| 1 | //--------------------------------------------------------------------------------- |
| 2 | // |
| 3 | // Little Color Management System |
| 4 | // Copyright (c) 1998-2017 Marti Maria Saguer |
| 5 | // |
| 6 | // Permission is hereby granted, free of charge, to any person obtaining |
| 7 | // a copy of this software and associated documentation files (the "Software"), |
| 8 | // to deal in the Software without restriction, including without limitation |
| 9 | // the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 10 | // and/or sell copies of the Software, and to permit persons to whom the Software |
| 11 | // is furnished to do so, subject to the following conditions: |
| 12 | // |
| 13 | // The above copyright notice and this permission notice shall be included in |
| 14 | // all copies or substantial portions of the Software. |
| 15 | // |
| 16 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| 17 | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
| 18 | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| 19 | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
| 20 | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
| 21 | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
| 22 | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| 23 | // |
| 24 | //--------------------------------------------------------------------------------- |
| 25 | // |
| 26 | |
| 27 | #include "lcms2_internal.h" |
| 28 | |
| 29 | |
| 30 | // ------------------------------------------------------------------------ |
| 31 | |
| 32 | // Gamut boundary description by using Jan Morovic's Segment maxima method |
| 33 | // Many thanks to Jan for allowing me to use his algorithm. |
| 34 | |
| 35 | // r = C* |
| 36 | // alpha = Hab |
| 37 | // theta = L* |
| 38 | |
| 39 | #define SECTORS 16 // number of divisions in alpha and theta |
| 40 | |
| 41 | // Spherical coordinates |
| 42 | typedef struct { |
| 43 | |
| 44 | cmsFloat64Number r; |
| 45 | cmsFloat64Number alpha; |
| 46 | cmsFloat64Number theta; |
| 47 | |
| 48 | } cmsSpherical; |
| 49 | |
| 50 | typedef enum { |
| 51 | GP_EMPTY, |
| 52 | GP_SPECIFIED, |
| 53 | GP_MODELED |
| 54 | |
| 55 | } GDBPointType; |
| 56 | |
| 57 | |
| 58 | typedef struct { |
| 59 | |
| 60 | GDBPointType Type; |
| 61 | cmsSpherical p; // Keep also alpha & theta of maximum |
| 62 | |
| 63 | } cmsGDBPoint; |
| 64 | |
| 65 | |
| 66 | typedef struct { |
| 67 | |
| 68 | cmsGDBPoint Gamut[SECTORS][SECTORS]; |
| 69 | |
| 70 | } cmsGDB; |
| 71 | |
| 72 | |
| 73 | // A line using the parametric form |
| 74 | // P = a + t*u |
| 75 | typedef struct { |
| 76 | |
| 77 | cmsVEC3 a; |
| 78 | cmsVEC3 u; |
| 79 | |
| 80 | } cmsLine; |
| 81 | |
| 82 | |
| 83 | // A plane using the parametric form |
| 84 | // Q = b + r*v + s*w |
| 85 | typedef struct { |
| 86 | |
| 87 | cmsVEC3 b; |
| 88 | cmsVEC3 v; |
| 89 | cmsVEC3 w; |
| 90 | |
| 91 | } cmsPlane; |
| 92 | |
| 93 | |
| 94 | |
| 95 | // -------------------------------------------------------------------------------------------- |
| 96 | |
| 97 | // ATAN2() which always returns degree positive numbers |
| 98 | |
| 99 | static |
| 100 | cmsFloat64Number _cmsAtan2(cmsFloat64Number y, cmsFloat64Number x) |
| 101 | { |
| 102 | cmsFloat64Number a; |
| 103 | |
| 104 | // Deal with undefined case |
| 105 | if (x == 0.0 && y == 0.0) return 0; |
| 106 | |
| 107 | a = (atan2(y, x) * 180.0) / M_PI; |
| 108 | |
| 109 | while (a < 0) { |
| 110 | a += 360; |
| 111 | } |
| 112 | |
| 113 | return a; |
| 114 | } |
| 115 | |
| 116 | // Convert to spherical coordinates |
| 117 | static |
| 118 | void ToSpherical(cmsSpherical* sp, const cmsVEC3* v) |
| 119 | { |
| 120 | |
| 121 | cmsFloat64Number L, a, b; |
| 122 | |
| 123 | L = v ->n[VX]; |
| 124 | a = v ->n[VY]; |
| 125 | b = v ->n[VZ]; |
| 126 | |
| 127 | sp ->r = sqrt( L*L + a*a + b*b ); |
| 128 | |
| 129 | if (sp ->r == 0) { |
| 130 | sp ->alpha = sp ->theta = 0; |
| 131 | return; |
| 132 | } |
| 133 | |
| 134 | sp ->alpha = _cmsAtan2(a, b); |
| 135 | sp ->theta = _cmsAtan2(sqrt(a*a + b*b), L); |
| 136 | } |
| 137 | |
| 138 | |
| 139 | // Convert to cartesian from spherical |
| 140 | static |
| 141 | void ToCartesian(cmsVEC3* v, const cmsSpherical* sp) |
| 142 | { |
| 143 | cmsFloat64Number sin_alpha; |
| 144 | cmsFloat64Number cos_alpha; |
| 145 | cmsFloat64Number sin_theta; |
| 146 | cmsFloat64Number cos_theta; |
| 147 | cmsFloat64Number L, a, b; |
| 148 | |
| 149 | sin_alpha = sin((M_PI * sp ->alpha) / 180.0); |
| 150 | cos_alpha = cos((M_PI * sp ->alpha) / 180.0); |
| 151 | sin_theta = sin((M_PI * sp ->theta) / 180.0); |
| 152 | cos_theta = cos((M_PI * sp ->theta) / 180.0); |
| 153 | |
| 154 | a = sp ->r * sin_theta * sin_alpha; |
| 155 | b = sp ->r * sin_theta * cos_alpha; |
| 156 | L = sp ->r * cos_theta; |
| 157 | |
| 158 | v ->n[VX] = L; |
| 159 | v ->n[VY] = a; |
| 160 | v ->n[VZ] = b; |
| 161 | } |
| 162 | |
| 163 | |
| 164 | // Quantize sector of a spherical coordinate. Saturate 360, 180 to last sector |
| 165 | // The limits are the centers of each sector, so |
| 166 | static |
| 167 | void QuantizeToSector(const cmsSpherical* sp, int* alpha, int* theta) |
| 168 | { |
| 169 | *alpha = (int) floor(((sp->alpha * (SECTORS)) / 360.0) ); |
| 170 | *theta = (int) floor(((sp->theta * (SECTORS)) / 180.0) ); |
| 171 | |
| 172 | if (*alpha >= SECTORS) |
| 173 | *alpha = SECTORS-1; |
| 174 | if (*theta >= SECTORS) |
| 175 | *theta = SECTORS-1; |
| 176 | } |
| 177 | |
| 178 | |
| 179 | // Line determined by 2 points |
| 180 | static |
| 181 | void LineOf2Points(cmsContext ContextID, cmsLine* line, cmsVEC3* a, cmsVEC3* b) |
| 182 | { |
| 183 | |
| 184 | _cmsVEC3init(ContextID, &line ->a, a ->n[VX], a ->n[VY], a ->n[VZ]); |
| 185 | _cmsVEC3init(ContextID, &line ->u, b ->n[VX] - a ->n[VX], |
| 186 | b ->n[VY] - a ->n[VY], |
| 187 | b ->n[VZ] - a ->n[VZ]); |
| 188 | } |
| 189 | |
| 190 | |
| 191 | // Evaluate parametric line |
| 192 | static |
| 193 | void GetPointOfLine(cmsVEC3* p, const cmsLine* line, cmsFloat64Number t) |
| 194 | { |
| 195 | p ->n[VX] = line ->a.n[VX] + t * line->u.n[VX]; |
| 196 | p ->n[VY] = line ->a.n[VY] + t * line->u.n[VY]; |
| 197 | p ->n[VZ] = line ->a.n[VZ] + t * line->u.n[VZ]; |
| 198 | } |
| 199 | |
| 200 | |
| 201 | |
| 202 | /* |
| 203 | Closest point in sector line1 to sector line2 (both are defined as 0 <=t <= 1) |
| 204 | http://softsurfer.com/Archive/algorithm_0106/algorithm_0106.htm |
| 205 | |
| 206 | Copyright 2001, softSurfer (www.softsurfer.com) |
| 207 | This code may be freely used and modified for any purpose |
| 208 | providing that this copyright notice is included with it. |
| 209 | SoftSurfer makes no warranty for this code, and cannot be held |
| 210 | liable for any real or imagined damage resulting from its use. |
| 211 | Users of this code must verify correctness for their application. |
| 212 | |
| 213 | */ |
| 214 | |
| 215 | static |
| 216 | cmsBool ClosestLineToLine(cmsContext ContextID, cmsVEC3* r, const cmsLine* line1, const cmsLine* line2) |
| 217 | { |
| 218 | cmsFloat64Number a, b, c, d, e, D; |
| 219 | cmsFloat64Number sc, sN, sD; |
| 220 | //cmsFloat64Number tc; // left for future use |
| 221 | cmsFloat64Number tN, tD; |
| 222 | cmsVEC3 w0; |
| 223 | |
| 224 | _cmsVEC3minus(ContextID, &w0, &line1 ->a, &line2 ->a); |
| 225 | |
| 226 | a = _cmsVEC3dot(ContextID, &line1 ->u, &line1 ->u); |
| 227 | b = _cmsVEC3dot(ContextID, &line1 ->u, &line2 ->u); |
| 228 | c = _cmsVEC3dot(ContextID, &line2 ->u, &line2 ->u); |
| 229 | d = _cmsVEC3dot(ContextID, &line1 ->u, &w0); |
| 230 | e = _cmsVEC3dot(ContextID, &line2 ->u, &w0); |
| 231 | |
| 232 | D = a*c - b * b; // Denominator |
| 233 | sD = tD = D; // default sD = D >= 0 |
| 234 | |
| 235 | if (D < MATRIX_DET_TOLERANCE) { // the lines are almost parallel |
| 236 | |
| 237 | sN = 0.0; // force using point P0 on segment S1 |
| 238 | sD = 1.0; // to prevent possible division by 0.0 later |
| 239 | tN = e; |
| 240 | tD = c; |
| 241 | } |
| 242 | else { // get the closest points on the infinite lines |
| 243 | |
| 244 | sN = (b*e - c*d); |
| 245 | tN = (a*e - b*d); |
| 246 | |
| 247 | if (sN < 0.0) { // sc < 0 => the s=0 edge is visible |
| 248 | |
| 249 | sN = 0.0; |
| 250 | tN = e; |
| 251 | tD = c; |
| 252 | } |
| 253 | else if (sN > sD) { // sc > 1 => the s=1 edge is visible |
| 254 | sN = sD; |
| 255 | tN = e + b; |
| 256 | tD = c; |
| 257 | } |
| 258 | } |
| 259 | |
| 260 | if (tN < 0.0) { // tc < 0 => the t=0 edge is visible |
| 261 | |
| 262 | tN = 0.0; |
| 263 | // recompute sc for this edge |
| 264 | if (-d < 0.0) |
| 265 | sN = 0.0; |
| 266 | else if (-d > a) |
| 267 | sN = sD; |
| 268 | else { |
| 269 | sN = -d; |
| 270 | sD = a; |
| 271 | } |
| 272 | } |
| 273 | else if (tN > tD) { // tc > 1 => the t=1 edge is visible |
| 274 | |
| 275 | tN = tD; |
| 276 | |
| 277 | // recompute sc for this edge |
| 278 | if ((-d + b) < 0.0) |
| 279 | sN = 0; |
| 280 | else if ((-d + b) > a) |
| 281 | sN = sD; |
| 282 | else { |
| 283 | sN = (-d + b); |
| 284 | sD = a; |
| 285 | } |
| 286 | } |
| 287 | // finally do the division to get sc and tc |
| 288 | sc = (fabs(sN) < MATRIX_DET_TOLERANCE ? 0.0 : sN / sD); |
| 289 | //tc = (fabs(tN) < MATRIX_DET_TOLERANCE ? 0.0 : tN / tD); // left for future use. |
| 290 | |
| 291 | GetPointOfLine(r, line1, sc); |
| 292 | return TRUE; |
| 293 | } |
| 294 | |
| 295 | |
| 296 | |
| 297 | // ------------------------------------------------------------------ Wrapper |
| 298 | |
| 299 | |
| 300 | // Allocate & free structure |
| 301 | cmsHANDLE CMSEXPORT cmsGBDAlloc(cmsContext ContextID) |
| 302 | { |
| 303 | cmsGDB* gbd = (cmsGDB*) _cmsMallocZero(ContextID, sizeof(cmsGDB)); |
| 304 | if (gbd == NULL) return NULL; |
| 305 | |
| 306 | return (cmsHANDLE) gbd; |
| 307 | } |
| 308 | |
| 309 | |
| 310 | void CMSEXPORT cmsGBDFree(cmsContext ContextID, cmsHANDLE hGBD) |
| 311 | { |
| 312 | cmsGDB* gbd = (cmsGDB*) hGBD; |
| 313 | if (hGBD != NULL) |
| 314 | _cmsFree(ContextID, (void*) gbd); |
| 315 | } |
| 316 | |
| 317 | |
| 318 | // Auxiliary to retrieve a pointer to the segmentr containing the Lab value |
| 319 | static |
| 320 | cmsGDBPoint* GetPoint(cmsContext ContextID, cmsGDB* gbd, const cmsCIELab* Lab, cmsSpherical* sp) |
| 321 | { |
| 322 | cmsVEC3 v; |
| 323 | int alpha, theta; |
| 324 | |
| 325 | // Housekeeping |
| 326 | _cmsAssert(gbd != NULL); |
| 327 | _cmsAssert(Lab != NULL); |
| 328 | _cmsAssert(sp != NULL); |
| 329 | |
| 330 | // Center L* by subtracting half of its domain, that's 50 |
| 331 | _cmsVEC3init(ContextID, &v, Lab ->L - 50.0, Lab ->a, Lab ->b); |
| 332 | |
| 333 | // Convert to spherical coordinates |
| 334 | ToSpherical(sp, &v); |
| 335 | |
| 336 | if (sp ->r < 0 || sp ->alpha < 0 || sp->theta < 0) { |
| 337 | cmsSignalError(ContextID, cmsERROR_RANGE, "spherical value out of range" ); |
| 338 | return NULL; |
| 339 | } |
| 340 | |
| 341 | // On which sector it falls? |
| 342 | QuantizeToSector(sp, &alpha, &theta); |
| 343 | |
| 344 | if (alpha < 0 || theta < 0 || alpha >= SECTORS || theta >= SECTORS) { |
| 345 | cmsSignalError(ContextID, cmsERROR_RANGE, " quadrant out of range" ); |
| 346 | return NULL; |
| 347 | } |
| 348 | |
| 349 | // Get pointer to the sector |
| 350 | return &gbd ->Gamut[theta][alpha]; |
| 351 | } |
| 352 | |
| 353 | // Add a point to gamut descriptor. Point to add is in Lab color space. |
| 354 | // GBD is centered on a=b=0 and L*=50 |
| 355 | cmsBool CMSEXPORT cmsGDBAddPoint(cmsContext ContextID, cmsHANDLE hGBD, const cmsCIELab* Lab) |
| 356 | { |
| 357 | cmsGDB* gbd = (cmsGDB*) hGBD; |
| 358 | cmsGDBPoint* ptr; |
| 359 | cmsSpherical sp; |
| 360 | |
| 361 | |
| 362 | // Get pointer to the sector |
| 363 | ptr = GetPoint(ContextID, gbd, Lab, &sp); |
| 364 | if (ptr == NULL) return FALSE; |
| 365 | |
| 366 | // If no samples at this sector, add it |
| 367 | if (ptr ->Type == GP_EMPTY) { |
| 368 | |
| 369 | ptr -> Type = GP_SPECIFIED; |
| 370 | ptr -> p = sp; |
| 371 | } |
| 372 | else { |
| 373 | |
| 374 | |
| 375 | // Substitute only if radius is greater |
| 376 | if (sp.r > ptr -> p.r) { |
| 377 | |
| 378 | ptr -> Type = GP_SPECIFIED; |
| 379 | ptr -> p = sp; |
| 380 | } |
| 381 | } |
| 382 | |
| 383 | return TRUE; |
| 384 | } |
| 385 | |
| 386 | // Check if a given point falls inside gamut |
| 387 | cmsBool CMSEXPORT cmsGDBCheckPoint(cmsContext ContextID, cmsHANDLE hGBD, const cmsCIELab* Lab) |
| 388 | { |
| 389 | cmsGDB* gbd = (cmsGDB*) hGBD; |
| 390 | cmsGDBPoint* ptr; |
| 391 | cmsSpherical sp; |
| 392 | |
| 393 | // Get pointer to the sector |
| 394 | ptr = GetPoint(ContextID, gbd, Lab, &sp); |
| 395 | if (ptr == NULL) return FALSE; |
| 396 | |
| 397 | // If no samples at this sector, return no data |
| 398 | if (ptr ->Type == GP_EMPTY) return FALSE; |
| 399 | |
| 400 | // In gamut only if radius is greater |
| 401 | |
| 402 | return (sp.r <= ptr -> p.r); |
| 403 | } |
| 404 | |
| 405 | // ----------------------------------------------------------------------------------------------------------------------- |
| 406 | |
| 407 | // Find near sectors. The list of sectors found is returned on Close[]. |
| 408 | // The function returns the number of sectors as well. |
| 409 | |
| 410 | // 24 9 10 11 12 |
| 411 | // 23 8 1 2 13 |
| 412 | // 22 7 * 3 14 |
| 413 | // 21 6 5 4 15 |
| 414 | // 20 19 18 17 16 |
| 415 | // |
| 416 | // Those are the relative movements |
| 417 | // {-2,-2}, {-1, -2}, {0, -2}, {+1, -2}, {+2, -2}, |
| 418 | // {-2,-1}, {-1, -1}, {0, -1}, {+1, -1}, {+2, -1}, |
| 419 | // {-2, 0}, {-1, 0}, {0, 0}, {+1, 0}, {+2, 0}, |
| 420 | // {-2,+1}, {-1, +1}, {0, +1}, {+1, +1}, {+2, +1}, |
| 421 | // {-2,+2}, {-1, +2}, {0, +2}, {+1, +2}, {+2, +2}}; |
| 422 | |
| 423 | |
| 424 | static |
| 425 | const struct _spiral { |
| 426 | |
| 427 | int AdvX, AdvY; |
| 428 | |
| 429 | } Spiral[] = { {0, -1}, {+1, -1}, {+1, 0}, {+1, +1}, {0, +1}, {-1, +1}, |
| 430 | {-1, 0}, {-1, -1}, {-1, -2}, {0, -2}, {+1, -2}, {+2, -2}, |
| 431 | {+2, -1}, {+2, 0}, {+2, +1}, {+2, +2}, {+1, +2}, {0, +2}, |
| 432 | {-1, +2}, {-2, +2}, {-2, +1}, {-2, 0}, {-2, -1}, {-2, -2} }; |
| 433 | |
| 434 | #define NSTEPS (sizeof(Spiral) / sizeof(struct _spiral)) |
| 435 | |
| 436 | static |
| 437 | int FindNearSectors(cmsGDB* gbd, int alpha, int theta, cmsGDBPoint* Close[]) |
| 438 | { |
| 439 | int nSectors = 0; |
| 440 | int a, t; |
| 441 | cmsUInt32Number i; |
| 442 | cmsGDBPoint* pt; |
| 443 | |
| 444 | for (i=0; i < NSTEPS; i++) { |
| 445 | |
| 446 | a = alpha + Spiral[i].AdvX; |
| 447 | t = theta + Spiral[i].AdvY; |
| 448 | |
| 449 | // Cycle at the end |
| 450 | a %= SECTORS; |
| 451 | t %= SECTORS; |
| 452 | |
| 453 | // Cycle at the begin |
| 454 | if (a < 0) a = SECTORS + a; |
| 455 | if (t < 0) t = SECTORS + t; |
| 456 | |
| 457 | pt = &gbd ->Gamut[t][a]; |
| 458 | |
| 459 | if (pt -> Type != GP_EMPTY) { |
| 460 | |
| 461 | Close[nSectors++] = pt; |
| 462 | } |
| 463 | } |
| 464 | |
| 465 | return nSectors; |
| 466 | } |
| 467 | |
| 468 | |
| 469 | // Interpolate a missing sector. Method identifies whatever this is top, bottom or mid |
| 470 | static |
| 471 | cmsBool InterpolateMissingSector(cmsContext ContextID, cmsGDB* gbd, int alpha, int theta) |
| 472 | { |
| 473 | cmsSpherical sp; |
| 474 | cmsVEC3 Lab; |
| 475 | cmsVEC3 Centre; |
| 476 | cmsLine ray; |
| 477 | int nCloseSectors; |
| 478 | cmsGDBPoint* Close[NSTEPS + 1]; |
| 479 | cmsSpherical closel, templ; |
| 480 | cmsLine edge; |
| 481 | int k, m; |
| 482 | |
| 483 | // Is that point already specified? |
| 484 | if (gbd ->Gamut[theta][alpha].Type != GP_EMPTY) return TRUE; |
| 485 | |
| 486 | // Fill close points |
| 487 | nCloseSectors = FindNearSectors(gbd, alpha, theta, Close); |
| 488 | |
| 489 | |
| 490 | // Find a central point on the sector |
| 491 | sp.alpha = (cmsFloat64Number) ((alpha + 0.5) * 360.0) / (SECTORS); |
| 492 | sp.theta = (cmsFloat64Number) ((theta + 0.5) * 180.0) / (SECTORS); |
| 493 | sp.r = 50.0; |
| 494 | |
| 495 | // Convert to Cartesian |
| 496 | ToCartesian(&Lab, &sp); |
| 497 | |
| 498 | // Create a ray line from centre to this point |
| 499 | _cmsVEC3init(ContextID, &Centre, 50.0, 0, 0); |
| 500 | LineOf2Points(ContextID, &ray, &Lab, &Centre); |
| 501 | |
| 502 | // For all close sectors |
| 503 | closel.r = 0.0; |
| 504 | closel.alpha = 0; |
| 505 | closel.theta = 0; |
| 506 | |
| 507 | for (k=0; k < nCloseSectors; k++) { |
| 508 | |
| 509 | for(m = k+1; m < nCloseSectors; m++) { |
| 510 | |
| 511 | cmsVEC3 temp, a1, a2; |
| 512 | |
| 513 | // A line from sector to sector |
| 514 | ToCartesian(&a1, &Close[k]->p); |
| 515 | ToCartesian(&a2, &Close[m]->p); |
| 516 | |
| 517 | LineOf2Points(ContextID, &edge, &a1, &a2); |
| 518 | |
| 519 | // Find a line |
| 520 | ClosestLineToLine(ContextID, &temp, &ray, &edge); |
| 521 | |
| 522 | // Convert to spherical |
| 523 | ToSpherical(&templ, &temp); |
| 524 | |
| 525 | |
| 526 | if ( templ.r > closel.r && |
| 527 | templ.theta >= (theta*180.0/SECTORS) && |
| 528 | templ.theta <= ((theta+1)*180.0/SECTORS) && |
| 529 | templ.alpha >= (alpha*360.0/SECTORS) && |
| 530 | templ.alpha <= ((alpha+1)*360.0/SECTORS)) { |
| 531 | |
| 532 | closel = templ; |
| 533 | } |
| 534 | } |
| 535 | } |
| 536 | |
| 537 | gbd ->Gamut[theta][alpha].p = closel; |
| 538 | gbd ->Gamut[theta][alpha].Type = GP_MODELED; |
| 539 | |
| 540 | return TRUE; |
| 541 | |
| 542 | } |
| 543 | |
| 544 | |
| 545 | // Interpolate missing parts. The algorithm fist computes slices at |
| 546 | // theta=0 and theta=Max. |
| 547 | cmsBool CMSEXPORT cmsGDBCompute(cmsContext ContextID, cmsHANDLE hGBD, cmsUInt32Number dwFlags) |
| 548 | { |
| 549 | int alpha, theta; |
| 550 | cmsGDB* gbd = (cmsGDB*) hGBD; |
| 551 | |
| 552 | _cmsAssert(hGBD != NULL); |
| 553 | |
| 554 | // Interpolate black |
| 555 | for (alpha = 0; alpha < SECTORS; alpha++) { |
| 556 | |
| 557 | if (!InterpolateMissingSector(ContextID, gbd, alpha, 0)) return FALSE; |
| 558 | } |
| 559 | |
| 560 | // Interpolate white |
| 561 | for (alpha = 0; alpha < SECTORS; alpha++) { |
| 562 | |
| 563 | if (!InterpolateMissingSector(ContextID, gbd, alpha, SECTORS-1)) return FALSE; |
| 564 | } |
| 565 | |
| 566 | |
| 567 | // Interpolate Mid |
| 568 | for (theta = 1; theta < SECTORS; theta++) { |
| 569 | for (alpha = 0; alpha < SECTORS; alpha++) { |
| 570 | |
| 571 | if (!InterpolateMissingSector(ContextID, gbd, alpha, theta)) return FALSE; |
| 572 | } |
| 573 | } |
| 574 | |
| 575 | // Done |
| 576 | return TRUE; |
| 577 | |
| 578 | cmsUNUSED_PARAMETER(dwFlags); |
| 579 | } |
| 580 | |
| 581 | |
| 582 | |
| 583 | |
| 584 | // -------------------------------------------------------------------------------------------------------- |
| 585 | |
| 586 | // Great for debug, but not suitable for real use |
| 587 | |
| 588 | #if 0 |
| 589 | cmsBool cmsGBDdumpVRML(cmsHANDLE hGBD, const char* fname) |
| 590 | { |
| 591 | FILE* fp; |
| 592 | int i, j; |
| 593 | cmsGDB* gbd = (cmsGDB*) hGBD; |
| 594 | cmsGDBPoint* pt; |
| 595 | |
| 596 | fp = fopen (fname, "wt" ); |
| 597 | if (fp == NULL) |
| 598 | return FALSE; |
| 599 | |
| 600 | fprintf (fp, "#VRML V2.0 utf8\n" ); |
| 601 | |
| 602 | // set the viewing orientation and distance |
| 603 | fprintf (fp, "DEF CamTest Group {\n" ); |
| 604 | fprintf (fp, "\tchildren [\n" ); |
| 605 | fprintf (fp, "\t\tDEF Cameras Group {\n" ); |
| 606 | fprintf (fp, "\t\t\tchildren [\n" ); |
| 607 | fprintf (fp, "\t\t\t\tDEF DefaultView Viewpoint {\n" ); |
| 608 | fprintf (fp, "\t\t\t\t\tposition 0 0 340\n" ); |
| 609 | fprintf (fp, "\t\t\t\t\torientation 0 0 1 0\n" ); |
| 610 | fprintf (fp, "\t\t\t\t\tdescription \"default view\"\n" ); |
| 611 | fprintf (fp, "\t\t\t\t}\n" ); |
| 612 | fprintf (fp, "\t\t\t]\n" ); |
| 613 | fprintf (fp, "\t\t},\n" ); |
| 614 | fprintf (fp, "\t]\n" ); |
| 615 | fprintf (fp, "}\n" ); |
| 616 | |
| 617 | // Output the background stuff |
| 618 | fprintf (fp, "Background {\n" ); |
| 619 | fprintf (fp, "\tskyColor [\n" ); |
| 620 | fprintf (fp, "\t\t.5 .5 .5\n" ); |
| 621 | fprintf (fp, "\t]\n" ); |
| 622 | fprintf (fp, "}\n" ); |
| 623 | |
| 624 | // Output the shape stuff |
| 625 | fprintf (fp, "Transform {\n" ); |
| 626 | fprintf (fp, "\tscale .3 .3 .3\n" ); |
| 627 | fprintf (fp, "\tchildren [\n" ); |
| 628 | |
| 629 | // Draw the axes as a shape: |
| 630 | fprintf (fp, "\t\tShape {\n" ); |
| 631 | fprintf (fp, "\t\t\tappearance Appearance {\n" ); |
| 632 | fprintf (fp, "\t\t\t\tmaterial Material {\n" ); |
| 633 | fprintf (fp, "\t\t\t\t\tdiffuseColor 0 0.8 0\n" ); |
| 634 | fprintf (fp, "\t\t\t\t\temissiveColor 1.0 1.0 1.0\n" ); |
| 635 | fprintf (fp, "\t\t\t\t\tshininess 0.8\n" ); |
| 636 | fprintf (fp, "\t\t\t\t}\n" ); |
| 637 | fprintf (fp, "\t\t\t}\n" ); |
| 638 | fprintf (fp, "\t\t\tgeometry IndexedLineSet {\n" ); |
| 639 | fprintf (fp, "\t\t\t\tcoord Coordinate {\n" ); |
| 640 | fprintf (fp, "\t\t\t\t\tpoint [\n" ); |
| 641 | fprintf (fp, "\t\t\t\t\t0.0 0.0 0.0,\n" ); |
| 642 | fprintf (fp, "\t\t\t\t\t%f 0.0 0.0,\n" , 255.0); |
| 643 | fprintf (fp, "\t\t\t\t\t0.0 %f 0.0,\n" , 255.0); |
| 644 | fprintf (fp, "\t\t\t\t\t0.0 0.0 %f]\n" , 255.0); |
| 645 | fprintf (fp, "\t\t\t\t}\n" ); |
| 646 | fprintf (fp, "\t\t\t\tcoordIndex [\n" ); |
| 647 | fprintf (fp, "\t\t\t\t\t0, 1, -1\n" ); |
| 648 | fprintf (fp, "\t\t\t\t\t0, 2, -1\n" ); |
| 649 | fprintf (fp, "\t\t\t\t\t0, 3, -1]\n" ); |
| 650 | fprintf (fp, "\t\t\t}\n" ); |
| 651 | fprintf (fp, "\t\t}\n" ); |
| 652 | |
| 653 | |
| 654 | fprintf (fp, "\t\tShape {\n" ); |
| 655 | fprintf (fp, "\t\t\tappearance Appearance {\n" ); |
| 656 | fprintf (fp, "\t\t\t\tmaterial Material {\n" ); |
| 657 | fprintf (fp, "\t\t\t\t\tdiffuseColor 0 0.8 0\n" ); |
| 658 | fprintf (fp, "\t\t\t\t\temissiveColor 1 1 1\n" ); |
| 659 | fprintf (fp, "\t\t\t\t\tshininess 0.8\n" ); |
| 660 | fprintf (fp, "\t\t\t\t}\n" ); |
| 661 | fprintf (fp, "\t\t\t}\n" ); |
| 662 | fprintf (fp, "\t\t\tgeometry PointSet {\n" ); |
| 663 | |
| 664 | // fill in the points here |
| 665 | fprintf (fp, "\t\t\t\tcoord Coordinate {\n" ); |
| 666 | fprintf (fp, "\t\t\t\t\tpoint [\n" ); |
| 667 | |
| 668 | // We need to transverse all gamut hull. |
| 669 | for (i=0; i < SECTORS; i++) |
| 670 | for (j=0; j < SECTORS; j++) { |
| 671 | |
| 672 | cmsVEC3 v; |
| 673 | |
| 674 | pt = &gbd ->Gamut[i][j]; |
| 675 | ToCartesian(&v, &pt ->p); |
| 676 | |
| 677 | fprintf (fp, "\t\t\t\t\t%g %g %g" , v.n[0]+50, v.n[1], v.n[2]); |
| 678 | |
| 679 | if ((j == SECTORS - 1) && (i == SECTORS - 1)) |
| 680 | fprintf (fp, "]\n" ); |
| 681 | else |
| 682 | fprintf (fp, ",\n" ); |
| 683 | |
| 684 | } |
| 685 | |
| 686 | fprintf (fp, "\t\t\t\t}\n" ); |
| 687 | |
| 688 | |
| 689 | |
| 690 | // fill in the face colors |
| 691 | fprintf (fp, "\t\t\t\tcolor Color {\n" ); |
| 692 | fprintf (fp, "\t\t\t\t\tcolor [\n" ); |
| 693 | |
| 694 | for (i=0; i < SECTORS; i++) |
| 695 | for (j=0; j < SECTORS; j++) { |
| 696 | |
| 697 | cmsVEC3 v; |
| 698 | |
| 699 | pt = &gbd ->Gamut[i][j]; |
| 700 | |
| 701 | |
| 702 | ToCartesian(&v, &pt ->p); |
| 703 | |
| 704 | |
| 705 | if (pt ->Type == GP_EMPTY) |
| 706 | fprintf (fp, "\t\t\t\t\t%g %g %g" , 0.0, 0.0, 0.0); |
| 707 | else |
| 708 | if (pt ->Type == GP_MODELED) |
| 709 | fprintf (fp, "\t\t\t\t\t%g %g %g" , 1.0, .5, .5); |
| 710 | else { |
| 711 | fprintf (fp, "\t\t\t\t\t%g %g %g" , 1.0, 1.0, 1.0); |
| 712 | |
| 713 | } |
| 714 | |
| 715 | if ((j == SECTORS - 1) && (i == SECTORS - 1)) |
| 716 | fprintf (fp, "]\n" ); |
| 717 | else |
| 718 | fprintf (fp, ",\n" ); |
| 719 | } |
| 720 | fprintf (fp, "\t\t\t}\n" ); |
| 721 | |
| 722 | |
| 723 | fprintf (fp, "\t\t\t}\n" ); |
| 724 | fprintf (fp, "\t\t}\n" ); |
| 725 | fprintf (fp, "\t]\n" ); |
| 726 | fprintf (fp, "}\n" ); |
| 727 | |
| 728 | fclose (fp); |
| 729 | |
| 730 | return TRUE; |
| 731 | } |
| 732 | #endif |
| 733 | |
| 734 | |