| 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
| 11 | #ifndef EIGEN_REDUX_H |
| 12 | #define EIGEN_REDUX_H |
| 13 | |
| 14 | namespace Eigen { |
| 15 | |
| 16 | namespace internal { |
| 17 | |
| 18 | // TODO |
| 19 | // * implement other kind of vectorization |
| 20 | // * factorize code |
| 21 | |
| 22 | /*************************************************************************** |
| 23 | * Part 1 : the logic deciding a strategy for vectorization and unrolling |
| 24 | ***************************************************************************/ |
| 25 | |
| 26 | template<typename Func, typename Derived> |
| 27 | struct redux_traits |
| 28 | { |
| 29 | public: |
| 30 | typedef typename find_best_packet<typename Derived::Scalar,Derived::SizeAtCompileTime>::type PacketType; |
| 31 | enum { |
| 32 | PacketSize = unpacket_traits<PacketType>::size, |
| 33 | InnerMaxSize = int(Derived::IsRowMajor) |
| 34 | ? Derived::MaxColsAtCompileTime |
| 35 | : Derived::MaxRowsAtCompileTime |
| 36 | }; |
| 37 | |
| 38 | enum { |
| 39 | MightVectorize = (int(Derived::Flags)&ActualPacketAccessBit) |
| 40 | && (functor_traits<Func>::PacketAccess), |
| 41 | MayLinearVectorize = bool(MightVectorize) && (int(Derived::Flags)&LinearAccessBit), |
| 42 | MaySliceVectorize = bool(MightVectorize) && int(InnerMaxSize)>=3*PacketSize |
| 43 | }; |
| 44 | |
| 45 | public: |
| 46 | enum { |
| 47 | Traversal = int(MayLinearVectorize) ? int(LinearVectorizedTraversal) |
| 48 | : int(MaySliceVectorize) ? int(SliceVectorizedTraversal) |
| 49 | : int(DefaultTraversal) |
| 50 | }; |
| 51 | |
| 52 | public: |
| 53 | enum { |
| 54 | Cost = Derived::SizeAtCompileTime == Dynamic ? HugeCost |
| 55 | : Derived::SizeAtCompileTime * Derived::CoeffReadCost + (Derived::SizeAtCompileTime-1) * functor_traits<Func>::Cost, |
| 56 | UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Traversal) == int(DefaultTraversal) ? 1 : int(PacketSize)) |
| 57 | }; |
| 58 | |
| 59 | public: |
| 60 | enum { |
| 61 | Unrolling = Cost <= UnrollingLimit ? CompleteUnrolling : NoUnrolling |
| 62 | }; |
| 63 | |
| 64 | #ifdef EIGEN_DEBUG_ASSIGN |
| 65 | static void debug() |
| 66 | { |
| 67 | std::cerr << "Xpr: " << typeid(typename Derived::XprType).name() << std::endl; |
| 68 | std::cerr.setf(std::ios::hex, std::ios::basefield); |
| 69 | EIGEN_DEBUG_VAR(Derived::Flags) |
| 70 | std::cerr.unsetf(std::ios::hex); |
| 71 | EIGEN_DEBUG_VAR(InnerMaxSize) |
| 72 | EIGEN_DEBUG_VAR(PacketSize) |
| 73 | EIGEN_DEBUG_VAR(MightVectorize) |
| 74 | EIGEN_DEBUG_VAR(MayLinearVectorize) |
| 75 | EIGEN_DEBUG_VAR(MaySliceVectorize) |
| 76 | EIGEN_DEBUG_VAR(Traversal) |
| 77 | EIGEN_DEBUG_VAR(UnrollingLimit) |
| 78 | EIGEN_DEBUG_VAR(Unrolling) |
| 79 | std::cerr << std::endl; |
| 80 | } |
| 81 | #endif |
| 82 | }; |
| 83 | |
| 84 | /*************************************************************************** |
| 85 | * Part 2 : unrollers |
| 86 | ***************************************************************************/ |
| 87 | |
| 88 | /*** no vectorization ***/ |
| 89 | |
| 90 | template<typename Func, typename Derived, int Start, int Length> |
| 91 | struct redux_novec_unroller |
| 92 | { |
| 93 | enum { |
| 94 | HalfLength = Length/2 |
| 95 | }; |
| 96 | |
| 97 | typedef typename Derived::Scalar Scalar; |
| 98 | |
| 99 | EIGEN_DEVICE_FUNC |
| 100 | static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func) |
| 101 | { |
| 102 | return func(redux_novec_unroller<Func, Derived, Start, HalfLength>::run(mat,func), |
| 103 | redux_novec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func)); |
| 104 | } |
| 105 | }; |
| 106 | |
| 107 | template<typename Func, typename Derived, int Start> |
| 108 | struct redux_novec_unroller<Func, Derived, Start, 1> |
| 109 | { |
| 110 | enum { |
| 111 | outer = Start / Derived::InnerSizeAtCompileTime, |
| 112 | inner = Start % Derived::InnerSizeAtCompileTime |
| 113 | }; |
| 114 | |
| 115 | typedef typename Derived::Scalar Scalar; |
| 116 | |
| 117 | EIGEN_DEVICE_FUNC |
| 118 | static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func&) |
| 119 | { |
| 120 | return mat.coeffByOuterInner(outer, inner); |
| 121 | } |
| 122 | }; |
| 123 | |
| 124 | // This is actually dead code and will never be called. It is required |
| 125 | // to prevent false warnings regarding failed inlining though |
| 126 | // for 0 length run() will never be called at all. |
| 127 | template<typename Func, typename Derived, int Start> |
| 128 | struct redux_novec_unroller<Func, Derived, Start, 0> |
| 129 | { |
| 130 | typedef typename Derived::Scalar Scalar; |
| 131 | EIGEN_DEVICE_FUNC |
| 132 | static EIGEN_STRONG_INLINE Scalar run(const Derived&, const Func&) { return Scalar(); } |
| 133 | }; |
| 134 | |
| 135 | /*** vectorization ***/ |
| 136 | |
| 137 | template<typename Func, typename Derived, int Start, int Length> |
| 138 | struct redux_vec_unroller |
| 139 | { |
| 140 | enum { |
| 141 | PacketSize = redux_traits<Func, Derived>::PacketSize, |
| 142 | HalfLength = Length/2 |
| 143 | }; |
| 144 | |
| 145 | typedef typename Derived::Scalar Scalar; |
| 146 | typedef typename redux_traits<Func, Derived>::PacketType PacketScalar; |
| 147 | |
| 148 | static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func& func) |
| 149 | { |
| 150 | return func.packetOp( |
| 151 | redux_vec_unroller<Func, Derived, Start, HalfLength>::run(mat,func), |
| 152 | redux_vec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func) ); |
| 153 | } |
| 154 | }; |
| 155 | |
| 156 | template<typename Func, typename Derived, int Start> |
| 157 | struct redux_vec_unroller<Func, Derived, Start, 1> |
| 158 | { |
| 159 | enum { |
| 160 | index = Start * redux_traits<Func, Derived>::PacketSize, |
| 161 | outer = index / int(Derived::InnerSizeAtCompileTime), |
| 162 | inner = index % int(Derived::InnerSizeAtCompileTime), |
| 163 | alignment = Derived::Alignment |
| 164 | }; |
| 165 | |
| 166 | typedef typename Derived::Scalar Scalar; |
| 167 | typedef typename redux_traits<Func, Derived>::PacketType PacketScalar; |
| 168 | |
| 169 | static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func&) |
| 170 | { |
| 171 | return mat.template packetByOuterInner<alignment,PacketScalar>(outer, inner); |
| 172 | } |
| 173 | }; |
| 174 | |
| 175 | /*************************************************************************** |
| 176 | * Part 3 : implementation of all cases |
| 177 | ***************************************************************************/ |
| 178 | |
| 179 | template<typename Func, typename Derived, |
| 180 | int Traversal = redux_traits<Func, Derived>::Traversal, |
| 181 | int Unrolling = redux_traits<Func, Derived>::Unrolling |
| 182 | > |
| 183 | struct redux_impl; |
| 184 | |
| 185 | template<typename Func, typename Derived> |
| 186 | struct redux_impl<Func, Derived, DefaultTraversal, NoUnrolling> |
| 187 | { |
| 188 | typedef typename Derived::Scalar Scalar; |
| 189 | EIGEN_DEVICE_FUNC |
| 190 | static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func) |
| 191 | { |
| 192 | eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix" ); |
| 193 | Scalar res; |
| 194 | res = mat.coeffByOuterInner(0, 0); |
| 195 | for(Index i = 1; i < mat.innerSize(); ++i) |
| 196 | res = func(res, mat.coeffByOuterInner(0, i)); |
| 197 | for(Index i = 1; i < mat.outerSize(); ++i) |
| 198 | for(Index j = 0; j < mat.innerSize(); ++j) |
| 199 | res = func(res, mat.coeffByOuterInner(i, j)); |
| 200 | return res; |
| 201 | } |
| 202 | }; |
| 203 | |
| 204 | template<typename Func, typename Derived> |
| 205 | struct redux_impl<Func,Derived, DefaultTraversal, CompleteUnrolling> |
| 206 | : public redux_novec_unroller<Func,Derived, 0, Derived::SizeAtCompileTime> |
| 207 | {}; |
| 208 | |
| 209 | template<typename Func, typename Derived> |
| 210 | struct redux_impl<Func, Derived, LinearVectorizedTraversal, NoUnrolling> |
| 211 | { |
| 212 | typedef typename Derived::Scalar Scalar; |
| 213 | typedef typename redux_traits<Func, Derived>::PacketType PacketScalar; |
| 214 | |
| 215 | static Scalar run(const Derived &mat, const Func& func) |
| 216 | { |
| 217 | const Index size = mat.size(); |
| 218 | |
| 219 | const Index packetSize = redux_traits<Func, Derived>::PacketSize; |
| 220 | const int packetAlignment = unpacket_traits<PacketScalar>::alignment; |
| 221 | enum { |
| 222 | alignment0 = (bool(Derived::Flags & DirectAccessBit) && bool(packet_traits<Scalar>::AlignedOnScalar)) ? int(packetAlignment) : int(Unaligned), |
| 223 | alignment = EIGEN_PLAIN_ENUM_MAX(alignment0, Derived::Alignment) |
| 224 | }; |
| 225 | const Index alignedStart = internal::first_default_aligned(mat.nestedExpression()); |
| 226 | const Index alignedSize2 = ((size-alignedStart)/(2*packetSize))*(2*packetSize); |
| 227 | const Index alignedSize = ((size-alignedStart)/(packetSize))*(packetSize); |
| 228 | const Index alignedEnd2 = alignedStart + alignedSize2; |
| 229 | const Index alignedEnd = alignedStart + alignedSize; |
| 230 | Scalar res; |
| 231 | if(alignedSize) |
| 232 | { |
| 233 | PacketScalar packet_res0 = mat.template packet<alignment,PacketScalar>(alignedStart); |
| 234 | if(alignedSize>packetSize) // we have at least two packets to partly unroll the loop |
| 235 | { |
| 236 | PacketScalar packet_res1 = mat.template packet<alignment,PacketScalar>(alignedStart+packetSize); |
| 237 | for(Index index = alignedStart + 2*packetSize; index < alignedEnd2; index += 2*packetSize) |
| 238 | { |
| 239 | packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment,PacketScalar>(index)); |
| 240 | packet_res1 = func.packetOp(packet_res1, mat.template packet<alignment,PacketScalar>(index+packetSize)); |
| 241 | } |
| 242 | |
| 243 | packet_res0 = func.packetOp(packet_res0,packet_res1); |
| 244 | if(alignedEnd>alignedEnd2) |
| 245 | packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment,PacketScalar>(alignedEnd2)); |
| 246 | } |
| 247 | res = func.predux(packet_res0); |
| 248 | |
| 249 | for(Index index = 0; index < alignedStart; ++index) |
| 250 | res = func(res,mat.coeff(index)); |
| 251 | |
| 252 | for(Index index = alignedEnd; index < size; ++index) |
| 253 | res = func(res,mat.coeff(index)); |
| 254 | } |
| 255 | else // too small to vectorize anything. |
| 256 | // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize. |
| 257 | { |
| 258 | res = mat.coeff(0); |
| 259 | for(Index index = 1; index < size; ++index) |
| 260 | res = func(res,mat.coeff(index)); |
| 261 | } |
| 262 | |
| 263 | return res; |
| 264 | } |
| 265 | }; |
| 266 | |
| 267 | // NOTE: for SliceVectorizedTraversal we simply bypass unrolling |
| 268 | template<typename Func, typename Derived, int Unrolling> |
| 269 | struct redux_impl<Func, Derived, SliceVectorizedTraversal, Unrolling> |
| 270 | { |
| 271 | typedef typename Derived::Scalar Scalar; |
| 272 | typedef typename redux_traits<Func, Derived>::PacketType PacketType; |
| 273 | |
| 274 | EIGEN_DEVICE_FUNC static Scalar run(const Derived &mat, const Func& func) |
| 275 | { |
| 276 | eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix" ); |
| 277 | const Index innerSize = mat.innerSize(); |
| 278 | const Index outerSize = mat.outerSize(); |
| 279 | enum { |
| 280 | packetSize = redux_traits<Func, Derived>::PacketSize |
| 281 | }; |
| 282 | const Index packetedInnerSize = ((innerSize)/packetSize)*packetSize; |
| 283 | Scalar res; |
| 284 | if(packetedInnerSize) |
| 285 | { |
| 286 | PacketType packet_res = mat.template packet<Unaligned,PacketType>(0,0); |
| 287 | for(Index j=0; j<outerSize; ++j) |
| 288 | for(Index i=(j==0?packetSize:0); i<packetedInnerSize; i+=Index(packetSize)) |
| 289 | packet_res = func.packetOp(packet_res, mat.template packetByOuterInner<Unaligned,PacketType>(j,i)); |
| 290 | |
| 291 | res = func.predux(packet_res); |
| 292 | for(Index j=0; j<outerSize; ++j) |
| 293 | for(Index i=packetedInnerSize; i<innerSize; ++i) |
| 294 | res = func(res, mat.coeffByOuterInner(j,i)); |
| 295 | } |
| 296 | else // too small to vectorize anything. |
| 297 | // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize. |
| 298 | { |
| 299 | res = redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>::run(mat, func); |
| 300 | } |
| 301 | |
| 302 | return res; |
| 303 | } |
| 304 | }; |
| 305 | |
| 306 | template<typename Func, typename Derived> |
| 307 | struct redux_impl<Func, Derived, LinearVectorizedTraversal, CompleteUnrolling> |
| 308 | { |
| 309 | typedef typename Derived::Scalar Scalar; |
| 310 | |
| 311 | typedef typename redux_traits<Func, Derived>::PacketType PacketScalar; |
| 312 | enum { |
| 313 | PacketSize = redux_traits<Func, Derived>::PacketSize, |
| 314 | Size = Derived::SizeAtCompileTime, |
| 315 | VectorizedSize = (Size / PacketSize) * PacketSize |
| 316 | }; |
| 317 | EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func) |
| 318 | { |
| 319 | eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix" ); |
| 320 | if (VectorizedSize > 0) { |
| 321 | Scalar res = func.predux(redux_vec_unroller<Func, Derived, 0, Size / PacketSize>::run(mat,func)); |
| 322 | if (VectorizedSize != Size) |
| 323 | res = func(res,redux_novec_unroller<Func, Derived, VectorizedSize, Size-VectorizedSize>::run(mat,func)); |
| 324 | return res; |
| 325 | } |
| 326 | else { |
| 327 | return redux_novec_unroller<Func, Derived, 0, Size>::run(mat,func); |
| 328 | } |
| 329 | } |
| 330 | }; |
| 331 | |
| 332 | // evaluator adaptor |
| 333 | template<typename _XprType> |
| 334 | class redux_evaluator |
| 335 | { |
| 336 | public: |
| 337 | typedef _XprType XprType; |
| 338 | EIGEN_DEVICE_FUNC explicit redux_evaluator(const XprType &xpr) : m_evaluator(xpr), m_xpr(xpr) {} |
| 339 | |
| 340 | typedef typename XprType::Scalar Scalar; |
| 341 | typedef typename XprType::CoeffReturnType CoeffReturnType; |
| 342 | typedef typename XprType::PacketScalar PacketScalar; |
| 343 | typedef typename XprType::PacketReturnType PacketReturnType; |
| 344 | |
| 345 | enum { |
| 346 | MaxRowsAtCompileTime = XprType::MaxRowsAtCompileTime, |
| 347 | MaxColsAtCompileTime = XprType::MaxColsAtCompileTime, |
| 348 | // TODO we should not remove DirectAccessBit and rather find an elegant way to query the alignment offset at runtime from the evaluator |
| 349 | Flags = evaluator<XprType>::Flags & ~DirectAccessBit, |
| 350 | IsRowMajor = XprType::IsRowMajor, |
| 351 | SizeAtCompileTime = XprType::SizeAtCompileTime, |
| 352 | InnerSizeAtCompileTime = XprType::InnerSizeAtCompileTime, |
| 353 | CoeffReadCost = evaluator<XprType>::CoeffReadCost, |
| 354 | Alignment = evaluator<XprType>::Alignment |
| 355 | }; |
| 356 | |
| 357 | EIGEN_DEVICE_FUNC Index rows() const { return m_xpr.rows(); } |
| 358 | EIGEN_DEVICE_FUNC Index cols() const { return m_xpr.cols(); } |
| 359 | EIGEN_DEVICE_FUNC Index size() const { return m_xpr.size(); } |
| 360 | EIGEN_DEVICE_FUNC Index innerSize() const { return m_xpr.innerSize(); } |
| 361 | EIGEN_DEVICE_FUNC Index outerSize() const { return m_xpr.outerSize(); } |
| 362 | |
| 363 | EIGEN_DEVICE_FUNC |
| 364 | CoeffReturnType coeff(Index row, Index col) const |
| 365 | { return m_evaluator.coeff(row, col); } |
| 366 | |
| 367 | EIGEN_DEVICE_FUNC |
| 368 | CoeffReturnType coeff(Index index) const |
| 369 | { return m_evaluator.coeff(index); } |
| 370 | |
| 371 | template<int LoadMode, typename PacketType> |
| 372 | PacketType packet(Index row, Index col) const |
| 373 | { return m_evaluator.template packet<LoadMode,PacketType>(row, col); } |
| 374 | |
| 375 | template<int LoadMode, typename PacketType> |
| 376 | PacketType packet(Index index) const |
| 377 | { return m_evaluator.template packet<LoadMode,PacketType>(index); } |
| 378 | |
| 379 | EIGEN_DEVICE_FUNC |
| 380 | CoeffReturnType coeffByOuterInner(Index outer, Index inner) const |
| 381 | { return m_evaluator.coeff(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); } |
| 382 | |
| 383 | template<int LoadMode, typename PacketType> |
| 384 | PacketType packetByOuterInner(Index outer, Index inner) const |
| 385 | { return m_evaluator.template packet<LoadMode,PacketType>(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); } |
| 386 | |
| 387 | const XprType & nestedExpression() const { return m_xpr; } |
| 388 | |
| 389 | protected: |
| 390 | internal::evaluator<XprType> m_evaluator; |
| 391 | const XprType &m_xpr; |
| 392 | }; |
| 393 | |
| 394 | } // end namespace internal |
| 395 | |
| 396 | /*************************************************************************** |
| 397 | * Part 4 : public API |
| 398 | ***************************************************************************/ |
| 399 | |
| 400 | |
| 401 | /** \returns the result of a full redux operation on the whole matrix or vector using \a func |
| 402 | * |
| 403 | * The template parameter \a BinaryOp is the type of the functor \a func which must be |
| 404 | * an associative operator. Both current C++98 and C++11 functor styles are handled. |
| 405 | * |
| 406 | * \sa DenseBase::sum(), DenseBase::minCoeff(), DenseBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise() |
| 407 | */ |
| 408 | template<typename Derived> |
| 409 | template<typename Func> |
| 410 | EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar |
| 411 | DenseBase<Derived>::redux(const Func& func) const |
| 412 | { |
| 413 | eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix" ); |
| 414 | |
| 415 | typedef typename internal::redux_evaluator<Derived> ThisEvaluator; |
| 416 | ThisEvaluator thisEval(derived()); |
| 417 | |
| 418 | return internal::redux_impl<Func, ThisEvaluator>::run(thisEval, func); |
| 419 | } |
| 420 | |
| 421 | /** \returns the minimum of all coefficients of \c *this. |
| 422 | * \warning the result is undefined if \c *this contains NaN. |
| 423 | */ |
| 424 | template<typename Derived> |
| 425 | EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar |
| 426 | DenseBase<Derived>::minCoeff() const |
| 427 | { |
| 428 | return derived().redux(Eigen::internal::scalar_min_op<Scalar,Scalar>()); |
| 429 | } |
| 430 | |
| 431 | /** \returns the maximum of all coefficients of \c *this. |
| 432 | * \warning the result is undefined if \c *this contains NaN. |
| 433 | */ |
| 434 | template<typename Derived> |
| 435 | EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar |
| 436 | DenseBase<Derived>::maxCoeff() const |
| 437 | { |
| 438 | return derived().redux(Eigen::internal::scalar_max_op<Scalar,Scalar>()); |
| 439 | } |
| 440 | |
| 441 | /** \returns the sum of all coefficients of \c *this |
| 442 | * |
| 443 | * If \c *this is empty, then the value 0 is returned. |
| 444 | * |
| 445 | * \sa trace(), prod(), mean() |
| 446 | */ |
| 447 | template<typename Derived> |
| 448 | EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar |
| 449 | DenseBase<Derived>::sum() const |
| 450 | { |
| 451 | if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0)) |
| 452 | return Scalar(0); |
| 453 | return derived().redux(Eigen::internal::scalar_sum_op<Scalar,Scalar>()); |
| 454 | } |
| 455 | |
| 456 | /** \returns the mean of all coefficients of *this |
| 457 | * |
| 458 | * \sa trace(), prod(), sum() |
| 459 | */ |
| 460 | template<typename Derived> |
| 461 | EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar |
| 462 | DenseBase<Derived>::mean() const |
| 463 | { |
| 464 | #ifdef __INTEL_COMPILER |
| 465 | #pragma warning push |
| 466 | #pragma warning ( disable : 2259 ) |
| 467 | #endif |
| 468 | return Scalar(derived().redux(Eigen::internal::scalar_sum_op<Scalar,Scalar>())) / Scalar(this->size()); |
| 469 | #ifdef __INTEL_COMPILER |
| 470 | #pragma warning pop |
| 471 | #endif |
| 472 | } |
| 473 | |
| 474 | /** \returns the product of all coefficients of *this |
| 475 | * |
| 476 | * Example: \include MatrixBase_prod.cpp |
| 477 | * Output: \verbinclude MatrixBase_prod.out |
| 478 | * |
| 479 | * \sa sum(), mean(), trace() |
| 480 | */ |
| 481 | template<typename Derived> |
| 482 | EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar |
| 483 | DenseBase<Derived>::prod() const |
| 484 | { |
| 485 | if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0)) |
| 486 | return Scalar(1); |
| 487 | return derived().redux(Eigen::internal::scalar_product_op<Scalar>()); |
| 488 | } |
| 489 | |
| 490 | /** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal. |
| 491 | * |
| 492 | * \c *this can be any matrix, not necessarily square. |
| 493 | * |
| 494 | * \sa diagonal(), sum() |
| 495 | */ |
| 496 | template<typename Derived> |
| 497 | EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar |
| 498 | MatrixBase<Derived>::trace() const |
| 499 | { |
| 500 | return derived().diagonal().sum(); |
| 501 | } |
| 502 | |
| 503 | } // end namespace Eigen |
| 504 | |
| 505 | #endif // EIGEN_REDUX_H |
| 506 | |