->getIndices(); |
| 408 | int i; |
| 409 | // modify pi so can collapse to one loop |
| 410 | for (i = 0; i < numberInRowArray; i++) { |
| 411 | int iRow = whichRow[i]; |
| 412 | pi[iRow] = scalar * piOld[i]; |
| 413 | } |
| 414 | if (trueNetwork_) { |
| 415 | for (iColumn = 0; iColumn < numberColumns_; iColumn++, j += 2) { |
| 416 | double value = 0.0; |
| 417 | int iRowM = indices_[j]; |
| 418 | int iRowP = indices_[j+1]; |
| 419 | value -= pi[iRowM]; |
| 420 | value += pi[iRowP]; |
| 421 | if (fabs(value) > zeroTolerance) { |
| 422 | array[numberNonZero] = value; |
| 423 | index[numberNonZero++] = iColumn; |
| 424 | } |
| 425 | } |
| 426 | } else { |
| 427 | // skip negative rows |
| 428 | for (iColumn = 0; iColumn < numberColumns_; iColumn++, j += 2) { |
| 429 | double value = 0.0; |
| 430 | int iRowM = indices_[j]; |
| 431 | int iRowP = indices_[j+1]; |
| 432 | if (iRowM >= 0) |
| 433 | value -= pi[iRowM]; |
| 434 | if (iRowP >= 0) |
| 435 | value += pi[iRowP]; |
| 436 | if (fabs(value) > zeroTolerance) { |
| 437 | array[numberNonZero] = value; |
| 438 | index[numberNonZero++] = iColumn; |
| 439 | } |
| 440 | } |
| 441 | } |
| 442 | for (i = 0; i < numberInRowArray; i++) { |
| 443 | int iRow = whichRow[i]; |
| 444 | pi[iRow] = 0.0; |
| 445 | } |
| 446 | } else { |
| 447 | if (trueNetwork_) { |
| 448 | for (iColumn = 0; iColumn < numberColumns_; iColumn++, j += 2) { |
| 449 | double value = 0.0; |
| 450 | int iRowM = indices_[j]; |
| 451 | int iRowP = indices_[j+1]; |
| 452 | value -= scalar * pi[iRowM]; |
| 453 | value += scalar * pi[iRowP]; |
| 454 | if (fabs(value) > zeroTolerance) { |
| 455 | index[numberNonZero++] = iColumn; |
| 456 | array[iColumn] = value; |
| 457 | } |
| 458 | } |
| 459 | } else { |
| 460 | // skip negative rows |
| 461 | for (iColumn = 0; iColumn < numberColumns_; iColumn++, j += 2) { |
| 462 | double value = 0.0; |
| 463 | int iRowM = indices_[j]; |
| 464 | int iRowP = indices_[j+1]; |
| 465 | if (iRowM >= 0) |
| 466 | value -= scalar * pi[iRowM]; |
| 467 | if (iRowP >= 0) |
| 468 | value += scalar * pi[iRowP]; |
| 469 | if (fabs(value) > zeroTolerance) { |
| 470 | index[numberNonZero++] = iColumn; |
| 471 | array[iColumn] = value; |
| 472 | } |
| 473 | } |
| 474 | } |
| 475 | } |
| 476 | columnArray->setNumElements(numberNonZero); |
| 477 | } else { |
| 478 | // do by row |
| 479 | rowCopy->transposeTimesByRow(model, scalar, rowArray, y, columnArray); |
| 480 | } |
| 481 | } |
| 482 | /* Return <code>x *A in <code>z</code> but |
| 483 | just for indices in y. */ |
| 484 | void |
| 485 | ClpNetworkMatrix::subsetTransposeTimes(const ClpSimplex * /*model*/, |
| 486 | const CoinIndexedVector * rowArray, |
| 487 | const CoinIndexedVector * y, |
| 488 | CoinIndexedVector * columnArray) const |
| 489 | { |
| 490 | columnArray->clear(); |
| 491 | double * pi = rowArray->denseVector(); |
| 492 | double * array = columnArray->denseVector(); |
| 493 | int jColumn; |
| 494 | int numberToDo = y->getNumElements(); |
| 495 | const int * which = y->getIndices(); |
| 496 | assert (!rowArray->packedMode()); |
| 497 | columnArray->setPacked(); |
| 498 | if (trueNetwork_) { |
| 499 | for (jColumn = 0; jColumn < numberToDo; jColumn++) { |
| 500 | int iColumn = which[jColumn]; |
| 501 | double value = 0.0; |
| 502 | CoinBigIndex j = iColumn << 1; |
| 503 | int iRowM = indices_[j]; |
| 504 | int iRowP = indices_[j+1]; |
| 505 | value -= pi[iRowM]; |
| 506 | value += pi[iRowP]; |
| 507 | array[jColumn] = value; |
| 508 | } |
| 509 | } else { |
| 510 | // skip negative rows |
| 511 | for (jColumn = 0; jColumn < numberToDo; jColumn++) { |
| 512 | int iColumn = which[jColumn]; |
| 513 | double value = 0.0; |
| 514 | CoinBigIndex j = iColumn << 1; |
| 515 | int iRowM = indices_[j]; |
| 516 | int iRowP = indices_[j+1]; |
| 517 | if (iRowM >= 0) |
| 518 | value -= pi[iRowM]; |
| 519 | if (iRowP >= 0) |
| 520 | value += pi[iRowP]; |
| 521 | array[jColumn] = value; |
| 522 | } |
| 523 | } |
| 524 | } |
| 525 | /// returns number of elements in column part of basis, |
| 526 | CoinBigIndex |
| 527 | ClpNetworkMatrix::countBasis( const int * whichColumn, |
| 528 | int & numberColumnBasic) |
| 529 | { |
| 530 | int i; |
| 531 | CoinBigIndex numberElements = 0; |
| 532 | if (trueNetwork_) { |
| 533 | numberElements = 2 * numberColumnBasic; |
| 534 | } else { |
| 535 | for (i = 0; i < numberColumnBasic; i++) { |
| 536 | int iColumn = whichColumn[i]; |
| 537 | CoinBigIndex j = iColumn << 1; |
| 538 | int iRowM = indices_[j]; |
| 539 | int iRowP = indices_[j+1]; |
| 540 | if (iRowM >= 0) |
| 541 | numberElements ++; |
| 542 | if (iRowP >= 0) |
| 543 | numberElements ++; |
| 544 | } |
| 545 | } |
| 546 | return numberElements; |
| 547 | } |
| 548 | void |
| 549 | ClpNetworkMatrix::fillBasis(ClpSimplex * /*model*/, |
| 550 | const int * whichColumn, |
| 551 | int & numberColumnBasic, |
| 552 | int * indexRowU, int * start, |
| 553 | int * rowCount, int * columnCount, |
| 554 | CoinFactorizationDouble * elementU) |
| 555 | { |
| 556 | int i; |
| 557 | CoinBigIndex numberElements = start[0]; |
| 558 | if (trueNetwork_) { |
| 559 | for (i = 0; i < numberColumnBasic; i++) { |
| 560 | int iColumn = whichColumn[i]; |
| 561 | CoinBigIndex j = iColumn << 1; |
| 562 | int iRowM = indices_[j]; |
| 563 | int iRowP = indices_[j+1]; |
| 564 | indexRowU[numberElements] = iRowM; |
| 565 | rowCount[iRowM]++; |
| 566 | elementU[numberElements] = -1.0; |
| 567 | indexRowU[numberElements+1] = iRowP; |
| 568 | rowCount[iRowP]++; |
| 569 | elementU[numberElements+1] = 1.0; |
| 570 | numberElements += 2; |
| 571 | start[i+1] = numberElements; |
| 572 | columnCount[i] = 2; |
| 573 | } |
| 574 | } else { |
| 575 | for (i = 0; i < numberColumnBasic; i++) { |
| 576 | int iColumn = whichColumn[i]; |
| 577 | CoinBigIndex j = iColumn << 1; |
| 578 | int iRowM = indices_[j]; |
| 579 | int iRowP = indices_[j+1]; |
| 580 | if (iRowM >= 0) { |
| 581 | indexRowU[numberElements] = iRowM; |
| 582 | rowCount[iRowM]++; |
| 583 | elementU[numberElements++] = -1.0; |
| 584 | } |
| 585 | if (iRowP >= 0) { |
| 586 | indexRowU[numberElements] = iRowP; |
| 587 | rowCount[iRowP]++; |
| 588 | elementU[numberElements++] = 1.0; |
| 589 | } |
| 590 | start[i+1] = numberElements; |
| 591 | columnCount[i] = numberElements - start[i]; |
| 592 | } |
| 593 | } |
| 594 | } |
| 595 | /* Unpacks a column into an CoinIndexedvector |
| 596 | */ |
| 597 | void |
| 598 | ClpNetworkMatrix::unpack(const ClpSimplex * /*model*/, CoinIndexedVector * rowArray, |
| 599 | int iColumn) const |
| 600 | { |
| 601 | CoinBigIndex j = iColumn << 1; |
| 602 | int iRowM = indices_[j]; |
| 603 | int iRowP = indices_[j+1]; |
| 604 | if (iRowM >= 0) |
| 605 | rowArray->add(iRowM, -1.0); |
| 606 | if (iRowP >= 0) |
| 607 | rowArray->add(iRowP, 1.0); |
| 608 | } |
| 609 | /* Unpacks a column into an CoinIndexedvector |
| 610 | ** in packed foramt |
| 611 | Note that model is NOT const. Bounds and objective could |
| 612 | be modified if doing column generation (just for this variable) */ |
| 613 | void |
| 614 | ClpNetworkMatrix::unpackPacked(ClpSimplex * /*model*/, |
| 615 | CoinIndexedVector * rowArray, |
| 616 | int iColumn) const |
| 617 | { |
| 618 | int * index = rowArray->getIndices(); |
| 619 | double * array = rowArray->denseVector(); |
| 620 | int number = 0; |
| 621 | CoinBigIndex j = iColumn << 1; |
| 622 | int iRowM = indices_[j]; |
| 623 | int iRowP = indices_[j+1]; |
| 624 | if (iRowM >= 0) { |
| 625 | array[number] = -1.0; |
| 626 | index[number++] = iRowM; |
| 627 | } |
| 628 | if (iRowP >= 0) { |
| 629 | array[number] = 1.0; |
| 630 | index[number++] = iRowP; |
| 631 | } |
| 632 | rowArray->setNumElements(number); |
| 633 | rowArray->setPackedMode(true); |
| 634 | } |
| 635 | /* Adds multiple of a column into an CoinIndexedvector |
| 636 | You can use quickAdd to add to vector */ |
| 637 | void |
| 638 | ClpNetworkMatrix::add(const ClpSimplex * /*model*/, CoinIndexedVector * rowArray, |
| 639 | int iColumn, double multiplier) const |
| 640 | { |
| 641 | CoinBigIndex j = iColumn << 1; |
| 642 | int iRowM = indices_[j]; |
| 643 | int iRowP = indices_[j+1]; |
| 644 | if (iRowM >= 0) |
| 645 | rowArray->quickAdd(iRowM, -multiplier); |
| 646 | if (iRowP >= 0) |
| 647 | rowArray->quickAdd(iRowP, multiplier); |
| 648 | } |
| 649 | /* Adds multiple of a column into an array */ |
| 650 | void |
| 651 | ClpNetworkMatrix::add(const ClpSimplex * /*model*/, double * array, |
| 652 | int iColumn, double multiplier) const |
| 653 | { |
| 654 | CoinBigIndex j = iColumn << 1; |
| 655 | int iRowM = indices_[j]; |
| 656 | int iRowP = indices_[j+1]; |
| 657 | if (iRowM >= 0) |
| 658 | array[iRowM] -= multiplier; |
| 659 | if (iRowP >= 0) |
| 660 | array[iRowP] += multiplier; |
| 661 | } |
| 662 | |
| 663 | // Return a complete CoinPackedMatrix |
| 664 | CoinPackedMatrix * |
| 665 | ClpNetworkMatrix::getPackedMatrix() const |
| 666 | { |
| 667 | if (!matrix_) { |
| 668 | assert (trueNetwork_); // fix later |
| 669 | int numberElements = 2 * numberColumns_; |
| 670 | double * elements = new double [numberElements]; |
| 671 | CoinBigIndex i; |
| 672 | for (i = 0; i < 2 * numberColumns_; i += 2) { |
| 673 | elements[i] = -1.0; |
| 674 | elements[i+1] = 1.0; |
| 675 | } |
| 676 | CoinBigIndex * starts = new CoinBigIndex [numberColumns_+1]; |
| 677 | for (i = 0; i < numberColumns_ + 1; i++) { |
| 678 | starts[i] = 2 * i; |
| 679 | } |
| 680 | // use assignMatrix to save space |
| 681 | delete [] lengths_; |
| 682 | lengths_ = NULL; |
| 683 | matrix_ = new CoinPackedMatrix(); |
| 684 | int * indices = CoinCopyOfArray(indices_, 2 * numberColumns_); |
| 685 | matrix_->assignMatrix(true, numberRows_, numberColumns_, |
| 686 | getNumElements(), |
| 687 | elements, indices, |
| 688 | starts, lengths_); |
| 689 | assert(!elements); |
| 690 | assert(!starts); |
| 691 | assert (!indices); |
| 692 | assert (!lengths_); |
| 693 | } |
| 694 | return matrix_; |
| 695 | } |
| 696 | /* A vector containing the elements in the packed matrix. Note that there |
| 697 | might be gaps in this list, entries that do not belong to any |
| 698 | major-dimension vector. To get the actual elements one should look at |
| 699 | this vector together with vectorStarts and vectorLengths. */ |
| 700 | const double * |
| 701 | ClpNetworkMatrix::getElements() const |
| 702 | { |
| 703 | if (!matrix_) |
| 704 | getPackedMatrix(); |
| 705 | return matrix_->getElements(); |
| 706 | } |
| 707 | |
| 708 | const CoinBigIndex * |
| 709 | ClpNetworkMatrix::getVectorStarts() const |
| 710 | { |
| 711 | if (!matrix_) |
| 712 | getPackedMatrix(); |
| 713 | return matrix_->getVectorStarts(); |
| 714 | } |
| 715 | /* The lengths of the major-dimension vectors. */ |
| 716 | const int * |
| 717 | ClpNetworkMatrix::getVectorLengths() const |
| 718 | { |
| 719 | assert (trueNetwork_); // fix later |
| 720 | if (!lengths_) { |
| 721 | lengths_ = new int [numberColumns_]; |
| 722 | int i; |
| 723 | for (i = 0; i < numberColumns_; i++) { |
| 724 | lengths_[i] = 2; |
| 725 | } |
| 726 | } |
| 727 | return lengths_; |
| 728 | } |
| 729 | /* Delete the columns whose indices are listed in <code>indDel</code>. */ |
| 730 | void ClpNetworkMatrix::deleteCols(const int numDel, const int * indDel) |
| 731 | { |
| 732 | assert (trueNetwork_); |
| 733 | int iColumn; |
| 734 | int numberBad = 0; |
| 735 | // Use array to make sure we can have duplicates |
| 736 | char * which = new char[numberColumns_]; |
| 737 | memset(which, 0, numberColumns_); |
| 738 | int nDuplicate = 0; |
| 739 | for (iColumn = 0; iColumn < numDel; iColumn++) { |
| 740 | int jColumn = indDel[iColumn]; |
| 741 | if (jColumn < 0 || jColumn >= numberColumns_) { |
| 742 | numberBad++; |
| 743 | } else { |
| 744 | if (which[jColumn]) |
| 745 | nDuplicate++; |
| 746 | else |
| 747 | which[jColumn] = 1; |
| 748 | } |
| 749 | } |
| 750 | if (numberBad) |
| 751 | throw CoinError("Indices out of range" , "deleteCols" , "ClpNetworkMatrix" ); |
| 752 | int newNumber = numberColumns_ - numDel + nDuplicate; |
| 753 | // Get rid of temporary arrays |
| 754 | delete [] lengths_; |
| 755 | lengths_ = NULL; |
| 756 | delete matrix_; |
| 757 | matrix_ = NULL; |
| 758 | int newSize = 2 * newNumber; |
| 759 | int * newIndices = new int [newSize]; |
| 760 | newSize = 0; |
| 761 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 762 | if (!which[iColumn]) { |
| 763 | CoinBigIndex start; |
| 764 | CoinBigIndex i; |
| 765 | start = 2 * iColumn; |
| 766 | for (i = start; i < start + 2; i++) |
| 767 | newIndices[newSize++] = indices_[i]; |
| 768 | } |
| 769 | } |
| 770 | delete [] which; |
| 771 | delete [] indices_; |
| 772 | indices_ = newIndices; |
| 773 | numberColumns_ = newNumber; |
| 774 | } |
| 775 | /* Delete the rows whose indices are listed in <code>indDel</code>. */ |
| 776 | void ClpNetworkMatrix::deleteRows(const int numDel, const int * indDel) |
| 777 | { |
| 778 | int iRow; |
| 779 | int numberBad = 0; |
| 780 | // Use array to make sure we can have duplicates |
| 781 | int * which = new int [numberRows_]; |
| 782 | memset(which, 0, numberRows_ * sizeof(int)); |
| 783 | for (iRow = 0; iRow < numDel; iRow++) { |
| 784 | int jRow = indDel[iRow]; |
| 785 | if (jRow < 0 || jRow >= numberRows_) { |
| 786 | numberBad++; |
| 787 | } else { |
| 788 | which[jRow] = 1; |
| 789 | } |
| 790 | } |
| 791 | if (numberBad) |
| 792 | throw CoinError("Indices out of range" , "deleteRows" , "ClpNetworkMatrix" ); |
| 793 | // Only valid of all columns have 0 entries |
| 794 | int iColumn; |
| 795 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 796 | CoinBigIndex start; |
| 797 | CoinBigIndex i; |
| 798 | start = 2 * iColumn; |
| 799 | for (i = start; i < start + 2; i++) { |
| 800 | int iRow = indices_[i]; |
| 801 | if (which[iRow]) |
| 802 | numberBad++; |
| 803 | } |
| 804 | } |
| 805 | if (numberBad) |
| 806 | throw CoinError("Row has entries" , "deleteRows" , "ClpNetworkMatrix" ); |
| 807 | int newNumber = 0; |
| 808 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 809 | if (!which[iRow]) |
| 810 | which[iRow] = newNumber++; |
| 811 | else |
| 812 | which[iRow] = -1; |
| 813 | } |
| 814 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 815 | CoinBigIndex start; |
| 816 | CoinBigIndex i; |
| 817 | start = 2 * iColumn; |
| 818 | for (i = start; i < start + 2; i++) { |
| 819 | int iRow = indices_[i]; |
| 820 | indices_[i] = which[iRow]; |
| 821 | } |
| 822 | } |
| 823 | delete [] which; |
| 824 | numberRows_ = newNumber; |
| 825 | } |
| 826 | /* Given positive integer weights for each row fills in sum of weights |
| 827 | for each column (and slack). |
| 828 | Returns weights vector |
| 829 | */ |
| 830 | CoinBigIndex * |
| 831 | ClpNetworkMatrix::dubiousWeights(const ClpSimplex * model, int * inputWeights) const |
| 832 | { |
| 833 | int numberRows = model->numberRows(); |
| 834 | int numberColumns = model->numberColumns(); |
| 835 | int number = numberRows + numberColumns; |
| 836 | CoinBigIndex * weights = new CoinBigIndex[number]; |
| 837 | int i; |
| 838 | for (i = 0; i < numberColumns; i++) { |
| 839 | CoinBigIndex j = i << 1; |
| 840 | CoinBigIndex count = 0; |
| 841 | int iRowM = indices_[j]; |
| 842 | int iRowP = indices_[j+1]; |
| 843 | if (iRowM >= 0) { |
| 844 | count += inputWeights[iRowM]; |
| 845 | } |
| 846 | if (iRowP >= 0) { |
| 847 | count += inputWeights[iRowP]; |
| 848 | } |
| 849 | weights[i] = count; |
| 850 | } |
| 851 | for (i = 0; i < numberRows; i++) { |
| 852 | weights[i+numberColumns] = inputWeights[i]; |
| 853 | } |
| 854 | return weights; |
| 855 | } |
| 856 | /* Returns largest and smallest elements of both signs. |
| 857 | Largest refers to largest absolute value. |
| 858 | */ |
| 859 | void |
| 860 | ClpNetworkMatrix::rangeOfElements(double & smallestNegative, double & largestNegative, |
| 861 | double & smallestPositive, double & largestPositive) |
| 862 | { |
| 863 | smallestNegative = -1.0; |
| 864 | largestNegative = -1.0; |
| 865 | smallestPositive = 1.0; |
| 866 | largestPositive = 1.0; |
| 867 | } |
| 868 | // Says whether it can do partial pricing |
| 869 | bool |
| 870 | ClpNetworkMatrix::canDoPartialPricing() const |
| 871 | { |
| 872 | return true; |
| 873 | } |
| 874 | // Partial pricing |
| 875 | void |
| 876 | ClpNetworkMatrix::partialPricing(ClpSimplex * model, double startFraction, double endFraction, |
| 877 | int & bestSequence, int & numberWanted) |
| 878 | { |
| 879 | numberWanted = currentWanted_; |
| 880 | int j; |
| 881 | int start = static_cast<int> (startFraction * numberColumns_); |
| 882 | int end = CoinMin(static_cast<int> (endFraction * numberColumns_ + 1), numberColumns_); |
| 883 | double tolerance = model->currentDualTolerance(); |
| 884 | double * reducedCost = model->djRegion(); |
| 885 | const double * duals = model->dualRowSolution(); |
| 886 | const double * cost = model->costRegion(); |
| 887 | double bestDj; |
| 888 | if (bestSequence >= 0) |
| 889 | bestDj = fabs(reducedCost[bestSequence]); |
| 890 | else |
| 891 | bestDj = tolerance; |
| 892 | int sequenceOut = model->sequenceOut(); |
| 893 | int saveSequence = bestSequence; |
| 894 | if (!trueNetwork_) { |
| 895 | // Not true network |
| 896 | int iSequence; |
| 897 | for (iSequence = start; iSequence < end; iSequence++) { |
| 898 | if (iSequence != sequenceOut) { |
| 899 | double value; |
| 900 | int iRowM, iRowP; |
| 901 | ClpSimplex::Status status = model->getStatus(iSequence); |
| 902 | |
| 903 | switch(status) { |
| 904 | |
| 905 | case ClpSimplex::basic: |
| 906 | case ClpSimplex::isFixed: |
| 907 | break; |
| 908 | case ClpSimplex::isFree: |
| 909 | case ClpSimplex::superBasic: |
| 910 | value = cost[iSequence]; |
| 911 | j = iSequence << 1; |
| 912 | // skip negative rows |
| 913 | iRowM = indices_[j]; |
| 914 | iRowP = indices_[j+1]; |
| 915 | if (iRowM >= 0) |
| 916 | value += duals[iRowM]; |
| 917 | if (iRowP >= 0) |
| 918 | value -= duals[iRowP]; |
| 919 | value = fabs(value); |
| 920 | if (value > FREE_ACCEPT * tolerance) { |
| 921 | numberWanted--; |
| 922 | // we are going to bias towards free (but only if reasonable) |
| 923 | value *= FREE_BIAS; |
| 924 | if (value > bestDj) { |
| 925 | // check flagged variable and correct dj |
| 926 | if (!model->flagged(iSequence)) { |
| 927 | bestDj = value; |
| 928 | bestSequence = iSequence; |
| 929 | } else { |
| 930 | // just to make sure we don't exit before got something |
| 931 | numberWanted++; |
| 932 | } |
| 933 | } |
| 934 | } |
| 935 | break; |
| 936 | case ClpSimplex::atUpperBound: |
| 937 | value = cost[iSequence]; |
| 938 | j = iSequence << 1; |
| 939 | // skip negative rows |
| 940 | iRowM = indices_[j]; |
| 941 | iRowP = indices_[j+1]; |
| 942 | if (iRowM >= 0) |
| 943 | value += duals[iRowM]; |
| 944 | if (iRowP >= 0) |
| 945 | value -= duals[iRowP]; |
| 946 | if (value > tolerance) { |
| 947 | numberWanted--; |
| 948 | if (value > bestDj) { |
| 949 | // check flagged variable and correct dj |
| 950 | if (!model->flagged(iSequence)) { |
| 951 | bestDj = value; |
| 952 | bestSequence = iSequence; |
| 953 | } else { |
| 954 | // just to make sure we don't exit before got something |
| 955 | numberWanted++; |
| 956 | } |
| 957 | } |
| 958 | } |
| 959 | break; |
| 960 | case ClpSimplex::atLowerBound: |
| 961 | value = cost[iSequence]; |
| 962 | j = iSequence << 1; |
| 963 | // skip negative rows |
| 964 | iRowM = indices_[j]; |
| 965 | iRowP = indices_[j+1]; |
| 966 | if (iRowM >= 0) |
| 967 | value += duals[iRowM]; |
| 968 | if (iRowP >= 0) |
| 969 | value -= duals[iRowP]; |
| 970 | value = -value; |
| 971 | if (value > tolerance) { |
| 972 | numberWanted--; |
| 973 | if (value > bestDj) { |
| 974 | // check flagged variable and correct dj |
| 975 | if (!model->flagged(iSequence)) { |
| 976 | bestDj = value; |
| 977 | bestSequence = iSequence; |
| 978 | } else { |
| 979 | // just to make sure we don't exit before got something |
| 980 | numberWanted++; |
| 981 | } |
| 982 | } |
| 983 | } |
| 984 | break; |
| 985 | } |
| 986 | } |
| 987 | if (!numberWanted) |
| 988 | break; |
| 989 | } |
| 990 | if (bestSequence != saveSequence) { |
| 991 | // recompute dj |
| 992 | double value = cost[bestSequence]; |
| 993 | j = bestSequence << 1; |
| 994 | // skip negative rows |
| 995 | int iRowM = indices_[j]; |
| 996 | int iRowP = indices_[j+1]; |
| 997 | if (iRowM >= 0) |
| 998 | value += duals[iRowM]; |
| 999 | if (iRowP >= 0) |
| 1000 | value -= duals[iRowP]; |
| 1001 | reducedCost[bestSequence] = value; |
| 1002 | savedBestSequence_ = bestSequence; |
| 1003 | savedBestDj_ = reducedCost[savedBestSequence_]; |
| 1004 | } |
| 1005 | } else { |
| 1006 | // true network |
| 1007 | int iSequence; |
| 1008 | for (iSequence = start; iSequence < end; iSequence++) { |
| 1009 | if (iSequence != sequenceOut) { |
| 1010 | double value; |
| 1011 | int iRowM, iRowP; |
| 1012 | ClpSimplex::Status status = model->getStatus(iSequence); |
| 1013 | |
| 1014 | switch(status) { |
| 1015 | |
| 1016 | case ClpSimplex::basic: |
| 1017 | case ClpSimplex::isFixed: |
| 1018 | break; |
| 1019 | case ClpSimplex::isFree: |
| 1020 | case ClpSimplex::superBasic: |
| 1021 | value = cost[iSequence]; |
| 1022 | j = iSequence << 1; |
| 1023 | iRowM = indices_[j]; |
| 1024 | iRowP = indices_[j+1]; |
| 1025 | value += duals[iRowM]; |
| 1026 | value -= duals[iRowP]; |
| 1027 | value = fabs(value); |
| 1028 | if (value > FREE_ACCEPT * tolerance) { |
| 1029 | numberWanted--; |
| 1030 | // we are going to bias towards free (but only if reasonable) |
| 1031 | value *= FREE_BIAS; |
| 1032 | if (value > bestDj) { |
| 1033 | // check flagged variable and correct dj |
| 1034 | if (!model->flagged(iSequence)) { |
| 1035 | bestDj = value; |
| 1036 | bestSequence = iSequence; |
| 1037 | } else { |
| 1038 | // just to make sure we don't exit before got something |
| 1039 | numberWanted++; |
| 1040 | } |
| 1041 | } |
| 1042 | } |
| 1043 | break; |
| 1044 | case ClpSimplex::atUpperBound: |
| 1045 | value = cost[iSequence]; |
| 1046 | j = iSequence << 1; |
| 1047 | iRowM = indices_[j]; |
| 1048 | iRowP = indices_[j+1]; |
| 1049 | value += duals[iRowM]; |
| 1050 | value -= duals[iRowP]; |
| 1051 | if (value > tolerance) { |
| 1052 | numberWanted--; |
| 1053 | if (value > bestDj) { |
| 1054 | // check flagged variable and correct dj |
| 1055 | if (!model->flagged(iSequence)) { |
| 1056 | bestDj = value; |
| 1057 | bestSequence = iSequence; |
| 1058 | } else { |
| 1059 | // just to make sure we don't exit before got something |
| 1060 | numberWanted++; |
| 1061 | } |
| 1062 | } |
| 1063 | } |
| 1064 | break; |
| 1065 | case ClpSimplex::atLowerBound: |
| 1066 | value = cost[iSequence]; |
| 1067 | j = iSequence << 1; |
| 1068 | iRowM = indices_[j]; |
| 1069 | iRowP = indices_[j+1]; |
| 1070 | value += duals[iRowM]; |
| 1071 | value -= duals[iRowP]; |
| 1072 | value = -value; |
| 1073 | if (value > tolerance) { |
| 1074 | numberWanted--; |
| 1075 | if (value > bestDj) { |
| 1076 | // check flagged variable and correct dj |
| 1077 | if (!model->flagged(iSequence)) { |
| 1078 | bestDj = value; |
| 1079 | bestSequence = iSequence; |
| 1080 | } else { |
| 1081 | // just to make sure we don't exit before got something |
| 1082 | numberWanted++; |
| 1083 | } |
| 1084 | } |
| 1085 | } |
| 1086 | break; |
| 1087 | } |
| 1088 | } |
| 1089 | if (!numberWanted) |
| 1090 | break; |
| 1091 | } |
| 1092 | if (bestSequence != saveSequence) { |
| 1093 | // recompute dj |
| 1094 | double value = cost[bestSequence]; |
| 1095 | j = bestSequence << 1; |
| 1096 | int iRowM = indices_[j]; |
| 1097 | int iRowP = indices_[j+1]; |
| 1098 | value += duals[iRowM]; |
| 1099 | value -= duals[iRowP]; |
| 1100 | reducedCost[bestSequence] = value; |
| 1101 | savedBestSequence_ = bestSequence; |
| 1102 | savedBestDj_ = reducedCost[savedBestSequence_]; |
| 1103 | } |
| 1104 | } |
| 1105 | currentWanted_ = numberWanted; |
| 1106 | } |
| 1107 | // Allow any parts of a created CoinMatrix to be deleted |
| 1108 | void |
| 1109 | ClpNetworkMatrix::releasePackedMatrix() const |
| 1110 | { |
| 1111 | delete matrix_; |
| 1112 | delete [] lengths_; |
| 1113 | matrix_ = NULL; |
| 1114 | lengths_ = NULL; |
| 1115 | } |
| 1116 | // Append Columns |
| 1117 | void |
| 1118 | ClpNetworkMatrix::appendCols(int number, const CoinPackedVectorBase * const * columns) |
| 1119 | { |
| 1120 | int iColumn; |
| 1121 | int numberBad = 0; |
| 1122 | for (iColumn = 0; iColumn < number; iColumn++) { |
| 1123 | int n = columns[iColumn]->getNumElements(); |
| 1124 | const double * element = columns[iColumn]->getElements(); |
| 1125 | if (n != 2) |
| 1126 | numberBad++; |
| 1127 | if (fabs(element[0]) != 1.0 || fabs(element[1]) != 1.0) |
| 1128 | numberBad++; |
| 1129 | else if (element[0]*element[1] != -1.0) |
| 1130 | numberBad++; |
| 1131 | } |
| 1132 | if (numberBad) |
| 1133 | throw CoinError("Not network" , "appendCols" , "ClpNetworkMatrix" ); |
| 1134 | // Get rid of temporary arrays |
| 1135 | delete [] lengths_; |
| 1136 | lengths_ = NULL; |
| 1137 | delete matrix_; |
| 1138 | matrix_ = NULL; |
| 1139 | CoinBigIndex size = 2 * number; |
| 1140 | int * temp2 = new int [numberColumns_*2+size]; |
| 1141 | CoinMemcpyN(indices_, numberColumns_ * 2, temp2); |
| 1142 | delete [] indices_; |
| 1143 | indices_ = temp2; |
| 1144 | // now add |
| 1145 | size = 2 * numberColumns_; |
| 1146 | for (iColumn = 0; iColumn < number; iColumn++) { |
| 1147 | const int * row = columns[iColumn]->getIndices(); |
| 1148 | const double * element = columns[iColumn]->getElements(); |
| 1149 | if (element[0] == -1.0) { |
| 1150 | indices_[size++] = row[0]; |
| 1151 | indices_[size++] = row[1]; |
| 1152 | } else { |
| 1153 | indices_[size++] = row[1]; |
| 1154 | indices_[size++] = row[0]; |
| 1155 | } |
| 1156 | } |
| 1157 | |
| 1158 | numberColumns_ += number; |
| 1159 | } |
| 1160 | // Append Rows |
| 1161 | void |
| 1162 | ClpNetworkMatrix::appendRows(int number, const CoinPackedVectorBase * const * rows) |
| 1163 | { |
| 1164 | // must be zero arrays |
| 1165 | int numberBad = 0; |
| 1166 | int iRow; |
| 1167 | for (iRow = 0; iRow < number; iRow++) { |
| 1168 | numberBad += rows[iRow]->getNumElements(); |
| 1169 | } |
| 1170 | if (numberBad) |
| 1171 | throw CoinError("Not NULL rows" , "appendRows" , "ClpNetworkMatrix" ); |
| 1172 | numberRows_ += number; |
| 1173 | } |
| 1174 | #ifndef SLIM_CLP |
| 1175 | /* Append a set of rows/columns to the end of the matrix. Returns number of errors |
| 1176 | i.e. if any of the new rows/columns contain an index that's larger than the |
| 1177 | number of columns-1/rows-1 (if numberOther>0) or duplicates |
| 1178 | If 0 then rows, 1 if columns */ |
| 1179 | int |
| 1180 | ClpNetworkMatrix::appendMatrix(int number, int type, |
| 1181 | const CoinBigIndex * starts, const int * index, |
| 1182 | const double * element, int /*numberOther*/) |
| 1183 | { |
| 1184 | int numberErrors = 0; |
| 1185 | // make into CoinPackedVector |
| 1186 | CoinPackedVectorBase ** vectors = |
| 1187 | new CoinPackedVectorBase * [number]; |
| 1188 | int iVector; |
| 1189 | for (iVector = 0; iVector < number; iVector++) { |
| 1190 | int iStart = starts[iVector]; |
| 1191 | vectors[iVector] = |
| 1192 | new CoinPackedVector(starts[iVector+1] - iStart, |
| 1193 | index + iStart, element + iStart); |
| 1194 | } |
| 1195 | if (type == 0) { |
| 1196 | // rows |
| 1197 | appendRows(number, vectors); |
| 1198 | } else { |
| 1199 | // columns |
| 1200 | appendCols(number, vectors); |
| 1201 | } |
| 1202 | for (iVector = 0; iVector < number; iVector++) |
| 1203 | delete vectors[iVector]; |
| 1204 | delete [] vectors; |
| 1205 | return numberErrors; |
| 1206 | } |
| 1207 | #endif |
| 1208 | /* Subset clone (without gaps). Duplicates are allowed |
| 1209 | and order is as given */ |
| 1210 | ClpMatrixBase * |
| 1211 | ClpNetworkMatrix::subsetClone (int numberRows, const int * whichRows, |
| 1212 | int numberColumns, |
| 1213 | const int * whichColumns) const |
| 1214 | { |
| 1215 | return new ClpNetworkMatrix(*this, numberRows, whichRows, |
| 1216 | numberColumns, whichColumns); |
| 1217 | } |
| 1218 | /* Subset constructor (without gaps). Duplicates are allowed |
| 1219 | and order is as given */ |
| 1220 | ClpNetworkMatrix::ClpNetworkMatrix ( |
| 1221 | const ClpNetworkMatrix & rhs, |
| 1222 | int numberRows, const int * whichRow, |
| 1223 | int numberColumns, const int * whichColumn) |
| 1224 | : ClpMatrixBase(rhs) |
| 1225 | { |
| 1226 | setType(11); |
| 1227 | matrix_ = NULL; |
| 1228 | lengths_ = NULL; |
| 1229 | indices_ = new int[2*numberColumns]; |
| 1230 | numberRows_ = numberRows; |
| 1231 | numberColumns_ = numberColumns; |
| 1232 | trueNetwork_ = true; |
| 1233 | int iColumn; |
| 1234 | int numberBad = 0; |
| 1235 | int * which = new int [rhs.numberRows_]; |
| 1236 | int iRow; |
| 1237 | for (iRow = 0; iRow < rhs.numberRows_; iRow++) |
| 1238 | which[iRow] = -1; |
| 1239 | int n = 0; |
| 1240 | for (iRow = 0; iRow < numberRows; iRow++) { |
| 1241 | int jRow = whichRow[iRow]; |
| 1242 | assert (jRow >= 0 && jRow < rhs.numberRows_); |
| 1243 | which[jRow] = n++; |
| 1244 | } |
| 1245 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
| 1246 | CoinBigIndex start; |
| 1247 | CoinBigIndex i; |
| 1248 | start = 2 * iColumn; |
| 1249 | CoinBigIndex offset = 2 * whichColumn[iColumn] - start; |
| 1250 | for (i = start; i < start + 2; i++) { |
| 1251 | int iRow = rhs.indices_[i+offset]; |
| 1252 | iRow = which[iRow]; |
| 1253 | if (iRow < 0) |
| 1254 | numberBad++; |
| 1255 | else |
| 1256 | indices_[i] = iRow; |
| 1257 | } |
| 1258 | } |
| 1259 | if (numberBad) |
| 1260 | throw CoinError("Invalid rows" , "subsetConstructor" , "ClpNetworkMatrix" ); |
| 1261 | } |
| 1262 | |