| 1 | #include "mupdf/fitz.h" |
| 2 | #include "fitz-imp.h" |
| 3 | |
| 4 | #include <string.h> |
| 5 | #include <assert.h> |
| 6 | |
| 7 | // Thoughts for further optimisations: |
| 8 | // All paths start with MoveTo. We could probably avoid most cases where |
| 9 | // we store that. The next thing after a close must be a move. |
| 10 | // Commands are MOVE, LINE, HORIZ, VERT, DEGEN, CURVE, CURVEV, CURVEY, QUAD, RECT. |
| 11 | // We'd need to drop 2 to get us down to 3 bits. |
| 12 | // Commands can be followed by CLOSE. Use 1 bit for close. |
| 13 | // PDF 'RECT' implies close according to the spec, but I suspect |
| 14 | // we can ignore this as filling closes implicitly. |
| 15 | // We use a single bit in the path header to tell us whether we have |
| 16 | // a trailing move. Trailing moves can always be stripped when path |
| 17 | // construction completes. |
| 18 | |
| 19 | typedef enum fz_path_command_e |
| 20 | { |
| 21 | FZ_MOVETO = 'M', |
| 22 | FZ_LINETO = 'L', |
| 23 | FZ_DEGENLINETO = 'D', |
| 24 | FZ_CURVETO = 'C', |
| 25 | FZ_CURVETOV = 'V', |
| 26 | FZ_CURVETOY = 'Y', |
| 27 | FZ_HORIZTO = 'H', |
| 28 | FZ_VERTTO = 'I', |
| 29 | FZ_QUADTO = 'Q', |
| 30 | FZ_RECTTO = 'R', |
| 31 | FZ_MOVETOCLOSE = 'm', |
| 32 | FZ_LINETOCLOSE = 'l', |
| 33 | FZ_DEGENLINETOCLOSE = 'd', |
| 34 | FZ_CURVETOCLOSE = 'c', |
| 35 | FZ_CURVETOVCLOSE = 'v', |
| 36 | FZ_CURVETOYCLOSE = 'y', |
| 37 | FZ_HORIZTOCLOSE = 'h', |
| 38 | FZ_VERTTOCLOSE = 'i', |
| 39 | FZ_QUADTOCLOSE = 'q', |
| 40 | } fz_path_item_kind; |
| 41 | |
| 42 | struct fz_path_s |
| 43 | { |
| 44 | int8_t refs; |
| 45 | uint8_t packed; |
| 46 | int cmd_len, cmd_cap; |
| 47 | unsigned char *cmds; |
| 48 | int coord_len, coord_cap; |
| 49 | float *coords; |
| 50 | fz_point current; |
| 51 | fz_point begin; |
| 52 | }; |
| 53 | |
| 54 | typedef struct fz_packed_path_s |
| 55 | { |
| 56 | int8_t refs; |
| 57 | uint8_t packed; |
| 58 | uint8_t coord_len; |
| 59 | uint8_t cmd_len; |
| 60 | } fz_packed_path; |
| 61 | |
| 62 | enum |
| 63 | { |
| 64 | FZ_PATH_UNPACKED = 0, |
| 65 | FZ_PATH_PACKED_FLAT = 1, |
| 66 | FZ_PATH_PACKED_OPEN = 2 |
| 67 | }; |
| 68 | |
| 69 | #define LAST_CMD(path) ((path)->cmd_len > 0 ? (path)->cmds[(path)->cmd_len-1] : 0) |
| 70 | |
| 71 | fz_path * |
| 72 | fz_new_path(fz_context *ctx) |
| 73 | { |
| 74 | fz_path *path; |
| 75 | |
| 76 | path = fz_malloc_struct(ctx, fz_path); |
| 77 | path->refs = 1; |
| 78 | path->packed = FZ_PATH_UNPACKED; |
| 79 | path->current.x = 0; |
| 80 | path->current.y = 0; |
| 81 | path->begin.x = 0; |
| 82 | path->begin.y = 0; |
| 83 | |
| 84 | return path; |
| 85 | } |
| 86 | |
| 87 | /* |
| 88 | Take an additional reference to |
| 89 | a path. |
| 90 | |
| 91 | No modifications should be carried out on a path |
| 92 | to which more than one reference is held, as |
| 93 | this can cause race conditions. |
| 94 | */ |
| 95 | fz_path * |
| 96 | fz_keep_path(fz_context *ctx, const fz_path *pathc) |
| 97 | { |
| 98 | fz_path *path = (fz_path *)pathc; /* Explicit cast away of const */ |
| 99 | |
| 100 | if (path == NULL) |
| 101 | return NULL; |
| 102 | if (path->refs == 1 && path->packed == FZ_PATH_UNPACKED) |
| 103 | fz_trim_path(ctx, path); |
| 104 | return fz_keep_imp8(ctx, path, &path->refs); |
| 105 | } |
| 106 | |
| 107 | void |
| 108 | fz_drop_path(fz_context *ctx, const fz_path *pathc) |
| 109 | { |
| 110 | fz_path *path = (fz_path *)pathc; /* Explicit cast away of const */ |
| 111 | |
| 112 | if (fz_drop_imp8(ctx, path, &path->refs)) |
| 113 | { |
| 114 | if (path->packed != FZ_PATH_PACKED_FLAT) |
| 115 | { |
| 116 | fz_free(ctx, path->cmds); |
| 117 | fz_free(ctx, path->coords); |
| 118 | } |
| 119 | if (path->packed == FZ_PATH_UNPACKED) |
| 120 | fz_free(ctx, path); |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | /* |
| 125 | Return the number of |
| 126 | bytes required to pack a path. |
| 127 | */ |
| 128 | int fz_packed_path_size(const fz_path *path) |
| 129 | { |
| 130 | switch (path->packed) |
| 131 | { |
| 132 | case FZ_PATH_UNPACKED: |
| 133 | if (path->cmd_len > 255 || path->coord_len > 255) |
| 134 | return sizeof(fz_path); |
| 135 | return sizeof(fz_packed_path) + sizeof(float) * path->coord_len + sizeof(uint8_t) * path->cmd_len; |
| 136 | case FZ_PATH_PACKED_OPEN: |
| 137 | return sizeof(fz_path); |
| 138 | case FZ_PATH_PACKED_FLAT: |
| 139 | { |
| 140 | fz_packed_path *pack = (fz_packed_path *)path; |
| 141 | return sizeof(fz_packed_path) + sizeof(float) * pack->coord_len + sizeof(uint8_t) * pack->cmd_len; |
| 142 | } |
| 143 | default: |
| 144 | assert("This never happens" == NULL); |
| 145 | return 0; |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | /* |
| 150 | Pack a path into the given block. |
| 151 | To minimise the size of paths, this function allows them to be |
| 152 | packed into a buffer with other information. Paths can be used |
| 153 | interchangeably regardless of how they are packed. |
| 154 | |
| 155 | pack: Pointer to a block of data to pack the path into. Should |
| 156 | be aligned by the caller to the same alignment as required for |
| 157 | a fz_path pointer. |
| 158 | |
| 159 | max: The number of bytes available in the block. |
| 160 | If max < sizeof(fz_path) then an exception will |
| 161 | be thrown. If max >= the value returned by |
| 162 | fz_packed_path_size, then this call will never |
| 163 | fail, except in low memory situations with large |
| 164 | paths. |
| 165 | |
| 166 | path: The path to pack. |
| 167 | |
| 168 | Returns the number of bytes within the block used. Callers can |
| 169 | access the packed path data by casting the value of pack on |
| 170 | entry to be a fz_path *. |
| 171 | |
| 172 | Throws exceptions on failure to allocate, or if |
| 173 | max < sizeof(fz_path). |
| 174 | |
| 175 | Implementation details: Paths can be 'unpacked', 'flat', or |
| 176 | 'open'. Standard paths, as created are 'unpacked'. Paths that |
| 177 | will pack into less than max bytes will be packed as 'flat', |
| 178 | unless they are too large (where large indicates that they |
| 179 | exceed some private implementation defined limits, currently |
| 180 | including having more than 256 coordinates or commands). |
| 181 | |
| 182 | Large paths are 'open' packed as a header into the given block, |
| 183 | plus pointers to other data blocks. |
| 184 | |
| 185 | Users should not have to care about whether paths are 'open' |
| 186 | or 'flat' packed. Simply pack a path (if required), and then |
| 187 | forget about the details. |
| 188 | */ |
| 189 | int |
| 190 | fz_pack_path(fz_context *ctx, uint8_t *pack_, int max, const fz_path *path) |
| 191 | { |
| 192 | uint8_t *ptr; |
| 193 | int size; |
| 194 | |
| 195 | if (path->packed) |
| 196 | fz_throw(ctx, FZ_ERROR_GENERIC, "Can't repack a packed path" ); |
| 197 | |
| 198 | size = sizeof(fz_packed_path) + sizeof(float) * path->coord_len + sizeof(uint8_t) * path->cmd_len; |
| 199 | |
| 200 | /* If the path can't be packed flat, then pack it open */ |
| 201 | if (path->cmd_len > 255 || path->coord_len > 255 || size > max) |
| 202 | { |
| 203 | fz_path *pack = (fz_path *)pack_; |
| 204 | |
| 205 | if (sizeof(fz_path) > max) |
| 206 | fz_throw(ctx, FZ_ERROR_GENERIC, "Can't pack a path that small!" ); |
| 207 | |
| 208 | if (pack != NULL) |
| 209 | { |
| 210 | pack->refs = 1; |
| 211 | pack->packed = FZ_PATH_PACKED_OPEN; |
| 212 | pack->current.x = 0; |
| 213 | pack->current.y = 0; |
| 214 | pack->begin.x = 0; |
| 215 | pack->begin.y = 0; |
| 216 | pack->coord_cap = path->coord_len; |
| 217 | pack->coord_len = path->coord_len; |
| 218 | pack->cmd_cap = path->cmd_len; |
| 219 | pack->cmd_len = path->cmd_len; |
| 220 | pack->coords = fz_malloc_array(ctx, path->coord_len, float); |
| 221 | fz_try(ctx) |
| 222 | { |
| 223 | pack->cmds = fz_malloc_array(ctx, path->cmd_len, uint8_t); |
| 224 | } |
| 225 | fz_catch(ctx) |
| 226 | { |
| 227 | fz_free(ctx, pack->coords); |
| 228 | fz_rethrow(ctx); |
| 229 | } |
| 230 | memcpy(pack->coords, path->coords, sizeof(float) * path->coord_len); |
| 231 | memcpy(pack->cmds, path->cmds, sizeof(uint8_t) * path->cmd_len); |
| 232 | } |
| 233 | return sizeof(fz_path); |
| 234 | } |
| 235 | else |
| 236 | { |
| 237 | fz_packed_path *pack = (fz_packed_path *)pack_; |
| 238 | |
| 239 | if (pack != NULL) |
| 240 | { |
| 241 | pack->refs = 1; |
| 242 | pack->packed = FZ_PATH_PACKED_FLAT; |
| 243 | pack->cmd_len = path->cmd_len; |
| 244 | pack->coord_len = path->coord_len; |
| 245 | ptr = (uint8_t *)&pack[1]; |
| 246 | memcpy(ptr, path->coords, sizeof(float) * path->coord_len); |
| 247 | ptr += sizeof(float) * path->coord_len; |
| 248 | memcpy(ptr, path->cmds, sizeof(uint8_t) * path->cmd_len); |
| 249 | } |
| 250 | |
| 251 | return size; |
| 252 | } |
| 253 | } |
| 254 | |
| 255 | static void |
| 256 | push_cmd(fz_context *ctx, fz_path *path, int cmd) |
| 257 | { |
| 258 | if (path->refs != 1) |
| 259 | fz_throw(ctx, FZ_ERROR_GENERIC, "cannot modify shared paths" ); |
| 260 | |
| 261 | if (path->cmd_len + 1 >= path->cmd_cap) |
| 262 | { |
| 263 | int new_cmd_cap = fz_maxi(16, path->cmd_cap * 2); |
| 264 | path->cmds = fz_realloc_array(ctx, path->cmds, new_cmd_cap, unsigned char); |
| 265 | path->cmd_cap = new_cmd_cap; |
| 266 | } |
| 267 | |
| 268 | path->cmds[path->cmd_len++] = cmd; |
| 269 | } |
| 270 | |
| 271 | static void |
| 272 | push_coord(fz_context *ctx, fz_path *path, float x, float y) |
| 273 | { |
| 274 | if (path->coord_len + 2 >= path->coord_cap) |
| 275 | { |
| 276 | int new_coord_cap = fz_maxi(32, path->coord_cap * 2); |
| 277 | path->coords = fz_realloc_array(ctx, path->coords, new_coord_cap, float); |
| 278 | path->coord_cap = new_coord_cap; |
| 279 | } |
| 280 | |
| 281 | path->coords[path->coord_len++] = x; |
| 282 | path->coords[path->coord_len++] = y; |
| 283 | |
| 284 | path->current.x = x; |
| 285 | path->current.y = y; |
| 286 | } |
| 287 | |
| 288 | static void |
| 289 | push_ord(fz_context *ctx, fz_path *path, float xy, int isx) |
| 290 | { |
| 291 | if (path->coord_len + 1 >= path->coord_cap) |
| 292 | { |
| 293 | int new_coord_cap = fz_maxi(32, path->coord_cap * 2); |
| 294 | path->coords = fz_realloc_array(ctx, path->coords, new_coord_cap, float); |
| 295 | path->coord_cap = new_coord_cap; |
| 296 | } |
| 297 | |
| 298 | path->coords[path->coord_len++] = xy; |
| 299 | |
| 300 | if (isx) |
| 301 | path->current.x = xy; |
| 302 | else |
| 303 | path->current.y = xy; |
| 304 | } |
| 305 | |
| 306 | /* |
| 307 | Return the current point that a path has |
| 308 | reached or (0,0) if empty. |
| 309 | |
| 310 | path: path to return the current point of. |
| 311 | */ |
| 312 | fz_point |
| 313 | fz_currentpoint(fz_context *ctx, fz_path *path) |
| 314 | { |
| 315 | return path->current; |
| 316 | } |
| 317 | |
| 318 | /* |
| 319 | Append a 'moveto' command to a path. |
| 320 | This 'opens' a path. |
| 321 | |
| 322 | path: The path to modify. |
| 323 | |
| 324 | x, y: The coordinate to move to. |
| 325 | |
| 326 | Throws exceptions on failure to allocate. |
| 327 | */ |
| 328 | void |
| 329 | fz_moveto(fz_context *ctx, fz_path *path, float x, float y) |
| 330 | { |
| 331 | if (path->packed) |
| 332 | fz_throw(ctx, FZ_ERROR_GENERIC, "Cannot modify a packed path" ); |
| 333 | |
| 334 | if (path->cmd_len > 0 && LAST_CMD(path) == FZ_MOVETO) |
| 335 | { |
| 336 | /* Collapse moveto followed by moveto. */ |
| 337 | path->coords[path->coord_len-2] = x; |
| 338 | path->coords[path->coord_len-1] = y; |
| 339 | path->current.x = x; |
| 340 | path->current.y = y; |
| 341 | path->begin = path->current; |
| 342 | return; |
| 343 | } |
| 344 | |
| 345 | push_cmd(ctx, path, FZ_MOVETO); |
| 346 | push_coord(ctx, path, x, y); |
| 347 | |
| 348 | path->begin = path->current; |
| 349 | } |
| 350 | |
| 351 | /* |
| 352 | Append a 'lineto' command to an open path. |
| 353 | |
| 354 | path: The path to modify. |
| 355 | |
| 356 | x, y: The coordinate to line to. |
| 357 | |
| 358 | Throws exceptions on failure to allocate. |
| 359 | */ |
| 360 | void |
| 361 | fz_lineto(fz_context *ctx, fz_path *path, float x, float y) |
| 362 | { |
| 363 | float x0, y0; |
| 364 | |
| 365 | if (path->packed) |
| 366 | fz_throw(ctx, FZ_ERROR_GENERIC, "Cannot modify a packed path" ); |
| 367 | |
| 368 | x0 = path->current.x; |
| 369 | y0 = path->current.y; |
| 370 | |
| 371 | if (path->cmd_len == 0) |
| 372 | { |
| 373 | fz_warn(ctx, "lineto with no current point" ); |
| 374 | return; |
| 375 | } |
| 376 | |
| 377 | /* (Anything other than MoveTo) followed by (LineTo the same place) is a nop */ |
| 378 | if (LAST_CMD(path) != FZ_MOVETO && x0 == x && y0 == y) |
| 379 | return; |
| 380 | |
| 381 | if (x0 == x) |
| 382 | { |
| 383 | if (y0 == y) |
| 384 | { |
| 385 | if (LAST_CMD(path) != FZ_MOVETO) |
| 386 | return; |
| 387 | push_cmd(ctx, path, FZ_DEGENLINETO); |
| 388 | } |
| 389 | else |
| 390 | { |
| 391 | push_cmd(ctx, path, FZ_VERTTO); |
| 392 | push_ord(ctx, path, y, 0); |
| 393 | } |
| 394 | } |
| 395 | else if (y0 == y) |
| 396 | { |
| 397 | push_cmd(ctx, path, FZ_HORIZTO); |
| 398 | push_ord(ctx, path, x, 1); |
| 399 | } |
| 400 | else |
| 401 | { |
| 402 | push_cmd(ctx, path, FZ_LINETO); |
| 403 | push_coord(ctx, path, x, y); |
| 404 | } |
| 405 | } |
| 406 | |
| 407 | /* |
| 408 | Append a 'curveto' command to an open path. (For a |
| 409 | cubic bezier). |
| 410 | |
| 411 | path: The path to modify. |
| 412 | |
| 413 | x0, y0: The coordinates of the first control point for the |
| 414 | curve. |
| 415 | |
| 416 | x1, y1: The coordinates of the second control point for the |
| 417 | curve. |
| 418 | |
| 419 | x2, y2: The end coordinates for the curve. |
| 420 | |
| 421 | Throws exceptions on failure to allocate. |
| 422 | */ |
| 423 | void |
| 424 | fz_curveto(fz_context *ctx, fz_path *path, |
| 425 | float x1, float y1, |
| 426 | float x2, float y2, |
| 427 | float x3, float y3) |
| 428 | { |
| 429 | float x0, y0; |
| 430 | |
| 431 | if (path->packed) |
| 432 | fz_throw(ctx, FZ_ERROR_GENERIC, "Cannot modify a packed path" ); |
| 433 | |
| 434 | x0 = path->current.x; |
| 435 | y0 = path->current.y; |
| 436 | |
| 437 | if (path->cmd_len == 0) |
| 438 | { |
| 439 | fz_warn(ctx, "curveto with no current point" ); |
| 440 | return; |
| 441 | } |
| 442 | |
| 443 | /* Check for degenerate cases: */ |
| 444 | if (x0 == x1 && y0 == y1) |
| 445 | { |
| 446 | if (x2 == x3 && y2 == y3) |
| 447 | { |
| 448 | /* If (x1,y1)==(x2,y2) and prev wasn't a moveto, then skip */ |
| 449 | if (x1 == x2 && y1 == y2 && LAST_CMD(path) != FZ_MOVETO) |
| 450 | return; |
| 451 | /* Otherwise a line will suffice */ |
| 452 | fz_lineto(ctx, path, x3, y3); |
| 453 | } |
| 454 | else if (x1 == x2 && y1 == y2) |
| 455 | { |
| 456 | /* A line will suffice */ |
| 457 | fz_lineto(ctx, path, x3, y3); |
| 458 | } |
| 459 | else |
| 460 | fz_curvetov(ctx, path, x2, y2, x3, y3); |
| 461 | return; |
| 462 | } |
| 463 | else if (x2 == x3 && y2 == y3) |
| 464 | { |
| 465 | if (x1 == x2 && y1 == y2) |
| 466 | { |
| 467 | /* A line will suffice */ |
| 468 | fz_lineto(ctx, path, x3, y3); |
| 469 | } |
| 470 | else |
| 471 | fz_curvetoy(ctx, path, x1, y1, x3, y3); |
| 472 | return; |
| 473 | } |
| 474 | |
| 475 | push_cmd(ctx, path, FZ_CURVETO); |
| 476 | push_coord(ctx, path, x1, y1); |
| 477 | push_coord(ctx, path, x2, y2); |
| 478 | push_coord(ctx, path, x3, y3); |
| 479 | } |
| 480 | |
| 481 | /* |
| 482 | Append a 'quadto' command to an open path. (For a |
| 483 | quadratic bezier). |
| 484 | |
| 485 | path: The path to modify. |
| 486 | |
| 487 | x0, y0: The control coordinates for the quadratic curve. |
| 488 | |
| 489 | x1, y1: The end coordinates for the quadratic curve. |
| 490 | |
| 491 | Throws exceptions on failure to allocate. |
| 492 | */ |
| 493 | void |
| 494 | fz_quadto(fz_context *ctx, fz_path *path, |
| 495 | float x1, float y1, |
| 496 | float x2, float y2) |
| 497 | { |
| 498 | float x0, y0; |
| 499 | |
| 500 | if (path->packed) |
| 501 | fz_throw(ctx, FZ_ERROR_GENERIC, "Cannot modify a packed path" ); |
| 502 | |
| 503 | x0 = path->current.x; |
| 504 | y0 = path->current.y; |
| 505 | |
| 506 | if (path->cmd_len == 0) |
| 507 | { |
| 508 | fz_warn(ctx, "quadto with no current point" ); |
| 509 | return; |
| 510 | } |
| 511 | |
| 512 | /* Check for degenerate cases: */ |
| 513 | if ((x0 == x1 && y0 == y1) || (x1 == x2 && y1 == y2)) |
| 514 | { |
| 515 | if (x0 == x2 && y0 == y2 && LAST_CMD(path) != FZ_MOVETO) |
| 516 | return; |
| 517 | /* A line will suffice */ |
| 518 | fz_lineto(ctx, path, x2, y2); |
| 519 | return; |
| 520 | } |
| 521 | |
| 522 | push_cmd(ctx, path, FZ_QUADTO); |
| 523 | push_coord(ctx, path, x1, y1); |
| 524 | push_coord(ctx, path, x2, y2); |
| 525 | } |
| 526 | |
| 527 | /* |
| 528 | Append a 'curvetov' command to an open path. (For a |
| 529 | cubic bezier with the first control coordinate equal to |
| 530 | the start point). |
| 531 | |
| 532 | path: The path to modify. |
| 533 | |
| 534 | x1, y1: The coordinates of the second control point for the |
| 535 | curve. |
| 536 | |
| 537 | x2, y2: The end coordinates for the curve. |
| 538 | |
| 539 | Throws exceptions on failure to allocate. |
| 540 | */ |
| 541 | void |
| 542 | fz_curvetov(fz_context *ctx, fz_path *path, float x2, float y2, float x3, float y3) |
| 543 | { |
| 544 | float x0, y0; |
| 545 | |
| 546 | if (path->packed) |
| 547 | fz_throw(ctx, FZ_ERROR_GENERIC, "Cannot modify a packed path" ); |
| 548 | |
| 549 | x0 = path->current.x; |
| 550 | y0 = path->current.y; |
| 551 | |
| 552 | if (path->cmd_len == 0) |
| 553 | { |
| 554 | fz_warn(ctx, "curveto with no current point" ); |
| 555 | return; |
| 556 | } |
| 557 | |
| 558 | /* Check for degenerate cases: */ |
| 559 | if (x2 == x3 && y2 == y3) |
| 560 | { |
| 561 | /* If (x0,y0)==(x2,y2) and prev wasn't a moveto, then skip */ |
| 562 | if (x0 == x2 && y0 == y2 && LAST_CMD(path) != FZ_MOVETO) |
| 563 | return; |
| 564 | /* Otherwise a line will suffice */ |
| 565 | fz_lineto(ctx, path, x3, y3); |
| 566 | } |
| 567 | else if (x0 == x2 && y0 == y2) |
| 568 | { |
| 569 | /* A line will suffice */ |
| 570 | fz_lineto(ctx, path, x3, y3); |
| 571 | } |
| 572 | |
| 573 | push_cmd(ctx, path, FZ_CURVETOV); |
| 574 | push_coord(ctx, path, x2, y2); |
| 575 | push_coord(ctx, path, x3, y3); |
| 576 | } |
| 577 | |
| 578 | /* |
| 579 | Append a 'curvetoy' command to an open path. (For a |
| 580 | cubic bezier with the second control coordinate equal to |
| 581 | the end point). |
| 582 | |
| 583 | path: The path to modify. |
| 584 | |
| 585 | x0, y0: The coordinates of the first control point for the |
| 586 | curve. |
| 587 | |
| 588 | x2, y2: The end coordinates for the curve (and the second |
| 589 | control coordinate). |
| 590 | |
| 591 | Throws exceptions on failure to allocate. |
| 592 | */ |
| 593 | void |
| 594 | fz_curvetoy(fz_context *ctx, fz_path *path, float x1, float y1, float x3, float y3) |
| 595 | { |
| 596 | float x0, y0; |
| 597 | |
| 598 | if (path->packed) |
| 599 | fz_throw(ctx, FZ_ERROR_GENERIC, "Cannot modify a packed path" ); |
| 600 | |
| 601 | x0 = path->current.x; |
| 602 | y0 = path->current.y; |
| 603 | |
| 604 | if (path->cmd_len == 0) |
| 605 | { |
| 606 | fz_warn(ctx, "curveto with no current point" ); |
| 607 | return; |
| 608 | } |
| 609 | |
| 610 | /* Check for degenerate cases: */ |
| 611 | if (x1 == x3 && y1 == y3) |
| 612 | { |
| 613 | /* If (x0,y0)==(x1,y1) and prev wasn't a moveto, then skip */ |
| 614 | if (x0 == x1 && y0 == y1 && LAST_CMD(path) != FZ_MOVETO) |
| 615 | return; |
| 616 | /* Otherwise a line will suffice */ |
| 617 | fz_lineto(ctx, path, x3, y3); |
| 618 | } |
| 619 | |
| 620 | push_cmd(ctx, path, FZ_CURVETOY); |
| 621 | push_coord(ctx, path, x1, y1); |
| 622 | push_coord(ctx, path, x3, y3); |
| 623 | } |
| 624 | |
| 625 | /* |
| 626 | Close the current subpath. |
| 627 | |
| 628 | path: The path to modify. |
| 629 | |
| 630 | Throws exceptions on failure to allocate, and illegal |
| 631 | path closes (i.e. closing a non open path). |
| 632 | */ |
| 633 | void |
| 634 | fz_closepath(fz_context *ctx, fz_path *path) |
| 635 | { |
| 636 | uint8_t rep; |
| 637 | |
| 638 | if (path->packed) |
| 639 | fz_throw(ctx, FZ_ERROR_GENERIC, "Cannot modify a packed path" ); |
| 640 | |
| 641 | if (path->cmd_len == 0) |
| 642 | { |
| 643 | fz_warn(ctx, "closepath with no current point" ); |
| 644 | return; |
| 645 | } |
| 646 | |
| 647 | switch(LAST_CMD(path)) |
| 648 | { |
| 649 | case FZ_MOVETO: |
| 650 | rep = FZ_MOVETOCLOSE; |
| 651 | break; |
| 652 | case FZ_LINETO: |
| 653 | rep = FZ_LINETOCLOSE; |
| 654 | break; |
| 655 | case FZ_DEGENLINETO: |
| 656 | rep = FZ_DEGENLINETOCLOSE; |
| 657 | break; |
| 658 | case FZ_CURVETO: |
| 659 | rep = FZ_CURVETOCLOSE; |
| 660 | break; |
| 661 | case FZ_CURVETOV: |
| 662 | rep = FZ_CURVETOVCLOSE; |
| 663 | break; |
| 664 | case FZ_CURVETOY: |
| 665 | rep = FZ_CURVETOYCLOSE; |
| 666 | break; |
| 667 | case FZ_HORIZTO: |
| 668 | rep = FZ_HORIZTOCLOSE; |
| 669 | break; |
| 670 | case FZ_VERTTO: |
| 671 | rep = FZ_VERTTOCLOSE; |
| 672 | break; |
| 673 | case FZ_QUADTO: |
| 674 | rep = FZ_QUADTOCLOSE; |
| 675 | break; |
| 676 | case FZ_RECTTO: |
| 677 | /* RectTo implies close */ |
| 678 | return; |
| 679 | case FZ_MOVETOCLOSE: |
| 680 | case FZ_LINETOCLOSE: |
| 681 | case FZ_DEGENLINETOCLOSE: |
| 682 | case FZ_CURVETOCLOSE: |
| 683 | case FZ_CURVETOVCLOSE: |
| 684 | case FZ_CURVETOYCLOSE: |
| 685 | case FZ_HORIZTOCLOSE: |
| 686 | case FZ_VERTTOCLOSE: |
| 687 | case FZ_QUADTOCLOSE: |
| 688 | /* CLOSE following a CLOSE is a NOP */ |
| 689 | return; |
| 690 | default: /* default never happens */ |
| 691 | case 0: |
| 692 | /* Closing an empty path is a NOP */ |
| 693 | return; |
| 694 | } |
| 695 | |
| 696 | path->cmds[path->cmd_len-1] = rep; |
| 697 | |
| 698 | path->current = path->begin; |
| 699 | } |
| 700 | |
| 701 | /* |
| 702 | Append a 'rectto' command to an open path. |
| 703 | |
| 704 | The rectangle is equivalent to: |
| 705 | moveto x0 y0 |
| 706 | lineto x1 y0 |
| 707 | lineto x1 y1 |
| 708 | lineto x0 y1 |
| 709 | closepath |
| 710 | |
| 711 | path: The path to modify. |
| 712 | |
| 713 | x0, y0: First corner of the rectangle. |
| 714 | |
| 715 | x1, y1: Second corner of the rectangle. |
| 716 | |
| 717 | Throws exceptions on failure to allocate. |
| 718 | */ |
| 719 | void |
| 720 | fz_rectto(fz_context *ctx, fz_path *path, float x1, float y1, float x2, float y2) |
| 721 | { |
| 722 | if (path->packed) |
| 723 | fz_throw(ctx, FZ_ERROR_GENERIC, "Cannot modify a packed path" ); |
| 724 | |
| 725 | if (path->cmd_len > 0 && LAST_CMD(path) == FZ_MOVETO) |
| 726 | { |
| 727 | /* Collapse moveto followed by rectto. */ |
| 728 | path->coord_len -= 2; |
| 729 | path->cmd_len--; |
| 730 | } |
| 731 | |
| 732 | push_cmd(ctx, path, FZ_RECTTO); |
| 733 | push_coord(ctx, path, x1, y1); |
| 734 | push_coord(ctx, path, x2, y2); |
| 735 | |
| 736 | path->current = path->begin; |
| 737 | } |
| 738 | |
| 739 | static inline void bound_expand(fz_rect *r, fz_point p) |
| 740 | { |
| 741 | if (p.x < r->x0) r->x0 = p.x; |
| 742 | if (p.y < r->y0) r->y0 = p.y; |
| 743 | if (p.x > r->x1) r->x1 = p.x; |
| 744 | if (p.y > r->y1) r->y1 = p.y; |
| 745 | } |
| 746 | |
| 747 | /* |
| 748 | Walk the segments of a path, calling the |
| 749 | appropriate callback function from a given set for each |
| 750 | segment of the path. |
| 751 | |
| 752 | path: The path to walk. |
| 753 | |
| 754 | walker: The set of callback functions to use. The first |
| 755 | 4 callback pointers in the set must be non-NULL. The |
| 756 | subsequent ones can either be supplied, or can be left |
| 757 | as NULL, in which case the top 4 functions will be |
| 758 | called as appropriate to simulate them. |
| 759 | |
| 760 | arg: An opaque argument passed in to each callback. |
| 761 | |
| 762 | Exceptions will only be thrown if the underlying callback |
| 763 | functions throw them. |
| 764 | */ |
| 765 | void fz_walk_path(fz_context *ctx, const fz_path *path, const fz_path_walker *proc, void *arg) |
| 766 | { |
| 767 | int i, k, cmd_len; |
| 768 | float x, y, sx, sy; |
| 769 | uint8_t *cmds; |
| 770 | float *coords; |
| 771 | |
| 772 | switch (path->packed) |
| 773 | { |
| 774 | case FZ_PATH_UNPACKED: |
| 775 | case FZ_PATH_PACKED_OPEN: |
| 776 | cmd_len = path->cmd_len; |
| 777 | coords = path->coords; |
| 778 | cmds = path->cmds; |
| 779 | break; |
| 780 | case FZ_PATH_PACKED_FLAT: |
| 781 | cmd_len = ((fz_packed_path *)path)->cmd_len; |
| 782 | coords = (float *)&((fz_packed_path *)path)[1]; |
| 783 | cmds = (uint8_t *)&coords[((fz_packed_path *)path)->coord_len]; |
| 784 | break; |
| 785 | default: |
| 786 | assert("This never happens" == NULL); |
| 787 | return; |
| 788 | } |
| 789 | |
| 790 | if (cmd_len == 0) |
| 791 | return; |
| 792 | |
| 793 | for (k=0, i = 0; i < cmd_len; i++) |
| 794 | { |
| 795 | uint8_t cmd = cmds[i]; |
| 796 | |
| 797 | switch (cmd) |
| 798 | { |
| 799 | case FZ_CURVETO: |
| 800 | case FZ_CURVETOCLOSE: |
| 801 | proc->curveto(ctx, arg, |
| 802 | coords[k], |
| 803 | coords[k+1], |
| 804 | coords[k+2], |
| 805 | coords[k+3], |
| 806 | x = coords[k+4], |
| 807 | y = coords[k+5]); |
| 808 | k += 6; |
| 809 | if (cmd == FZ_CURVETOCLOSE) |
| 810 | { |
| 811 | if (proc->closepath) |
| 812 | proc->closepath(ctx, arg); |
| 813 | x = sx; |
| 814 | y = sy; |
| 815 | } |
| 816 | break; |
| 817 | case FZ_CURVETOV: |
| 818 | case FZ_CURVETOVCLOSE: |
| 819 | if (proc->curvetov) |
| 820 | proc->curvetov(ctx, arg, |
| 821 | coords[k], |
| 822 | coords[k+1], |
| 823 | x = coords[k+2], |
| 824 | y = coords[k+3]); |
| 825 | else |
| 826 | { |
| 827 | proc->curveto(ctx, arg, |
| 828 | x, |
| 829 | y, |
| 830 | coords[k], |
| 831 | coords[k+1], |
| 832 | coords[k+2], |
| 833 | coords[k+3]); |
| 834 | x = coords[k+2]; |
| 835 | y = coords[k+3]; |
| 836 | } |
| 837 | k += 4; |
| 838 | if (cmd == FZ_CURVETOVCLOSE) |
| 839 | { |
| 840 | if (proc->closepath) |
| 841 | proc->closepath(ctx, arg); |
| 842 | x = sx; |
| 843 | y = sy; |
| 844 | } |
| 845 | break; |
| 846 | case FZ_CURVETOY: |
| 847 | case FZ_CURVETOYCLOSE: |
| 848 | if (proc->curvetoy) |
| 849 | proc->curvetoy(ctx, arg, |
| 850 | coords[k], |
| 851 | coords[k+1], |
| 852 | x = coords[k+2], |
| 853 | y = coords[k+3]); |
| 854 | else |
| 855 | proc->curveto(ctx, arg, |
| 856 | coords[k], |
| 857 | coords[k+1], |
| 858 | coords[k+2], |
| 859 | coords[k+3], |
| 860 | x = coords[k+2], |
| 861 | y = coords[k+3]); |
| 862 | k += 4; |
| 863 | if (cmd == FZ_CURVETOYCLOSE) |
| 864 | { |
| 865 | if (proc->closepath) |
| 866 | proc->closepath(ctx, arg); |
| 867 | x = sx; |
| 868 | y = sy; |
| 869 | } |
| 870 | break; |
| 871 | case FZ_QUADTO: |
| 872 | case FZ_QUADTOCLOSE: |
| 873 | if (proc->quadto) |
| 874 | proc->quadto(ctx, arg, |
| 875 | coords[k], |
| 876 | coords[k+1], |
| 877 | x = coords[k+2], |
| 878 | y = coords[k+3]); |
| 879 | else |
| 880 | { |
| 881 | float c2x = coords[k] * 2; |
| 882 | float c2y = coords[k+1] * 2; |
| 883 | float c1x = (x + c2x) / 3; |
| 884 | float c1y = (y + c2y) / 3; |
| 885 | x = coords[k+2]; |
| 886 | y = coords[k+3]; |
| 887 | c2x = (c2x + x) / 3; |
| 888 | c2y = (c2y + y) / 3; |
| 889 | |
| 890 | proc->curveto(ctx, arg, |
| 891 | c1x, |
| 892 | c1y, |
| 893 | c2x, |
| 894 | c2y, |
| 895 | x, |
| 896 | y); |
| 897 | } |
| 898 | k += 4; |
| 899 | if (cmd == FZ_QUADTOCLOSE) |
| 900 | { |
| 901 | if (proc->closepath) |
| 902 | proc->closepath(ctx, arg); |
| 903 | x = sx; |
| 904 | y = sy; |
| 905 | } |
| 906 | break; |
| 907 | case FZ_MOVETO: |
| 908 | case FZ_MOVETOCLOSE: |
| 909 | proc->moveto(ctx, arg, |
| 910 | x = coords[k], |
| 911 | y = coords[k+1]); |
| 912 | k += 2; |
| 913 | sx = x; |
| 914 | sy = y; |
| 915 | if (cmd == FZ_MOVETOCLOSE) |
| 916 | { |
| 917 | if (proc->closepath) |
| 918 | proc->closepath(ctx, arg); |
| 919 | x = sx; |
| 920 | y = sy; |
| 921 | } |
| 922 | break; |
| 923 | case FZ_LINETO: |
| 924 | case FZ_LINETOCLOSE: |
| 925 | proc->lineto(ctx, arg, |
| 926 | x = coords[k], |
| 927 | y = coords[k+1]); |
| 928 | k += 2; |
| 929 | if (cmd == FZ_LINETOCLOSE) |
| 930 | { |
| 931 | if (proc->closepath) |
| 932 | proc->closepath(ctx, arg); |
| 933 | x = sx; |
| 934 | y = sy; |
| 935 | } |
| 936 | break; |
| 937 | case FZ_HORIZTO: |
| 938 | case FZ_HORIZTOCLOSE: |
| 939 | proc->lineto(ctx, arg, |
| 940 | x = coords[k], |
| 941 | y); |
| 942 | k += 1; |
| 943 | if (cmd == FZ_HORIZTOCLOSE) |
| 944 | { |
| 945 | if (proc->closepath) |
| 946 | proc->closepath(ctx, arg); |
| 947 | x = sx; |
| 948 | y = sy; |
| 949 | } |
| 950 | break; |
| 951 | case FZ_VERTTO: |
| 952 | case FZ_VERTTOCLOSE: |
| 953 | proc->lineto(ctx, arg, |
| 954 | x, |
| 955 | y = coords[k]); |
| 956 | k += 1; |
| 957 | if (cmd == FZ_VERTTOCLOSE) |
| 958 | { |
| 959 | if (proc->closepath) |
| 960 | proc->closepath(ctx, arg); |
| 961 | x = sx; |
| 962 | y = sy; |
| 963 | } |
| 964 | break; |
| 965 | case FZ_DEGENLINETO: |
| 966 | case FZ_DEGENLINETOCLOSE: |
| 967 | proc->lineto(ctx, arg, |
| 968 | x, |
| 969 | y); |
| 970 | if (cmd == FZ_DEGENLINETOCLOSE) |
| 971 | { |
| 972 | if (proc->closepath) |
| 973 | proc->closepath(ctx, arg); |
| 974 | x = sx; |
| 975 | y = sy; |
| 976 | } |
| 977 | break; |
| 978 | case FZ_RECTTO: |
| 979 | if (proc->rectto) |
| 980 | { |
| 981 | proc->rectto(ctx, arg, |
| 982 | x = coords[k], |
| 983 | y = coords[k+1], |
| 984 | coords[k+2], |
| 985 | coords[k+3]); |
| 986 | } |
| 987 | else |
| 988 | { |
| 989 | proc->moveto(ctx, arg, |
| 990 | x = coords[k], |
| 991 | y = coords[k+1]); |
| 992 | proc->lineto(ctx, arg, |
| 993 | coords[k+2], |
| 994 | coords[k+1]); |
| 995 | proc->lineto(ctx, arg, |
| 996 | coords[k+2], |
| 997 | coords[k+3]); |
| 998 | proc->lineto(ctx, arg, |
| 999 | coords[k], |
| 1000 | coords[k+3]); |
| 1001 | if (proc->closepath) |
| 1002 | proc->closepath(ctx, arg); |
| 1003 | } |
| 1004 | sx = x; |
| 1005 | sy = y; |
| 1006 | k += 4; |
| 1007 | break; |
| 1008 | } |
| 1009 | } |
| 1010 | } |
| 1011 | |
| 1012 | typedef struct |
| 1013 | { |
| 1014 | fz_matrix ctm; |
| 1015 | fz_rect rect; |
| 1016 | fz_point move; |
| 1017 | int trailing_move; |
| 1018 | int first; |
| 1019 | } bound_path_arg; |
| 1020 | |
| 1021 | static void |
| 1022 | bound_moveto(fz_context *ctx, void *arg_, float x, float y) |
| 1023 | { |
| 1024 | bound_path_arg *arg = (bound_path_arg *)arg_; |
| 1025 | arg->move = fz_transform_point_xy(x, y, arg->ctm); |
| 1026 | arg->trailing_move = 1; |
| 1027 | } |
| 1028 | |
| 1029 | static void |
| 1030 | bound_lineto(fz_context *ctx, void *arg_, float x, float y) |
| 1031 | { |
| 1032 | bound_path_arg *arg = (bound_path_arg *)arg_; |
| 1033 | fz_point p = fz_transform_point_xy(x, y, arg->ctm); |
| 1034 | if (arg->first) |
| 1035 | { |
| 1036 | arg->rect.x0 = arg->rect.x1 = p.x; |
| 1037 | arg->rect.y0 = arg->rect.y1 = p.y; |
| 1038 | arg->first = 0; |
| 1039 | } |
| 1040 | else |
| 1041 | bound_expand(&arg->rect, p); |
| 1042 | if (arg->trailing_move) |
| 1043 | { |
| 1044 | arg->trailing_move = 0; |
| 1045 | bound_expand(&arg->rect, arg->move); |
| 1046 | } |
| 1047 | } |
| 1048 | |
| 1049 | static void |
| 1050 | bound_curveto(fz_context *ctx, void *arg_, float x1, float y1, float x2, float y2, float x3, float y3) |
| 1051 | { |
| 1052 | bound_path_arg *arg = (bound_path_arg *)arg_; |
| 1053 | fz_point p = fz_transform_point_xy(x1, y1, arg->ctm); |
| 1054 | if (arg->first) |
| 1055 | { |
| 1056 | arg->rect.x0 = arg->rect.x1 = p.x; |
| 1057 | arg->rect.y0 = arg->rect.y1 = p.y; |
| 1058 | arg->first = 0; |
| 1059 | } |
| 1060 | else |
| 1061 | bound_expand(&arg->rect, p); |
| 1062 | bound_expand(&arg->rect, fz_transform_point_xy(x2, y2, arg->ctm)); |
| 1063 | bound_expand(&arg->rect, fz_transform_point_xy(x3, y3, arg->ctm)); |
| 1064 | if (arg->trailing_move) |
| 1065 | { |
| 1066 | arg->trailing_move = 0; |
| 1067 | bound_expand(&arg->rect, arg->move); |
| 1068 | } |
| 1069 | } |
| 1070 | |
| 1071 | static const fz_path_walker bound_path_walker = |
| 1072 | { |
| 1073 | bound_moveto, |
| 1074 | bound_lineto, |
| 1075 | bound_curveto, |
| 1076 | NULL |
| 1077 | }; |
| 1078 | |
| 1079 | /* |
| 1080 | Return a bounding rectangle for a path. |
| 1081 | |
| 1082 | path: The path to bound. |
| 1083 | |
| 1084 | stroke: If NULL, the bounding rectangle given is for |
| 1085 | the filled path. If non-NULL the bounding rectangle |
| 1086 | given is for the path stroked with the given attributes. |
| 1087 | |
| 1088 | ctm: The matrix to apply to the path during stroking. |
| 1089 | |
| 1090 | r: Pointer to a fz_rect which will be used to hold |
| 1091 | the result. |
| 1092 | |
| 1093 | Returns r, updated to contain the bounding rectangle. |
| 1094 | */ |
| 1095 | fz_rect |
| 1096 | fz_bound_path(fz_context *ctx, const fz_path *path, const fz_stroke_state *stroke, fz_matrix ctm) |
| 1097 | { |
| 1098 | bound_path_arg arg; |
| 1099 | |
| 1100 | arg.ctm = ctm; |
| 1101 | arg.rect = fz_empty_rect; |
| 1102 | arg.trailing_move = 0; |
| 1103 | arg.first = 1; |
| 1104 | |
| 1105 | fz_walk_path(ctx, path, &bound_path_walker, &arg); |
| 1106 | |
| 1107 | if (!arg.first && stroke) |
| 1108 | { |
| 1109 | arg.rect = fz_adjust_rect_for_stroke(ctx, arg.rect, stroke, ctm); |
| 1110 | } |
| 1111 | |
| 1112 | return arg.rect; |
| 1113 | } |
| 1114 | |
| 1115 | fz_rect |
| 1116 | fz_adjust_rect_for_stroke(fz_context *ctx, fz_rect r, const fz_stroke_state *stroke, fz_matrix ctm) |
| 1117 | { |
| 1118 | float expand; |
| 1119 | |
| 1120 | if (!stroke) |
| 1121 | return r; |
| 1122 | |
| 1123 | expand = stroke->linewidth; |
| 1124 | if (expand == 0) |
| 1125 | expand = 1.0f; |
| 1126 | expand *= fz_matrix_max_expansion(ctm); |
| 1127 | if ((stroke->linejoin == FZ_LINEJOIN_MITER || stroke->linejoin == FZ_LINEJOIN_MITER_XPS) && stroke->miterlimit > 1) |
| 1128 | expand *= stroke->miterlimit; |
| 1129 | |
| 1130 | r.x0 -= expand; |
| 1131 | r.y0 -= expand; |
| 1132 | r.x1 += expand; |
| 1133 | r.y1 += expand; |
| 1134 | return r; |
| 1135 | } |
| 1136 | |
| 1137 | /* |
| 1138 | Transform a path by a given |
| 1139 | matrix. |
| 1140 | |
| 1141 | path: The path to modify (must not be a packed path). |
| 1142 | |
| 1143 | transform: The transform to apply. |
| 1144 | |
| 1145 | Throws exceptions if the path is packed, or on failure |
| 1146 | to allocate. |
| 1147 | */ |
| 1148 | void |
| 1149 | fz_transform_path(fz_context *ctx, fz_path *path, fz_matrix ctm) |
| 1150 | { |
| 1151 | int i, k, n; |
| 1152 | fz_point p, p1, p2, p3, q, s; |
| 1153 | |
| 1154 | if (path->packed) |
| 1155 | fz_throw(ctx, FZ_ERROR_GENERIC, "Cannot transform a packed path" ); |
| 1156 | |
| 1157 | if (ctm.b == 0 && ctm.c == 0) |
| 1158 | { |
| 1159 | /* Simple, in place transform */ |
| 1160 | i = 0; |
| 1161 | k = 0; |
| 1162 | while (i < path->cmd_len) |
| 1163 | { |
| 1164 | uint8_t cmd = path->cmds[i]; |
| 1165 | |
| 1166 | switch (cmd) |
| 1167 | { |
| 1168 | case FZ_MOVETO: |
| 1169 | case FZ_LINETO: |
| 1170 | case FZ_MOVETOCLOSE: |
| 1171 | case FZ_LINETOCLOSE: |
| 1172 | n = 1; |
| 1173 | break; |
| 1174 | case FZ_DEGENLINETO: |
| 1175 | case FZ_DEGENLINETOCLOSE: |
| 1176 | n = 0; |
| 1177 | break; |
| 1178 | case FZ_CURVETO: |
| 1179 | case FZ_CURVETOCLOSE: |
| 1180 | n = 3; |
| 1181 | break; |
| 1182 | case FZ_RECTTO: |
| 1183 | s.x = path->coords[k]; |
| 1184 | s.y = path->coords[k+1]; |
| 1185 | n = 2; |
| 1186 | break; |
| 1187 | case FZ_CURVETOV: |
| 1188 | case FZ_CURVETOY: |
| 1189 | case FZ_QUADTO: |
| 1190 | case FZ_CURVETOVCLOSE: |
| 1191 | case FZ_CURVETOYCLOSE: |
| 1192 | case FZ_QUADTOCLOSE: |
| 1193 | n = 2; |
| 1194 | break; |
| 1195 | case FZ_HORIZTO: |
| 1196 | case FZ_HORIZTOCLOSE: |
| 1197 | q.x = path->coords[k]; |
| 1198 | p = fz_transform_point(q, ctm); |
| 1199 | path->coords[k++] = p.x; |
| 1200 | n = 0; |
| 1201 | break; |
| 1202 | case FZ_VERTTO: |
| 1203 | case FZ_VERTTOCLOSE: |
| 1204 | q.y = path->coords[k]; |
| 1205 | p = fz_transform_point(q, ctm); |
| 1206 | path->coords[k++] = p.y; |
| 1207 | n = 0; |
| 1208 | break; |
| 1209 | default: |
| 1210 | assert("Unknown path cmd" == NULL); |
| 1211 | } |
| 1212 | while (n > 0) |
| 1213 | { |
| 1214 | q.x = path->coords[k]; |
| 1215 | q.y = path->coords[k+1]; |
| 1216 | p = fz_transform_point(q, ctm); |
| 1217 | path->coords[k++] = p.x; |
| 1218 | path->coords[k++] = p.y; |
| 1219 | n--; |
| 1220 | } |
| 1221 | switch (cmd) |
| 1222 | { |
| 1223 | case FZ_MOVETO: |
| 1224 | case FZ_MOVETOCLOSE: |
| 1225 | s = q; |
| 1226 | break; |
| 1227 | case FZ_LINETOCLOSE: |
| 1228 | case FZ_DEGENLINETOCLOSE: |
| 1229 | case FZ_CURVETOCLOSE: |
| 1230 | case FZ_CURVETOVCLOSE: |
| 1231 | case FZ_CURVETOYCLOSE: |
| 1232 | case FZ_QUADTOCLOSE: |
| 1233 | case FZ_HORIZTOCLOSE: |
| 1234 | case FZ_VERTTOCLOSE: |
| 1235 | case FZ_RECTTO: |
| 1236 | q = s; |
| 1237 | break; |
| 1238 | } |
| 1239 | i++; |
| 1240 | } |
| 1241 | } |
| 1242 | else if (ctm.a == 0 && ctm.d == 0) |
| 1243 | { |
| 1244 | /* In place transform with command rewriting */ |
| 1245 | i = 0; |
| 1246 | k = 0; |
| 1247 | while (i < path->cmd_len) |
| 1248 | { |
| 1249 | uint8_t cmd = path->cmds[i]; |
| 1250 | |
| 1251 | switch (cmd) |
| 1252 | { |
| 1253 | case FZ_MOVETO: |
| 1254 | case FZ_LINETO: |
| 1255 | case FZ_MOVETOCLOSE: |
| 1256 | case FZ_LINETOCLOSE: |
| 1257 | n = 1; |
| 1258 | break; |
| 1259 | case FZ_DEGENLINETO: |
| 1260 | case FZ_DEGENLINETOCLOSE: |
| 1261 | n = 0; |
| 1262 | break; |
| 1263 | case FZ_CURVETO: |
| 1264 | case FZ_CURVETOCLOSE: |
| 1265 | n = 3; |
| 1266 | break; |
| 1267 | case FZ_RECTTO: |
| 1268 | s.x = path->coords[k]; |
| 1269 | s.y = path->coords[k+1]; |
| 1270 | n = 2; |
| 1271 | break; |
| 1272 | case FZ_CURVETOV: |
| 1273 | case FZ_CURVETOY: |
| 1274 | case FZ_QUADTO: |
| 1275 | case FZ_CURVETOVCLOSE: |
| 1276 | case FZ_CURVETOYCLOSE: |
| 1277 | case FZ_QUADTOCLOSE: |
| 1278 | n = 2; |
| 1279 | break; |
| 1280 | case FZ_HORIZTO: |
| 1281 | q.x = path->coords[k]; |
| 1282 | p = fz_transform_point(q, ctm); |
| 1283 | path->coords[k++] = p.y; |
| 1284 | path->cmds[i] = FZ_VERTTO; |
| 1285 | n = 0; |
| 1286 | break; |
| 1287 | case FZ_HORIZTOCLOSE: |
| 1288 | q.x = path->coords[k]; |
| 1289 | p = fz_transform_point(q, ctm); |
| 1290 | path->coords[k++] = p.y; |
| 1291 | path->cmds[i] = FZ_VERTTOCLOSE; |
| 1292 | n = 0; |
| 1293 | break; |
| 1294 | case FZ_VERTTO: |
| 1295 | q.y = path->coords[k]; |
| 1296 | p = fz_transform_point(q, ctm); |
| 1297 | path->coords[k++] = p.x; |
| 1298 | path->cmds[i] = FZ_HORIZTO; |
| 1299 | n = 0; |
| 1300 | break; |
| 1301 | case FZ_VERTTOCLOSE: |
| 1302 | q.y = path->coords[k]; |
| 1303 | p = fz_transform_point(q, ctm); |
| 1304 | path->coords[k++] = p.x; |
| 1305 | path->cmds[i] = FZ_HORIZTOCLOSE; |
| 1306 | n = 0; |
| 1307 | break; |
| 1308 | default: |
| 1309 | assert("Unknown path cmd" == NULL); |
| 1310 | } |
| 1311 | while (n > 0) |
| 1312 | { |
| 1313 | q.x = path->coords[k]; |
| 1314 | q.y = path->coords[k+1]; |
| 1315 | p = fz_transform_point(q, ctm); |
| 1316 | path->coords[k++] = p.x; |
| 1317 | path->coords[k++] = p.y; |
| 1318 | n--; |
| 1319 | } |
| 1320 | switch (cmd) |
| 1321 | { |
| 1322 | case FZ_MOVETO: |
| 1323 | case FZ_MOVETOCLOSE: |
| 1324 | s = q; |
| 1325 | break; |
| 1326 | case FZ_LINETOCLOSE: |
| 1327 | case FZ_DEGENLINETOCLOSE: |
| 1328 | case FZ_CURVETOCLOSE: |
| 1329 | case FZ_CURVETOVCLOSE: |
| 1330 | case FZ_CURVETOYCLOSE: |
| 1331 | case FZ_QUADTOCLOSE: |
| 1332 | case FZ_HORIZTOCLOSE: |
| 1333 | case FZ_VERTTOCLOSE: |
| 1334 | case FZ_RECTTO: |
| 1335 | q = s; |
| 1336 | break; |
| 1337 | } |
| 1338 | i++; |
| 1339 | } |
| 1340 | } |
| 1341 | else |
| 1342 | { |
| 1343 | int = 0; |
| 1344 | int = 0; |
| 1345 | int coord_read, coord_write, cmd_read, cmd_write; |
| 1346 | |
| 1347 | /* General case. Have to allow for rects/horiz/verts |
| 1348 | * becoming non-rects/horiz/verts. */ |
| 1349 | for (i = 0; i < path->cmd_len; i++) |
| 1350 | { |
| 1351 | uint8_t cmd = path->cmds[i]; |
| 1352 | switch (cmd) |
| 1353 | { |
| 1354 | case FZ_HORIZTO: |
| 1355 | case FZ_VERTTO: |
| 1356 | case FZ_HORIZTOCLOSE: |
| 1357 | case FZ_VERTTOCLOSE: |
| 1358 | extra_coord += 1; |
| 1359 | break; |
| 1360 | case FZ_RECTTO: |
| 1361 | extra_coord += 2; |
| 1362 | extra_cmd += 3; |
| 1363 | break; |
| 1364 | default: |
| 1365 | /* Do nothing */ |
| 1366 | break; |
| 1367 | } |
| 1368 | } |
| 1369 | if (path->cmd_len + extra_cmd < path->cmd_cap) |
| 1370 | { |
| 1371 | path->cmds = fz_realloc_array(ctx, path->cmds, path->cmd_len + extra_cmd, unsigned char); |
| 1372 | path->cmd_cap = path->cmd_len + extra_cmd; |
| 1373 | } |
| 1374 | if (path->coord_len + extra_coord < path->coord_cap) |
| 1375 | { |
| 1376 | path->coords = fz_realloc_array(ctx, path->coords, path->coord_len + extra_coord, float); |
| 1377 | path->coord_cap = path->coord_len + extra_coord; |
| 1378 | } |
| 1379 | memmove(path->cmds + extra_cmd, path->cmds, path->cmd_len * sizeof(unsigned char)); |
| 1380 | path->cmd_len += extra_cmd; |
| 1381 | memmove(path->coords + extra_coord, path->coords, path->coord_len * sizeof(float)); |
| 1382 | path->coord_len += extra_coord; |
| 1383 | |
| 1384 | for (cmd_write = 0, cmd_read = extra_cmd, coord_write = 0, coord_read = extra_coord; cmd_read < path->cmd_len; i += 2) |
| 1385 | { |
| 1386 | uint8_t cmd = path->cmds[cmd_write++] = path->cmds[cmd_read++]; |
| 1387 | |
| 1388 | switch (cmd) |
| 1389 | { |
| 1390 | case FZ_MOVETO: |
| 1391 | case FZ_LINETO: |
| 1392 | case FZ_MOVETOCLOSE: |
| 1393 | case FZ_LINETOCLOSE: |
| 1394 | n = 1; |
| 1395 | break; |
| 1396 | case FZ_DEGENLINETO: |
| 1397 | case FZ_DEGENLINETOCLOSE: |
| 1398 | n = 0; |
| 1399 | break; |
| 1400 | case FZ_CURVETO: |
| 1401 | case FZ_CURVETOCLOSE: |
| 1402 | n = 3; |
| 1403 | break; |
| 1404 | case FZ_CURVETOV: |
| 1405 | case FZ_CURVETOY: |
| 1406 | case FZ_QUADTO: |
| 1407 | case FZ_CURVETOVCLOSE: |
| 1408 | case FZ_CURVETOYCLOSE: |
| 1409 | case FZ_QUADTOCLOSE: |
| 1410 | n = 2; |
| 1411 | break; |
| 1412 | case FZ_RECTTO: |
| 1413 | p.x = path->coords[coord_read++]; |
| 1414 | p.y = path->coords[coord_read++]; |
| 1415 | p2.x = path->coords[coord_read++]; |
| 1416 | p2.y = path->coords[coord_read++]; |
| 1417 | p1.x = p2.x; |
| 1418 | p1.y = p.y; |
| 1419 | p3.x = p.x; |
| 1420 | p3.y = p2.y; |
| 1421 | s = p; |
| 1422 | p = fz_transform_point(p, ctm); |
| 1423 | p1 = fz_transform_point(p1, ctm); |
| 1424 | p2 = fz_transform_point(p2, ctm); |
| 1425 | p3 = fz_transform_point(p3, ctm); |
| 1426 | path->coords[coord_write++] = p.x; |
| 1427 | path->coords[coord_write++] = p.y; |
| 1428 | path->coords[coord_write++] = p1.x; |
| 1429 | path->coords[coord_write++] = p1.y; |
| 1430 | path->coords[coord_write++] = p2.x; |
| 1431 | path->coords[coord_write++] = p2.y; |
| 1432 | path->coords[coord_write++] = p3.x; |
| 1433 | path->coords[coord_write++] = p3.y; |
| 1434 | path->cmds[cmd_write-1] = FZ_MOVETO; |
| 1435 | path->cmds[cmd_write++] = FZ_LINETO; |
| 1436 | path->cmds[cmd_write++] = FZ_LINETO; |
| 1437 | path->cmds[cmd_write++] = FZ_LINETOCLOSE; |
| 1438 | n = 0; |
| 1439 | break; |
| 1440 | case FZ_HORIZTO: |
| 1441 | q.x = path->coords[coord_read++]; |
| 1442 | p = fz_transform_point(q, ctm); |
| 1443 | path->coords[coord_write++] = p.x; |
| 1444 | path->coords[coord_write++] = p.y; |
| 1445 | path->cmds[cmd_write-1] = FZ_LINETO; |
| 1446 | n = 0; |
| 1447 | break; |
| 1448 | case FZ_HORIZTOCLOSE: |
| 1449 | p.x = path->coords[coord_read++]; |
| 1450 | p.y = q.y; |
| 1451 | p = fz_transform_point(p, ctm); |
| 1452 | path->coords[coord_write++] = p.x; |
| 1453 | path->coords[coord_write++] = p.y; |
| 1454 | path->cmds[cmd_write-1] = FZ_LINETOCLOSE; |
| 1455 | q = s; |
| 1456 | n = 0; |
| 1457 | break; |
| 1458 | case FZ_VERTTO: |
| 1459 | q.y = path->coords[coord_read++]; |
| 1460 | p = fz_transform_point(q, ctm); |
| 1461 | path->coords[coord_write++] = p.x; |
| 1462 | path->coords[coord_write++] = p.y; |
| 1463 | path->cmds[cmd_write-1] = FZ_LINETO; |
| 1464 | n = 0; |
| 1465 | break; |
| 1466 | case FZ_VERTTOCLOSE: |
| 1467 | p.x = q.x; |
| 1468 | p.y = path->coords[coord_read++]; |
| 1469 | p = fz_transform_point(p, ctm); |
| 1470 | path->coords[coord_write++] = p.x; |
| 1471 | path->coords[coord_write++] = p.y; |
| 1472 | path->cmds[cmd_write-1] = FZ_LINETOCLOSE; |
| 1473 | q = s; |
| 1474 | n = 0; |
| 1475 | break; |
| 1476 | default: |
| 1477 | assert("Unknown path cmd" == NULL); |
| 1478 | } |
| 1479 | while (n > 0) |
| 1480 | { |
| 1481 | q.x = path->coords[coord_read++]; |
| 1482 | q.y = path->coords[coord_read++]; |
| 1483 | p = fz_transform_point(q, ctm); |
| 1484 | path->coords[coord_write++] = p.x; |
| 1485 | path->coords[coord_write++] = p.y; |
| 1486 | n--; |
| 1487 | } |
| 1488 | switch (cmd) |
| 1489 | { |
| 1490 | case FZ_MOVETO: |
| 1491 | case FZ_MOVETOCLOSE: |
| 1492 | s = q; |
| 1493 | break; |
| 1494 | case FZ_LINETOCLOSE: |
| 1495 | case FZ_DEGENLINETOCLOSE: |
| 1496 | case FZ_CURVETOCLOSE: |
| 1497 | case FZ_CURVETOYCLOSE: |
| 1498 | case FZ_CURVETOVCLOSE: |
| 1499 | case FZ_QUADTOCLOSE: |
| 1500 | case FZ_HORIZTOCLOSE: |
| 1501 | case FZ_VERTTOCLOSE: |
| 1502 | case FZ_RECTTO: |
| 1503 | q = s; |
| 1504 | break; |
| 1505 | } |
| 1506 | } |
| 1507 | } |
| 1508 | } |
| 1509 | |
| 1510 | /* |
| 1511 | Minimise the internal storage |
| 1512 | used by a path. |
| 1513 | |
| 1514 | As paths are constructed, the internal buffers |
| 1515 | grow. To avoid repeated reallocations they |
| 1516 | grow with some spare space. Once a path has |
| 1517 | been fully constructed, this call allows the |
| 1518 | excess space to be trimmed. |
| 1519 | */ |
| 1520 | void fz_trim_path(fz_context *ctx, fz_path *path) |
| 1521 | { |
| 1522 | if (path->packed) |
| 1523 | fz_throw(ctx, FZ_ERROR_GENERIC, "Can't trim a packed path" ); |
| 1524 | if (path->cmd_cap > path->cmd_len) |
| 1525 | { |
| 1526 | path->cmds = fz_realloc_array(ctx, path->cmds, path->cmd_len, unsigned char); |
| 1527 | path->cmd_cap = path->cmd_len; |
| 1528 | } |
| 1529 | if (path->coord_cap > path->coord_len) |
| 1530 | { |
| 1531 | path->coords = fz_realloc_array(ctx, path->coords, path->coord_len, float); |
| 1532 | path->coord_cap = path->coord_len; |
| 1533 | } |
| 1534 | } |
| 1535 | |
| 1536 | const fz_stroke_state fz_default_stroke_state = { |
| 1537 | -2, /* -2 is the magic number we use when we have stroke states stored on the stack */ |
| 1538 | FZ_LINECAP_BUTT, FZ_LINECAP_BUTT, FZ_LINECAP_BUTT, |
| 1539 | FZ_LINEJOIN_MITER, |
| 1540 | 1, 10, |
| 1541 | 0, 0, { 0 } |
| 1542 | }; |
| 1543 | |
| 1544 | /* |
| 1545 | Take an additional reference to |
| 1546 | a stroke state structure. |
| 1547 | |
| 1548 | No modifications should be carried out on a stroke |
| 1549 | state to which more than one reference is held, as |
| 1550 | this can cause race conditions. |
| 1551 | */ |
| 1552 | fz_stroke_state * |
| 1553 | fz_keep_stroke_state(fz_context *ctx, const fz_stroke_state *strokec) |
| 1554 | { |
| 1555 | fz_stroke_state *stroke = (fz_stroke_state *)strokec; /* Explicit cast away of const */ |
| 1556 | |
| 1557 | if (!stroke) |
| 1558 | return NULL; |
| 1559 | |
| 1560 | /* -2 is the magic number we use when we have stroke states stored on the stack */ |
| 1561 | if (stroke->refs == -2) |
| 1562 | return fz_clone_stroke_state(ctx, stroke); |
| 1563 | |
| 1564 | return fz_keep_imp(ctx, stroke, &stroke->refs); |
| 1565 | } |
| 1566 | |
| 1567 | /* |
| 1568 | Drop a reference to a stroke |
| 1569 | state structure, destroying the structure if it is |
| 1570 | the last reference. |
| 1571 | */ |
| 1572 | void |
| 1573 | fz_drop_stroke_state(fz_context *ctx, const fz_stroke_state *strokec) |
| 1574 | { |
| 1575 | fz_stroke_state *stroke = (fz_stroke_state *)strokec; /* Explicit cast away of const */ |
| 1576 | |
| 1577 | if (fz_drop_imp(ctx, stroke, &stroke->refs)) |
| 1578 | fz_free(ctx, stroke); |
| 1579 | } |
| 1580 | |
| 1581 | /* |
| 1582 | Create a new (empty) |
| 1583 | stroke state structure, with room for dash data of the |
| 1584 | given length, and return a reference to it. |
| 1585 | |
| 1586 | len: The number of dash elements to allow room for. |
| 1587 | |
| 1588 | Throws exception on failure to allocate. |
| 1589 | */ |
| 1590 | fz_stroke_state * |
| 1591 | fz_new_stroke_state_with_dash_len(fz_context *ctx, int len) |
| 1592 | { |
| 1593 | fz_stroke_state *state; |
| 1594 | |
| 1595 | len -= nelem(state->dash_list); |
| 1596 | if (len < 0) |
| 1597 | len = 0; |
| 1598 | |
| 1599 | state = Memento_label(fz_malloc(ctx, sizeof(*state) + sizeof(state->dash_list[0]) * len), "fz_stroke_state" ); |
| 1600 | state->refs = 1; |
| 1601 | state->start_cap = FZ_LINECAP_BUTT; |
| 1602 | state->dash_cap = FZ_LINECAP_BUTT; |
| 1603 | state->end_cap = FZ_LINECAP_BUTT; |
| 1604 | state->linejoin = FZ_LINEJOIN_MITER; |
| 1605 | state->linewidth = 1; |
| 1606 | state->miterlimit = 10; |
| 1607 | state->dash_phase = 0; |
| 1608 | state->dash_len = 0; |
| 1609 | memset(state->dash_list, 0, sizeof(state->dash_list[0]) * (len + nelem(state->dash_list))); |
| 1610 | |
| 1611 | return state; |
| 1612 | } |
| 1613 | |
| 1614 | /* |
| 1615 | Create a new (empty) stroke state |
| 1616 | structure (with no dash data) and return a reference to it. |
| 1617 | |
| 1618 | Throws exception on failure to allocate. |
| 1619 | */ |
| 1620 | fz_stroke_state * |
| 1621 | fz_new_stroke_state(fz_context *ctx) |
| 1622 | { |
| 1623 | return fz_new_stroke_state_with_dash_len(ctx, 0); |
| 1624 | } |
| 1625 | |
| 1626 | /* |
| 1627 | Create an identical stroke_state |
| 1628 | structure and return a reference to it. |
| 1629 | |
| 1630 | stroke: The stroke state reference to clone. |
| 1631 | |
| 1632 | Exceptions may be thrown in the event of a failure to |
| 1633 | allocate. |
| 1634 | */ |
| 1635 | fz_stroke_state * |
| 1636 | fz_clone_stroke_state(fz_context *ctx, fz_stroke_state *stroke) |
| 1637 | { |
| 1638 | fz_stroke_state *clone = fz_new_stroke_state_with_dash_len(ctx, stroke->dash_len); |
| 1639 | int = stroke->dash_len - nelem(stroke->dash_list); |
| 1640 | int size = sizeof(*stroke) + sizeof(stroke->dash_list[0]) * extra; |
| 1641 | memcpy(clone, stroke, size); |
| 1642 | clone->refs = 1; |
| 1643 | return clone; |
| 1644 | } |
| 1645 | |
| 1646 | /* |
| 1647 | Given a reference to a |
| 1648 | (possibly) shared stroke_state structure, return a reference |
| 1649 | to a stroke_state structure (with room for a given amount of |
| 1650 | dash data) that is guaranteed to be unshared (i.e. one that |
| 1651 | can safely be modified). |
| 1652 | |
| 1653 | shared: The reference to a (possibly) shared structure |
| 1654 | to unshare. Ownership of this reference is passed in |
| 1655 | to this function, even in the case of exceptions being |
| 1656 | thrown. |
| 1657 | |
| 1658 | Exceptions may be thrown in the event of failure to |
| 1659 | allocate if required. |
| 1660 | */ |
| 1661 | fz_stroke_state * |
| 1662 | fz_unshare_stroke_state_with_dash_len(fz_context *ctx, fz_stroke_state *shared, int len) |
| 1663 | { |
| 1664 | int single, unsize, shsize, shlen; |
| 1665 | fz_stroke_state *unshared; |
| 1666 | |
| 1667 | fz_lock(ctx, FZ_LOCK_ALLOC); |
| 1668 | single = (shared->refs == 1); |
| 1669 | fz_unlock(ctx, FZ_LOCK_ALLOC); |
| 1670 | |
| 1671 | shlen = shared->dash_len - nelem(shared->dash_list); |
| 1672 | if (shlen < 0) |
| 1673 | shlen = 0; |
| 1674 | shsize = sizeof(*shared) + sizeof(shared->dash_list[0]) * shlen; |
| 1675 | len -= nelem(shared->dash_list); |
| 1676 | if (len < 0) |
| 1677 | len = 0; |
| 1678 | if (single && shlen >= len) |
| 1679 | return shared; |
| 1680 | |
| 1681 | unsize = sizeof(*unshared) + sizeof(unshared->dash_list[0]) * len; |
| 1682 | unshared = Memento_label(fz_malloc(ctx, unsize), "fz_stroke_state" ); |
| 1683 | memcpy(unshared, shared, (shsize > unsize ? unsize : shsize)); |
| 1684 | unshared->refs = 1; |
| 1685 | |
| 1686 | if (fz_drop_imp(ctx, shared, &shared->refs)) |
| 1687 | fz_free(ctx, shared); |
| 1688 | return unshared; |
| 1689 | } |
| 1690 | |
| 1691 | /* |
| 1692 | Given a reference to a |
| 1693 | (possibly) shared stroke_state structure, return |
| 1694 | a reference to an equivalent stroke_state structure |
| 1695 | that is guaranteed to be unshared (i.e. one that can |
| 1696 | safely be modified). |
| 1697 | |
| 1698 | shared: The reference to a (possibly) shared structure |
| 1699 | to unshare. Ownership of this reference is passed in |
| 1700 | to this function, even in the case of exceptions being |
| 1701 | thrown. |
| 1702 | |
| 1703 | Exceptions may be thrown in the event of failure to |
| 1704 | allocate if required. |
| 1705 | */ |
| 1706 | fz_stroke_state * |
| 1707 | fz_unshare_stroke_state(fz_context *ctx, fz_stroke_state *shared) |
| 1708 | { |
| 1709 | return fz_unshare_stroke_state_with_dash_len(ctx, shared, shared->dash_len); |
| 1710 | } |
| 1711 | |
| 1712 | static void * |
| 1713 | clone_block(fz_context *ctx, void *block, size_t len) |
| 1714 | { |
| 1715 | void *target; |
| 1716 | |
| 1717 | if (len == 0 || block == NULL) |
| 1718 | return NULL; |
| 1719 | |
| 1720 | target = fz_malloc(ctx, len); |
| 1721 | memcpy(target, block, len); |
| 1722 | return target; |
| 1723 | } |
| 1724 | |
| 1725 | /* |
| 1726 | Clone the data for a path. |
| 1727 | |
| 1728 | This is used in preference to fz_keep_path when a whole |
| 1729 | new copy of a path is required, rather than just a shared |
| 1730 | pointer. This probably indicates that the path is about to |
| 1731 | be modified. |
| 1732 | |
| 1733 | path: path to clone. |
| 1734 | |
| 1735 | Throws exceptions on failure to allocate. |
| 1736 | */ |
| 1737 | fz_path * |
| 1738 | fz_clone_path(fz_context *ctx, fz_path *path) |
| 1739 | { |
| 1740 | fz_path *new_path; |
| 1741 | |
| 1742 | assert(ctx != NULL); |
| 1743 | |
| 1744 | if (path == NULL) |
| 1745 | return NULL; |
| 1746 | |
| 1747 | new_path = fz_malloc_struct(ctx, fz_path); |
| 1748 | new_path->refs = 1; |
| 1749 | new_path->packed = FZ_PATH_UNPACKED; |
| 1750 | fz_try(ctx) |
| 1751 | { |
| 1752 | switch(path->packed) |
| 1753 | { |
| 1754 | case FZ_PATH_UNPACKED: |
| 1755 | case FZ_PATH_PACKED_OPEN: |
| 1756 | new_path->cmd_len = path->cmd_len; |
| 1757 | new_path->cmd_cap = path->cmd_cap; |
| 1758 | new_path->cmds = clone_block(ctx, path->cmds, path->cmd_cap); |
| 1759 | new_path->coord_len = path->coord_len; |
| 1760 | new_path->coord_cap = path->coord_cap; |
| 1761 | new_path->coords = clone_block(ctx, path->coords, sizeof(float)*path->coord_cap); |
| 1762 | new_path->current = path->current; |
| 1763 | new_path->begin = path->begin; |
| 1764 | break; |
| 1765 | case FZ_PATH_PACKED_FLAT: |
| 1766 | { |
| 1767 | uint8_t *data; |
| 1768 | float *xy; |
| 1769 | int i; |
| 1770 | fz_packed_path *ppath = (fz_packed_path *)path; |
| 1771 | |
| 1772 | new_path->cmd_len = ppath->cmd_len; |
| 1773 | new_path->cmd_cap = ppath->cmd_len; |
| 1774 | new_path->coord_len = ppath->coord_len; |
| 1775 | new_path->coord_cap = ppath->coord_len; |
| 1776 | data = (uint8_t *)&ppath[1]; |
| 1777 | new_path->coords = clone_block(ctx, data, sizeof(float)*path->coord_cap); |
| 1778 | data += sizeof(float) * path->coord_cap; |
| 1779 | new_path->cmds = clone_block(ctx, data, path->cmd_cap); |
| 1780 | xy = new_path->coords; |
| 1781 | for (i = 0; i < new_path->cmd_len; i++) |
| 1782 | { |
| 1783 | switch (new_path->cmds[i]) |
| 1784 | { |
| 1785 | case FZ_MOVETOCLOSE: |
| 1786 | case FZ_MOVETO: |
| 1787 | new_path->current.x = *xy++; |
| 1788 | new_path->current.y = *xy++; |
| 1789 | new_path->begin.x = new_path->current.x; |
| 1790 | new_path->begin.y = new_path->current.y; |
| 1791 | break; |
| 1792 | case FZ_CURVETO: |
| 1793 | xy += 2; |
| 1794 | /* fallthrough */ |
| 1795 | case FZ_CURVETOV: |
| 1796 | case FZ_CURVETOY: |
| 1797 | case FZ_QUADTO: |
| 1798 | /* fallthrough */ |
| 1799 | xy += 2; |
| 1800 | case FZ_LINETO: |
| 1801 | new_path->current.x = *xy++; |
| 1802 | new_path->current.y = *xy++; |
| 1803 | break; |
| 1804 | case FZ_DEGENLINETO: |
| 1805 | break; |
| 1806 | case FZ_HORIZTO: |
| 1807 | new_path->current.x = *xy++; |
| 1808 | break; |
| 1809 | case FZ_VERTTO: |
| 1810 | new_path->current.y = *xy++; |
| 1811 | break; |
| 1812 | case FZ_RECTTO: |
| 1813 | xy += 2; |
| 1814 | break; |
| 1815 | case FZ_CURVETOCLOSE: |
| 1816 | xy += 2; |
| 1817 | /* fallthrough */ |
| 1818 | case FZ_CURVETOVCLOSE: |
| 1819 | case FZ_CURVETOYCLOSE: |
| 1820 | case FZ_QUADTOCLOSE: |
| 1821 | case FZ_LINETOCLOSE: |
| 1822 | xy++; |
| 1823 | /* fallthrough */ |
| 1824 | case FZ_HORIZTOCLOSE: |
| 1825 | case FZ_VERTTOCLOSE: |
| 1826 | xy++; |
| 1827 | /* fallthrough */ |
| 1828 | case FZ_DEGENLINETOCLOSE: |
| 1829 | new_path->current.x = new_path->begin.x; |
| 1830 | new_path->current.y = new_path->begin.y; |
| 1831 | break; |
| 1832 | } |
| 1833 | } |
| 1834 | } |
| 1835 | default: |
| 1836 | fz_throw(ctx, FZ_ERROR_GENERIC, "Unknown packing method found in path" ); |
| 1837 | } |
| 1838 | } |
| 1839 | fz_catch(ctx) |
| 1840 | { |
| 1841 | fz_free(ctx, new_path->coords); |
| 1842 | fz_free(ctx, new_path->cmds); |
| 1843 | fz_free(ctx, new_path); |
| 1844 | fz_rethrow(ctx); |
| 1845 | } |
| 1846 | return new_path; |
| 1847 | } |
| 1848 | |