| 1 | /***************************************************************************** |
| 2 | |
| 3 | Copyright (c) 1997, 2017, Oracle and/or its affiliates. All Rights Reserved. |
| 4 | Copyright (c) 2008, Google Inc. |
| 5 | Copyright (c) 2015, 2018, MariaDB Corporation. |
| 6 | |
| 7 | Portions of this file contain modifications contributed and copyrighted by |
| 8 | Google, Inc. Those modifications are gratefully acknowledged and are described |
| 9 | briefly in the InnoDB documentation. The contributions by Google are |
| 10 | incorporated with their permission, and subject to the conditions contained in |
| 11 | the file COPYING.Google. |
| 12 | |
| 13 | This program is free software; you can redistribute it and/or modify it under |
| 14 | the terms of the GNU General Public License as published by the Free Software |
| 15 | Foundation; version 2 of the License. |
| 16 | |
| 17 | This program is distributed in the hope that it will be useful, but WITHOUT |
| 18 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| 19 | FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
| 20 | |
| 21 | You should have received a copy of the GNU General Public License along with |
| 22 | this program; if not, write to the Free Software Foundation, Inc., |
| 23 | 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA |
| 24 | |
| 25 | *****************************************************************************/ |
| 26 | |
| 27 | /***************************************************//** |
| 28 | @file row/row0sel.cc |
| 29 | Select |
| 30 | |
| 31 | Created 12/19/1997 Heikki Tuuri |
| 32 | *******************************************************/ |
| 33 | |
| 34 | #include "row0sel.h" |
| 35 | #include "dict0dict.h" |
| 36 | #include "dict0boot.h" |
| 37 | #include "trx0undo.h" |
| 38 | #include "trx0trx.h" |
| 39 | #include "btr0btr.h" |
| 40 | #include "btr0cur.h" |
| 41 | #include "btr0sea.h" |
| 42 | #include "gis0rtree.h" |
| 43 | #include "mach0data.h" |
| 44 | #include "que0que.h" |
| 45 | #include "row0upd.h" |
| 46 | #include "row0row.h" |
| 47 | #include "row0vers.h" |
| 48 | #include "rem0cmp.h" |
| 49 | #include "lock0lock.h" |
| 50 | #include "eval0eval.h" |
| 51 | #include "pars0sym.h" |
| 52 | #include "pars0pars.h" |
| 53 | #include "row0mysql.h" |
| 54 | #include "buf0lru.h" |
| 55 | #include "srv0srv.h" |
| 56 | #include "ha_prototypes.h" |
| 57 | #include "srv0mon.h" |
| 58 | #include "ut0new.h" |
| 59 | |
| 60 | /* Maximum number of rows to prefetch; MySQL interface has another parameter */ |
| 61 | #define SEL_MAX_N_PREFETCH 16 |
| 62 | |
| 63 | /* Number of rows fetched, after which to start prefetching; MySQL interface |
| 64 | has another parameter */ |
| 65 | #define SEL_PREFETCH_LIMIT 1 |
| 66 | |
| 67 | /* When a select has accessed about this many pages, it returns control back |
| 68 | to que_run_threads: this is to allow canceling runaway queries */ |
| 69 | |
| 70 | #define SEL_COST_LIMIT 100 |
| 71 | |
| 72 | /* Flags for search shortcut */ |
| 73 | #define SEL_FOUND 0 |
| 74 | #define SEL_EXHAUSTED 1 |
| 75 | #define SEL_RETRY 2 |
| 76 | |
| 77 | /********************************************************************//** |
| 78 | Returns TRUE if the user-defined column in a secondary index record |
| 79 | is alphabetically the same as the corresponding BLOB column in the clustered |
| 80 | index record. |
| 81 | NOTE: the comparison is NOT done as a binary comparison, but character |
| 82 | fields are compared with collation! |
| 83 | @return TRUE if the columns are equal */ |
| 84 | static |
| 85 | ibool |
| 86 | row_sel_sec_rec_is_for_blob( |
| 87 | /*========================*/ |
| 88 | ulint mtype, /*!< in: main type */ |
| 89 | ulint prtype, /*!< in: precise type */ |
| 90 | ulint mbminlen, /*!< in: minimum length of |
| 91 | a character, in bytes */ |
| 92 | ulint mbmaxlen, /*!< in: maximum length of |
| 93 | a character, in bytes */ |
| 94 | const byte* clust_field, /*!< in: the locally stored part of |
| 95 | the clustered index column, including |
| 96 | the BLOB pointer; the clustered |
| 97 | index record must be covered by |
| 98 | a lock or a page latch to protect it |
| 99 | against deletion (rollback or purge) */ |
| 100 | ulint clust_len, /*!< in: length of clust_field */ |
| 101 | const byte* sec_field, /*!< in: column in secondary index */ |
| 102 | ulint sec_len, /*!< in: length of sec_field */ |
| 103 | ulint prefix_len, /*!< in: index column prefix length |
| 104 | in bytes */ |
| 105 | dict_table_t* table) /*!< in: table */ |
| 106 | { |
| 107 | ulint len; |
| 108 | byte buf[REC_VERSION_56_MAX_INDEX_COL_LEN]; |
| 109 | |
| 110 | /* This function should never be invoked on tables in |
| 111 | ROW_FORMAT=REDUNDANT or ROW_FORMAT=COMPACT, because they |
| 112 | should always contain enough prefix in the clustered index record. */ |
| 113 | ut_ad(dict_table_has_atomic_blobs(table)); |
| 114 | ut_a(clust_len >= BTR_EXTERN_FIELD_REF_SIZE); |
| 115 | ut_ad(prefix_len >= sec_len); |
| 116 | ut_ad(prefix_len > 0); |
| 117 | ut_a(prefix_len <= sizeof buf); |
| 118 | |
| 119 | if (!memcmp(clust_field + clust_len - BTR_EXTERN_FIELD_REF_SIZE, |
| 120 | field_ref_zero, BTR_EXTERN_FIELD_REF_SIZE)) { |
| 121 | /* The externally stored field was not written yet. |
| 122 | This record should only be seen by |
| 123 | recv_recovery_rollback_active() or any |
| 124 | TRX_ISO_READ_UNCOMMITTED transactions. */ |
| 125 | return(FALSE); |
| 126 | } |
| 127 | |
| 128 | len = btr_copy_externally_stored_field_prefix( |
| 129 | buf, prefix_len, page_size_t(table->space->flags), |
| 130 | clust_field, clust_len); |
| 131 | |
| 132 | if (len == 0) { |
| 133 | /* The BLOB was being deleted as the server crashed. |
| 134 | There should not be any secondary index records |
| 135 | referring to this clustered index record, because |
| 136 | btr_free_externally_stored_field() is called after all |
| 137 | secondary index entries of the row have been purged. */ |
| 138 | return(FALSE); |
| 139 | } |
| 140 | |
| 141 | len = dtype_get_at_most_n_mbchars(prtype, mbminlen, mbmaxlen, |
| 142 | prefix_len, len, (const char*) buf); |
| 143 | |
| 144 | return(!cmp_data_data(mtype, prtype, buf, len, sec_field, sec_len)); |
| 145 | } |
| 146 | |
| 147 | /** Returns TRUE if the user-defined column values in a secondary index record |
| 148 | are alphabetically the same as the corresponding columns in the clustered |
| 149 | index record. |
| 150 | NOTE: the comparison is NOT done as a binary comparison, but character |
| 151 | fields are compared with collation! |
| 152 | @param[in] sec_rec secondary index record |
| 153 | @param[in] sec_index secondary index |
| 154 | @param[in] clust_rec clustered index record; |
| 155 | must be protected by a page s-latch |
| 156 | @param[in] clust_index clustered index |
| 157 | @param[in] thr query thread |
| 158 | @return TRUE if the secondary record is equal to the corresponding |
| 159 | fields in the clustered record, when compared with collation; |
| 160 | FALSE if not equal or if the clustered record has been marked for deletion */ |
| 161 | static |
| 162 | ibool |
| 163 | row_sel_sec_rec_is_for_clust_rec( |
| 164 | const rec_t* sec_rec, |
| 165 | dict_index_t* sec_index, |
| 166 | const rec_t* clust_rec, |
| 167 | dict_index_t* clust_index, |
| 168 | que_thr_t* thr) |
| 169 | { |
| 170 | const byte* sec_field; |
| 171 | ulint sec_len; |
| 172 | const byte* clust_field; |
| 173 | ulint n; |
| 174 | ulint i; |
| 175 | mem_heap_t* heap = NULL; |
| 176 | ulint clust_offsets_[REC_OFFS_NORMAL_SIZE]; |
| 177 | ulint sec_offsets_[REC_OFFS_SMALL_SIZE]; |
| 178 | ulint* clust_offs = clust_offsets_; |
| 179 | ulint* sec_offs = sec_offsets_; |
| 180 | ibool is_equal = TRUE; |
| 181 | |
| 182 | rec_offs_init(clust_offsets_); |
| 183 | rec_offs_init(sec_offsets_); |
| 184 | |
| 185 | if (rec_get_deleted_flag(clust_rec, |
| 186 | dict_table_is_comp(clust_index->table))) { |
| 187 | /* In delete-marked records, DB_TRX_ID must |
| 188 | always refer to an existing undo log record. */ |
| 189 | ut_ad(rec_get_trx_id(clust_rec, clust_index)); |
| 190 | |
| 191 | /* The clustered index record is delete-marked; |
| 192 | it is not visible in the read view. Besides, |
| 193 | if there are any externally stored columns, |
| 194 | some of them may have already been purged. */ |
| 195 | return(FALSE); |
| 196 | } |
| 197 | |
| 198 | heap = mem_heap_create(256); |
| 199 | |
| 200 | clust_offs = rec_get_offsets(clust_rec, clust_index, clust_offs, |
| 201 | true, ULINT_UNDEFINED, &heap); |
| 202 | sec_offs = rec_get_offsets(sec_rec, sec_index, sec_offs, |
| 203 | true, ULINT_UNDEFINED, &heap); |
| 204 | |
| 205 | n = dict_index_get_n_ordering_defined_by_user(sec_index); |
| 206 | |
| 207 | for (i = 0; i < n; i++) { |
| 208 | const dict_field_t* ifield; |
| 209 | const dict_col_t* col; |
| 210 | ulint clust_pos = 0; |
| 211 | ulint clust_len = 0; |
| 212 | ulint len; |
| 213 | bool is_virtual; |
| 214 | |
| 215 | ifield = dict_index_get_nth_field(sec_index, i); |
| 216 | col = dict_field_get_col(ifield); |
| 217 | |
| 218 | is_virtual = col->is_virtual(); |
| 219 | |
| 220 | /* For virtual column, its value will need to be |
| 221 | reconstructed from base column in cluster index */ |
| 222 | if (is_virtual) { |
| 223 | const dict_v_col_t* v_col; |
| 224 | const dtuple_t* row; |
| 225 | dfield_t* vfield; |
| 226 | row_ext_t* ext; |
| 227 | |
| 228 | v_col = reinterpret_cast<const dict_v_col_t*>(col); |
| 229 | |
| 230 | row = row_build(ROW_COPY_POINTERS, |
| 231 | clust_index, clust_rec, |
| 232 | clust_offs, |
| 233 | NULL, NULL, NULL, &ext, heap); |
| 234 | |
| 235 | vfield = innobase_get_computed_value( |
| 236 | row, v_col, clust_index, |
| 237 | &heap, NULL, NULL, |
| 238 | thr_get_trx(thr)->mysql_thd, |
| 239 | thr->prebuilt->m_mysql_table, NULL, |
| 240 | NULL, NULL); |
| 241 | |
| 242 | clust_len = vfield->len; |
| 243 | clust_field = static_cast<byte*>(vfield->data); |
| 244 | } else { |
| 245 | clust_pos = dict_col_get_clust_pos(col, clust_index); |
| 246 | ut_ad(!rec_offs_nth_default(clust_offs, clust_pos)); |
| 247 | clust_field = rec_get_nth_field( |
| 248 | clust_rec, clust_offs, clust_pos, &clust_len); |
| 249 | } |
| 250 | |
| 251 | sec_field = rec_get_nth_field(sec_rec, sec_offs, i, &sec_len); |
| 252 | |
| 253 | len = clust_len; |
| 254 | |
| 255 | if (ifield->prefix_len > 0 && len != UNIV_SQL_NULL |
| 256 | && sec_len != UNIV_SQL_NULL && !is_virtual) { |
| 257 | |
| 258 | if (rec_offs_nth_extern(clust_offs, clust_pos)) { |
| 259 | len -= BTR_EXTERN_FIELD_REF_SIZE; |
| 260 | } |
| 261 | |
| 262 | len = dtype_get_at_most_n_mbchars( |
| 263 | col->prtype, col->mbminlen, col->mbmaxlen, |
| 264 | ifield->prefix_len, len, (char*) clust_field); |
| 265 | |
| 266 | if (rec_offs_nth_extern(clust_offs, clust_pos) |
| 267 | && len < sec_len) { |
| 268 | if (!row_sel_sec_rec_is_for_blob( |
| 269 | col->mtype, col->prtype, |
| 270 | col->mbminlen, col->mbmaxlen, |
| 271 | clust_field, clust_len, |
| 272 | sec_field, sec_len, |
| 273 | ifield->prefix_len, |
| 274 | clust_index->table)) { |
| 275 | goto inequal; |
| 276 | } |
| 277 | |
| 278 | continue; |
| 279 | } |
| 280 | } |
| 281 | |
| 282 | /* For spatial index, the first field is MBR, we check |
| 283 | if the MBR is equal or not. */ |
| 284 | if (dict_index_is_spatial(sec_index) && i == 0) { |
| 285 | rtr_mbr_t tmp_mbr; |
| 286 | rtr_mbr_t sec_mbr; |
| 287 | byte* dptr = |
| 288 | const_cast<byte*>(clust_field); |
| 289 | |
| 290 | ut_ad(clust_len != UNIV_SQL_NULL); |
| 291 | |
| 292 | /* For externally stored field, we need to get full |
| 293 | geo data to generate the MBR for comparing. */ |
| 294 | if (rec_offs_nth_extern(clust_offs, clust_pos)) { |
| 295 | dptr = btr_copy_externally_stored_field( |
| 296 | &clust_len, dptr, |
| 297 | page_size_t(clust_index->table->space |
| 298 | ->flags), |
| 299 | len, heap); |
| 300 | } |
| 301 | |
| 302 | rtree_mbr_from_wkb(dptr + GEO_DATA_HEADER_SIZE, |
| 303 | static_cast<uint>(clust_len |
| 304 | - GEO_DATA_HEADER_SIZE), |
| 305 | SPDIMS, |
| 306 | reinterpret_cast<double*>( |
| 307 | &tmp_mbr)); |
| 308 | rtr_read_mbr(sec_field, &sec_mbr); |
| 309 | |
| 310 | if (!MBR_EQUAL_CMP(&sec_mbr, &tmp_mbr)) { |
| 311 | is_equal = FALSE; |
| 312 | goto func_exit; |
| 313 | } |
| 314 | } else { |
| 315 | |
| 316 | if (0 != cmp_data_data(col->mtype, col->prtype, |
| 317 | clust_field, len, |
| 318 | sec_field, sec_len)) { |
| 319 | inequal: |
| 320 | is_equal = FALSE; |
| 321 | goto func_exit; |
| 322 | } |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | func_exit: |
| 327 | if (UNIV_LIKELY_NULL(heap)) { |
| 328 | mem_heap_free(heap); |
| 329 | } |
| 330 | return(is_equal); |
| 331 | } |
| 332 | |
| 333 | /*********************************************************************//** |
| 334 | Creates a select node struct. |
| 335 | @return own: select node struct */ |
| 336 | sel_node_t* |
| 337 | sel_node_create( |
| 338 | /*============*/ |
| 339 | mem_heap_t* heap) /*!< in: memory heap where created */ |
| 340 | { |
| 341 | sel_node_t* node; |
| 342 | |
| 343 | node = static_cast<sel_node_t*>( |
| 344 | mem_heap_alloc(heap, sizeof(sel_node_t))); |
| 345 | |
| 346 | node->common.type = QUE_NODE_SELECT; |
| 347 | node->state = SEL_NODE_OPEN; |
| 348 | |
| 349 | node->plans = NULL; |
| 350 | |
| 351 | return(node); |
| 352 | } |
| 353 | |
| 354 | /*********************************************************************//** |
| 355 | Frees the memory private to a select node when a query graph is freed, |
| 356 | does not free the heap where the node was originally created. */ |
| 357 | void |
| 358 | sel_node_free_private( |
| 359 | /*==================*/ |
| 360 | sel_node_t* node) /*!< in: select node struct */ |
| 361 | { |
| 362 | ulint i; |
| 363 | plan_t* plan; |
| 364 | |
| 365 | if (node->plans != NULL) { |
| 366 | for (i = 0; i < node->n_tables; i++) { |
| 367 | plan = sel_node_get_nth_plan(node, i); |
| 368 | |
| 369 | btr_pcur_close(&(plan->pcur)); |
| 370 | btr_pcur_close(&(plan->clust_pcur)); |
| 371 | |
| 372 | if (plan->old_vers_heap) { |
| 373 | mem_heap_free(plan->old_vers_heap); |
| 374 | } |
| 375 | } |
| 376 | } |
| 377 | } |
| 378 | |
| 379 | /*********************************************************************//** |
| 380 | Evaluates the values in a select list. If there are aggregate functions, |
| 381 | their argument value is added to the aggregate total. */ |
| 382 | UNIV_INLINE |
| 383 | void |
| 384 | sel_eval_select_list( |
| 385 | /*=================*/ |
| 386 | sel_node_t* node) /*!< in: select node */ |
| 387 | { |
| 388 | que_node_t* exp; |
| 389 | |
| 390 | exp = node->select_list; |
| 391 | |
| 392 | while (exp) { |
| 393 | eval_exp(exp); |
| 394 | |
| 395 | exp = que_node_get_next(exp); |
| 396 | } |
| 397 | } |
| 398 | |
| 399 | /*********************************************************************//** |
| 400 | Assigns the values in the select list to the possible into-variables in |
| 401 | SELECT ... INTO ... */ |
| 402 | UNIV_INLINE |
| 403 | void |
| 404 | sel_assign_into_var_values( |
| 405 | /*=======================*/ |
| 406 | sym_node_t* var, /*!< in: first variable in a list of |
| 407 | variables */ |
| 408 | sel_node_t* node) /*!< in: select node */ |
| 409 | { |
| 410 | que_node_t* exp; |
| 411 | |
| 412 | if (var == NULL) { |
| 413 | |
| 414 | return; |
| 415 | } |
| 416 | |
| 417 | for (exp = node->select_list; |
| 418 | var != 0; |
| 419 | var = static_cast<sym_node_t*>(que_node_get_next(var))) { |
| 420 | |
| 421 | ut_ad(exp); |
| 422 | |
| 423 | eval_node_copy_val(var->alias, exp); |
| 424 | |
| 425 | exp = que_node_get_next(exp); |
| 426 | } |
| 427 | } |
| 428 | |
| 429 | /*********************************************************************//** |
| 430 | Resets the aggregate value totals in the select list of an aggregate type |
| 431 | query. */ |
| 432 | UNIV_INLINE |
| 433 | void |
| 434 | sel_reset_aggregate_vals( |
| 435 | /*=====================*/ |
| 436 | sel_node_t* node) /*!< in: select node */ |
| 437 | { |
| 438 | func_node_t* func_node; |
| 439 | |
| 440 | ut_ad(node->is_aggregate); |
| 441 | |
| 442 | for (func_node = static_cast<func_node_t*>(node->select_list); |
| 443 | func_node != 0; |
| 444 | func_node = static_cast<func_node_t*>( |
| 445 | que_node_get_next(func_node))) { |
| 446 | |
| 447 | eval_node_set_int_val(func_node, 0); |
| 448 | } |
| 449 | |
| 450 | node->aggregate_already_fetched = FALSE; |
| 451 | } |
| 452 | |
| 453 | /*********************************************************************//** |
| 454 | Copies the input variable values when an explicit cursor is opened. */ |
| 455 | UNIV_INLINE |
| 456 | void |
| 457 | row_sel_copy_input_variable_vals( |
| 458 | /*=============================*/ |
| 459 | sel_node_t* node) /*!< in: select node */ |
| 460 | { |
| 461 | sym_node_t* var; |
| 462 | |
| 463 | var = UT_LIST_GET_FIRST(node->copy_variables); |
| 464 | |
| 465 | while (var) { |
| 466 | eval_node_copy_val(var, var->alias); |
| 467 | |
| 468 | var->indirection = NULL; |
| 469 | |
| 470 | var = UT_LIST_GET_NEXT(col_var_list, var); |
| 471 | } |
| 472 | } |
| 473 | |
| 474 | /*********************************************************************//** |
| 475 | Fetches the column values from a record. */ |
| 476 | static |
| 477 | void |
| 478 | row_sel_fetch_columns( |
| 479 | /*==================*/ |
| 480 | dict_index_t* index, /*!< in: record index */ |
| 481 | const rec_t* rec, /*!< in: record in a clustered or non-clustered |
| 482 | index; must be protected by a page latch */ |
| 483 | const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */ |
| 484 | sym_node_t* column) /*!< in: first column in a column list, or |
| 485 | NULL */ |
| 486 | { |
| 487 | dfield_t* val; |
| 488 | ulint index_type; |
| 489 | ulint field_no; |
| 490 | const byte* data; |
| 491 | ulint len; |
| 492 | |
| 493 | ut_ad(rec_offs_validate(rec, index, offsets)); |
| 494 | |
| 495 | if (dict_index_is_clust(index)) { |
| 496 | index_type = SYM_CLUST_FIELD_NO; |
| 497 | } else { |
| 498 | index_type = SYM_SEC_FIELD_NO; |
| 499 | } |
| 500 | |
| 501 | while (column) { |
| 502 | mem_heap_t* heap = NULL; |
| 503 | ibool needs_copy; |
| 504 | |
| 505 | field_no = column->field_nos[index_type]; |
| 506 | |
| 507 | if (field_no != ULINT_UNDEFINED) { |
| 508 | |
| 509 | if (UNIV_UNLIKELY(rec_offs_nth_extern( |
| 510 | offsets, field_no) != 0)) { |
| 511 | |
| 512 | /* Copy an externally stored field to the |
| 513 | temporary heap, if possible. */ |
| 514 | |
| 515 | heap = mem_heap_create(1); |
| 516 | |
| 517 | data = btr_rec_copy_externally_stored_field( |
| 518 | rec, offsets, |
| 519 | dict_table_page_size(index->table), |
| 520 | field_no, &len, heap); |
| 521 | |
| 522 | /* data == NULL means that the |
| 523 | externally stored field was not |
| 524 | written yet. This record |
| 525 | should only be seen by |
| 526 | recv_recovery_rollback_active() or any |
| 527 | TRX_ISO_READ_UNCOMMITTED |
| 528 | transactions. The InnoDB SQL parser |
| 529 | (the sole caller of this function) |
| 530 | does not implement READ UNCOMMITTED, |
| 531 | and it is not involved during rollback. */ |
| 532 | ut_a(data); |
| 533 | ut_a(len != UNIV_SQL_NULL); |
| 534 | |
| 535 | needs_copy = TRUE; |
| 536 | } else { |
| 537 | data = rec_get_nth_cfield(rec, index, offsets, |
| 538 | field_no, &len); |
| 539 | needs_copy = column->copy_val; |
| 540 | } |
| 541 | |
| 542 | if (needs_copy) { |
| 543 | eval_node_copy_and_alloc_val(column, data, |
| 544 | len); |
| 545 | } else { |
| 546 | val = que_node_get_val(column); |
| 547 | dfield_set_data(val, data, len); |
| 548 | } |
| 549 | |
| 550 | if (UNIV_LIKELY_NULL(heap)) { |
| 551 | mem_heap_free(heap); |
| 552 | } |
| 553 | } |
| 554 | |
| 555 | column = UT_LIST_GET_NEXT(col_var_list, column); |
| 556 | } |
| 557 | } |
| 558 | |
| 559 | /*********************************************************************//** |
| 560 | Allocates a prefetch buffer for a column when prefetch is first time done. */ |
| 561 | static |
| 562 | void |
| 563 | sel_col_prefetch_buf_alloc( |
| 564 | /*=======================*/ |
| 565 | sym_node_t* column) /*!< in: symbol table node for a column */ |
| 566 | { |
| 567 | sel_buf_t* sel_buf; |
| 568 | ulint i; |
| 569 | |
| 570 | ut_ad(que_node_get_type(column) == QUE_NODE_SYMBOL); |
| 571 | |
| 572 | column->prefetch_buf = static_cast<sel_buf_t*>( |
| 573 | ut_malloc_nokey(SEL_MAX_N_PREFETCH * sizeof(sel_buf_t))); |
| 574 | |
| 575 | for (i = 0; i < SEL_MAX_N_PREFETCH; i++) { |
| 576 | sel_buf = column->prefetch_buf + i; |
| 577 | |
| 578 | sel_buf->data = NULL; |
| 579 | sel_buf->len = 0; |
| 580 | sel_buf->val_buf_size = 0; |
| 581 | } |
| 582 | } |
| 583 | |
| 584 | /*********************************************************************//** |
| 585 | Frees a prefetch buffer for a column, including the dynamically allocated |
| 586 | memory for data stored there. */ |
| 587 | void |
| 588 | sel_col_prefetch_buf_free( |
| 589 | /*======================*/ |
| 590 | sel_buf_t* prefetch_buf) /*!< in, own: prefetch buffer */ |
| 591 | { |
| 592 | sel_buf_t* sel_buf; |
| 593 | ulint i; |
| 594 | |
| 595 | for (i = 0; i < SEL_MAX_N_PREFETCH; i++) { |
| 596 | sel_buf = prefetch_buf + i; |
| 597 | |
| 598 | if (sel_buf->val_buf_size > 0) { |
| 599 | |
| 600 | ut_free(sel_buf->data); |
| 601 | } |
| 602 | } |
| 603 | |
| 604 | ut_free(prefetch_buf); |
| 605 | } |
| 606 | |
| 607 | /*********************************************************************//** |
| 608 | Pops the column values for a prefetched, cached row from the column prefetch |
| 609 | buffers and places them to the val fields in the column nodes. */ |
| 610 | static |
| 611 | void |
| 612 | sel_dequeue_prefetched_row( |
| 613 | /*=======================*/ |
| 614 | plan_t* plan) /*!< in: plan node for a table */ |
| 615 | { |
| 616 | sym_node_t* column; |
| 617 | sel_buf_t* sel_buf; |
| 618 | dfield_t* val; |
| 619 | byte* data; |
| 620 | ulint len; |
| 621 | ulint val_buf_size; |
| 622 | |
| 623 | ut_ad(plan->n_rows_prefetched > 0); |
| 624 | |
| 625 | column = UT_LIST_GET_FIRST(plan->columns); |
| 626 | |
| 627 | while (column) { |
| 628 | val = que_node_get_val(column); |
| 629 | |
| 630 | if (!column->copy_val) { |
| 631 | /* We did not really push any value for the |
| 632 | column */ |
| 633 | |
| 634 | ut_ad(!column->prefetch_buf); |
| 635 | ut_ad(que_node_get_val_buf_size(column) == 0); |
| 636 | ut_d(dfield_set_null(val)); |
| 637 | |
| 638 | goto next_col; |
| 639 | } |
| 640 | |
| 641 | ut_ad(column->prefetch_buf); |
| 642 | ut_ad(!dfield_is_ext(val)); |
| 643 | |
| 644 | sel_buf = column->prefetch_buf + plan->first_prefetched; |
| 645 | |
| 646 | data = sel_buf->data; |
| 647 | len = sel_buf->len; |
| 648 | val_buf_size = sel_buf->val_buf_size; |
| 649 | |
| 650 | /* We must keep track of the allocated memory for |
| 651 | column values to be able to free it later: therefore |
| 652 | we swap the values for sel_buf and val */ |
| 653 | |
| 654 | sel_buf->data = static_cast<byte*>(dfield_get_data(val)); |
| 655 | sel_buf->len = dfield_get_len(val); |
| 656 | sel_buf->val_buf_size = que_node_get_val_buf_size(column); |
| 657 | |
| 658 | dfield_set_data(val, data, len); |
| 659 | que_node_set_val_buf_size(column, val_buf_size); |
| 660 | next_col: |
| 661 | column = UT_LIST_GET_NEXT(col_var_list, column); |
| 662 | } |
| 663 | |
| 664 | plan->n_rows_prefetched--; |
| 665 | |
| 666 | plan->first_prefetched++; |
| 667 | } |
| 668 | |
| 669 | /*********************************************************************//** |
| 670 | Pushes the column values for a prefetched, cached row to the column prefetch |
| 671 | buffers from the val fields in the column nodes. */ |
| 672 | UNIV_INLINE |
| 673 | void |
| 674 | sel_enqueue_prefetched_row( |
| 675 | /*=======================*/ |
| 676 | plan_t* plan) /*!< in: plan node for a table */ |
| 677 | { |
| 678 | sym_node_t* column; |
| 679 | sel_buf_t* sel_buf; |
| 680 | dfield_t* val; |
| 681 | byte* data; |
| 682 | ulint len; |
| 683 | ulint pos; |
| 684 | ulint val_buf_size; |
| 685 | |
| 686 | if (plan->n_rows_prefetched == 0) { |
| 687 | pos = 0; |
| 688 | plan->first_prefetched = 0; |
| 689 | } else { |
| 690 | pos = plan->n_rows_prefetched; |
| 691 | |
| 692 | /* We have the convention that pushing new rows starts only |
| 693 | after the prefetch stack has been emptied: */ |
| 694 | |
| 695 | ut_ad(plan->first_prefetched == 0); |
| 696 | } |
| 697 | |
| 698 | plan->n_rows_prefetched++; |
| 699 | |
| 700 | ut_ad(pos < SEL_MAX_N_PREFETCH); |
| 701 | |
| 702 | for (column = UT_LIST_GET_FIRST(plan->columns); |
| 703 | column != 0; |
| 704 | column = UT_LIST_GET_NEXT(col_var_list, column)) { |
| 705 | |
| 706 | if (!column->copy_val) { |
| 707 | /* There is no sense to push pointers to database |
| 708 | page fields when we do not keep latch on the page! */ |
| 709 | continue; |
| 710 | } |
| 711 | |
| 712 | if (!column->prefetch_buf) { |
| 713 | /* Allocate a new prefetch buffer */ |
| 714 | |
| 715 | sel_col_prefetch_buf_alloc(column); |
| 716 | } |
| 717 | |
| 718 | sel_buf = column->prefetch_buf + pos; |
| 719 | |
| 720 | val = que_node_get_val(column); |
| 721 | |
| 722 | data = static_cast<byte*>(dfield_get_data(val)); |
| 723 | len = dfield_get_len(val); |
| 724 | val_buf_size = que_node_get_val_buf_size(column); |
| 725 | |
| 726 | /* We must keep track of the allocated memory for |
| 727 | column values to be able to free it later: therefore |
| 728 | we swap the values for sel_buf and val */ |
| 729 | |
| 730 | dfield_set_data(val, sel_buf->data, sel_buf->len); |
| 731 | que_node_set_val_buf_size(column, sel_buf->val_buf_size); |
| 732 | |
| 733 | sel_buf->data = data; |
| 734 | sel_buf->len = len; |
| 735 | sel_buf->val_buf_size = val_buf_size; |
| 736 | } |
| 737 | } |
| 738 | |
| 739 | /*********************************************************************//** |
| 740 | Builds a previous version of a clustered index record for a consistent read |
| 741 | @return DB_SUCCESS or error code */ |
| 742 | static MY_ATTRIBUTE((nonnull, warn_unused_result)) |
| 743 | dberr_t |
| 744 | row_sel_build_prev_vers( |
| 745 | /*====================*/ |
| 746 | ReadView* read_view, /*!< in: read view */ |
| 747 | dict_index_t* index, /*!< in: plan node for table */ |
| 748 | rec_t* rec, /*!< in: record in a clustered index */ |
| 749 | ulint** offsets, /*!< in/out: offsets returned by |
| 750 | rec_get_offsets(rec, plan->index) */ |
| 751 | mem_heap_t** offset_heap, /*!< in/out: memory heap from which |
| 752 | the offsets are allocated */ |
| 753 | mem_heap_t** old_vers_heap, /*!< out: old version heap to use */ |
| 754 | rec_t** old_vers, /*!< out: old version, or NULL if the |
| 755 | record does not exist in the view: |
| 756 | i.e., it was freshly inserted |
| 757 | afterwards */ |
| 758 | mtr_t* mtr) /*!< in: mtr */ |
| 759 | { |
| 760 | dberr_t err; |
| 761 | |
| 762 | if (*old_vers_heap) { |
| 763 | mem_heap_empty(*old_vers_heap); |
| 764 | } else { |
| 765 | *old_vers_heap = mem_heap_create(512); |
| 766 | } |
| 767 | |
| 768 | err = row_vers_build_for_consistent_read( |
| 769 | rec, mtr, index, offsets, read_view, offset_heap, |
| 770 | *old_vers_heap, old_vers, NULL); |
| 771 | return(err); |
| 772 | } |
| 773 | |
| 774 | /*********************************************************************//** |
| 775 | Builds the last committed version of a clustered index record for a |
| 776 | semi-consistent read. */ |
| 777 | static |
| 778 | void |
| 779 | row_sel_build_committed_vers_for_mysql( |
| 780 | /*===================================*/ |
| 781 | dict_index_t* clust_index, /*!< in: clustered index */ |
| 782 | row_prebuilt_t* prebuilt, /*!< in: prebuilt struct */ |
| 783 | const rec_t* rec, /*!< in: record in a clustered index */ |
| 784 | ulint** offsets, /*!< in/out: offsets returned by |
| 785 | rec_get_offsets(rec, clust_index) */ |
| 786 | mem_heap_t** offset_heap, /*!< in/out: memory heap from which |
| 787 | the offsets are allocated */ |
| 788 | const rec_t** old_vers, /*!< out: old version, or NULL if the |
| 789 | record does not exist in the view: |
| 790 | i.e., it was freshly inserted |
| 791 | afterwards */ |
| 792 | const dtuple_t**vrow, /*!< out: to be filled with old virtual |
| 793 | column version if any */ |
| 794 | mtr_t* mtr) /*!< in: mtr */ |
| 795 | { |
| 796 | if (prebuilt->old_vers_heap) { |
| 797 | mem_heap_empty(prebuilt->old_vers_heap); |
| 798 | } else { |
| 799 | prebuilt->old_vers_heap = mem_heap_create( |
| 800 | rec_offs_size(*offsets)); |
| 801 | } |
| 802 | |
| 803 | row_vers_build_for_semi_consistent_read(prebuilt->trx, |
| 804 | rec, mtr, clust_index, offsets, offset_heap, |
| 805 | prebuilt->old_vers_heap, old_vers, vrow); |
| 806 | } |
| 807 | |
| 808 | /*********************************************************************//** |
| 809 | Tests the conditions which determine when the index segment we are searching |
| 810 | through has been exhausted. |
| 811 | @return TRUE if row passed the tests */ |
| 812 | UNIV_INLINE |
| 813 | ibool |
| 814 | row_sel_test_end_conds( |
| 815 | /*===================*/ |
| 816 | plan_t* plan) /*!< in: plan for the table; the column values must |
| 817 | already have been retrieved and the right sides of |
| 818 | comparisons evaluated */ |
| 819 | { |
| 820 | func_node_t* cond; |
| 821 | |
| 822 | /* All conditions in end_conds are comparisons of a column to an |
| 823 | expression */ |
| 824 | |
| 825 | for (cond = UT_LIST_GET_FIRST(plan->end_conds); |
| 826 | cond != 0; |
| 827 | cond = UT_LIST_GET_NEXT(cond_list, cond)) { |
| 828 | |
| 829 | /* Evaluate the left side of the comparison, i.e., get the |
| 830 | column value if there is an indirection */ |
| 831 | |
| 832 | eval_sym(static_cast<sym_node_t*>(cond->args)); |
| 833 | |
| 834 | /* Do the comparison */ |
| 835 | |
| 836 | if (!eval_cmp(cond)) { |
| 837 | |
| 838 | return(FALSE); |
| 839 | } |
| 840 | } |
| 841 | |
| 842 | return(TRUE); |
| 843 | } |
| 844 | |
| 845 | /*********************************************************************//** |
| 846 | Tests the other conditions. |
| 847 | @return TRUE if row passed the tests */ |
| 848 | UNIV_INLINE |
| 849 | ibool |
| 850 | row_sel_test_other_conds( |
| 851 | /*=====================*/ |
| 852 | plan_t* plan) /*!< in: plan for the table; the column values must |
| 853 | already have been retrieved */ |
| 854 | { |
| 855 | func_node_t* cond; |
| 856 | |
| 857 | cond = UT_LIST_GET_FIRST(plan->other_conds); |
| 858 | |
| 859 | while (cond) { |
| 860 | eval_exp(cond); |
| 861 | |
| 862 | if (!eval_node_get_ibool_val(cond)) { |
| 863 | |
| 864 | return(FALSE); |
| 865 | } |
| 866 | |
| 867 | cond = UT_LIST_GET_NEXT(cond_list, cond); |
| 868 | } |
| 869 | |
| 870 | return(TRUE); |
| 871 | } |
| 872 | |
| 873 | /*********************************************************************//** |
| 874 | Retrieves the clustered index record corresponding to a record in a |
| 875 | non-clustered index. Does the necessary locking. |
| 876 | @return DB_SUCCESS or error code */ |
| 877 | static MY_ATTRIBUTE((nonnull, warn_unused_result)) |
| 878 | dberr_t |
| 879 | row_sel_get_clust_rec( |
| 880 | /*==================*/ |
| 881 | sel_node_t* node, /*!< in: select_node */ |
| 882 | plan_t* plan, /*!< in: plan node for table */ |
| 883 | rec_t* rec, /*!< in: record in a non-clustered index */ |
| 884 | que_thr_t* thr, /*!< in: query thread */ |
| 885 | rec_t** out_rec,/*!< out: clustered record or an old version of |
| 886 | it, NULL if the old version did not exist |
| 887 | in the read view, i.e., it was a fresh |
| 888 | inserted version */ |
| 889 | mtr_t* mtr) /*!< in: mtr used to get access to the |
| 890 | non-clustered record; the same mtr is used to |
| 891 | access the clustered index */ |
| 892 | { |
| 893 | dict_index_t* index; |
| 894 | rec_t* clust_rec; |
| 895 | rec_t* old_vers; |
| 896 | dberr_t err; |
| 897 | mem_heap_t* heap = NULL; |
| 898 | ulint offsets_[REC_OFFS_NORMAL_SIZE]; |
| 899 | ulint* offsets = offsets_; |
| 900 | rec_offs_init(offsets_); |
| 901 | |
| 902 | *out_rec = NULL; |
| 903 | |
| 904 | offsets = rec_get_offsets(rec, |
| 905 | btr_pcur_get_btr_cur(&plan->pcur)->index, |
| 906 | offsets, true, ULINT_UNDEFINED, &heap); |
| 907 | |
| 908 | row_build_row_ref_fast(plan->clust_ref, plan->clust_map, rec, offsets); |
| 909 | |
| 910 | index = dict_table_get_first_index(plan->table); |
| 911 | |
| 912 | btr_pcur_open_with_no_init(index, plan->clust_ref, PAGE_CUR_LE, |
| 913 | BTR_SEARCH_LEAF, &plan->clust_pcur, |
| 914 | 0, mtr); |
| 915 | |
| 916 | clust_rec = btr_pcur_get_rec(&(plan->clust_pcur)); |
| 917 | |
| 918 | /* Note: only if the search ends up on a non-infimum record is the |
| 919 | low_match value the real match to the search tuple */ |
| 920 | |
| 921 | if (!page_rec_is_user_rec(clust_rec) |
| 922 | || btr_pcur_get_low_match(&(plan->clust_pcur)) |
| 923 | < dict_index_get_n_unique(index)) { |
| 924 | |
| 925 | ut_a(rec_get_deleted_flag(rec, |
| 926 | dict_table_is_comp(plan->table))); |
| 927 | ut_a(node->read_view); |
| 928 | |
| 929 | /* In a rare case it is possible that no clust rec is found |
| 930 | for a delete-marked secondary index record: if in row0umod.cc |
| 931 | in row_undo_mod_remove_clust_low() we have already removed |
| 932 | the clust rec, while purge is still cleaning and removing |
| 933 | secondary index records associated with earlier versions of |
| 934 | the clustered index record. In that case we know that the |
| 935 | clustered index record did not exist in the read view of |
| 936 | trx. */ |
| 937 | |
| 938 | goto func_exit; |
| 939 | } |
| 940 | |
| 941 | offsets = rec_get_offsets(clust_rec, index, offsets, true, |
| 942 | ULINT_UNDEFINED, &heap); |
| 943 | |
| 944 | if (!node->read_view) { |
| 945 | /* Try to place a lock on the index record */ |
| 946 | ulint lock_type; |
| 947 | trx_t* trx; |
| 948 | |
| 949 | trx = thr_get_trx(thr); |
| 950 | |
| 951 | /* If innodb_locks_unsafe_for_binlog option is used |
| 952 | or this session is using READ COMMITTED or lower isolation level |
| 953 | we lock only the record, i.e., next-key locking is |
| 954 | not used. */ |
| 955 | if (srv_locks_unsafe_for_binlog |
| 956 | || trx->isolation_level <= TRX_ISO_READ_COMMITTED) { |
| 957 | lock_type = LOCK_REC_NOT_GAP; |
| 958 | } else { |
| 959 | lock_type = LOCK_ORDINARY; |
| 960 | } |
| 961 | |
| 962 | err = lock_clust_rec_read_check_and_lock( |
| 963 | 0, btr_pcur_get_block(&plan->clust_pcur), |
| 964 | clust_rec, index, offsets, |
| 965 | static_cast<lock_mode>(node->row_lock_mode), |
| 966 | lock_type, |
| 967 | thr); |
| 968 | |
| 969 | switch (err) { |
| 970 | case DB_SUCCESS: |
| 971 | case DB_SUCCESS_LOCKED_REC: |
| 972 | /* Declare the variable uninitialized in Valgrind. |
| 973 | It should be set to DB_SUCCESS at func_exit. */ |
| 974 | UNIV_MEM_INVALID(&err, sizeof err); |
| 975 | break; |
| 976 | default: |
| 977 | goto err_exit; |
| 978 | } |
| 979 | } else { |
| 980 | /* This is a non-locking consistent read: if necessary, fetch |
| 981 | a previous version of the record */ |
| 982 | |
| 983 | old_vers = NULL; |
| 984 | |
| 985 | if (!lock_clust_rec_cons_read_sees(clust_rec, index, offsets, |
| 986 | node->read_view)) { |
| 987 | |
| 988 | err = row_sel_build_prev_vers( |
| 989 | node->read_view, index, clust_rec, |
| 990 | &offsets, &heap, &plan->old_vers_heap, |
| 991 | &old_vers, mtr); |
| 992 | |
| 993 | if (err != DB_SUCCESS) { |
| 994 | |
| 995 | goto err_exit; |
| 996 | } |
| 997 | |
| 998 | clust_rec = old_vers; |
| 999 | |
| 1000 | if (clust_rec == NULL) { |
| 1001 | goto func_exit; |
| 1002 | } |
| 1003 | } |
| 1004 | |
| 1005 | /* If we had to go to an earlier version of row or the |
| 1006 | secondary index record is delete marked, then it may be that |
| 1007 | the secondary index record corresponding to clust_rec |
| 1008 | (or old_vers) is not rec; in that case we must ignore |
| 1009 | such row because in our snapshot rec would not have existed. |
| 1010 | Remember that from rec we cannot see directly which transaction |
| 1011 | id corresponds to it: we have to go to the clustered index |
| 1012 | record. A query where we want to fetch all rows where |
| 1013 | the secondary index value is in some interval would return |
| 1014 | a wrong result if we would not drop rows which we come to |
| 1015 | visit through secondary index records that would not really |
| 1016 | exist in our snapshot. */ |
| 1017 | |
| 1018 | if ((old_vers |
| 1019 | || rec_get_deleted_flag(rec, dict_table_is_comp( |
| 1020 | plan->table))) |
| 1021 | && !row_sel_sec_rec_is_for_clust_rec(rec, plan->index, |
| 1022 | clust_rec, index, |
| 1023 | thr)) { |
| 1024 | goto func_exit; |
| 1025 | } |
| 1026 | } |
| 1027 | |
| 1028 | /* Fetch the columns needed in test conditions. The clustered |
| 1029 | index record is protected by a page latch that was acquired |
| 1030 | when plan->clust_pcur was positioned. The latch will not be |
| 1031 | released until mtr->commit(). */ |
| 1032 | |
| 1033 | ut_ad(!rec_get_deleted_flag(clust_rec, rec_offs_comp(offsets))); |
| 1034 | row_sel_fetch_columns(index, clust_rec, offsets, |
| 1035 | UT_LIST_GET_FIRST(plan->columns)); |
| 1036 | *out_rec = clust_rec; |
| 1037 | func_exit: |
| 1038 | err = DB_SUCCESS; |
| 1039 | err_exit: |
| 1040 | if (UNIV_LIKELY_NULL(heap)) { |
| 1041 | mem_heap_free(heap); |
| 1042 | } |
| 1043 | return(err); |
| 1044 | } |
| 1045 | |
| 1046 | /*********************************************************************//** |
| 1047 | Sets a lock on a page of R-Tree record. This is all or none action, |
| 1048 | mostly due to we cannot reposition a record in R-Tree (with the |
| 1049 | nature of splitting) |
| 1050 | @return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, or error code */ |
| 1051 | UNIV_INLINE |
| 1052 | dberr_t |
| 1053 | sel_set_rtr_rec_lock( |
| 1054 | /*=================*/ |
| 1055 | btr_pcur_t* pcur, /*!< in: cursor */ |
| 1056 | const rec_t* first_rec,/*!< in: record */ |
| 1057 | dict_index_t* index, /*!< in: index */ |
| 1058 | const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */ |
| 1059 | ulint mode, /*!< in: lock mode */ |
| 1060 | ulint type, /*!< in: LOCK_ORDINARY, LOCK_GAP, or |
| 1061 | LOC_REC_NOT_GAP */ |
| 1062 | que_thr_t* thr, /*!< in: query thread */ |
| 1063 | mtr_t* mtr) /*!< in: mtr */ |
| 1064 | { |
| 1065 | matched_rec_t* match = pcur->btr_cur.rtr_info->matches; |
| 1066 | mem_heap_t* heap = NULL; |
| 1067 | dberr_t err = DB_SUCCESS; |
| 1068 | trx_t* trx = thr_get_trx(thr); |
| 1069 | buf_block_t* cur_block = btr_pcur_get_block(pcur); |
| 1070 | ulint offsets_[REC_OFFS_NORMAL_SIZE]; |
| 1071 | ulint* my_offsets = const_cast<ulint*>(offsets); |
| 1072 | rec_t* rec = const_cast<rec_t*>(first_rec); |
| 1073 | rtr_rec_vector* match_rec; |
| 1074 | rtr_rec_vector::iterator end; |
| 1075 | |
| 1076 | rec_offs_init(offsets_); |
| 1077 | |
| 1078 | if (match->locked || page_rec_is_supremum(first_rec)) { |
| 1079 | return(DB_SUCCESS_LOCKED_REC); |
| 1080 | } |
| 1081 | |
| 1082 | ut_ad(page_align(first_rec) == cur_block->frame); |
| 1083 | ut_ad(match->valid); |
| 1084 | |
| 1085 | rw_lock_x_lock(&(match->block.lock)); |
| 1086 | retry: |
| 1087 | cur_block = btr_pcur_get_block(pcur); |
| 1088 | ut_ad(rw_lock_own(&(match->block.lock), RW_LOCK_X) |
| 1089 | || rw_lock_own(&(match->block.lock), RW_LOCK_S)); |
| 1090 | ut_ad(page_is_leaf(buf_block_get_frame(cur_block))); |
| 1091 | |
| 1092 | err = lock_sec_rec_read_check_and_lock( |
| 1093 | 0, cur_block, rec, index, my_offsets, |
| 1094 | static_cast<lock_mode>(mode), type, thr); |
| 1095 | |
| 1096 | if (err == DB_LOCK_WAIT) { |
| 1097 | re_scan: |
| 1098 | mtr->commit(); |
| 1099 | trx->error_state = err; |
| 1100 | que_thr_stop_for_mysql(thr); |
| 1101 | thr->lock_state = QUE_THR_LOCK_ROW; |
| 1102 | if (row_mysql_handle_errors( |
| 1103 | &err, trx, thr, NULL)) { |
| 1104 | thr->lock_state = QUE_THR_LOCK_NOLOCK; |
| 1105 | mtr->start(); |
| 1106 | |
| 1107 | mutex_enter(&match->rtr_match_mutex); |
| 1108 | if (!match->valid && match->matched_recs->empty()) { |
| 1109 | mutex_exit(&match->rtr_match_mutex); |
| 1110 | err = DB_RECORD_NOT_FOUND; |
| 1111 | goto func_end; |
| 1112 | } |
| 1113 | mutex_exit(&match->rtr_match_mutex); |
| 1114 | |
| 1115 | /* MDEV-14059 FIXME: why re-latch the block? |
| 1116 | pcur is already positioned on it! */ |
| 1117 | ulint page_no = page_get_page_no( |
| 1118 | btr_pcur_get_page(pcur)); |
| 1119 | |
| 1120 | cur_block = buf_page_get_gen( |
| 1121 | page_id_t(index->table->space->id, page_no), |
| 1122 | page_size_t(index->table->space->flags), |
| 1123 | RW_X_LATCH, NULL, BUF_GET, |
| 1124 | __FILE__, __LINE__, mtr, &err); |
| 1125 | } else { |
| 1126 | mtr->start(); |
| 1127 | goto func_end; |
| 1128 | } |
| 1129 | |
| 1130 | DEBUG_SYNC_C("rtr_set_lock_wait" ); |
| 1131 | |
| 1132 | if (!match->valid) { |
| 1133 | /* Page got deleted */ |
| 1134 | mtr->commit(); |
| 1135 | mtr->start(); |
| 1136 | err = DB_RECORD_NOT_FOUND; |
| 1137 | goto func_end; |
| 1138 | } |
| 1139 | |
| 1140 | match->matched_recs->clear(); |
| 1141 | |
| 1142 | rtr_cur_search_with_match( |
| 1143 | cur_block, index, |
| 1144 | pcur->btr_cur.rtr_info->search_tuple, |
| 1145 | pcur->btr_cur.rtr_info->search_mode, |
| 1146 | &pcur->btr_cur.page_cur, |
| 1147 | pcur->btr_cur.rtr_info); |
| 1148 | |
| 1149 | if (!page_is_leaf(buf_block_get_frame(cur_block))) { |
| 1150 | /* Page got splitted and promoted (only for |
| 1151 | root page it is possible). Release the |
| 1152 | page and ask for a re-search */ |
| 1153 | mtr->commit(); |
| 1154 | mtr->start(); |
| 1155 | err = DB_RECORD_NOT_FOUND; |
| 1156 | goto func_end; |
| 1157 | } |
| 1158 | |
| 1159 | rec = btr_pcur_get_rec(pcur); |
| 1160 | my_offsets = offsets_; |
| 1161 | my_offsets = rec_get_offsets(rec, index, my_offsets, true, |
| 1162 | ULINT_UNDEFINED, &heap); |
| 1163 | |
| 1164 | /* No match record */ |
| 1165 | if (page_rec_is_supremum(rec) || !match->valid) { |
| 1166 | mtr->commit(); |
| 1167 | mtr->start(); |
| 1168 | err = DB_RECORD_NOT_FOUND; |
| 1169 | goto func_end; |
| 1170 | } |
| 1171 | |
| 1172 | goto retry; |
| 1173 | } |
| 1174 | |
| 1175 | my_offsets = offsets_; |
| 1176 | match_rec = match->matched_recs; |
| 1177 | end = match_rec->end(); |
| 1178 | |
| 1179 | for (rtr_rec_vector::iterator it = match_rec->begin(); |
| 1180 | it != end; ++it) { |
| 1181 | rtr_rec_t* rtr_rec = &(*it); |
| 1182 | |
| 1183 | my_offsets = rec_get_offsets( |
| 1184 | rtr_rec->r_rec, index, my_offsets, true, |
| 1185 | ULINT_UNDEFINED, &heap); |
| 1186 | |
| 1187 | err = lock_sec_rec_read_check_and_lock( |
| 1188 | 0, &match->block, rtr_rec->r_rec, index, |
| 1189 | my_offsets, static_cast<lock_mode>(mode), |
| 1190 | type, thr); |
| 1191 | |
| 1192 | if (err == DB_SUCCESS || err == DB_SUCCESS_LOCKED_REC) { |
| 1193 | rtr_rec->locked = true; |
| 1194 | } else if (err == DB_LOCK_WAIT) { |
| 1195 | goto re_scan; |
| 1196 | } else { |
| 1197 | goto func_end; |
| 1198 | } |
| 1199 | } |
| 1200 | |
| 1201 | match->locked = true; |
| 1202 | |
| 1203 | func_end: |
| 1204 | rw_lock_x_unlock(&(match->block.lock)); |
| 1205 | if (heap != NULL) { |
| 1206 | mem_heap_free(heap); |
| 1207 | } |
| 1208 | |
| 1209 | ut_ad(err != DB_LOCK_WAIT); |
| 1210 | |
| 1211 | return(err); |
| 1212 | } |
| 1213 | |
| 1214 | /*********************************************************************//** |
| 1215 | Sets a lock on a record. |
| 1216 | @return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, or error code */ |
| 1217 | UNIV_INLINE |
| 1218 | dberr_t |
| 1219 | sel_set_rec_lock( |
| 1220 | /*=============*/ |
| 1221 | btr_pcur_t* pcur, /*!< in: cursor */ |
| 1222 | const rec_t* rec, /*!< in: record */ |
| 1223 | dict_index_t* index, /*!< in: index */ |
| 1224 | const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */ |
| 1225 | ulint mode, /*!< in: lock mode */ |
| 1226 | ulint type, /*!< in: LOCK_ORDINARY, LOCK_GAP, or |
| 1227 | LOC_REC_NOT_GAP */ |
| 1228 | que_thr_t* thr, /*!< in: query thread */ |
| 1229 | mtr_t* mtr) /*!< in: mtr */ |
| 1230 | { |
| 1231 | trx_t* trx; |
| 1232 | dberr_t err = DB_SUCCESS; |
| 1233 | const buf_block_t* block; |
| 1234 | |
| 1235 | block = btr_pcur_get_block(pcur); |
| 1236 | |
| 1237 | trx = thr_get_trx(thr); |
| 1238 | |
| 1239 | if (UT_LIST_GET_LEN(trx->lock.trx_locks) > 10000) { |
| 1240 | if (buf_LRU_buf_pool_running_out()) { |
| 1241 | |
| 1242 | return(DB_LOCK_TABLE_FULL); |
| 1243 | } |
| 1244 | } |
| 1245 | |
| 1246 | if (dict_index_is_clust(index)) { |
| 1247 | err = lock_clust_rec_read_check_and_lock( |
| 1248 | 0, block, rec, index, offsets, |
| 1249 | static_cast<lock_mode>(mode), type, thr); |
| 1250 | } else { |
| 1251 | |
| 1252 | if (dict_index_is_spatial(index)) { |
| 1253 | if (type == LOCK_GAP || type == LOCK_ORDINARY) { |
| 1254 | ut_ad(0); |
| 1255 | ib::error() << "Incorrectly request GAP lock " |
| 1256 | "on RTree" ; |
| 1257 | return(DB_SUCCESS); |
| 1258 | } |
| 1259 | err = sel_set_rtr_rec_lock(pcur, rec, index, offsets, |
| 1260 | mode, type, thr, mtr); |
| 1261 | } else { |
| 1262 | err = lock_sec_rec_read_check_and_lock( |
| 1263 | 0, block, rec, index, offsets, |
| 1264 | static_cast<lock_mode>(mode), type, thr); |
| 1265 | } |
| 1266 | } |
| 1267 | |
| 1268 | return(err); |
| 1269 | } |
| 1270 | |
| 1271 | /*********************************************************************//** |
| 1272 | Opens a pcur to a table index. */ |
| 1273 | static |
| 1274 | void |
| 1275 | row_sel_open_pcur( |
| 1276 | /*==============*/ |
| 1277 | plan_t* plan, /*!< in: table plan */ |
| 1278 | #ifdef BTR_CUR_HASH_ADAPT |
| 1279 | rw_lock_t* ahi_latch, |
| 1280 | /*!< in: the adaptive hash index latch */ |
| 1281 | #endif /* BTR_CUR_HASH_ADAPT */ |
| 1282 | mtr_t* mtr) /*!< in/out: mini-transaction */ |
| 1283 | { |
| 1284 | dict_index_t* index; |
| 1285 | func_node_t* cond; |
| 1286 | que_node_t* exp; |
| 1287 | ulint n_fields; |
| 1288 | ulint i; |
| 1289 | |
| 1290 | index = plan->index; |
| 1291 | |
| 1292 | /* Calculate the value of the search tuple: the exact match columns |
| 1293 | get their expressions evaluated when we evaluate the right sides of |
| 1294 | end_conds */ |
| 1295 | |
| 1296 | cond = UT_LIST_GET_FIRST(plan->end_conds); |
| 1297 | |
| 1298 | while (cond) { |
| 1299 | eval_exp(que_node_get_next(cond->args)); |
| 1300 | |
| 1301 | cond = UT_LIST_GET_NEXT(cond_list, cond); |
| 1302 | } |
| 1303 | |
| 1304 | if (plan->tuple) { |
| 1305 | n_fields = dtuple_get_n_fields(plan->tuple); |
| 1306 | |
| 1307 | if (plan->n_exact_match < n_fields) { |
| 1308 | /* There is a non-exact match field which must be |
| 1309 | evaluated separately */ |
| 1310 | |
| 1311 | eval_exp(plan->tuple_exps[n_fields - 1]); |
| 1312 | } |
| 1313 | |
| 1314 | for (i = 0; i < n_fields; i++) { |
| 1315 | exp = plan->tuple_exps[i]; |
| 1316 | |
| 1317 | dfield_copy_data(dtuple_get_nth_field(plan->tuple, i), |
| 1318 | que_node_get_val(exp)); |
| 1319 | } |
| 1320 | |
| 1321 | /* Open pcur to the index */ |
| 1322 | |
| 1323 | btr_pcur_open_with_no_init(index, plan->tuple, plan->mode, |
| 1324 | BTR_SEARCH_LEAF, &plan->pcur, |
| 1325 | ahi_latch, mtr); |
| 1326 | } else { |
| 1327 | /* Open the cursor to the start or the end of the index |
| 1328 | (FALSE: no init) */ |
| 1329 | |
| 1330 | btr_pcur_open_at_index_side(plan->asc, index, BTR_SEARCH_LEAF, |
| 1331 | &(plan->pcur), false, 0, mtr); |
| 1332 | } |
| 1333 | |
| 1334 | ut_ad(plan->n_rows_prefetched == 0); |
| 1335 | ut_ad(plan->n_rows_fetched == 0); |
| 1336 | ut_ad(plan->cursor_at_end == FALSE); |
| 1337 | |
| 1338 | plan->pcur_is_open = TRUE; |
| 1339 | } |
| 1340 | |
| 1341 | /*********************************************************************//** |
| 1342 | Restores a stored pcur position to a table index. |
| 1343 | @return TRUE if the cursor should be moved to the next record after we |
| 1344 | return from this function (moved to the previous, in the case of a |
| 1345 | descending cursor) without processing again the current cursor |
| 1346 | record */ |
| 1347 | static |
| 1348 | ibool |
| 1349 | row_sel_restore_pcur_pos( |
| 1350 | /*=====================*/ |
| 1351 | plan_t* plan, /*!< in: table plan */ |
| 1352 | mtr_t* mtr) /*!< in: mtr */ |
| 1353 | { |
| 1354 | ibool equal_position; |
| 1355 | ulint relative_position; |
| 1356 | |
| 1357 | ut_ad(!plan->cursor_at_end); |
| 1358 | |
| 1359 | relative_position = btr_pcur_get_rel_pos(&(plan->pcur)); |
| 1360 | |
| 1361 | equal_position = btr_pcur_restore_position(BTR_SEARCH_LEAF, |
| 1362 | &(plan->pcur), mtr); |
| 1363 | |
| 1364 | /* If the cursor is traveling upwards, and relative_position is |
| 1365 | |
| 1366 | (1) BTR_PCUR_BEFORE: this is not allowed, as we did not have a lock |
| 1367 | yet on the successor of the page infimum; |
| 1368 | (2) BTR_PCUR_AFTER: btr_pcur_restore_position placed the cursor on the |
| 1369 | first record GREATER than the predecessor of a page supremum; we have |
| 1370 | not yet processed the cursor record: no need to move the cursor to the |
| 1371 | next record; |
| 1372 | (3) BTR_PCUR_ON: btr_pcur_restore_position placed the cursor on the |
| 1373 | last record LESS or EQUAL to the old stored user record; (a) if |
| 1374 | equal_position is FALSE, this means that the cursor is now on a record |
| 1375 | less than the old user record, and we must move to the next record; |
| 1376 | (b) if equal_position is TRUE, then if |
| 1377 | plan->stored_cursor_rec_processed is TRUE, we must move to the next |
| 1378 | record, else there is no need to move the cursor. */ |
| 1379 | |
| 1380 | if (plan->asc) { |
| 1381 | if (relative_position == BTR_PCUR_ON) { |
| 1382 | |
| 1383 | if (equal_position) { |
| 1384 | |
| 1385 | return(plan->stored_cursor_rec_processed); |
| 1386 | } |
| 1387 | |
| 1388 | return(TRUE); |
| 1389 | } |
| 1390 | |
| 1391 | ut_ad(relative_position == BTR_PCUR_AFTER |
| 1392 | || relative_position == BTR_PCUR_AFTER_LAST_IN_TREE); |
| 1393 | |
| 1394 | return(FALSE); |
| 1395 | } |
| 1396 | |
| 1397 | /* If the cursor is traveling downwards, and relative_position is |
| 1398 | |
| 1399 | (1) BTR_PCUR_BEFORE: btr_pcur_restore_position placed the cursor on |
| 1400 | the last record LESS than the successor of a page infimum; we have not |
| 1401 | processed the cursor record: no need to move the cursor; |
| 1402 | (2) BTR_PCUR_AFTER: btr_pcur_restore_position placed the cursor on the |
| 1403 | first record GREATER than the predecessor of a page supremum; we have |
| 1404 | processed the cursor record: we should move the cursor to the previous |
| 1405 | record; |
| 1406 | (3) BTR_PCUR_ON: btr_pcur_restore_position placed the cursor on the |
| 1407 | last record LESS or EQUAL to the old stored user record; (a) if |
| 1408 | equal_position is FALSE, this means that the cursor is now on a record |
| 1409 | less than the old user record, and we need not move to the previous |
| 1410 | record; (b) if equal_position is TRUE, then if |
| 1411 | plan->stored_cursor_rec_processed is TRUE, we must move to the previous |
| 1412 | record, else there is no need to move the cursor. */ |
| 1413 | |
| 1414 | if (relative_position == BTR_PCUR_BEFORE |
| 1415 | || relative_position == BTR_PCUR_BEFORE_FIRST_IN_TREE) { |
| 1416 | |
| 1417 | return(FALSE); |
| 1418 | } |
| 1419 | |
| 1420 | if (relative_position == BTR_PCUR_ON) { |
| 1421 | |
| 1422 | if (equal_position) { |
| 1423 | |
| 1424 | return(plan->stored_cursor_rec_processed); |
| 1425 | } |
| 1426 | |
| 1427 | return(FALSE); |
| 1428 | } |
| 1429 | |
| 1430 | ut_ad(relative_position == BTR_PCUR_AFTER |
| 1431 | || relative_position == BTR_PCUR_AFTER_LAST_IN_TREE); |
| 1432 | |
| 1433 | return(TRUE); |
| 1434 | } |
| 1435 | |
| 1436 | /*********************************************************************//** |
| 1437 | Resets a plan cursor to a closed state. */ |
| 1438 | UNIV_INLINE |
| 1439 | void |
| 1440 | plan_reset_cursor( |
| 1441 | /*==============*/ |
| 1442 | plan_t* plan) /*!< in: plan */ |
| 1443 | { |
| 1444 | plan->pcur_is_open = FALSE; |
| 1445 | plan->cursor_at_end = FALSE; |
| 1446 | plan->n_rows_fetched = 0; |
| 1447 | plan->n_rows_prefetched = 0; |
| 1448 | } |
| 1449 | |
| 1450 | #ifdef BTR_CUR_HASH_ADAPT |
| 1451 | /*********************************************************************//** |
| 1452 | Tries to do a shortcut to fetch a clustered index record with a unique key, |
| 1453 | using the hash index if possible (not always). |
| 1454 | @return SEL_FOUND, SEL_EXHAUSTED, SEL_RETRY */ |
| 1455 | static |
| 1456 | ulint |
| 1457 | row_sel_try_search_shortcut( |
| 1458 | /*========================*/ |
| 1459 | sel_node_t* node, /*!< in: select node for a consistent read */ |
| 1460 | plan_t* plan, /*!< in: plan for a unique search in clustered |
| 1461 | index */ |
| 1462 | mtr_t* mtr) /*!< in: mtr */ |
| 1463 | { |
| 1464 | dict_index_t* index = plan->index; |
| 1465 | |
| 1466 | ut_ad(node->read_view); |
| 1467 | ut_ad(plan->unique_search); |
| 1468 | ut_ad(!plan->must_get_clust); |
| 1469 | |
| 1470 | rw_lock_t* ahi_latch = btr_get_search_latch(index); |
| 1471 | rw_lock_s_lock(ahi_latch); |
| 1472 | |
| 1473 | row_sel_open_pcur(plan, ahi_latch, mtr); |
| 1474 | |
| 1475 | const rec_t* rec = btr_pcur_get_rec(&(plan->pcur)); |
| 1476 | |
| 1477 | if (!page_rec_is_user_rec(rec) || rec_is_default_row(rec, index)) { |
| 1478 | retry: |
| 1479 | rw_lock_s_unlock(ahi_latch); |
| 1480 | return(SEL_RETRY); |
| 1481 | } |
| 1482 | |
| 1483 | ut_ad(plan->mode == PAGE_CUR_GE); |
| 1484 | |
| 1485 | /* As the cursor is now placed on a user record after a search with |
| 1486 | the mode PAGE_CUR_GE, the up_match field in the cursor tells how many |
| 1487 | fields in the user record matched to the search tuple */ |
| 1488 | |
| 1489 | if (btr_pcur_get_up_match(&(plan->pcur)) < plan->n_exact_match) { |
| 1490 | exhausted: |
| 1491 | rw_lock_s_unlock(ahi_latch); |
| 1492 | return(SEL_EXHAUSTED); |
| 1493 | } |
| 1494 | |
| 1495 | /* This is a non-locking consistent read: if necessary, fetch |
| 1496 | a previous version of the record */ |
| 1497 | |
| 1498 | mem_heap_t* heap = NULL; |
| 1499 | ulint offsets_[REC_OFFS_NORMAL_SIZE]; |
| 1500 | ulint* offsets = offsets_; |
| 1501 | rec_offs_init(offsets_); |
| 1502 | offsets = rec_get_offsets(rec, index, offsets, true, |
| 1503 | ULINT_UNDEFINED, &heap); |
| 1504 | |
| 1505 | if (dict_index_is_clust(index)) { |
| 1506 | if (!lock_clust_rec_cons_read_sees(rec, index, offsets, |
| 1507 | node->read_view)) { |
| 1508 | goto retry; |
| 1509 | } |
| 1510 | } else if (!srv_read_only_mode |
| 1511 | && !lock_sec_rec_cons_read_sees( |
| 1512 | rec, index, node->read_view)) { |
| 1513 | goto retry; |
| 1514 | } |
| 1515 | |
| 1516 | if (rec_get_deleted_flag(rec, dict_table_is_comp(plan->table))) { |
| 1517 | goto exhausted; |
| 1518 | } |
| 1519 | |
| 1520 | /* Fetch the columns needed in test conditions. The index |
| 1521 | record is protected by a page latch that was acquired when |
| 1522 | plan->pcur was positioned. The latch will not be released |
| 1523 | until mtr->commit(). */ |
| 1524 | |
| 1525 | row_sel_fetch_columns(index, rec, offsets, |
| 1526 | UT_LIST_GET_FIRST(plan->columns)); |
| 1527 | |
| 1528 | /* Test the rest of search conditions */ |
| 1529 | |
| 1530 | if (!row_sel_test_other_conds(plan)) { |
| 1531 | goto exhausted; |
| 1532 | } |
| 1533 | |
| 1534 | ut_ad(plan->pcur.latch_mode == BTR_SEARCH_LEAF); |
| 1535 | |
| 1536 | plan->n_rows_fetched++; |
| 1537 | rw_lock_s_unlock(ahi_latch); |
| 1538 | |
| 1539 | if (UNIV_LIKELY_NULL(heap)) { |
| 1540 | mem_heap_free(heap); |
| 1541 | } |
| 1542 | return(SEL_FOUND); |
| 1543 | } |
| 1544 | #endif /* BTR_CUR_HASH_ADAPT */ |
| 1545 | |
| 1546 | /*********************************************************************//** |
| 1547 | Performs a select step. |
| 1548 | @return DB_SUCCESS or error code */ |
| 1549 | static MY_ATTRIBUTE((warn_unused_result)) |
| 1550 | dberr_t |
| 1551 | row_sel( |
| 1552 | /*====*/ |
| 1553 | sel_node_t* node, /*!< in: select node */ |
| 1554 | que_thr_t* thr) /*!< in: query thread */ |
| 1555 | { |
| 1556 | dict_index_t* index; |
| 1557 | plan_t* plan; |
| 1558 | mtr_t mtr; |
| 1559 | ibool moved; |
| 1560 | rec_t* rec; |
| 1561 | rec_t* old_vers; |
| 1562 | rec_t* clust_rec; |
| 1563 | ibool consistent_read; |
| 1564 | |
| 1565 | /* The following flag becomes TRUE when we are doing a |
| 1566 | consistent read from a non-clustered index and we must look |
| 1567 | at the clustered index to find out the previous delete mark |
| 1568 | state of the non-clustered record: */ |
| 1569 | |
| 1570 | ibool cons_read_requires_clust_rec = FALSE; |
| 1571 | ulint cost_counter = 0; |
| 1572 | ibool cursor_just_opened; |
| 1573 | ibool must_go_to_next; |
| 1574 | ibool = FALSE; |
| 1575 | /* TRUE if the search was made using |
| 1576 | a non-clustered index, and we had to |
| 1577 | access the clustered record: now &mtr |
| 1578 | contains a clustered index latch, and |
| 1579 | &mtr must be committed before we move |
| 1580 | to the next non-clustered record */ |
| 1581 | dberr_t err; |
| 1582 | mem_heap_t* heap = NULL; |
| 1583 | ulint offsets_[REC_OFFS_NORMAL_SIZE]; |
| 1584 | ulint* offsets = offsets_; |
| 1585 | rec_offs_init(offsets_); |
| 1586 | |
| 1587 | ut_ad(thr->run_node == node); |
| 1588 | |
| 1589 | if (node->read_view) { |
| 1590 | /* In consistent reads, we try to do with the hash index and |
| 1591 | not to use the buffer page get. This is to reduce memory bus |
| 1592 | load resulting from semaphore operations. The search latch |
| 1593 | will be s-locked when we access an index with a unique search |
| 1594 | condition, but not locked when we access an index with a |
| 1595 | less selective search condition. */ |
| 1596 | |
| 1597 | consistent_read = TRUE; |
| 1598 | } else { |
| 1599 | consistent_read = FALSE; |
| 1600 | } |
| 1601 | |
| 1602 | table_loop: |
| 1603 | /* TABLE LOOP |
| 1604 | ---------- |
| 1605 | This is the outer major loop in calculating a join. We come here when |
| 1606 | node->fetch_table changes, and after adding a row to aggregate totals |
| 1607 | and, of course, when this function is called. */ |
| 1608 | |
| 1609 | ut_ad(mtr_has_extra_clust_latch == FALSE); |
| 1610 | |
| 1611 | plan = sel_node_get_nth_plan(node, node->fetch_table); |
| 1612 | index = plan->index; |
| 1613 | |
| 1614 | if (plan->n_rows_prefetched > 0) { |
| 1615 | sel_dequeue_prefetched_row(plan); |
| 1616 | |
| 1617 | goto next_table_no_mtr; |
| 1618 | } |
| 1619 | |
| 1620 | if (plan->cursor_at_end) { |
| 1621 | /* The cursor has already reached the result set end: no more |
| 1622 | rows to process for this table cursor, as also the prefetch |
| 1623 | stack was empty */ |
| 1624 | |
| 1625 | ut_ad(plan->pcur_is_open); |
| 1626 | |
| 1627 | goto table_exhausted_no_mtr; |
| 1628 | } |
| 1629 | |
| 1630 | /* Open a cursor to index, or restore an open cursor position */ |
| 1631 | |
| 1632 | mtr.start(); |
| 1633 | |
| 1634 | #ifdef BTR_CUR_HASH_ADAPT |
| 1635 | if (consistent_read && plan->unique_search && !plan->pcur_is_open |
| 1636 | && !plan->must_get_clust) { |
| 1637 | switch (row_sel_try_search_shortcut(node, plan, &mtr)) { |
| 1638 | case SEL_FOUND: |
| 1639 | goto next_table; |
| 1640 | case SEL_EXHAUSTED: |
| 1641 | goto table_exhausted; |
| 1642 | default: |
| 1643 | ut_ad(0); |
| 1644 | /* fall through */ |
| 1645 | case SEL_RETRY: |
| 1646 | break; |
| 1647 | } |
| 1648 | |
| 1649 | plan_reset_cursor(plan); |
| 1650 | |
| 1651 | mtr.commit(); |
| 1652 | mtr.start(); |
| 1653 | } |
| 1654 | #endif /* BTR_CUR_HASH_ADAPT */ |
| 1655 | |
| 1656 | if (!plan->pcur_is_open) { |
| 1657 | /* Evaluate the expressions to build the search tuple and |
| 1658 | open the cursor */ |
| 1659 | row_sel_open_pcur(plan, |
| 1660 | #ifdef BTR_CUR_HASH_ADAPT |
| 1661 | NULL, |
| 1662 | #endif /* BTR_CUR_HASH_ADAPT */ |
| 1663 | &mtr); |
| 1664 | |
| 1665 | cursor_just_opened = TRUE; |
| 1666 | |
| 1667 | /* A new search was made: increment the cost counter */ |
| 1668 | cost_counter++; |
| 1669 | } else { |
| 1670 | /* Restore pcur position to the index */ |
| 1671 | |
| 1672 | must_go_to_next = row_sel_restore_pcur_pos(plan, &mtr); |
| 1673 | |
| 1674 | cursor_just_opened = FALSE; |
| 1675 | |
| 1676 | if (must_go_to_next) { |
| 1677 | /* We have already processed the cursor record: move |
| 1678 | to the next */ |
| 1679 | |
| 1680 | goto next_rec; |
| 1681 | } |
| 1682 | } |
| 1683 | |
| 1684 | rec_loop: |
| 1685 | /* RECORD LOOP |
| 1686 | ----------- |
| 1687 | In this loop we use pcur and try to fetch a qualifying row, and |
| 1688 | also fill the prefetch buffer for this table if n_rows_fetched has |
| 1689 | exceeded a threshold. While we are inside this loop, the following |
| 1690 | holds: |
| 1691 | (1) &mtr is started, |
| 1692 | (2) pcur is positioned and open. |
| 1693 | |
| 1694 | NOTE that if cursor_just_opened is TRUE here, it means that we came |
| 1695 | to this point right after row_sel_open_pcur. */ |
| 1696 | |
| 1697 | ut_ad(mtr_has_extra_clust_latch == FALSE); |
| 1698 | |
| 1699 | rec = btr_pcur_get_rec(&(plan->pcur)); |
| 1700 | |
| 1701 | /* PHASE 1: Set a lock if specified */ |
| 1702 | |
| 1703 | if (!node->asc && cursor_just_opened |
| 1704 | && !page_rec_is_supremum(rec)) { |
| 1705 | |
| 1706 | /* Do not support "descending search" for Spatial index */ |
| 1707 | ut_ad(!dict_index_is_spatial(index)); |
| 1708 | |
| 1709 | /* When we open a cursor for a descending search, we must set |
| 1710 | a next-key lock on the successor record: otherwise it would |
| 1711 | be possible to insert new records next to the cursor position, |
| 1712 | and it might be that these new records should appear in the |
| 1713 | search result set, resulting in the phantom problem. */ |
| 1714 | |
| 1715 | if (!consistent_read) { |
| 1716 | rec_t* next_rec = page_rec_get_next(rec); |
| 1717 | ulint lock_type; |
| 1718 | trx_t* trx; |
| 1719 | |
| 1720 | trx = thr_get_trx(thr); |
| 1721 | |
| 1722 | offsets = rec_get_offsets(next_rec, index, offsets, |
| 1723 | true, |
| 1724 | ULINT_UNDEFINED, &heap); |
| 1725 | |
| 1726 | /* If innodb_locks_unsafe_for_binlog option is used |
| 1727 | or this session is using READ COMMITTED or lower isolation |
| 1728 | level, we lock only the record, i.e., next-key |
| 1729 | locking is not used. */ |
| 1730 | if (srv_locks_unsafe_for_binlog |
| 1731 | || trx->isolation_level |
| 1732 | <= TRX_ISO_READ_COMMITTED) { |
| 1733 | |
| 1734 | if (page_rec_is_supremum(next_rec)) { |
| 1735 | |
| 1736 | goto skip_lock; |
| 1737 | } |
| 1738 | |
| 1739 | lock_type = LOCK_REC_NOT_GAP; |
| 1740 | } else { |
| 1741 | lock_type = LOCK_ORDINARY; |
| 1742 | } |
| 1743 | |
| 1744 | err = sel_set_rec_lock(&plan->pcur, |
| 1745 | next_rec, index, offsets, |
| 1746 | node->row_lock_mode, |
| 1747 | lock_type, thr, &mtr); |
| 1748 | |
| 1749 | switch (err) { |
| 1750 | case DB_SUCCESS_LOCKED_REC: |
| 1751 | err = DB_SUCCESS; |
| 1752 | /* fall through */ |
| 1753 | case DB_SUCCESS: |
| 1754 | break; |
| 1755 | default: |
| 1756 | /* Note that in this case we will store in pcur |
| 1757 | the PREDECESSOR of the record we are waiting |
| 1758 | the lock for */ |
| 1759 | goto lock_wait_or_error; |
| 1760 | } |
| 1761 | } |
| 1762 | } |
| 1763 | |
| 1764 | skip_lock: |
| 1765 | if (page_rec_is_infimum(rec)) { |
| 1766 | |
| 1767 | /* The infimum record on a page cannot be in the result set, |
| 1768 | and neither can a record lock be placed on it: we skip such |
| 1769 | a record. We also increment the cost counter as we may have |
| 1770 | processed yet another page of index. */ |
| 1771 | |
| 1772 | cost_counter++; |
| 1773 | |
| 1774 | goto next_rec; |
| 1775 | } |
| 1776 | |
| 1777 | if (rec_is_default_row(rec, index)) { |
| 1778 | /* Skip the 'default row' pseudo-record. */ |
| 1779 | cost_counter++; |
| 1780 | goto next_rec; |
| 1781 | } |
| 1782 | |
| 1783 | if (!consistent_read) { |
| 1784 | /* Try to place a lock on the index record */ |
| 1785 | ulint lock_type; |
| 1786 | trx_t* trx; |
| 1787 | |
| 1788 | offsets = rec_get_offsets(rec, index, offsets, true, |
| 1789 | ULINT_UNDEFINED, &heap); |
| 1790 | |
| 1791 | trx = thr_get_trx(thr); |
| 1792 | |
| 1793 | /* If innodb_locks_unsafe_for_binlog option is used |
| 1794 | or this session is using READ COMMITTED or lower isolation level, |
| 1795 | we lock only the record, i.e., next-key locking is |
| 1796 | not used. */ |
| 1797 | if (srv_locks_unsafe_for_binlog |
| 1798 | || trx->isolation_level <= TRX_ISO_READ_COMMITTED |
| 1799 | || dict_index_is_spatial(index)) { |
| 1800 | |
| 1801 | if (page_rec_is_supremum(rec)) { |
| 1802 | |
| 1803 | goto next_rec; |
| 1804 | } |
| 1805 | |
| 1806 | lock_type = LOCK_REC_NOT_GAP; |
| 1807 | } else { |
| 1808 | lock_type = LOCK_ORDINARY; |
| 1809 | } |
| 1810 | |
| 1811 | err = sel_set_rec_lock(&plan->pcur, |
| 1812 | rec, index, offsets, |
| 1813 | node->row_lock_mode, lock_type, |
| 1814 | thr, &mtr); |
| 1815 | |
| 1816 | switch (err) { |
| 1817 | case DB_SUCCESS_LOCKED_REC: |
| 1818 | err = DB_SUCCESS; |
| 1819 | /* fall through */ |
| 1820 | case DB_SUCCESS: |
| 1821 | break; |
| 1822 | default: |
| 1823 | goto lock_wait_or_error; |
| 1824 | } |
| 1825 | } |
| 1826 | |
| 1827 | if (page_rec_is_supremum(rec)) { |
| 1828 | |
| 1829 | /* A page supremum record cannot be in the result set: skip |
| 1830 | it now when we have placed a possible lock on it */ |
| 1831 | |
| 1832 | goto next_rec; |
| 1833 | } |
| 1834 | |
| 1835 | ut_ad(page_rec_is_user_rec(rec)); |
| 1836 | |
| 1837 | if (cost_counter > SEL_COST_LIMIT) { |
| 1838 | |
| 1839 | /* Now that we have placed the necessary locks, we can stop |
| 1840 | for a while and store the cursor position; NOTE that if we |
| 1841 | would store the cursor position BEFORE placing a record lock, |
| 1842 | it might happen that the cursor would jump over some records |
| 1843 | that another transaction could meanwhile insert adjacent to |
| 1844 | the cursor: this would result in the phantom problem. */ |
| 1845 | |
| 1846 | goto stop_for_a_while; |
| 1847 | } |
| 1848 | |
| 1849 | /* PHASE 2: Check a mixed index mix id if needed */ |
| 1850 | |
| 1851 | if (plan->unique_search && cursor_just_opened) { |
| 1852 | |
| 1853 | ut_ad(plan->mode == PAGE_CUR_GE); |
| 1854 | |
| 1855 | /* As the cursor is now placed on a user record after a search |
| 1856 | with the mode PAGE_CUR_GE, the up_match field in the cursor |
| 1857 | tells how many fields in the user record matched to the search |
| 1858 | tuple */ |
| 1859 | |
| 1860 | if (btr_pcur_get_up_match(&(plan->pcur)) |
| 1861 | < plan->n_exact_match) { |
| 1862 | goto table_exhausted; |
| 1863 | } |
| 1864 | |
| 1865 | /* Ok, no need to test end_conds or mix id */ |
| 1866 | |
| 1867 | } |
| 1868 | |
| 1869 | /* We are ready to look at a possible new index entry in the result |
| 1870 | set: the cursor is now placed on a user record */ |
| 1871 | |
| 1872 | /* PHASE 3: Get previous version in a consistent read */ |
| 1873 | |
| 1874 | cons_read_requires_clust_rec = FALSE; |
| 1875 | offsets = rec_get_offsets(rec, index, offsets, true, |
| 1876 | ULINT_UNDEFINED, &heap); |
| 1877 | |
| 1878 | if (consistent_read) { |
| 1879 | /* This is a non-locking consistent read: if necessary, fetch |
| 1880 | a previous version of the record */ |
| 1881 | |
| 1882 | if (dict_index_is_clust(index)) { |
| 1883 | |
| 1884 | if (!lock_clust_rec_cons_read_sees( |
| 1885 | rec, index, offsets, node->read_view)) { |
| 1886 | |
| 1887 | err = row_sel_build_prev_vers( |
| 1888 | node->read_view, index, rec, |
| 1889 | &offsets, &heap, &plan->old_vers_heap, |
| 1890 | &old_vers, &mtr); |
| 1891 | |
| 1892 | if (err != DB_SUCCESS) { |
| 1893 | |
| 1894 | goto lock_wait_or_error; |
| 1895 | } |
| 1896 | |
| 1897 | if (old_vers == NULL) { |
| 1898 | /* The record does not exist |
| 1899 | in our read view. Skip it, but |
| 1900 | first attempt to determine |
| 1901 | whether the index segment we |
| 1902 | are searching through has been |
| 1903 | exhausted. */ |
| 1904 | |
| 1905 | offsets = rec_get_offsets( |
| 1906 | rec, index, offsets, true, |
| 1907 | ULINT_UNDEFINED, &heap); |
| 1908 | |
| 1909 | /* Fetch the columns needed in |
| 1910 | test conditions. The clustered |
| 1911 | index record is protected by a |
| 1912 | page latch that was acquired |
| 1913 | by row_sel_open_pcur() or |
| 1914 | row_sel_restore_pcur_pos(). |
| 1915 | The latch will not be released |
| 1916 | until mtr.commit(). */ |
| 1917 | |
| 1918 | row_sel_fetch_columns( |
| 1919 | index, rec, offsets, |
| 1920 | UT_LIST_GET_FIRST( |
| 1921 | plan->columns)); |
| 1922 | |
| 1923 | if (!row_sel_test_end_conds(plan)) { |
| 1924 | |
| 1925 | goto table_exhausted; |
| 1926 | } |
| 1927 | |
| 1928 | goto next_rec; |
| 1929 | } |
| 1930 | |
| 1931 | rec = old_vers; |
| 1932 | } |
| 1933 | } else if (!srv_read_only_mode |
| 1934 | && !lock_sec_rec_cons_read_sees( |
| 1935 | rec, index, node->read_view)) { |
| 1936 | |
| 1937 | cons_read_requires_clust_rec = TRUE; |
| 1938 | } |
| 1939 | } |
| 1940 | |
| 1941 | /* PHASE 4: Test search end conditions and deleted flag */ |
| 1942 | |
| 1943 | /* Fetch the columns needed in test conditions. The record is |
| 1944 | protected by a page latch that was acquired by |
| 1945 | row_sel_open_pcur() or row_sel_restore_pcur_pos(). The latch |
| 1946 | will not be released until mtr.commit(). */ |
| 1947 | |
| 1948 | row_sel_fetch_columns(index, rec, offsets, |
| 1949 | UT_LIST_GET_FIRST(plan->columns)); |
| 1950 | |
| 1951 | /* Test the selection end conditions: these can only contain columns |
| 1952 | which already are found in the index, even though the index might be |
| 1953 | non-clustered */ |
| 1954 | |
| 1955 | if (plan->unique_search && cursor_just_opened) { |
| 1956 | |
| 1957 | /* No test necessary: the test was already made above */ |
| 1958 | |
| 1959 | } else if (!row_sel_test_end_conds(plan)) { |
| 1960 | |
| 1961 | goto table_exhausted; |
| 1962 | } |
| 1963 | |
| 1964 | if (rec_get_deleted_flag(rec, dict_table_is_comp(plan->table)) |
| 1965 | && !cons_read_requires_clust_rec) { |
| 1966 | |
| 1967 | /* The record is delete marked: we can skip it if this is |
| 1968 | not a consistent read which might see an earlier version |
| 1969 | of a non-clustered index record */ |
| 1970 | |
| 1971 | if (plan->unique_search) { |
| 1972 | |
| 1973 | goto table_exhausted; |
| 1974 | } |
| 1975 | |
| 1976 | goto next_rec; |
| 1977 | } |
| 1978 | |
| 1979 | /* PHASE 5: Get the clustered index record, if needed and if we did |
| 1980 | not do the search using the clustered index */ |
| 1981 | |
| 1982 | if (plan->must_get_clust || cons_read_requires_clust_rec) { |
| 1983 | |
| 1984 | /* It was a non-clustered index and we must fetch also the |
| 1985 | clustered index record */ |
| 1986 | |
| 1987 | err = row_sel_get_clust_rec(node, plan, rec, thr, &clust_rec, |
| 1988 | &mtr); |
| 1989 | mtr_has_extra_clust_latch = TRUE; |
| 1990 | |
| 1991 | if (err != DB_SUCCESS) { |
| 1992 | |
| 1993 | goto lock_wait_or_error; |
| 1994 | } |
| 1995 | |
| 1996 | /* Retrieving the clustered record required a search: |
| 1997 | increment the cost counter */ |
| 1998 | |
| 1999 | cost_counter++; |
| 2000 | |
| 2001 | if (clust_rec == NULL) { |
| 2002 | /* The record did not exist in the read view */ |
| 2003 | ut_ad(consistent_read); |
| 2004 | |
| 2005 | goto next_rec; |
| 2006 | } |
| 2007 | |
| 2008 | if (rec_get_deleted_flag(clust_rec, |
| 2009 | dict_table_is_comp(plan->table))) { |
| 2010 | /* In delete-marked records, DB_TRX_ID must |
| 2011 | always refer to an existing update_undo log record. */ |
| 2012 | ut_ad(rec_get_trx_id(clust_rec, |
| 2013 | dict_table_get_first_index( |
| 2014 | plan->table))); |
| 2015 | |
| 2016 | /* The record is delete marked: we can skip it */ |
| 2017 | |
| 2018 | goto next_rec; |
| 2019 | } |
| 2020 | |
| 2021 | if (node->can_get_updated) { |
| 2022 | |
| 2023 | btr_pcur_store_position(&(plan->clust_pcur), &mtr); |
| 2024 | } |
| 2025 | } |
| 2026 | |
| 2027 | /* PHASE 6: Test the rest of search conditions */ |
| 2028 | |
| 2029 | if (!row_sel_test_other_conds(plan)) { |
| 2030 | |
| 2031 | if (plan->unique_search) { |
| 2032 | |
| 2033 | goto table_exhausted; |
| 2034 | } |
| 2035 | |
| 2036 | goto next_rec; |
| 2037 | } |
| 2038 | |
| 2039 | /* PHASE 7: We found a new qualifying row for the current table; push |
| 2040 | the row if prefetch is on, or move to the next table in the join */ |
| 2041 | |
| 2042 | plan->n_rows_fetched++; |
| 2043 | |
| 2044 | ut_ad(plan->pcur.latch_mode == BTR_SEARCH_LEAF); |
| 2045 | |
| 2046 | if ((plan->n_rows_fetched <= SEL_PREFETCH_LIMIT) |
| 2047 | || plan->unique_search || plan->no_prefetch) { |
| 2048 | |
| 2049 | /* No prefetch in operation: go to the next table */ |
| 2050 | |
| 2051 | goto next_table; |
| 2052 | } |
| 2053 | |
| 2054 | sel_enqueue_prefetched_row(plan); |
| 2055 | |
| 2056 | if (plan->n_rows_prefetched == SEL_MAX_N_PREFETCH) { |
| 2057 | |
| 2058 | /* The prefetch buffer is now full */ |
| 2059 | |
| 2060 | sel_dequeue_prefetched_row(plan); |
| 2061 | |
| 2062 | goto next_table; |
| 2063 | } |
| 2064 | |
| 2065 | next_rec: |
| 2066 | if (mtr_has_extra_clust_latch) { |
| 2067 | |
| 2068 | /* We must commit &mtr if we are moving to the next |
| 2069 | non-clustered index record, because we could break the |
| 2070 | latching order if we would access a different clustered |
| 2071 | index page right away without releasing the previous. */ |
| 2072 | |
| 2073 | goto commit_mtr_for_a_while; |
| 2074 | } |
| 2075 | |
| 2076 | if (node->asc) { |
| 2077 | moved = btr_pcur_move_to_next(&(plan->pcur), &mtr); |
| 2078 | } else { |
| 2079 | moved = btr_pcur_move_to_prev(&(plan->pcur), &mtr); |
| 2080 | } |
| 2081 | |
| 2082 | if (!moved) { |
| 2083 | |
| 2084 | goto table_exhausted; |
| 2085 | } |
| 2086 | |
| 2087 | cursor_just_opened = FALSE; |
| 2088 | |
| 2089 | /* END OF RECORD LOOP |
| 2090 | ------------------ */ |
| 2091 | goto rec_loop; |
| 2092 | |
| 2093 | next_table: |
| 2094 | /* We found a record which satisfies the conditions: we can move to |
| 2095 | the next table or return a row in the result set */ |
| 2096 | |
| 2097 | ut_ad(btr_pcur_is_on_user_rec(&plan->pcur)); |
| 2098 | |
| 2099 | if (plan->unique_search && !node->can_get_updated) { |
| 2100 | |
| 2101 | plan->cursor_at_end = TRUE; |
| 2102 | } else { |
| 2103 | plan->stored_cursor_rec_processed = TRUE; |
| 2104 | |
| 2105 | btr_pcur_store_position(&(plan->pcur), &mtr); |
| 2106 | } |
| 2107 | |
| 2108 | mtr.commit(); |
| 2109 | |
| 2110 | mtr_has_extra_clust_latch = FALSE; |
| 2111 | |
| 2112 | next_table_no_mtr: |
| 2113 | /* If we use 'goto' to this label, it means that the row was popped |
| 2114 | from the prefetched rows stack, and &mtr is already committed */ |
| 2115 | |
| 2116 | if (node->fetch_table + 1 == node->n_tables) { |
| 2117 | |
| 2118 | sel_eval_select_list(node); |
| 2119 | |
| 2120 | if (node->is_aggregate) { |
| 2121 | |
| 2122 | goto table_loop; |
| 2123 | } |
| 2124 | |
| 2125 | sel_assign_into_var_values(node->into_list, node); |
| 2126 | |
| 2127 | thr->run_node = que_node_get_parent(node); |
| 2128 | |
| 2129 | err = DB_SUCCESS; |
| 2130 | goto func_exit; |
| 2131 | } |
| 2132 | |
| 2133 | node->fetch_table++; |
| 2134 | |
| 2135 | /* When we move to the next table, we first reset the plan cursor: |
| 2136 | we do not care about resetting it when we backtrack from a table */ |
| 2137 | |
| 2138 | plan_reset_cursor(sel_node_get_nth_plan(node, node->fetch_table)); |
| 2139 | |
| 2140 | goto table_loop; |
| 2141 | |
| 2142 | table_exhausted: |
| 2143 | /* The table cursor pcur reached the result set end: backtrack to the |
| 2144 | previous table in the join if we do not have cached prefetched rows */ |
| 2145 | |
| 2146 | plan->cursor_at_end = TRUE; |
| 2147 | |
| 2148 | mtr.commit(); |
| 2149 | |
| 2150 | mtr_has_extra_clust_latch = FALSE; |
| 2151 | |
| 2152 | if (plan->n_rows_prefetched > 0) { |
| 2153 | /* The table became exhausted during a prefetch */ |
| 2154 | |
| 2155 | sel_dequeue_prefetched_row(plan); |
| 2156 | |
| 2157 | goto next_table_no_mtr; |
| 2158 | } |
| 2159 | |
| 2160 | table_exhausted_no_mtr: |
| 2161 | if (node->fetch_table == 0) { |
| 2162 | err = DB_SUCCESS; |
| 2163 | |
| 2164 | if (node->is_aggregate && !node->aggregate_already_fetched) { |
| 2165 | |
| 2166 | node->aggregate_already_fetched = TRUE; |
| 2167 | |
| 2168 | sel_assign_into_var_values(node->into_list, node); |
| 2169 | |
| 2170 | thr->run_node = que_node_get_parent(node); |
| 2171 | } else { |
| 2172 | node->state = SEL_NODE_NO_MORE_ROWS; |
| 2173 | |
| 2174 | thr->run_node = que_node_get_parent(node); |
| 2175 | } |
| 2176 | |
| 2177 | goto func_exit; |
| 2178 | } |
| 2179 | |
| 2180 | node->fetch_table--; |
| 2181 | |
| 2182 | goto table_loop; |
| 2183 | |
| 2184 | stop_for_a_while: |
| 2185 | /* Return control for a while to que_run_threads, so that runaway |
| 2186 | queries can be canceled. NOTE that when we come here, we must, in a |
| 2187 | locking read, have placed the necessary (possibly waiting request) |
| 2188 | record lock on the cursor record or its successor: when we reposition |
| 2189 | the cursor, this record lock guarantees that nobody can meanwhile have |
| 2190 | inserted new records which should have appeared in the result set, |
| 2191 | which would result in the phantom problem. */ |
| 2192 | |
| 2193 | plan->stored_cursor_rec_processed = FALSE; |
| 2194 | btr_pcur_store_position(&(plan->pcur), &mtr); |
| 2195 | |
| 2196 | mtr.commit(); |
| 2197 | ut_ad(!sync_check_iterate(sync_check())); |
| 2198 | |
| 2199 | err = DB_SUCCESS; |
| 2200 | goto func_exit; |
| 2201 | |
| 2202 | commit_mtr_for_a_while: |
| 2203 | /* Stores the cursor position and commits &mtr; this is used if |
| 2204 | &mtr may contain latches which would break the latching order if |
| 2205 | &mtr would not be committed and the latches released. */ |
| 2206 | |
| 2207 | plan->stored_cursor_rec_processed = TRUE; |
| 2208 | |
| 2209 | btr_pcur_store_position(&(plan->pcur), &mtr); |
| 2210 | |
| 2211 | mtr.commit(); |
| 2212 | |
| 2213 | mtr_has_extra_clust_latch = FALSE; |
| 2214 | ut_ad(!sync_check_iterate(dict_sync_check())); |
| 2215 | |
| 2216 | goto table_loop; |
| 2217 | |
| 2218 | lock_wait_or_error: |
| 2219 | /* See the note at stop_for_a_while: the same holds for this case */ |
| 2220 | |
| 2221 | ut_ad(!btr_pcur_is_before_first_on_page(&plan->pcur) || !node->asc); |
| 2222 | |
| 2223 | plan->stored_cursor_rec_processed = FALSE; |
| 2224 | btr_pcur_store_position(&(plan->pcur), &mtr); |
| 2225 | |
| 2226 | mtr.commit(); |
| 2227 | |
| 2228 | func_exit: |
| 2229 | ut_ad(!sync_check_iterate(dict_sync_check())); |
| 2230 | |
| 2231 | if (heap != NULL) { |
| 2232 | mem_heap_free(heap); |
| 2233 | } |
| 2234 | return(err); |
| 2235 | } |
| 2236 | |
| 2237 | /**********************************************************************//** |
| 2238 | Performs a select step. This is a high-level function used in SQL execution |
| 2239 | graphs. |
| 2240 | @return query thread to run next or NULL */ |
| 2241 | que_thr_t* |
| 2242 | row_sel_step( |
| 2243 | /*=========*/ |
| 2244 | que_thr_t* thr) /*!< in: query thread */ |
| 2245 | { |
| 2246 | sel_node_t* node; |
| 2247 | |
| 2248 | ut_ad(thr); |
| 2249 | |
| 2250 | node = static_cast<sel_node_t*>(thr->run_node); |
| 2251 | |
| 2252 | ut_ad(que_node_get_type(node) == QUE_NODE_SELECT); |
| 2253 | |
| 2254 | /* If this is a new time this node is executed (or when execution |
| 2255 | resumes after wait for a table intention lock), set intention locks |
| 2256 | on the tables, or assign a read view */ |
| 2257 | |
| 2258 | if (node->into_list && (thr->prev_node == que_node_get_parent(node))) { |
| 2259 | |
| 2260 | node->state = SEL_NODE_OPEN; |
| 2261 | } |
| 2262 | |
| 2263 | if (node->state == SEL_NODE_OPEN) { |
| 2264 | |
| 2265 | /* It may be that the current session has not yet started |
| 2266 | its transaction, or it has been committed: */ |
| 2267 | |
| 2268 | trx_start_if_not_started_xa(thr_get_trx(thr), false); |
| 2269 | |
| 2270 | plan_reset_cursor(sel_node_get_nth_plan(node, 0)); |
| 2271 | |
| 2272 | if (node->consistent_read) { |
| 2273 | trx_t *trx = thr_get_trx(thr); |
| 2274 | /* Assign a read view for the query */ |
| 2275 | trx->read_view.open(trx); |
| 2276 | node->read_view = trx->read_view.is_open() ? |
| 2277 | &trx->read_view : NULL; |
| 2278 | } else { |
| 2279 | sym_node_t* table_node; |
| 2280 | lock_mode i_lock_mode; |
| 2281 | |
| 2282 | if (node->set_x_locks) { |
| 2283 | i_lock_mode = LOCK_IX; |
| 2284 | } else { |
| 2285 | i_lock_mode = LOCK_IS; |
| 2286 | } |
| 2287 | |
| 2288 | for (table_node = node->table_list; |
| 2289 | table_node != 0; |
| 2290 | table_node = static_cast<sym_node_t*>( |
| 2291 | que_node_get_next(table_node))) { |
| 2292 | |
| 2293 | dberr_t err = lock_table( |
| 2294 | 0, table_node->table, i_lock_mode, |
| 2295 | thr); |
| 2296 | |
| 2297 | if (err != DB_SUCCESS) { |
| 2298 | trx_t* trx; |
| 2299 | |
| 2300 | trx = thr_get_trx(thr); |
| 2301 | trx->error_state = err; |
| 2302 | |
| 2303 | return(NULL); |
| 2304 | } |
| 2305 | } |
| 2306 | } |
| 2307 | |
| 2308 | /* If this is an explicit cursor, copy stored procedure |
| 2309 | variable values, so that the values cannot change between |
| 2310 | fetches (currently, we copy them also for non-explicit |
| 2311 | cursors) */ |
| 2312 | |
| 2313 | if (node->explicit_cursor |
| 2314 | && UT_LIST_GET_FIRST(node->copy_variables)) { |
| 2315 | |
| 2316 | row_sel_copy_input_variable_vals(node); |
| 2317 | } |
| 2318 | |
| 2319 | node->state = SEL_NODE_FETCH; |
| 2320 | node->fetch_table = 0; |
| 2321 | |
| 2322 | if (node->is_aggregate) { |
| 2323 | /* Reset the aggregate total values */ |
| 2324 | sel_reset_aggregate_vals(node); |
| 2325 | } |
| 2326 | } |
| 2327 | |
| 2328 | dberr_t err = row_sel(node, thr); |
| 2329 | |
| 2330 | /* NOTE! if queries are parallelized, the following assignment may |
| 2331 | have problems; the assignment should be made only if thr is the |
| 2332 | only top-level thr in the graph: */ |
| 2333 | |
| 2334 | thr->graph->last_sel_node = node; |
| 2335 | |
| 2336 | if (err != DB_SUCCESS) { |
| 2337 | thr_get_trx(thr)->error_state = err; |
| 2338 | |
| 2339 | return(NULL); |
| 2340 | } |
| 2341 | |
| 2342 | return(thr); |
| 2343 | } |
| 2344 | |
| 2345 | /**********************************************************************//** |
| 2346 | Performs a fetch for a cursor. |
| 2347 | @return query thread to run next or NULL */ |
| 2348 | que_thr_t* |
| 2349 | fetch_step( |
| 2350 | /*=======*/ |
| 2351 | que_thr_t* thr) /*!< in: query thread */ |
| 2352 | { |
| 2353 | sel_node_t* sel_node; |
| 2354 | fetch_node_t* node; |
| 2355 | |
| 2356 | ut_ad(thr); |
| 2357 | |
| 2358 | node = static_cast<fetch_node_t*>(thr->run_node); |
| 2359 | sel_node = node->cursor_def; |
| 2360 | |
| 2361 | ut_ad(que_node_get_type(node) == QUE_NODE_FETCH); |
| 2362 | |
| 2363 | if (thr->prev_node != que_node_get_parent(node)) { |
| 2364 | |
| 2365 | if (sel_node->state != SEL_NODE_NO_MORE_ROWS) { |
| 2366 | |
| 2367 | if (node->into_list) { |
| 2368 | sel_assign_into_var_values(node->into_list, |
| 2369 | sel_node); |
| 2370 | } else { |
| 2371 | ibool ret = (*node->func->func)( |
| 2372 | sel_node, node->func->arg); |
| 2373 | |
| 2374 | if (!ret) { |
| 2375 | sel_node->state |
| 2376 | = SEL_NODE_NO_MORE_ROWS; |
| 2377 | } |
| 2378 | } |
| 2379 | } |
| 2380 | |
| 2381 | thr->run_node = que_node_get_parent(node); |
| 2382 | |
| 2383 | return(thr); |
| 2384 | } |
| 2385 | |
| 2386 | /* Make the fetch node the parent of the cursor definition for |
| 2387 | the time of the fetch, so that execution knows to return to this |
| 2388 | fetch node after a row has been selected or we know that there is |
| 2389 | no row left */ |
| 2390 | |
| 2391 | sel_node->common.parent = node; |
| 2392 | |
| 2393 | if (sel_node->state == SEL_NODE_CLOSED) { |
| 2394 | ib::error() << "fetch called on a closed cursor" ; |
| 2395 | |
| 2396 | thr_get_trx(thr)->error_state = DB_ERROR; |
| 2397 | |
| 2398 | return(NULL); |
| 2399 | } |
| 2400 | |
| 2401 | thr->run_node = sel_node; |
| 2402 | |
| 2403 | return(thr); |
| 2404 | } |
| 2405 | |
| 2406 | /***********************************************************//** |
| 2407 | Prints a row in a select result. |
| 2408 | @return query thread to run next or NULL */ |
| 2409 | que_thr_t* |
| 2410 | row_printf_step( |
| 2411 | /*============*/ |
| 2412 | que_thr_t* thr) /*!< in: query thread */ |
| 2413 | { |
| 2414 | row_printf_node_t* node; |
| 2415 | sel_node_t* sel_node; |
| 2416 | que_node_t* arg; |
| 2417 | |
| 2418 | ut_ad(thr); |
| 2419 | |
| 2420 | node = static_cast<row_printf_node_t*>(thr->run_node); |
| 2421 | |
| 2422 | sel_node = node->sel_node; |
| 2423 | |
| 2424 | ut_ad(que_node_get_type(node) == QUE_NODE_ROW_PRINTF); |
| 2425 | |
| 2426 | if (thr->prev_node == que_node_get_parent(node)) { |
| 2427 | |
| 2428 | /* Reset the cursor */ |
| 2429 | sel_node->state = SEL_NODE_OPEN; |
| 2430 | |
| 2431 | /* Fetch next row to print */ |
| 2432 | |
| 2433 | thr->run_node = sel_node; |
| 2434 | |
| 2435 | return(thr); |
| 2436 | } |
| 2437 | |
| 2438 | if (sel_node->state != SEL_NODE_FETCH) { |
| 2439 | |
| 2440 | ut_ad(sel_node->state == SEL_NODE_NO_MORE_ROWS); |
| 2441 | |
| 2442 | /* No more rows to print */ |
| 2443 | |
| 2444 | thr->run_node = que_node_get_parent(node); |
| 2445 | |
| 2446 | return(thr); |
| 2447 | } |
| 2448 | |
| 2449 | arg = sel_node->select_list; |
| 2450 | |
| 2451 | while (arg) { |
| 2452 | dfield_print_also_hex(que_node_get_val(arg)); |
| 2453 | |
| 2454 | fputs(" ::: " , stderr); |
| 2455 | |
| 2456 | arg = que_node_get_next(arg); |
| 2457 | } |
| 2458 | |
| 2459 | putc('\n', stderr); |
| 2460 | |
| 2461 | /* Fetch next row to print */ |
| 2462 | |
| 2463 | thr->run_node = sel_node; |
| 2464 | |
| 2465 | return(thr); |
| 2466 | } |
| 2467 | |
| 2468 | /****************************************************************//** |
| 2469 | Converts a key value stored in MySQL format to an Innobase dtuple. The last |
| 2470 | field of the key value may be just a prefix of a fixed length field: hence |
| 2471 | the parameter key_len. But currently we do not allow search keys where the |
| 2472 | last field is only a prefix of the full key field len and print a warning if |
| 2473 | such appears. A counterpart of this function is |
| 2474 | ha_innobase::store_key_val_for_row() in ha_innodb.cc. */ |
| 2475 | void |
| 2476 | row_sel_convert_mysql_key_to_innobase( |
| 2477 | /*==================================*/ |
| 2478 | dtuple_t* tuple, /*!< in/out: tuple where to build; |
| 2479 | NOTE: we assume that the type info |
| 2480 | in the tuple is already according |
| 2481 | to index! */ |
| 2482 | byte* buf, /*!< in: buffer to use in field |
| 2483 | conversions; NOTE that dtuple->data |
| 2484 | may end up pointing inside buf so |
| 2485 | do not discard that buffer while |
| 2486 | the tuple is being used. See |
| 2487 | row_mysql_store_col_in_innobase_format() |
| 2488 | in the case of DATA_INT */ |
| 2489 | ulint buf_len, /*!< in: buffer length */ |
| 2490 | dict_index_t* index, /*!< in: index of the key value */ |
| 2491 | const byte* key_ptr, /*!< in: MySQL key value */ |
| 2492 | ulint key_len) /*!< in: MySQL key value length */ |
| 2493 | { |
| 2494 | byte* original_buf = buf; |
| 2495 | const byte* original_key_ptr = key_ptr; |
| 2496 | dict_field_t* field; |
| 2497 | dfield_t* dfield; |
| 2498 | ulint data_offset; |
| 2499 | ulint data_len; |
| 2500 | ulint data_field_len; |
| 2501 | ibool is_null; |
| 2502 | const byte* key_end; |
| 2503 | ulint n_fields = 0; |
| 2504 | |
| 2505 | /* For documentation of the key value storage format in MySQL, see |
| 2506 | ha_innobase::store_key_val_for_row() in ha_innodb.cc. */ |
| 2507 | |
| 2508 | key_end = key_ptr + key_len; |
| 2509 | |
| 2510 | /* Permit us to access any field in the tuple (ULINT_MAX): */ |
| 2511 | |
| 2512 | dtuple_set_n_fields(tuple, ULINT_MAX); |
| 2513 | |
| 2514 | dfield = dtuple_get_nth_field(tuple, 0); |
| 2515 | field = dict_index_get_nth_field(index, 0); |
| 2516 | |
| 2517 | if (UNIV_UNLIKELY(dfield_get_type(dfield)->mtype == DATA_SYS)) { |
| 2518 | /* A special case: we are looking for a position in the |
| 2519 | generated clustered index which InnoDB automatically added |
| 2520 | to a table with no primary key: the first and the only |
| 2521 | ordering column is ROW_ID which InnoDB stored to the key_ptr |
| 2522 | buffer. */ |
| 2523 | |
| 2524 | ut_a(key_len == DATA_ROW_ID_LEN); |
| 2525 | |
| 2526 | dfield_set_data(dfield, key_ptr, DATA_ROW_ID_LEN); |
| 2527 | |
| 2528 | dtuple_set_n_fields(tuple, 1); |
| 2529 | |
| 2530 | return; |
| 2531 | } |
| 2532 | |
| 2533 | while (key_ptr < key_end) { |
| 2534 | |
| 2535 | ulint type = dfield_get_type(dfield)->mtype; |
| 2536 | ut_a(field->col->mtype == type); |
| 2537 | |
| 2538 | data_offset = 0; |
| 2539 | is_null = FALSE; |
| 2540 | |
| 2541 | if (!(dfield_get_type(dfield)->prtype & DATA_NOT_NULL)) { |
| 2542 | /* The first byte in the field tells if this is |
| 2543 | an SQL NULL value */ |
| 2544 | |
| 2545 | data_offset = 1; |
| 2546 | |
| 2547 | if (*key_ptr != 0) { |
| 2548 | dfield_set_null(dfield); |
| 2549 | |
| 2550 | is_null = TRUE; |
| 2551 | } |
| 2552 | } |
| 2553 | |
| 2554 | /* Calculate data length and data field total length */ |
| 2555 | if (DATA_LARGE_MTYPE(type) || DATA_GEOMETRY_MTYPE(type)) { |
| 2556 | |
| 2557 | /* For R-tree index, data length should be the |
| 2558 | total size of the wkb data.*/ |
| 2559 | if (dict_index_is_spatial(index)) { |
| 2560 | ut_ad(DATA_GEOMETRY_MTYPE(type)); |
| 2561 | data_len = key_len; |
| 2562 | data_field_len = data_offset + data_len; |
| 2563 | } else { |
| 2564 | /* The key field is a column prefix of a BLOB |
| 2565 | or TEXT. */ |
| 2566 | |
| 2567 | ut_a(field->prefix_len > 0); |
| 2568 | |
| 2569 | /* MySQL stores the actual data length to the |
| 2570 | first 2 bytes after the optional SQL NULL |
| 2571 | marker byte. The storage format is |
| 2572 | little-endian, that is, the most significant |
| 2573 | byte at a higher address. In UTF-8, MySQL |
| 2574 | seems to reserve field->prefix_len bytes for |
| 2575 | storing this field in the key value buffer, |
| 2576 | even though the actual value only takes data |
| 2577 | len bytes from the start. */ |
| 2578 | |
| 2579 | data_len = ulint(key_ptr[data_offset]) |
| 2580 | | ulint(key_ptr[data_offset + 1]) << 8; |
| 2581 | data_field_len = data_offset + 2 |
| 2582 | + field->prefix_len; |
| 2583 | |
| 2584 | data_offset += 2; |
| 2585 | |
| 2586 | /* Now that we know the length, we store the |
| 2587 | column value like it would be a fixed char |
| 2588 | field */ |
| 2589 | } |
| 2590 | |
| 2591 | |
| 2592 | } else if (field->prefix_len > 0) { |
| 2593 | /* Looks like MySQL pads unused end bytes in the |
| 2594 | prefix with space. Therefore, also in UTF-8, it is ok |
| 2595 | to compare with a prefix containing full prefix_len |
| 2596 | bytes, and no need to take at most prefix_len / 3 |
| 2597 | UTF-8 characters from the start. |
| 2598 | If the prefix is used as the upper end of a LIKE |
| 2599 | 'abc%' query, then MySQL pads the end with chars |
| 2600 | 0xff. TODO: in that case does it any harm to compare |
| 2601 | with the full prefix_len bytes. How do characters |
| 2602 | 0xff in UTF-8 behave? */ |
| 2603 | |
| 2604 | data_len = field->prefix_len; |
| 2605 | data_field_len = data_offset + data_len; |
| 2606 | } else { |
| 2607 | data_len = dfield_get_type(dfield)->len; |
| 2608 | data_field_len = data_offset + data_len; |
| 2609 | } |
| 2610 | |
| 2611 | if ((dtype_get_mysql_type(dfield_get_type(dfield)) |
| 2612 | == DATA_MYSQL_TRUE_VARCHAR) |
| 2613 | && (type != DATA_INT)) { |
| 2614 | /* In a MySQL key value format, a true VARCHAR is |
| 2615 | always preceded by 2 bytes of a length field. |
| 2616 | dfield_get_type(dfield)->len returns the maximum |
| 2617 | 'payload' len in bytes. That does not include the |
| 2618 | 2 bytes that tell the actual data length. |
| 2619 | |
| 2620 | We added the check != DATA_INT to make sure we do |
| 2621 | not treat MySQL ENUM or SET as a true VARCHAR! */ |
| 2622 | |
| 2623 | data_len += 2; |
| 2624 | data_field_len += 2; |
| 2625 | } |
| 2626 | |
| 2627 | /* Storing may use at most data_len bytes of buf */ |
| 2628 | |
| 2629 | if (UNIV_LIKELY(!is_null)) { |
| 2630 | buf = row_mysql_store_col_in_innobase_format( |
| 2631 | dfield, buf, |
| 2632 | FALSE, /* MySQL key value format col */ |
| 2633 | key_ptr + data_offset, data_len, |
| 2634 | dict_table_is_comp(index->table)); |
| 2635 | ut_a(buf <= original_buf + buf_len); |
| 2636 | } |
| 2637 | |
| 2638 | key_ptr += data_field_len; |
| 2639 | |
| 2640 | if (UNIV_UNLIKELY(key_ptr > key_end)) { |
| 2641 | /* The last field in key was not a complete key field |
| 2642 | but a prefix of it. |
| 2643 | |
| 2644 | Print a warning about this! HA_READ_PREFIX_LAST does |
| 2645 | not currently work in InnoDB with partial-field key |
| 2646 | value prefixes. Since MySQL currently uses a padding |
| 2647 | trick to calculate LIKE 'abc%' type queries there |
| 2648 | should never be partial-field prefixes in searches. */ |
| 2649 | |
| 2650 | ib::warn() << "Using a partial-field key prefix in" |
| 2651 | " search, index " << index->name |
| 2652 | << " of table " << index->table->name |
| 2653 | << ". Last data field length " |
| 2654 | << data_field_len << " bytes, key ptr now" |
| 2655 | " exceeds key end by " << (key_ptr - key_end) |
| 2656 | << " bytes. Key value in the MySQL format:" ; |
| 2657 | |
| 2658 | ut_print_buf(stderr, original_key_ptr, key_len); |
| 2659 | putc('\n', stderr); |
| 2660 | |
| 2661 | if (!is_null) { |
| 2662 | ulint len = dfield_get_len(dfield); |
| 2663 | dfield_set_len(dfield, len |
| 2664 | - (ulint) (key_ptr - key_end)); |
| 2665 | } |
| 2666 | ut_ad(0); |
| 2667 | } |
| 2668 | |
| 2669 | n_fields++; |
| 2670 | field++; |
| 2671 | dfield++; |
| 2672 | } |
| 2673 | |
| 2674 | ut_a(buf <= original_buf + buf_len); |
| 2675 | |
| 2676 | /* We set the length of tuple to n_fields: we assume that the memory |
| 2677 | area allocated for it is big enough (usually bigger than n_fields). */ |
| 2678 | |
| 2679 | dtuple_set_n_fields(tuple, n_fields); |
| 2680 | } |
| 2681 | |
| 2682 | /**************************************************************//** |
| 2683 | Stores the row id to the prebuilt struct. */ |
| 2684 | static |
| 2685 | void |
| 2686 | row_sel_store_row_id_to_prebuilt( |
| 2687 | /*=============================*/ |
| 2688 | row_prebuilt_t* prebuilt, /*!< in/out: prebuilt */ |
| 2689 | const rec_t* index_rec, /*!< in: record */ |
| 2690 | const dict_index_t* index, /*!< in: index of the record */ |
| 2691 | const ulint* offsets) /*!< in: rec_get_offsets |
| 2692 | (index_rec, index) */ |
| 2693 | { |
| 2694 | const byte* data; |
| 2695 | ulint len; |
| 2696 | |
| 2697 | ut_ad(rec_offs_validate(index_rec, index, offsets)); |
| 2698 | |
| 2699 | data = rec_get_nth_field( |
| 2700 | index_rec, offsets, |
| 2701 | dict_index_get_sys_col_pos(index, DATA_ROW_ID), &len); |
| 2702 | |
| 2703 | if (UNIV_UNLIKELY(len != DATA_ROW_ID_LEN)) { |
| 2704 | |
| 2705 | ib::error() << "Row id field is wrong length " << len << " in" |
| 2706 | " index " << index->name |
| 2707 | << " of table " << index->table->name |
| 2708 | << ", Field number " |
| 2709 | << dict_index_get_sys_col_pos(index, DATA_ROW_ID) |
| 2710 | << ", record:" ; |
| 2711 | |
| 2712 | rec_print_new(stderr, index_rec, offsets); |
| 2713 | putc('\n', stderr); |
| 2714 | ut_error; |
| 2715 | } |
| 2716 | |
| 2717 | ut_memcpy(prebuilt->row_id, data, len); |
| 2718 | } |
| 2719 | |
| 2720 | /**************************************************************//** |
| 2721 | Stores a non-SQL-NULL field in the MySQL format. The counterpart of this |
| 2722 | function is row_mysql_store_col_in_innobase_format() in row0mysql.cc. */ |
| 2723 | void |
| 2724 | row_sel_field_store_in_mysql_format_func( |
| 2725 | byte* dest, |
| 2726 | const mysql_row_templ_t* templ, |
| 2727 | #ifdef UNIV_DEBUG |
| 2728 | const dict_index_t* index, |
| 2729 | ulint field_no, |
| 2730 | #endif /* UNIV_DEBUG */ |
| 2731 | const byte* data, |
| 2732 | ulint len) |
| 2733 | { |
| 2734 | byte* ptr; |
| 2735 | #ifdef UNIV_DEBUG |
| 2736 | const dict_field_t* field |
| 2737 | = templ->is_virtual |
| 2738 | ? NULL : dict_index_get_nth_field(index, field_no); |
| 2739 | #endif /* UNIV_DEBUG */ |
| 2740 | |
| 2741 | ut_ad(len != UNIV_SQL_NULL); |
| 2742 | UNIV_MEM_ASSERT_RW(data, len); |
| 2743 | UNIV_MEM_ASSERT_W(dest, templ->mysql_col_len); |
| 2744 | UNIV_MEM_INVALID(dest, templ->mysql_col_len); |
| 2745 | |
| 2746 | switch (templ->type) { |
| 2747 | const byte* field_end; |
| 2748 | byte* pad; |
| 2749 | case DATA_INT: |
| 2750 | /* Convert integer data from Innobase to a little-endian |
| 2751 | format, sign bit restored to normal */ |
| 2752 | |
| 2753 | ptr = dest + len; |
| 2754 | |
| 2755 | for (;;) { |
| 2756 | ptr--; |
| 2757 | *ptr = *data; |
| 2758 | if (ptr == dest) { |
| 2759 | break; |
| 2760 | } |
| 2761 | data++; |
| 2762 | } |
| 2763 | |
| 2764 | if (!templ->is_unsigned) { |
| 2765 | dest[len - 1] = (byte) (dest[len - 1] ^ 128); |
| 2766 | } |
| 2767 | |
| 2768 | ut_ad(templ->mysql_col_len == len); |
| 2769 | break; |
| 2770 | |
| 2771 | case DATA_VARCHAR: |
| 2772 | case DATA_VARMYSQL: |
| 2773 | case DATA_BINARY: |
| 2774 | field_end = dest + templ->mysql_col_len; |
| 2775 | |
| 2776 | if (templ->mysql_type == DATA_MYSQL_TRUE_VARCHAR) { |
| 2777 | /* This is a >= 5.0.3 type true VARCHAR. Store the |
| 2778 | length of the data to the first byte or the first |
| 2779 | two bytes of dest. */ |
| 2780 | |
| 2781 | dest = row_mysql_store_true_var_len( |
| 2782 | dest, len, templ->mysql_length_bytes); |
| 2783 | /* Copy the actual data. Leave the rest of the |
| 2784 | buffer uninitialized. */ |
| 2785 | memcpy(dest, data, len); |
| 2786 | break; |
| 2787 | } |
| 2788 | |
| 2789 | /* Copy the actual data */ |
| 2790 | ut_memcpy(dest, data, len); |
| 2791 | |
| 2792 | /* Pad with trailing spaces. */ |
| 2793 | |
| 2794 | pad = dest + len; |
| 2795 | |
| 2796 | ut_ad(templ->mbminlen <= templ->mbmaxlen); |
| 2797 | |
| 2798 | /* We treat some Unicode charset strings specially. */ |
| 2799 | switch (templ->mbminlen) { |
| 2800 | case 4: |
| 2801 | /* InnoDB should never have stripped partial |
| 2802 | UTF-32 characters. */ |
| 2803 | ut_a(!(len & 3)); |
| 2804 | break; |
| 2805 | case 2: |
| 2806 | /* A space char is two bytes, |
| 2807 | 0x0020 in UCS2 and UTF-16 */ |
| 2808 | |
| 2809 | if (UNIV_UNLIKELY(len & 1)) { |
| 2810 | /* A 0x20 has been stripped from the column. |
| 2811 | Pad it back. */ |
| 2812 | |
| 2813 | if (pad < field_end) { |
| 2814 | *pad++ = 0x20; |
| 2815 | } |
| 2816 | } |
| 2817 | } |
| 2818 | |
| 2819 | row_mysql_pad_col(templ->mbminlen, pad, |
| 2820 | ulint(field_end - pad)); |
| 2821 | break; |
| 2822 | |
| 2823 | case DATA_BLOB: |
| 2824 | /* Store a pointer to the BLOB buffer to dest: the BLOB was |
| 2825 | already copied to the buffer in row_sel_store_mysql_rec */ |
| 2826 | |
| 2827 | row_mysql_store_blob_ref(dest, templ->mysql_col_len, data, |
| 2828 | len); |
| 2829 | break; |
| 2830 | |
| 2831 | case DATA_GEOMETRY: |
| 2832 | /* We store all geometry data as BLOB data at server layer. */ |
| 2833 | row_mysql_store_geometry(dest, templ->mysql_col_len, data, len); |
| 2834 | break; |
| 2835 | |
| 2836 | case DATA_MYSQL: |
| 2837 | memcpy(dest, data, len); |
| 2838 | |
| 2839 | ut_ad(templ->mysql_col_len >= len); |
| 2840 | ut_ad(templ->mbmaxlen >= templ->mbminlen); |
| 2841 | |
| 2842 | /* If field_no equals to templ->icp_rec_field_no, |
| 2843 | we are examining a row pointed by "icp_rec_field_no". |
| 2844 | There is possibility that icp_rec_field_no refers to |
| 2845 | a field in a secondary index while templ->rec_field_no |
| 2846 | points to field in a primary index. The length |
| 2847 | should still be equal, unless the field pointed |
| 2848 | by icp_rec_field_no has a prefix */ |
| 2849 | ut_ad(templ->mbmaxlen > templ->mbminlen |
| 2850 | || templ->mysql_col_len == len |
| 2851 | || (field_no == templ->icp_rec_field_no |
| 2852 | && field->prefix_len > 0)); |
| 2853 | |
| 2854 | /* The following assertion would fail for old tables |
| 2855 | containing UTF-8 ENUM columns due to Bug #9526. */ |
| 2856 | ut_ad(!templ->mbmaxlen |
| 2857 | || !(templ->mysql_col_len % templ->mbmaxlen)); |
| 2858 | ut_ad(len * templ->mbmaxlen >= templ->mysql_col_len |
| 2859 | || (field_no == templ->icp_rec_field_no |
| 2860 | && field->prefix_len > 0) |
| 2861 | || templ->rec_field_is_prefix); |
| 2862 | |
| 2863 | ut_ad(templ->is_virtual |
| 2864 | || !(field->prefix_len % templ->mbmaxlen)); |
| 2865 | |
| 2866 | if (templ->mbminlen == 1 && templ->mbmaxlen != 1) { |
| 2867 | /* Pad with spaces. This undoes the stripping |
| 2868 | done in row0mysql.cc, function |
| 2869 | row_mysql_store_col_in_innobase_format(). */ |
| 2870 | |
| 2871 | memset(dest + len, 0x20, templ->mysql_col_len - len); |
| 2872 | } |
| 2873 | break; |
| 2874 | |
| 2875 | default: |
| 2876 | #ifdef UNIV_DEBUG |
| 2877 | case DATA_SYS_CHILD: |
| 2878 | case DATA_SYS: |
| 2879 | /* These column types should never be shipped to MySQL. */ |
| 2880 | ut_ad(0); |
| 2881 | /* fall through */ |
| 2882 | |
| 2883 | case DATA_CHAR: |
| 2884 | case DATA_FIXBINARY: |
| 2885 | case DATA_FLOAT: |
| 2886 | case DATA_DOUBLE: |
| 2887 | case DATA_DECIMAL: |
| 2888 | /* Above are the valid column types for MySQL data. */ |
| 2889 | #endif /* UNIV_DEBUG */ |
| 2890 | ut_ad((templ->is_virtual && !field) |
| 2891 | || (field && field->prefix_len |
| 2892 | ? field->prefix_len == len |
| 2893 | : templ->mysql_col_len == len)); |
| 2894 | memcpy(dest, data, len); |
| 2895 | } |
| 2896 | } |
| 2897 | |
| 2898 | #ifdef UNIV_DEBUG |
| 2899 | /** Convert a field from Innobase format to MySQL format. */ |
| 2900 | # define row_sel_store_mysql_field(m,p,r,i,o,f,t) \ |
| 2901 | row_sel_store_mysql_field_func(m,p,r,i,o,f,t) |
| 2902 | #else /* UNIV_DEBUG */ |
| 2903 | /** Convert a field from Innobase format to MySQL format. */ |
| 2904 | # define row_sel_store_mysql_field(m,p,r,i,o,f,t) \ |
| 2905 | row_sel_store_mysql_field_func(m,p,r,o,f,t) |
| 2906 | #endif /* UNIV_DEBUG */ |
| 2907 | /** Convert a field in the Innobase format to a field in the MySQL format. |
| 2908 | @param[out] mysql_rec record in the MySQL format |
| 2909 | @param[in,out] prebuilt prebuilt struct |
| 2910 | @param[in] rec InnoDB record; must be protected |
| 2911 | by a page latch |
| 2912 | @param[in] index index of rec |
| 2913 | @param[in] offsets array returned by rec_get_offsets() |
| 2914 | @param[in] field_no templ->rec_field_no or |
| 2915 | templ->clust_rec_field_no |
| 2916 | or templ->icp_rec_field_no |
| 2917 | @param[in] templ row template |
| 2918 | */ |
| 2919 | static MY_ATTRIBUTE((warn_unused_result)) |
| 2920 | ibool |
| 2921 | row_sel_store_mysql_field_func( |
| 2922 | byte* mysql_rec, |
| 2923 | row_prebuilt_t* prebuilt, |
| 2924 | const rec_t* rec, |
| 2925 | #ifdef UNIV_DEBUG |
| 2926 | const dict_index_t* index, |
| 2927 | #endif |
| 2928 | const ulint* offsets, |
| 2929 | ulint field_no, |
| 2930 | const mysql_row_templ_t*templ) |
| 2931 | { |
| 2932 | DBUG_ENTER("row_sel_store_mysql_field_func" ); |
| 2933 | |
| 2934 | const byte* data; |
| 2935 | ulint len; |
| 2936 | |
| 2937 | ut_ad(prebuilt->default_rec); |
| 2938 | ut_ad(templ); |
| 2939 | ut_ad(templ >= prebuilt->mysql_template); |
| 2940 | ut_ad(templ < &prebuilt->mysql_template[prebuilt->n_template]); |
| 2941 | ut_ad(field_no == templ->clust_rec_field_no |
| 2942 | || field_no == templ->rec_field_no |
| 2943 | || field_no == templ->icp_rec_field_no); |
| 2944 | ut_ad(rec_offs_validate(rec, index, offsets)); |
| 2945 | |
| 2946 | if (UNIV_UNLIKELY(rec_offs_nth_extern(offsets, field_no) != 0)) { |
| 2947 | |
| 2948 | mem_heap_t* heap; |
| 2949 | /* Copy an externally stored field to a temporary heap */ |
| 2950 | |
| 2951 | ut_ad(field_no == templ->clust_rec_field_no); |
| 2952 | |
| 2953 | if (DATA_LARGE_MTYPE(templ->type)) { |
| 2954 | if (prebuilt->blob_heap == NULL) { |
| 2955 | prebuilt->blob_heap = mem_heap_create( |
| 2956 | srv_page_size); |
| 2957 | } |
| 2958 | |
| 2959 | heap = prebuilt->blob_heap; |
| 2960 | } else { |
| 2961 | heap = mem_heap_create(srv_page_size); |
| 2962 | } |
| 2963 | |
| 2964 | /* NOTE: if we are retrieving a big BLOB, we may |
| 2965 | already run out of memory in the next call, which |
| 2966 | causes an assert */ |
| 2967 | |
| 2968 | data = btr_rec_copy_externally_stored_field( |
| 2969 | rec, offsets, |
| 2970 | dict_table_page_size(prebuilt->table), |
| 2971 | field_no, &len, heap); |
| 2972 | |
| 2973 | if (UNIV_UNLIKELY(!data)) { |
| 2974 | /* The externally stored field was not written |
| 2975 | yet. This record should only be seen by |
| 2976 | recv_recovery_rollback_active() or any |
| 2977 | TRX_ISO_READ_UNCOMMITTED transactions. */ |
| 2978 | |
| 2979 | if (heap != prebuilt->blob_heap) { |
| 2980 | mem_heap_free(heap); |
| 2981 | } |
| 2982 | |
| 2983 | ut_a(prebuilt->trx->isolation_level |
| 2984 | == TRX_ISO_READ_UNCOMMITTED); |
| 2985 | DBUG_RETURN(FALSE); |
| 2986 | } |
| 2987 | |
| 2988 | ut_a(len != UNIV_SQL_NULL); |
| 2989 | |
| 2990 | row_sel_field_store_in_mysql_format( |
| 2991 | mysql_rec + templ->mysql_col_offset, |
| 2992 | templ, index, field_no, data, len); |
| 2993 | |
| 2994 | if (heap != prebuilt->blob_heap) { |
| 2995 | mem_heap_free(heap); |
| 2996 | } |
| 2997 | } else { |
| 2998 | /* The field is stored in the index record, or |
| 2999 | in the 'default row' for instant ADD COLUMN. */ |
| 3000 | |
| 3001 | if (rec_offs_nth_default(offsets, field_no)) { |
| 3002 | ut_ad(dict_index_is_clust(index)); |
| 3003 | ut_ad(index->is_instant()); |
| 3004 | const dict_index_t* clust_index |
| 3005 | = dict_table_get_first_index(prebuilt->table); |
| 3006 | ut_ad(index == clust_index); |
| 3007 | data = clust_index->instant_field_value(field_no,&len); |
| 3008 | } else { |
| 3009 | data = rec_get_nth_field(rec, offsets, field_no, &len); |
| 3010 | } |
| 3011 | |
| 3012 | if (len == UNIV_SQL_NULL) { |
| 3013 | /* MySQL assumes that the field for an SQL |
| 3014 | NULL value is set to the default value. */ |
| 3015 | ut_ad(templ->mysql_null_bit_mask); |
| 3016 | |
| 3017 | UNIV_MEM_ASSERT_RW(prebuilt->default_rec |
| 3018 | + templ->mysql_col_offset, |
| 3019 | templ->mysql_col_len); |
| 3020 | mysql_rec[templ->mysql_null_byte_offset] |
| 3021 | |= (byte) templ->mysql_null_bit_mask; |
| 3022 | memcpy(mysql_rec + templ->mysql_col_offset, |
| 3023 | (const byte*) prebuilt->default_rec |
| 3024 | + templ->mysql_col_offset, |
| 3025 | templ->mysql_col_len); |
| 3026 | DBUG_RETURN(TRUE); |
| 3027 | } |
| 3028 | |
| 3029 | if (DATA_LARGE_MTYPE(templ->type) |
| 3030 | || DATA_GEOMETRY_MTYPE(templ->type)) { |
| 3031 | |
| 3032 | /* It is a BLOB field locally stored in the |
| 3033 | InnoDB record: we MUST copy its contents to |
| 3034 | prebuilt->blob_heap here because |
| 3035 | row_sel_field_store_in_mysql_format() stores a |
| 3036 | pointer to the data, and the data passed to us |
| 3037 | will be invalid as soon as the |
| 3038 | mini-transaction is committed and the page |
| 3039 | latch on the clustered index page is |
| 3040 | released. */ |
| 3041 | |
| 3042 | if (prebuilt->blob_heap == NULL) { |
| 3043 | prebuilt->blob_heap = mem_heap_create( |
| 3044 | srv_page_size); |
| 3045 | DBUG_PRINT("anna" , ("blob_heap allocated: %p" , |
| 3046 | prebuilt->blob_heap)); |
| 3047 | } |
| 3048 | |
| 3049 | data = static_cast<byte*>( |
| 3050 | mem_heap_dup(prebuilt->blob_heap, data, len)); |
| 3051 | } |
| 3052 | |
| 3053 | row_sel_field_store_in_mysql_format( |
| 3054 | mysql_rec + templ->mysql_col_offset, |
| 3055 | templ, index, field_no, data, len); |
| 3056 | } |
| 3057 | |
| 3058 | ut_ad(len != UNIV_SQL_NULL); |
| 3059 | |
| 3060 | if (templ->mysql_null_bit_mask) { |
| 3061 | /* It is a nullable column with a non-NULL |
| 3062 | value */ |
| 3063 | mysql_rec[templ->mysql_null_byte_offset] |
| 3064 | &= ~(byte) templ->mysql_null_bit_mask; |
| 3065 | } |
| 3066 | |
| 3067 | DBUG_RETURN(TRUE); |
| 3068 | } |
| 3069 | |
| 3070 | /** Convert a row in the Innobase format to a row in the MySQL format. |
| 3071 | Note that the template in prebuilt may advise us to copy only a few |
| 3072 | columns to mysql_rec, other columns are left blank. All columns may not |
| 3073 | be needed in the query. |
| 3074 | @param[out] mysql_rec row in the MySQL format |
| 3075 | @param[in] prebuilt prebuilt structure |
| 3076 | @param[in] rec Innobase record in the index |
| 3077 | which was described in prebuilt's |
| 3078 | template, or in the clustered index; |
| 3079 | must be protected by a page latch |
| 3080 | @param[in] vrow virtual columns |
| 3081 | @param[in] rec_clust whether the rec in the clustered index |
| 3082 | @param[in] index index of rec |
| 3083 | @param[in] offsets array returned by rec_get_offsets(rec) |
| 3084 | @return TRUE on success, FALSE if not all columns could be retrieved */ |
| 3085 | static MY_ATTRIBUTE((warn_unused_result)) |
| 3086 | ibool |
| 3087 | row_sel_store_mysql_rec( |
| 3088 | byte* mysql_rec, |
| 3089 | row_prebuilt_t* prebuilt, |
| 3090 | const rec_t* rec, |
| 3091 | const dtuple_t* vrow, |
| 3092 | bool rec_clust, |
| 3093 | const dict_index_t* index, |
| 3094 | const ulint* offsets) |
| 3095 | { |
| 3096 | DBUG_ENTER("row_sel_store_mysql_rec" ); |
| 3097 | |
| 3098 | ut_ad(rec_clust || index == prebuilt->index); |
| 3099 | ut_ad(!rec_clust || dict_index_is_clust(index)); |
| 3100 | |
| 3101 | if (UNIV_LIKELY_NULL(prebuilt->blob_heap)) { |
| 3102 | row_mysql_prebuilt_free_blob_heap(prebuilt); |
| 3103 | } |
| 3104 | |
| 3105 | for (ulint i = 0; i < prebuilt->n_template; i++) { |
| 3106 | const mysql_row_templ_t*templ = &prebuilt->mysql_template[i]; |
| 3107 | |
| 3108 | if (templ->is_virtual && dict_index_is_clust(index)) { |
| 3109 | |
| 3110 | /* Skip virtual columns if it is not a covered |
| 3111 | search or virtual key read is not requested. */ |
| 3112 | if (!dict_index_has_virtual(prebuilt->index) |
| 3113 | || (!prebuilt->read_just_key |
| 3114 | && !prebuilt->m_read_virtual_key) |
| 3115 | || !rec_clust) { |
| 3116 | continue; |
| 3117 | } |
| 3118 | |
| 3119 | dict_v_col_t* col; |
| 3120 | col = dict_table_get_nth_v_col( |
| 3121 | index->table, templ->clust_rec_field_no); |
| 3122 | |
| 3123 | ut_ad(vrow); |
| 3124 | |
| 3125 | const dfield_t* dfield = dtuple_get_nth_v_field( |
| 3126 | vrow, col->v_pos); |
| 3127 | |
| 3128 | /* If this is a partitioned table, it might request |
| 3129 | InnoDB to fill out virtual column data for serach |
| 3130 | index key values while other non key columns are also |
| 3131 | getting selected. The non-key virtual columns may |
| 3132 | not be materialized and we should skip them. */ |
| 3133 | if (dfield_get_type(dfield)->mtype == DATA_MISSING) { |
| 3134 | #ifdef UNIV_DEBUG |
| 3135 | ulint prefix; |
| 3136 | #endif /* UNIV_DEBUG */ |
| 3137 | ut_ad(prebuilt->m_read_virtual_key); |
| 3138 | |
| 3139 | /* If it is part of index key the data should |
| 3140 | have been materialized. */ |
| 3141 | ut_ad(dict_index_get_nth_col_or_prefix_pos( |
| 3142 | prebuilt->index, col->v_pos, false, |
| 3143 | true, &prefix) == ULINT_UNDEFINED); |
| 3144 | |
| 3145 | continue; |
| 3146 | } |
| 3147 | |
| 3148 | if (dfield->len == UNIV_SQL_NULL) { |
| 3149 | mysql_rec[templ->mysql_null_byte_offset] |
| 3150 | |= (byte) templ->mysql_null_bit_mask; |
| 3151 | memcpy(mysql_rec |
| 3152 | + templ->mysql_col_offset, |
| 3153 | (const byte*) prebuilt->default_rec |
| 3154 | + templ->mysql_col_offset, |
| 3155 | templ->mysql_col_len); |
| 3156 | } else { |
| 3157 | row_sel_field_store_in_mysql_format( |
| 3158 | mysql_rec + templ->mysql_col_offset, |
| 3159 | templ, index, templ->clust_rec_field_no, |
| 3160 | (const byte*)dfield->data, dfield->len); |
| 3161 | if (templ->mysql_null_bit_mask) { |
| 3162 | mysql_rec[ |
| 3163 | templ->mysql_null_byte_offset] |
| 3164 | &= ~(byte) templ->mysql_null_bit_mask; |
| 3165 | } |
| 3166 | } |
| 3167 | |
| 3168 | continue; |
| 3169 | } |
| 3170 | |
| 3171 | const ulint field_no |
| 3172 | = rec_clust |
| 3173 | ? templ->clust_rec_field_no |
| 3174 | : templ->rec_field_no; |
| 3175 | /* We should never deliver column prefixes to MySQL, |
| 3176 | except for evaluating innobase_index_cond(). */ |
| 3177 | /* ...actually, we do want to do this in order to |
| 3178 | support the prefix query optimization. |
| 3179 | |
| 3180 | ut_ad(dict_index_get_nth_field(index, field_no)->prefix_len |
| 3181 | == 0); |
| 3182 | |
| 3183 | ...so we disable this assert. */ |
| 3184 | |
| 3185 | if (!row_sel_store_mysql_field(mysql_rec, prebuilt, |
| 3186 | rec, index, offsets, |
| 3187 | field_no, templ)) { |
| 3188 | |
| 3189 | DBUG_RETURN(FALSE); |
| 3190 | } |
| 3191 | } |
| 3192 | |
| 3193 | /* FIXME: We only need to read the doc_id if an FTS indexed |
| 3194 | column is being updated. |
| 3195 | NOTE, the record can be cluster or secondary index record. |
| 3196 | if secondary index is used then FTS_DOC_ID column should be part |
| 3197 | of this index. */ |
| 3198 | if (dict_table_has_fts_index(prebuilt->table)) { |
| 3199 | if (dict_index_is_clust(index) |
| 3200 | || prebuilt->fts_doc_id_in_read_set) { |
| 3201 | prebuilt->fts_doc_id = fts_get_doc_id_from_rec( |
| 3202 | prebuilt->table, rec, index, NULL); |
| 3203 | } |
| 3204 | } |
| 3205 | |
| 3206 | DBUG_RETURN(TRUE); |
| 3207 | } |
| 3208 | |
| 3209 | /*********************************************************************//** |
| 3210 | Builds a previous version of a clustered index record for a consistent read |
| 3211 | @return DB_SUCCESS or error code */ |
| 3212 | static MY_ATTRIBUTE((warn_unused_result)) |
| 3213 | dberr_t |
| 3214 | row_sel_build_prev_vers_for_mysql( |
| 3215 | /*==============================*/ |
| 3216 | ReadView* read_view, /*!< in: read view */ |
| 3217 | dict_index_t* clust_index, /*!< in: clustered index */ |
| 3218 | row_prebuilt_t* prebuilt, /*!< in: prebuilt struct */ |
| 3219 | const rec_t* rec, /*!< in: record in a clustered index */ |
| 3220 | ulint** offsets, /*!< in/out: offsets returned by |
| 3221 | rec_get_offsets(rec, clust_index) */ |
| 3222 | mem_heap_t** offset_heap, /*!< in/out: memory heap from which |
| 3223 | the offsets are allocated */ |
| 3224 | rec_t** old_vers, /*!< out: old version, or NULL if the |
| 3225 | record does not exist in the view: |
| 3226 | i.e., it was freshly inserted |
| 3227 | afterwards */ |
| 3228 | const dtuple_t**vrow, /*!< out: dtuple to hold old virtual |
| 3229 | column data */ |
| 3230 | mtr_t* mtr) /*!< in: mtr */ |
| 3231 | { |
| 3232 | dberr_t err; |
| 3233 | |
| 3234 | if (prebuilt->old_vers_heap) { |
| 3235 | mem_heap_empty(prebuilt->old_vers_heap); |
| 3236 | } else { |
| 3237 | prebuilt->old_vers_heap = mem_heap_create(200); |
| 3238 | } |
| 3239 | |
| 3240 | err = row_vers_build_for_consistent_read( |
| 3241 | rec, mtr, clust_index, offsets, read_view, offset_heap, |
| 3242 | prebuilt->old_vers_heap, old_vers, vrow); |
| 3243 | return(err); |
| 3244 | } |
| 3245 | |
| 3246 | /*********************************************************************//** |
| 3247 | Retrieves the clustered index record corresponding to a record in a |
| 3248 | non-clustered index. Does the necessary locking. Used in the MySQL |
| 3249 | interface. |
| 3250 | @return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, or error code */ |
| 3251 | static MY_ATTRIBUTE((warn_unused_result)) |
| 3252 | dberr_t |
| 3253 | row_sel_get_clust_rec_for_mysql( |
| 3254 | /*============================*/ |
| 3255 | row_prebuilt_t* prebuilt,/*!< in: prebuilt struct in the handle */ |
| 3256 | dict_index_t* sec_index,/*!< in: secondary index where rec resides */ |
| 3257 | const rec_t* rec, /*!< in: record in a non-clustered index; if |
| 3258 | this is a locking read, then rec is not |
| 3259 | allowed to be delete-marked, and that would |
| 3260 | not make sense either */ |
| 3261 | que_thr_t* thr, /*!< in: query thread */ |
| 3262 | const rec_t** out_rec,/*!< out: clustered record or an old version of |
| 3263 | it, NULL if the old version did not exist |
| 3264 | in the read view, i.e., it was a fresh |
| 3265 | inserted version */ |
| 3266 | ulint** offsets,/*!< in: offsets returned by |
| 3267 | rec_get_offsets(rec, sec_index); |
| 3268 | out: offsets returned by |
| 3269 | rec_get_offsets(out_rec, clust_index) */ |
| 3270 | mem_heap_t** offset_heap,/*!< in/out: memory heap from which |
| 3271 | the offsets are allocated */ |
| 3272 | const dtuple_t**vrow, /*!< out: virtual column to fill */ |
| 3273 | mtr_t* mtr) /*!< in: mtr used to get access to the |
| 3274 | non-clustered record; the same mtr is used to |
| 3275 | access the clustered index */ |
| 3276 | { |
| 3277 | dict_index_t* clust_index; |
| 3278 | const rec_t* clust_rec; |
| 3279 | rec_t* old_vers; |
| 3280 | dberr_t err; |
| 3281 | trx_t* trx; |
| 3282 | |
| 3283 | *out_rec = NULL; |
| 3284 | trx = thr_get_trx(thr); |
| 3285 | |
| 3286 | srv_stats.n_sec_rec_cluster_reads.inc( |
| 3287 | thd_get_thread_id(trx->mysql_thd)); |
| 3288 | |
| 3289 | row_build_row_ref_in_tuple(prebuilt->clust_ref, rec, |
| 3290 | sec_index, *offsets); |
| 3291 | |
| 3292 | clust_index = dict_table_get_first_index(sec_index->table); |
| 3293 | |
| 3294 | btr_pcur_open_with_no_init(clust_index, prebuilt->clust_ref, |
| 3295 | PAGE_CUR_LE, BTR_SEARCH_LEAF, |
| 3296 | prebuilt->clust_pcur, 0, mtr); |
| 3297 | |
| 3298 | clust_rec = btr_pcur_get_rec(prebuilt->clust_pcur); |
| 3299 | |
| 3300 | prebuilt->clust_pcur->trx_if_known = trx; |
| 3301 | |
| 3302 | /* Note: only if the search ends up on a non-infimum record is the |
| 3303 | low_match value the real match to the search tuple */ |
| 3304 | |
| 3305 | if (!page_rec_is_user_rec(clust_rec) |
| 3306 | || btr_pcur_get_low_match(prebuilt->clust_pcur) |
| 3307 | < dict_index_get_n_unique(clust_index)) { |
| 3308 | btr_cur_t* btr_cur = btr_pcur_get_btr_cur(prebuilt->pcur); |
| 3309 | |
| 3310 | /* If this is a spatial index scan, and we are reading |
| 3311 | from a shadow buffer, the record could be already |
| 3312 | deleted (due to rollback etc.). So get the original |
| 3313 | page and verify that */ |
| 3314 | if (dict_index_is_spatial(sec_index) |
| 3315 | && btr_cur->rtr_info->matches |
| 3316 | && (page_align(rec) |
| 3317 | == btr_cur->rtr_info->matches->block.frame |
| 3318 | || rec != btr_pcur_get_rec(prebuilt->pcur))) { |
| 3319 | #ifdef UNIV_DEBUG |
| 3320 | rtr_info_t* rtr_info = btr_cur->rtr_info; |
| 3321 | mutex_enter(&rtr_info->matches->rtr_match_mutex); |
| 3322 | /* The page could be deallocated (by rollback etc.) */ |
| 3323 | if (!rtr_info->matches->valid) { |
| 3324 | mutex_exit(&rtr_info->matches->rtr_match_mutex); |
| 3325 | clust_rec = NULL; |
| 3326 | |
| 3327 | err = DB_SUCCESS; |
| 3328 | goto func_exit; |
| 3329 | } |
| 3330 | mutex_exit(&rtr_info->matches->rtr_match_mutex); |
| 3331 | |
| 3332 | if (rec_get_deleted_flag(rec, |
| 3333 | dict_table_is_comp(sec_index->table)) |
| 3334 | && prebuilt->select_lock_type == LOCK_NONE) { |
| 3335 | |
| 3336 | clust_rec = NULL; |
| 3337 | |
| 3338 | err = DB_SUCCESS; |
| 3339 | goto func_exit; |
| 3340 | } |
| 3341 | |
| 3342 | if (rec != btr_pcur_get_rec(prebuilt->pcur)) { |
| 3343 | clust_rec = NULL; |
| 3344 | |
| 3345 | err = DB_SUCCESS; |
| 3346 | goto func_exit; |
| 3347 | } |
| 3348 | |
| 3349 | /* FIXME: Why is this block not the |
| 3350 | same as btr_pcur_get_block(prebuilt->pcur), |
| 3351 | and is it not unsafe to use RW_NO_LATCH here? */ |
| 3352 | buf_block_t* block = buf_page_get_gen( |
| 3353 | btr_pcur_get_block(prebuilt->pcur)->page.id, |
| 3354 | dict_table_page_size(sec_index->table), |
| 3355 | RW_NO_LATCH, NULL, BUF_GET, |
| 3356 | __FILE__, __LINE__, mtr, &err); |
| 3357 | mem_heap_t* heap = mem_heap_create(256); |
| 3358 | dtuple_t* tuple = dict_index_build_data_tuple( |
| 3359 | rec, sec_index, true, |
| 3360 | sec_index->n_fields, heap); |
| 3361 | page_cur_t page_cursor; |
| 3362 | |
| 3363 | ulint low_match = page_cur_search( |
| 3364 | block, sec_index, tuple, |
| 3365 | PAGE_CUR_LE, &page_cursor); |
| 3366 | |
| 3367 | ut_ad(low_match < dtuple_get_n_fields_cmp(tuple)); |
| 3368 | mem_heap_free(heap); |
| 3369 | clust_rec = NULL; |
| 3370 | |
| 3371 | err = DB_SUCCESS; |
| 3372 | goto func_exit; |
| 3373 | #endif /* UNIV_DEBUG */ |
| 3374 | } else if (!rec_get_deleted_flag(rec, |
| 3375 | dict_table_is_comp(sec_index->table)) |
| 3376 | || prebuilt->select_lock_type != LOCK_NONE) { |
| 3377 | /* In a rare case it is possible that no clust |
| 3378 | rec is found for a delete-marked secondary index |
| 3379 | record: if in row0umod.cc in |
| 3380 | row_undo_mod_remove_clust_low() we have already removed |
| 3381 | the clust rec, while purge is still cleaning and |
| 3382 | removing secondary index records associated with |
| 3383 | earlier versions of the clustered index record. |
| 3384 | In that case we know that the clustered index |
| 3385 | record did not exist in the read view of trx. */ |
| 3386 | ib::error() << "Clustered record for sec rec not found" |
| 3387 | " index " << sec_index->name |
| 3388 | << " of table " << sec_index->table->name; |
| 3389 | |
| 3390 | fputs("InnoDB: sec index record " , stderr); |
| 3391 | rec_print(stderr, rec, sec_index); |
| 3392 | fputs("\n" |
| 3393 | "InnoDB: clust index record " , stderr); |
| 3394 | rec_print(stderr, clust_rec, clust_index); |
| 3395 | putc('\n', stderr); |
| 3396 | trx_print(stderr, trx, 600); |
| 3397 | fputs("\n" |
| 3398 | "InnoDB: Submit a detailed bug report" |
| 3399 | " to https://jira.mariadb.org/\n" , stderr); |
| 3400 | ut_ad(0); |
| 3401 | } |
| 3402 | |
| 3403 | clust_rec = NULL; |
| 3404 | |
| 3405 | err = DB_SUCCESS; |
| 3406 | goto func_exit; |
| 3407 | } |
| 3408 | |
| 3409 | *offsets = rec_get_offsets(clust_rec, clust_index, *offsets, true, |
| 3410 | ULINT_UNDEFINED, offset_heap); |
| 3411 | |
| 3412 | if (prebuilt->select_lock_type != LOCK_NONE) { |
| 3413 | /* Try to place a lock on the index record; we are searching |
| 3414 | the clust rec with a unique condition, hence |
| 3415 | we set a LOCK_REC_NOT_GAP type lock */ |
| 3416 | |
| 3417 | err = lock_clust_rec_read_check_and_lock( |
| 3418 | 0, btr_pcur_get_block(prebuilt->clust_pcur), |
| 3419 | clust_rec, clust_index, *offsets, |
| 3420 | static_cast<lock_mode>(prebuilt->select_lock_type), |
| 3421 | LOCK_REC_NOT_GAP, |
| 3422 | thr); |
| 3423 | |
| 3424 | switch (err) { |
| 3425 | case DB_SUCCESS: |
| 3426 | case DB_SUCCESS_LOCKED_REC: |
| 3427 | break; |
| 3428 | default: |
| 3429 | goto err_exit; |
| 3430 | } |
| 3431 | } else { |
| 3432 | /* This is a non-locking consistent read: if necessary, fetch |
| 3433 | a previous version of the record */ |
| 3434 | |
| 3435 | old_vers = NULL; |
| 3436 | |
| 3437 | /* If the isolation level allows reading of uncommitted data, |
| 3438 | then we never look for an earlier version */ |
| 3439 | |
| 3440 | if (trx->isolation_level > TRX_ISO_READ_UNCOMMITTED |
| 3441 | && !lock_clust_rec_cons_read_sees( |
| 3442 | clust_rec, clust_index, *offsets, |
| 3443 | &trx->read_view)) { |
| 3444 | |
| 3445 | /* The following call returns 'offsets' associated with |
| 3446 | 'old_vers' */ |
| 3447 | err = row_sel_build_prev_vers_for_mysql( |
| 3448 | &trx->read_view, clust_index, prebuilt, |
| 3449 | clust_rec, offsets, offset_heap, &old_vers, |
| 3450 | vrow, mtr); |
| 3451 | |
| 3452 | if (err != DB_SUCCESS || old_vers == NULL) { |
| 3453 | |
| 3454 | goto err_exit; |
| 3455 | } |
| 3456 | |
| 3457 | clust_rec = old_vers; |
| 3458 | } |
| 3459 | |
| 3460 | /* If we had to go to an earlier version of row or the |
| 3461 | secondary index record is delete marked, then it may be that |
| 3462 | the secondary index record corresponding to clust_rec |
| 3463 | (or old_vers) is not rec; in that case we must ignore |
| 3464 | such row because in our snapshot rec would not have existed. |
| 3465 | Remember that from rec we cannot see directly which transaction |
| 3466 | id corresponds to it: we have to go to the clustered index |
| 3467 | record. A query where we want to fetch all rows where |
| 3468 | the secondary index value is in some interval would return |
| 3469 | a wrong result if we would not drop rows which we come to |
| 3470 | visit through secondary index records that would not really |
| 3471 | exist in our snapshot. */ |
| 3472 | |
| 3473 | /* And for spatial index, since the rec is from shadow buffer, |
| 3474 | so we need to check if it's exactly match the clust_rec. */ |
| 3475 | if (clust_rec |
| 3476 | && (old_vers |
| 3477 | || trx->isolation_level <= TRX_ISO_READ_UNCOMMITTED |
| 3478 | || dict_index_is_spatial(sec_index) |
| 3479 | || rec_get_deleted_flag(rec, dict_table_is_comp( |
| 3480 | sec_index->table))) |
| 3481 | && !row_sel_sec_rec_is_for_clust_rec( |
| 3482 | rec, sec_index, clust_rec, clust_index, thr)) { |
| 3483 | clust_rec = NULL; |
| 3484 | } |
| 3485 | |
| 3486 | err = DB_SUCCESS; |
| 3487 | } |
| 3488 | |
| 3489 | func_exit: |
| 3490 | *out_rec = clust_rec; |
| 3491 | |
| 3492 | if (prebuilt->select_lock_type != LOCK_NONE) { |
| 3493 | /* We may use the cursor in update or in unlock_row(): |
| 3494 | store its position */ |
| 3495 | |
| 3496 | btr_pcur_store_position(prebuilt->clust_pcur, mtr); |
| 3497 | } |
| 3498 | |
| 3499 | err_exit: |
| 3500 | return(err); |
| 3501 | } |
| 3502 | |
| 3503 | /********************************************************************//** |
| 3504 | Restores cursor position after it has been stored. We have to take into |
| 3505 | account that the record cursor was positioned on may have been deleted. |
| 3506 | Then we may have to move the cursor one step up or down. |
| 3507 | @return true if we may need to process the record the cursor is now |
| 3508 | positioned on (i.e. we should not go to the next record yet) */ |
| 3509 | static |
| 3510 | bool |
| 3511 | sel_restore_position_for_mysql( |
| 3512 | /*===========================*/ |
| 3513 | ibool* same_user_rec, /*!< out: TRUE if we were able to restore |
| 3514 | the cursor on a user record with the |
| 3515 | same ordering prefix in in the |
| 3516 | B-tree index */ |
| 3517 | ulint latch_mode, /*!< in: latch mode wished in |
| 3518 | restoration */ |
| 3519 | btr_pcur_t* pcur, /*!< in: cursor whose position |
| 3520 | has been stored */ |
| 3521 | ibool moves_up, /*!< in: TRUE if the cursor moves up |
| 3522 | in the index */ |
| 3523 | mtr_t* mtr) /*!< in: mtr; CAUTION: may commit |
| 3524 | mtr temporarily! */ |
| 3525 | { |
| 3526 | ibool success; |
| 3527 | |
| 3528 | success = btr_pcur_restore_position(latch_mode, pcur, mtr); |
| 3529 | |
| 3530 | *same_user_rec = success; |
| 3531 | |
| 3532 | ut_ad(!success || pcur->rel_pos == BTR_PCUR_ON); |
| 3533 | #ifdef UNIV_DEBUG |
| 3534 | if (pcur->pos_state == BTR_PCUR_IS_POSITIONED_OPTIMISTIC) { |
| 3535 | ut_ad(pcur->rel_pos == BTR_PCUR_BEFORE |
| 3536 | || pcur->rel_pos == BTR_PCUR_AFTER); |
| 3537 | } else { |
| 3538 | ut_ad(pcur->pos_state == BTR_PCUR_IS_POSITIONED); |
| 3539 | ut_ad((pcur->rel_pos == BTR_PCUR_ON) |
| 3540 | == btr_pcur_is_on_user_rec(pcur)); |
| 3541 | } |
| 3542 | #endif /* UNIV_DEBUG */ |
| 3543 | |
| 3544 | /* The position may need be adjusted for rel_pos and moves_up. */ |
| 3545 | |
| 3546 | switch (pcur->rel_pos) { |
| 3547 | case BTR_PCUR_ON: |
| 3548 | if (!success && moves_up) { |
| 3549 | next: |
| 3550 | if (btr_pcur_move_to_next(pcur, mtr) |
| 3551 | && rec_is_default_row(btr_pcur_get_rec(pcur), |
| 3552 | pcur->btr_cur.index)) { |
| 3553 | btr_pcur_move_to_next(pcur, mtr); |
| 3554 | } |
| 3555 | |
| 3556 | return true; |
| 3557 | } |
| 3558 | return(!success); |
| 3559 | case BTR_PCUR_AFTER_LAST_IN_TREE: |
| 3560 | case BTR_PCUR_BEFORE_FIRST_IN_TREE: |
| 3561 | return true; |
| 3562 | case BTR_PCUR_AFTER: |
| 3563 | /* positioned to record after pcur->old_rec. */ |
| 3564 | pcur->pos_state = BTR_PCUR_IS_POSITIONED; |
| 3565 | prev: |
| 3566 | if (btr_pcur_is_on_user_rec(pcur) && !moves_up |
| 3567 | && !rec_is_default_row(btr_pcur_get_rec(pcur), |
| 3568 | pcur->btr_cur.index)) { |
| 3569 | btr_pcur_move_to_prev(pcur, mtr); |
| 3570 | } |
| 3571 | return true; |
| 3572 | case BTR_PCUR_BEFORE: |
| 3573 | /* For non optimistic restoration: |
| 3574 | The position is now set to the record before pcur->old_rec. |
| 3575 | |
| 3576 | For optimistic restoration: |
| 3577 | The position also needs to take the previous search_mode into |
| 3578 | consideration. */ |
| 3579 | |
| 3580 | switch (pcur->pos_state) { |
| 3581 | case BTR_PCUR_IS_POSITIONED_OPTIMISTIC: |
| 3582 | pcur->pos_state = BTR_PCUR_IS_POSITIONED; |
| 3583 | if (pcur->search_mode == PAGE_CUR_GE) { |
| 3584 | /* Positioned during Greater or Equal search |
| 3585 | with BTR_PCUR_BEFORE. Optimistic restore to |
| 3586 | the same record. If scanning for lower then |
| 3587 | we must move to previous record. |
| 3588 | This can happen with: |
| 3589 | HANDLER READ idx a = (const); |
| 3590 | HANDLER READ idx PREV; */ |
| 3591 | goto prev; |
| 3592 | } |
| 3593 | return true; |
| 3594 | case BTR_PCUR_IS_POSITIONED: |
| 3595 | if (moves_up && btr_pcur_is_on_user_rec(pcur)) { |
| 3596 | goto next; |
| 3597 | } |
| 3598 | return true; |
| 3599 | case BTR_PCUR_WAS_POSITIONED: |
| 3600 | case BTR_PCUR_NOT_POSITIONED: |
| 3601 | break; |
| 3602 | } |
| 3603 | } |
| 3604 | ut_ad(0); |
| 3605 | return true; |
| 3606 | } |
| 3607 | |
| 3608 | /********************************************************************//** |
| 3609 | Copies a cached field for MySQL from the fetch cache. */ |
| 3610 | static |
| 3611 | void |
| 3612 | row_sel_copy_cached_field_for_mysql( |
| 3613 | /*================================*/ |
| 3614 | byte* buf, /*!< in/out: row buffer */ |
| 3615 | const byte* cache, /*!< in: cached row */ |
| 3616 | const mysql_row_templ_t*templ) /*!< in: column template */ |
| 3617 | { |
| 3618 | ulint len; |
| 3619 | |
| 3620 | buf += templ->mysql_col_offset; |
| 3621 | cache += templ->mysql_col_offset; |
| 3622 | |
| 3623 | UNIV_MEM_ASSERT_W(buf, templ->mysql_col_len); |
| 3624 | |
| 3625 | if (templ->mysql_type == DATA_MYSQL_TRUE_VARCHAR |
| 3626 | && (templ->type != DATA_INT)) { |
| 3627 | /* Check for != DATA_INT to make sure we do |
| 3628 | not treat MySQL ENUM or SET as a true VARCHAR! |
| 3629 | Find the actual length of the true VARCHAR field. */ |
| 3630 | row_mysql_read_true_varchar( |
| 3631 | &len, cache, templ->mysql_length_bytes); |
| 3632 | len += templ->mysql_length_bytes; |
| 3633 | UNIV_MEM_INVALID(buf, templ->mysql_col_len); |
| 3634 | } else { |
| 3635 | len = templ->mysql_col_len; |
| 3636 | } |
| 3637 | |
| 3638 | ut_memcpy(buf, cache, len); |
| 3639 | } |
| 3640 | |
| 3641 | /** Copy used fields from cached row. |
| 3642 | Copy cache record field by field, don't touch fields that |
| 3643 | are not covered by current key. |
| 3644 | @param[out] buf Where to copy the MySQL row. |
| 3645 | @param[in] cached_rec What to copy (in MySQL row format). |
| 3646 | @param[in] prebuilt prebuilt struct. */ |
| 3647 | void |
| 3648 | row_sel_copy_cached_fields_for_mysql( |
| 3649 | byte* buf, |
| 3650 | const byte* cached_rec, |
| 3651 | row_prebuilt_t* prebuilt) |
| 3652 | { |
| 3653 | const mysql_row_templ_t*templ; |
| 3654 | ulint i; |
| 3655 | for (i = 0; i < prebuilt->n_template; i++) { |
| 3656 | templ = prebuilt->mysql_template + i; |
| 3657 | |
| 3658 | /* Skip virtual columns */ |
| 3659 | if (templ->is_virtual) { |
| 3660 | continue; |
| 3661 | } |
| 3662 | |
| 3663 | row_sel_copy_cached_field_for_mysql( |
| 3664 | buf, cached_rec, templ); |
| 3665 | /* Copy NULL bit of the current field from cached_rec |
| 3666 | to buf */ |
| 3667 | if (templ->mysql_null_bit_mask) { |
| 3668 | buf[templ->mysql_null_byte_offset] |
| 3669 | ^= (buf[templ->mysql_null_byte_offset] |
| 3670 | ^ cached_rec[templ->mysql_null_byte_offset]) |
| 3671 | & (byte) templ->mysql_null_bit_mask; |
| 3672 | } |
| 3673 | } |
| 3674 | } |
| 3675 | |
| 3676 | /********************************************************************//** |
| 3677 | Pops a cached row for MySQL from the fetch cache. */ |
| 3678 | UNIV_INLINE |
| 3679 | void |
| 3680 | row_sel_dequeue_cached_row_for_mysql( |
| 3681 | /*=================================*/ |
| 3682 | byte* buf, /*!< in/out: buffer where to copy the |
| 3683 | row */ |
| 3684 | row_prebuilt_t* prebuilt) /*!< in: prebuilt struct */ |
| 3685 | { |
| 3686 | ulint i; |
| 3687 | const mysql_row_templ_t*templ; |
| 3688 | const byte* cached_rec; |
| 3689 | ut_ad(prebuilt->n_fetch_cached > 0); |
| 3690 | ut_ad(prebuilt->mysql_prefix_len <= prebuilt->mysql_row_len); |
| 3691 | |
| 3692 | UNIV_MEM_ASSERT_W(buf, prebuilt->mysql_row_len); |
| 3693 | |
| 3694 | cached_rec = prebuilt->fetch_cache[prebuilt->fetch_cache_first]; |
| 3695 | |
| 3696 | if (UNIV_UNLIKELY(prebuilt->keep_other_fields_on_keyread)) { |
| 3697 | row_sel_copy_cached_fields_for_mysql(buf, cached_rec, prebuilt); |
| 3698 | } else if (prebuilt->mysql_prefix_len > 63) { |
| 3699 | /* The record is long. Copy it field by field, in case |
| 3700 | there are some long VARCHAR column of which only a |
| 3701 | small length is being used. */ |
| 3702 | UNIV_MEM_INVALID(buf, prebuilt->mysql_prefix_len); |
| 3703 | |
| 3704 | /* First copy the NULL bits. */ |
| 3705 | ut_memcpy(buf, cached_rec, prebuilt->null_bitmap_len); |
| 3706 | /* Then copy the requested fields. */ |
| 3707 | |
| 3708 | for (i = 0; i < prebuilt->n_template; i++) { |
| 3709 | templ = prebuilt->mysql_template + i; |
| 3710 | |
| 3711 | /* Skip virtual columns */ |
| 3712 | if (templ->is_virtual |
| 3713 | && !(dict_index_has_virtual(prebuilt->index) |
| 3714 | && prebuilt->read_just_key)) { |
| 3715 | continue; |
| 3716 | } |
| 3717 | |
| 3718 | row_sel_copy_cached_field_for_mysql( |
| 3719 | buf, cached_rec, templ); |
| 3720 | } |
| 3721 | } else { |
| 3722 | ut_memcpy(buf, cached_rec, prebuilt->mysql_prefix_len); |
| 3723 | } |
| 3724 | |
| 3725 | prebuilt->n_fetch_cached--; |
| 3726 | prebuilt->fetch_cache_first++; |
| 3727 | |
| 3728 | if (prebuilt->n_fetch_cached == 0) { |
| 3729 | prebuilt->fetch_cache_first = 0; |
| 3730 | } |
| 3731 | } |
| 3732 | |
| 3733 | /********************************************************************//** |
| 3734 | Initialise the prefetch cache. */ |
| 3735 | UNIV_INLINE |
| 3736 | void |
| 3737 | row_sel_prefetch_cache_init( |
| 3738 | /*========================*/ |
| 3739 | row_prebuilt_t* prebuilt) /*!< in/out: prebuilt struct */ |
| 3740 | { |
| 3741 | ulint i; |
| 3742 | ulint sz; |
| 3743 | byte* ptr; |
| 3744 | |
| 3745 | /* Reserve space for the magic number. */ |
| 3746 | sz = UT_ARR_SIZE(prebuilt->fetch_cache) * (prebuilt->mysql_row_len + 8); |
| 3747 | ptr = static_cast<byte*>(ut_malloc_nokey(sz)); |
| 3748 | |
| 3749 | for (i = 0; i < UT_ARR_SIZE(prebuilt->fetch_cache); i++) { |
| 3750 | |
| 3751 | /* A user has reported memory corruption in these |
| 3752 | buffers in Linux. Put magic numbers there to help |
| 3753 | to track a possible bug. */ |
| 3754 | |
| 3755 | mach_write_to_4(ptr, ROW_PREBUILT_FETCH_MAGIC_N); |
| 3756 | ptr += 4; |
| 3757 | |
| 3758 | prebuilt->fetch_cache[i] = ptr; |
| 3759 | ptr += prebuilt->mysql_row_len; |
| 3760 | |
| 3761 | mach_write_to_4(ptr, ROW_PREBUILT_FETCH_MAGIC_N); |
| 3762 | ptr += 4; |
| 3763 | } |
| 3764 | } |
| 3765 | |
| 3766 | /********************************************************************//** |
| 3767 | Get the last fetch cache buffer from the queue. |
| 3768 | @return pointer to buffer. */ |
| 3769 | UNIV_INLINE |
| 3770 | byte* |
| 3771 | row_sel_fetch_last_buf( |
| 3772 | /*===================*/ |
| 3773 | row_prebuilt_t* prebuilt) /*!< in/out: prebuilt struct */ |
| 3774 | { |
| 3775 | ut_ad(!prebuilt->templ_contains_blob); |
| 3776 | ut_ad(prebuilt->n_fetch_cached < MYSQL_FETCH_CACHE_SIZE); |
| 3777 | |
| 3778 | if (prebuilt->fetch_cache[0] == NULL) { |
| 3779 | /* Allocate memory for the fetch cache */ |
| 3780 | ut_ad(prebuilt->n_fetch_cached == 0); |
| 3781 | |
| 3782 | row_sel_prefetch_cache_init(prebuilt); |
| 3783 | } |
| 3784 | |
| 3785 | ut_ad(prebuilt->fetch_cache_first == 0); |
| 3786 | UNIV_MEM_INVALID(prebuilt->fetch_cache[prebuilt->n_fetch_cached], |
| 3787 | prebuilt->mysql_row_len); |
| 3788 | |
| 3789 | return(prebuilt->fetch_cache[prebuilt->n_fetch_cached]); |
| 3790 | } |
| 3791 | |
| 3792 | /********************************************************************//** |
| 3793 | Pushes a row for MySQL to the fetch cache. */ |
| 3794 | UNIV_INLINE |
| 3795 | void |
| 3796 | row_sel_enqueue_cache_row_for_mysql( |
| 3797 | /*================================*/ |
| 3798 | byte* mysql_rec, /*!< in/out: MySQL record */ |
| 3799 | row_prebuilt_t* prebuilt) /*!< in/out: prebuilt struct */ |
| 3800 | { |
| 3801 | /* For non ICP code path the row should already exist in the |
| 3802 | next fetch cache slot. */ |
| 3803 | |
| 3804 | if (prebuilt->idx_cond != NULL) { |
| 3805 | byte* dest = row_sel_fetch_last_buf(prebuilt); |
| 3806 | |
| 3807 | ut_memcpy(dest, mysql_rec, prebuilt->mysql_row_len); |
| 3808 | } |
| 3809 | |
| 3810 | ++prebuilt->n_fetch_cached; |
| 3811 | } |
| 3812 | |
| 3813 | #ifdef BTR_CUR_HASH_ADAPT |
| 3814 | /*********************************************************************//** |
| 3815 | Tries to do a shortcut to fetch a clustered index record with a unique key, |
| 3816 | using the hash index if possible (not always). We assume that the search |
| 3817 | mode is PAGE_CUR_GE, it is a consistent read, there is a read view in trx, |
| 3818 | btr search latch has been locked in S-mode if AHI is enabled. |
| 3819 | @return SEL_FOUND, SEL_EXHAUSTED, SEL_RETRY */ |
| 3820 | static |
| 3821 | ulint |
| 3822 | row_sel_try_search_shortcut_for_mysql( |
| 3823 | /*==================================*/ |
| 3824 | const rec_t** out_rec,/*!< out: record if found */ |
| 3825 | row_prebuilt_t* prebuilt,/*!< in: prebuilt struct */ |
| 3826 | ulint** offsets,/*!< in/out: for rec_get_offsets(*out_rec) */ |
| 3827 | mem_heap_t** heap, /*!< in/out: heap for rec_get_offsets() */ |
| 3828 | mtr_t* mtr) /*!< in: started mtr */ |
| 3829 | { |
| 3830 | dict_index_t* index = prebuilt->index; |
| 3831 | const dtuple_t* search_tuple = prebuilt->search_tuple; |
| 3832 | btr_pcur_t* pcur = prebuilt->pcur; |
| 3833 | trx_t* trx = prebuilt->trx; |
| 3834 | const rec_t* rec; |
| 3835 | |
| 3836 | ut_ad(dict_index_is_clust(index)); |
| 3837 | ut_ad(!prebuilt->templ_contains_blob); |
| 3838 | |
| 3839 | rw_lock_t* ahi_latch = btr_get_search_latch(index); |
| 3840 | rw_lock_s_lock(ahi_latch); |
| 3841 | btr_pcur_open_with_no_init(index, search_tuple, PAGE_CUR_GE, |
| 3842 | BTR_SEARCH_LEAF, pcur, ahi_latch, mtr); |
| 3843 | rec = btr_pcur_get_rec(pcur); |
| 3844 | |
| 3845 | if (!page_rec_is_user_rec(rec) || rec_is_default_row(rec, index)) { |
| 3846 | retry: |
| 3847 | rw_lock_s_unlock(ahi_latch); |
| 3848 | return(SEL_RETRY); |
| 3849 | } |
| 3850 | |
| 3851 | /* As the cursor is now placed on a user record after a search with |
| 3852 | the mode PAGE_CUR_GE, the up_match field in the cursor tells how many |
| 3853 | fields in the user record matched to the search tuple */ |
| 3854 | |
| 3855 | if (btr_pcur_get_up_match(pcur) < dtuple_get_n_fields(search_tuple)) { |
| 3856 | exhausted: |
| 3857 | rw_lock_s_unlock(ahi_latch); |
| 3858 | return(SEL_EXHAUSTED); |
| 3859 | } |
| 3860 | |
| 3861 | /* This is a non-locking consistent read: if necessary, fetch |
| 3862 | a previous version of the record */ |
| 3863 | |
| 3864 | *offsets = rec_get_offsets(rec, index, *offsets, true, |
| 3865 | ULINT_UNDEFINED, heap); |
| 3866 | |
| 3867 | if (!lock_clust_rec_cons_read_sees(rec, index, *offsets, |
| 3868 | &trx->read_view)) { |
| 3869 | goto retry; |
| 3870 | } |
| 3871 | |
| 3872 | if (rec_get_deleted_flag(rec, dict_table_is_comp(index->table))) { |
| 3873 | /* In delete-marked records, DB_TRX_ID must |
| 3874 | always refer to an existing undo log record. */ |
| 3875 | ut_ad(row_get_rec_trx_id(rec, index, *offsets)); |
| 3876 | goto exhausted; |
| 3877 | } |
| 3878 | |
| 3879 | *out_rec = rec; |
| 3880 | |
| 3881 | rw_lock_s_unlock(ahi_latch); |
| 3882 | return(SEL_FOUND); |
| 3883 | } |
| 3884 | #endif /* BTR_CUR_HASH_ADAPT */ |
| 3885 | |
| 3886 | /*********************************************************************//** |
| 3887 | Check a pushed-down index condition. |
| 3888 | @return ICP_NO_MATCH, ICP_MATCH, or ICP_OUT_OF_RANGE */ |
| 3889 | static |
| 3890 | ICP_RESULT |
| 3891 | row_search_idx_cond_check( |
| 3892 | /*======================*/ |
| 3893 | byte* mysql_rec, /*!< out: record |
| 3894 | in MySQL format (invalid unless |
| 3895 | prebuilt->idx_cond!=NULL and |
| 3896 | we return ICP_MATCH) */ |
| 3897 | row_prebuilt_t* prebuilt, /*!< in/out: prebuilt struct |
| 3898 | for the table handle */ |
| 3899 | const rec_t* rec, /*!< in: InnoDB record */ |
| 3900 | const ulint* offsets) /*!< in: rec_get_offsets() */ |
| 3901 | { |
| 3902 | ICP_RESULT result; |
| 3903 | ulint i; |
| 3904 | |
| 3905 | ut_ad(rec_offs_validate(rec, prebuilt->index, offsets)); |
| 3906 | |
| 3907 | if (!prebuilt->idx_cond) { |
| 3908 | return(ICP_MATCH); |
| 3909 | } |
| 3910 | |
| 3911 | MONITOR_INC(MONITOR_ICP_ATTEMPTS); |
| 3912 | |
| 3913 | /* Convert to MySQL format those fields that are needed for |
| 3914 | evaluating the index condition. */ |
| 3915 | |
| 3916 | if (UNIV_LIKELY_NULL(prebuilt->blob_heap)) { |
| 3917 | mem_heap_empty(prebuilt->blob_heap); |
| 3918 | } |
| 3919 | |
| 3920 | for (i = 0; i < prebuilt->idx_cond_n_cols; i++) { |
| 3921 | const mysql_row_templ_t*templ = &prebuilt->mysql_template[i]; |
| 3922 | |
| 3923 | /* Skip virtual columns */ |
| 3924 | if (templ->is_virtual) { |
| 3925 | continue; |
| 3926 | } |
| 3927 | |
| 3928 | if (!row_sel_store_mysql_field(mysql_rec, prebuilt, |
| 3929 | rec, prebuilt->index, offsets, |
| 3930 | templ->icp_rec_field_no, |
| 3931 | templ)) { |
| 3932 | return(ICP_NO_MATCH); |
| 3933 | } |
| 3934 | } |
| 3935 | |
| 3936 | /* We assume that the index conditions on |
| 3937 | case-insensitive columns are case-insensitive. The |
| 3938 | case of such columns may be wrong in a secondary |
| 3939 | index, if the case of the column has been updated in |
| 3940 | the past, or a record has been deleted and a record |
| 3941 | inserted in a different case. */ |
| 3942 | result = innobase_index_cond(prebuilt->idx_cond); |
| 3943 | switch (result) { |
| 3944 | case ICP_MATCH: |
| 3945 | /* Convert the remaining fields to MySQL format. |
| 3946 | If this is a secondary index record, we must defer |
| 3947 | this until we have fetched the clustered index record. */ |
| 3948 | if (!prebuilt->need_to_access_clustered |
| 3949 | || dict_index_is_clust(prebuilt->index)) { |
| 3950 | if (!row_sel_store_mysql_rec( |
| 3951 | mysql_rec, prebuilt, rec, NULL, false, |
| 3952 | prebuilt->index, offsets)) { |
| 3953 | ut_ad(dict_index_is_clust(prebuilt->index)); |
| 3954 | return(ICP_NO_MATCH); |
| 3955 | } |
| 3956 | } |
| 3957 | MONITOR_INC(MONITOR_ICP_MATCH); |
| 3958 | return(result); |
| 3959 | case ICP_NO_MATCH: |
| 3960 | MONITOR_INC(MONITOR_ICP_NO_MATCH); |
| 3961 | return(result); |
| 3962 | case ICP_OUT_OF_RANGE: |
| 3963 | MONITOR_INC(MONITOR_ICP_OUT_OF_RANGE); |
| 3964 | return(result); |
| 3965 | case ICP_ERROR: |
| 3966 | case ICP_ABORTED_BY_USER: |
| 3967 | return(result); |
| 3968 | } |
| 3969 | |
| 3970 | ut_error; |
| 3971 | return(result); |
| 3972 | } |
| 3973 | |
| 3974 | /** Extract virtual column data from a virtual index record and fill a dtuple |
| 3975 | @param[in] rec the virtual (secondary) index record |
| 3976 | @param[in] index the virtual index |
| 3977 | @param[in,out] vrow the dtuple where data extract to |
| 3978 | @param[in] heap memory heap to allocate memory |
| 3979 | */ |
| 3980 | static |
| 3981 | void |
| 3982 | row_sel_fill_vrow( |
| 3983 | const rec_t* rec, |
| 3984 | dict_index_t* index, |
| 3985 | const dtuple_t** vrow, |
| 3986 | mem_heap_t* heap) |
| 3987 | { |
| 3988 | ulint offsets_[REC_OFFS_NORMAL_SIZE]; |
| 3989 | ulint* offsets = offsets_; |
| 3990 | rec_offs_init(offsets_); |
| 3991 | |
| 3992 | ut_ad(!(*vrow)); |
| 3993 | ut_ad(heap); |
| 3994 | ut_ad(!dict_index_is_clust(index)); |
| 3995 | ut_ad(!index->is_instant()); |
| 3996 | ut_ad(page_rec_is_leaf(rec)); |
| 3997 | |
| 3998 | offsets = rec_get_offsets(rec, index, offsets, true, |
| 3999 | ULINT_UNDEFINED, &heap); |
| 4000 | |
| 4001 | *vrow = dtuple_create_with_vcol( |
| 4002 | heap, 0, dict_table_get_n_v_cols(index->table)); |
| 4003 | |
| 4004 | /* Initialize all virtual row's mtype to DATA_MISSING */ |
| 4005 | dtuple_init_v_fld(*vrow); |
| 4006 | |
| 4007 | for (ulint i = 0; i < dict_index_get_n_fields(index); i++) { |
| 4008 | const dict_field_t* field; |
| 4009 | const dict_col_t* col; |
| 4010 | |
| 4011 | field = dict_index_get_nth_field(index, i); |
| 4012 | col = dict_field_get_col(field); |
| 4013 | |
| 4014 | if (col->is_virtual()) { |
| 4015 | const byte* data; |
| 4016 | ulint len; |
| 4017 | |
| 4018 | data = rec_get_nth_field(rec, offsets, i, &len); |
| 4019 | |
| 4020 | const dict_v_col_t* vcol = reinterpret_cast< |
| 4021 | const dict_v_col_t*>(col); |
| 4022 | |
| 4023 | dfield_t* dfield = dtuple_get_nth_v_field( |
| 4024 | *vrow, vcol->v_pos); |
| 4025 | dfield_set_data(dfield, data, len); |
| 4026 | dict_col_copy_type(col, dfield_get_type(dfield)); |
| 4027 | } |
| 4028 | } |
| 4029 | } |
| 4030 | |
| 4031 | /** Return the record field length in characters. |
| 4032 | @param[in] col table column of the field |
| 4033 | @param[in] field_no field number |
| 4034 | @param[in] rec physical record |
| 4035 | @param[in] offsets field offsets in the physical record |
| 4036 | @return field length in characters. */ |
| 4037 | static |
| 4038 | size_t |
| 4039 | rec_field_len_in_chars( |
| 4040 | const dict_col_t* col, |
| 4041 | const ulint field_no, |
| 4042 | const rec_t* rec, |
| 4043 | const ulint* offsets) |
| 4044 | { |
| 4045 | const ulint cset = dtype_get_charset_coll(col->prtype); |
| 4046 | const CHARSET_INFO* cs = all_charsets[cset]; |
| 4047 | ulint rec_field_len; |
| 4048 | const char* rec_field = reinterpret_cast<const char *>( |
| 4049 | rec_get_nth_field( |
| 4050 | rec, offsets, field_no, &rec_field_len)); |
| 4051 | |
| 4052 | if (UNIV_UNLIKELY(!cs)) { |
| 4053 | ib::warn() << "Missing collation " << cset; |
| 4054 | return SIZE_T_MAX; |
| 4055 | } |
| 4056 | |
| 4057 | return(cs->cset->numchars(cs, rec_field, rec_field + rec_field_len)); |
| 4058 | } |
| 4059 | |
| 4060 | /** Avoid the clustered index lookup if all the following conditions |
| 4061 | are true: |
| 4062 | 1) all columns are in secondary index |
| 4063 | 2) all values for columns that are prefix-only indexes are shorter |
| 4064 | than the prefix size. This optimization can avoid many IOs for certain schemas. |
| 4065 | @return true, to avoid clustered index lookup. */ |
| 4066 | static |
| 4067 | bool row_search_with_covering_prefix( |
| 4068 | row_prebuilt_t* prebuilt, |
| 4069 | const rec_t* rec, |
| 4070 | const ulint* offsets) |
| 4071 | { |
| 4072 | const dict_index_t* index = prebuilt->index; |
| 4073 | ut_ad(!dict_index_is_clust(index)); |
| 4074 | |
| 4075 | if (!srv_prefix_index_cluster_optimization) { |
| 4076 | return false; |
| 4077 | } |
| 4078 | |
| 4079 | /** Optimization only applicable if there the number of secondary index |
| 4080 | fields are greater than or equal to number of clustered index fields. */ |
| 4081 | if (prebuilt->n_template > index->n_fields) { |
| 4082 | return false; |
| 4083 | } |
| 4084 | |
| 4085 | for (ulint i = 0; i < prebuilt->n_template; i++) { |
| 4086 | mysql_row_templ_t* templ = prebuilt->mysql_template + i; |
| 4087 | ulint j = templ->rec_prefix_field_no; |
| 4088 | |
| 4089 | /** Condition (1) : is the field in the index. */ |
| 4090 | if (j == ULINT_UNDEFINED) { |
| 4091 | return false; |
| 4092 | } |
| 4093 | |
| 4094 | /** Condition (2): If this is a prefix index then |
| 4095 | row's value size shorter than prefix length. */ |
| 4096 | |
| 4097 | if (!templ->rec_field_is_prefix) { |
| 4098 | continue; |
| 4099 | } |
| 4100 | |
| 4101 | ulint rec_size = rec_offs_nth_size(offsets, j); |
| 4102 | const dict_field_t* field = dict_index_get_nth_field(index, j); |
| 4103 | ulint max_chars = field->prefix_len / templ->mbmaxlen; |
| 4104 | |
| 4105 | ut_a(field->prefix_len > 0); |
| 4106 | |
| 4107 | if (rec_size < max_chars) { |
| 4108 | /* Record in bytes shorter than the index |
| 4109 | prefix length in char. */ |
| 4110 | continue; |
| 4111 | } |
| 4112 | |
| 4113 | if (rec_size * templ->mbminlen >= field->prefix_len) { |
| 4114 | /* Shortest representation string by the |
| 4115 | byte length of the record is longer than the |
| 4116 | maximum possible index prefix. */ |
| 4117 | return false; |
| 4118 | } |
| 4119 | |
| 4120 | size_t num_chars = rec_field_len_in_chars( |
| 4121 | field->col, j, rec, offsets); |
| 4122 | |
| 4123 | if (num_chars >= max_chars) { |
| 4124 | /* No of chars to store the record exceeds |
| 4125 | the index prefix character length. */ |
| 4126 | return false; |
| 4127 | } |
| 4128 | } |
| 4129 | |
| 4130 | /* If prefix index optimization condition satisfied then |
| 4131 | for all columns above, use rec_prefix_field_no instead of |
| 4132 | rec_field_no, and skip the clustered lookup below. */ |
| 4133 | for (ulint i = 0; i < prebuilt->n_template; i++) { |
| 4134 | mysql_row_templ_t* templ = prebuilt->mysql_template + i; |
| 4135 | templ->rec_field_no = templ->rec_prefix_field_no; |
| 4136 | ut_a(templ->rec_field_no != ULINT_UNDEFINED); |
| 4137 | } |
| 4138 | |
| 4139 | srv_stats.n_sec_rec_cluster_reads_avoided.inc(); |
| 4140 | return true; |
| 4141 | } |
| 4142 | |
| 4143 | /** Searches for rows in the database using cursor. |
| 4144 | Function is mainly used for tables that are shared across connections and |
| 4145 | so it employs technique that can help re-construct the rows that |
| 4146 | transaction is suppose to see. |
| 4147 | It also has optimization such as pre-caching the rows, using AHI, etc. |
| 4148 | |
| 4149 | @param[out] buf buffer for the fetched row in MySQL format |
| 4150 | @param[in] mode search mode PAGE_CUR_L |
| 4151 | @param[in,out] prebuilt prebuilt struct for the table handler; |
| 4152 | this contains the info to search_tuple, |
| 4153 | index; if search tuple contains 0 field then |
| 4154 | we position the cursor at start or the end of |
| 4155 | index, depending on 'mode' |
| 4156 | @param[in] match_mode 0 or ROW_SEL_EXACT or ROW_SEL_EXACT_PREFIX |
| 4157 | @param[in] direction 0 or ROW_SEL_NEXT or ROW_SEL_PREV; |
| 4158 | Note: if this is != 0, then prebuilt must has a |
| 4159 | pcur with stored position! In opening of a |
| 4160 | cursor 'direction' should be 0. |
| 4161 | @return DB_SUCCESS or error code */ |
| 4162 | dberr_t |
| 4163 | row_search_mvcc( |
| 4164 | byte* buf, |
| 4165 | page_cur_mode_t mode, |
| 4166 | row_prebuilt_t* prebuilt, |
| 4167 | ulint match_mode, |
| 4168 | ulint direction) |
| 4169 | { |
| 4170 | DBUG_ENTER("row_search_mvcc" ); |
| 4171 | DBUG_ASSERT(prebuilt->index->table == prebuilt->table); |
| 4172 | |
| 4173 | dict_index_t* index = prebuilt->index; |
| 4174 | ibool comp = dict_table_is_comp(prebuilt->table); |
| 4175 | const dtuple_t* search_tuple = prebuilt->search_tuple; |
| 4176 | btr_pcur_t* pcur = prebuilt->pcur; |
| 4177 | trx_t* trx = prebuilt->trx; |
| 4178 | dict_index_t* clust_index; |
| 4179 | que_thr_t* thr; |
| 4180 | const rec_t* UNINIT_VAR(rec); |
| 4181 | const dtuple_t* vrow = NULL; |
| 4182 | const rec_t* result_rec = NULL; |
| 4183 | const rec_t* clust_rec; |
| 4184 | dberr_t err = DB_SUCCESS; |
| 4185 | ibool unique_search = FALSE; |
| 4186 | ibool = FALSE; |
| 4187 | ibool moves_up = FALSE; |
| 4188 | ibool set_also_gap_locks = TRUE; |
| 4189 | /* if the query is a plain locking SELECT, and the isolation level |
| 4190 | is <= TRX_ISO_READ_COMMITTED, then this is set to FALSE */ |
| 4191 | ibool did_semi_consistent_read = FALSE; |
| 4192 | /* if the returned record was locked and we did a semi-consistent |
| 4193 | read (fetch the newest committed version), then this is set to |
| 4194 | TRUE */ |
| 4195 | ulint next_offs; |
| 4196 | ibool same_user_rec; |
| 4197 | mtr_t mtr; |
| 4198 | mem_heap_t* heap = NULL; |
| 4199 | ulint offsets_[REC_OFFS_NORMAL_SIZE]; |
| 4200 | ulint* offsets = offsets_; |
| 4201 | ibool table_lock_waited = FALSE; |
| 4202 | byte* next_buf = 0; |
| 4203 | bool spatial_search = false; |
| 4204 | |
| 4205 | rec_offs_init(offsets_); |
| 4206 | |
| 4207 | ut_ad(index && pcur && search_tuple); |
| 4208 | ut_a(prebuilt->magic_n == ROW_PREBUILT_ALLOCATED); |
| 4209 | ut_a(prebuilt->magic_n2 == ROW_PREBUILT_ALLOCATED); |
| 4210 | |
| 4211 | /* We don't support FTS queries from the HANDLER interfaces, because |
| 4212 | we implemented FTS as reversed inverted index with auxiliary tables. |
| 4213 | So anything related to traditional index query would not apply to |
| 4214 | it. */ |
| 4215 | if (prebuilt->index->type & DICT_FTS) { |
| 4216 | DBUG_RETURN(DB_END_OF_INDEX); |
| 4217 | } |
| 4218 | |
| 4219 | ut_ad(!sync_check_iterate(sync_check())); |
| 4220 | |
| 4221 | if (!prebuilt->table->space) { |
| 4222 | DBUG_RETURN(DB_TABLESPACE_DELETED); |
| 4223 | } else if (!prebuilt->table->is_readable()) { |
| 4224 | DBUG_RETURN(prebuilt->table->space |
| 4225 | ? DB_DECRYPTION_FAILED |
| 4226 | : DB_TABLESPACE_NOT_FOUND); |
| 4227 | } else if (!prebuilt->index_usable) { |
| 4228 | DBUG_RETURN(DB_MISSING_HISTORY); |
| 4229 | } else if (prebuilt->index->is_corrupted()) { |
| 4230 | DBUG_RETURN(DB_CORRUPTION); |
| 4231 | } |
| 4232 | |
| 4233 | /* We need to get the virtual column values stored in secondary |
| 4234 | index key, if this is covered index scan or virtual key read is |
| 4235 | requested. */ |
| 4236 | bool need_vrow = dict_index_has_virtual(prebuilt->index) |
| 4237 | && (prebuilt->read_just_key |
| 4238 | || prebuilt->m_read_virtual_key); |
| 4239 | |
| 4240 | /* Reset the new record lock info if srv_locks_unsafe_for_binlog |
| 4241 | is set or session is using a READ COMMITED isolation level. Then |
| 4242 | we are able to remove the record locks set here on an individual |
| 4243 | row. */ |
| 4244 | prebuilt->new_rec_locks = 0; |
| 4245 | |
| 4246 | /*-------------------------------------------------------------*/ |
| 4247 | /* PHASE 1: Try to pop the row from the prefetch cache */ |
| 4248 | |
| 4249 | if (UNIV_UNLIKELY(direction == 0)) { |
| 4250 | trx->op_info = "starting index read" ; |
| 4251 | |
| 4252 | prebuilt->n_rows_fetched = 0; |
| 4253 | prebuilt->n_fetch_cached = 0; |
| 4254 | prebuilt->fetch_cache_first = 0; |
| 4255 | |
| 4256 | if (prebuilt->sel_graph == NULL) { |
| 4257 | /* Build a dummy select query graph */ |
| 4258 | row_prebuild_sel_graph(prebuilt); |
| 4259 | } |
| 4260 | } else { |
| 4261 | trx->op_info = "fetching rows" ; |
| 4262 | |
| 4263 | if (prebuilt->n_rows_fetched == 0) { |
| 4264 | prebuilt->fetch_direction = direction; |
| 4265 | } |
| 4266 | |
| 4267 | if (UNIV_UNLIKELY(direction != prebuilt->fetch_direction)) { |
| 4268 | if (UNIV_UNLIKELY(prebuilt->n_fetch_cached > 0)) { |
| 4269 | ut_error; |
| 4270 | /* TODO: scrollable cursor: restore cursor to |
| 4271 | the place of the latest returned row, |
| 4272 | or better: prevent caching for a scroll |
| 4273 | cursor! */ |
| 4274 | } |
| 4275 | |
| 4276 | prebuilt->n_rows_fetched = 0; |
| 4277 | prebuilt->n_fetch_cached = 0; |
| 4278 | prebuilt->fetch_cache_first = 0; |
| 4279 | |
| 4280 | } else if (UNIV_LIKELY(prebuilt->n_fetch_cached > 0)) { |
| 4281 | row_sel_dequeue_cached_row_for_mysql(buf, prebuilt); |
| 4282 | |
| 4283 | prebuilt->n_rows_fetched++; |
| 4284 | |
| 4285 | err = DB_SUCCESS; |
| 4286 | goto func_exit; |
| 4287 | } |
| 4288 | |
| 4289 | if (prebuilt->fetch_cache_first > 0 |
| 4290 | && prebuilt->fetch_cache_first < MYSQL_FETCH_CACHE_SIZE) { |
| 4291 | |
| 4292 | /* The previous returned row was popped from the fetch |
| 4293 | cache, but the cache was not full at the time of the |
| 4294 | popping: no more rows can exist in the result set */ |
| 4295 | |
| 4296 | err = DB_RECORD_NOT_FOUND; |
| 4297 | goto func_exit; |
| 4298 | } |
| 4299 | |
| 4300 | prebuilt->n_rows_fetched++; |
| 4301 | |
| 4302 | if (prebuilt->n_rows_fetched > 1000000000) { |
| 4303 | /* Prevent wrap-over */ |
| 4304 | prebuilt->n_rows_fetched = 500000000; |
| 4305 | } |
| 4306 | |
| 4307 | mode = pcur->search_mode; |
| 4308 | } |
| 4309 | |
| 4310 | /* In a search where at most one record in the index may match, we |
| 4311 | can use a LOCK_REC_NOT_GAP type record lock when locking a |
| 4312 | non-delete-marked matching record. |
| 4313 | |
| 4314 | Note that in a unique secondary index there may be different |
| 4315 | delete-marked versions of a record where only the primary key |
| 4316 | values differ: thus in a secondary index we must use next-key |
| 4317 | locks when locking delete-marked records. */ |
| 4318 | |
| 4319 | if (match_mode == ROW_SEL_EXACT |
| 4320 | && dict_index_is_unique(index) |
| 4321 | && dtuple_get_n_fields(search_tuple) |
| 4322 | == dict_index_get_n_unique(index) |
| 4323 | && (dict_index_is_clust(index) |
| 4324 | || !dtuple_contains_null(search_tuple))) { |
| 4325 | |
| 4326 | /* Note above that a UNIQUE secondary index can contain many |
| 4327 | rows with the same key value if one of the columns is the SQL |
| 4328 | null. A clustered index under MySQL can never contain null |
| 4329 | columns because we demand that all the columns in primary key |
| 4330 | are non-null. */ |
| 4331 | |
| 4332 | unique_search = TRUE; |
| 4333 | |
| 4334 | /* Even if the condition is unique, MySQL seems to try to |
| 4335 | retrieve also a second row if a primary key contains more than |
| 4336 | 1 column. Return immediately if this is not a HANDLER |
| 4337 | command. */ |
| 4338 | |
| 4339 | if (UNIV_UNLIKELY(direction != 0 |
| 4340 | && !prebuilt->used_in_HANDLER)) { |
| 4341 | |
| 4342 | err = DB_RECORD_NOT_FOUND; |
| 4343 | goto func_exit; |
| 4344 | } |
| 4345 | } |
| 4346 | |
| 4347 | /* We don't support sequencial scan for Rtree index, because it |
| 4348 | is no meaning to do so. */ |
| 4349 | if (dict_index_is_spatial(index) |
| 4350 | && !RTREE_SEARCH_MODE(mode)) { |
| 4351 | err = DB_END_OF_INDEX; |
| 4352 | goto func_exit; |
| 4353 | } |
| 4354 | |
| 4355 | mtr.start(); |
| 4356 | |
| 4357 | #ifdef BTR_CUR_HASH_ADAPT |
| 4358 | /*-------------------------------------------------------------*/ |
| 4359 | /* PHASE 2: Try fast adaptive hash index search if possible */ |
| 4360 | |
| 4361 | /* Next test if this is the special case where we can use the fast |
| 4362 | adaptive hash index to try the search. Since we must release the |
| 4363 | search system latch when we retrieve an externally stored field, we |
| 4364 | cannot use the adaptive hash index in a search in the case the row |
| 4365 | may be long and there may be externally stored fields */ |
| 4366 | |
| 4367 | if (UNIV_UNLIKELY(direction == 0) |
| 4368 | && unique_search |
| 4369 | && btr_search_enabled |
| 4370 | && dict_index_is_clust(index) |
| 4371 | && !prebuilt->templ_contains_blob |
| 4372 | && !prebuilt->used_in_HANDLER |
| 4373 | && (prebuilt->mysql_row_len < srv_page_size / 8)) { |
| 4374 | |
| 4375 | mode = PAGE_CUR_GE; |
| 4376 | |
| 4377 | if (prebuilt->select_lock_type == LOCK_NONE |
| 4378 | && trx->isolation_level > TRX_ISO_READ_UNCOMMITTED |
| 4379 | && trx->read_view.is_open()) { |
| 4380 | |
| 4381 | /* This is a SELECT query done as a consistent read, |
| 4382 | and the read view has already been allocated: |
| 4383 | let us try a search shortcut through the hash |
| 4384 | index. */ |
| 4385 | |
| 4386 | switch (row_sel_try_search_shortcut_for_mysql( |
| 4387 | &rec, prebuilt, &offsets, &heap, |
| 4388 | &mtr)) { |
| 4389 | case SEL_FOUND: |
| 4390 | /* At this point, rec is protected by |
| 4391 | a page latch that was acquired by |
| 4392 | row_sel_try_search_shortcut_for_mysql(). |
| 4393 | The latch will not be released until |
| 4394 | mtr.commit(). */ |
| 4395 | ut_ad(!rec_get_deleted_flag(rec, comp)); |
| 4396 | |
| 4397 | if (prebuilt->idx_cond) { |
| 4398 | switch (row_search_idx_cond_check( |
| 4399 | buf, prebuilt, |
| 4400 | rec, offsets)) { |
| 4401 | case ICP_NO_MATCH: |
| 4402 | case ICP_OUT_OF_RANGE: |
| 4403 | case ICP_ABORTED_BY_USER: |
| 4404 | case ICP_ERROR: |
| 4405 | goto shortcut_mismatch; |
| 4406 | case ICP_MATCH: |
| 4407 | goto shortcut_match; |
| 4408 | } |
| 4409 | } |
| 4410 | |
| 4411 | if (!row_sel_store_mysql_rec( |
| 4412 | buf, prebuilt, |
| 4413 | rec, NULL, false, index, |
| 4414 | offsets)) { |
| 4415 | /* Only fresh inserts may contain |
| 4416 | incomplete externally stored |
| 4417 | columns. Pretend that such |
| 4418 | records do not exist. Such |
| 4419 | records may only be accessed |
| 4420 | at the READ UNCOMMITTED |
| 4421 | isolation level or when |
| 4422 | rolling back a recovered |
| 4423 | transaction. Rollback happens |
| 4424 | at a lower level, not here. */ |
| 4425 | |
| 4426 | /* Proceed as in case SEL_RETRY. */ |
| 4427 | break; |
| 4428 | } |
| 4429 | |
| 4430 | shortcut_match: |
| 4431 | mtr.commit(); |
| 4432 | |
| 4433 | /* NOTE that we do NOT store the cursor |
| 4434 | position */ |
| 4435 | err = DB_SUCCESS; |
| 4436 | goto func_exit; |
| 4437 | |
| 4438 | case SEL_EXHAUSTED: |
| 4439 | shortcut_mismatch: |
| 4440 | mtr.commit(); |
| 4441 | /* NOTE that we do NOT store the cursor |
| 4442 | position */ |
| 4443 | err = DB_RECORD_NOT_FOUND; |
| 4444 | goto func_exit; |
| 4445 | |
| 4446 | case SEL_RETRY: |
| 4447 | break; |
| 4448 | |
| 4449 | default: |
| 4450 | ut_ad(0); |
| 4451 | } |
| 4452 | |
| 4453 | mtr.commit(); |
| 4454 | mtr.start(); |
| 4455 | } |
| 4456 | } |
| 4457 | #endif /* BTR_CUR_HASH_ADAPT */ |
| 4458 | |
| 4459 | /*-------------------------------------------------------------*/ |
| 4460 | /* PHASE 3: Open or restore index cursor position */ |
| 4461 | |
| 4462 | spatial_search = dict_index_is_spatial(index) |
| 4463 | && mode >= PAGE_CUR_CONTAIN; |
| 4464 | |
| 4465 | /* The state of a running trx can only be changed by the |
| 4466 | thread that is currently serving the transaction. Because we |
| 4467 | are that thread, we can read trx->state without holding any |
| 4468 | mutex. */ |
| 4469 | ut_ad(prebuilt->sql_stat_start |
| 4470 | || trx->state == TRX_STATE_ACTIVE |
| 4471 | || (prebuilt->table->no_rollback() |
| 4472 | && trx->state == TRX_STATE_NOT_STARTED)); |
| 4473 | |
| 4474 | ut_ad(!trx_is_started(trx) || trx->state == TRX_STATE_ACTIVE); |
| 4475 | |
| 4476 | ut_ad(prebuilt->sql_stat_start |
| 4477 | || prebuilt->select_lock_type != LOCK_NONE |
| 4478 | || trx->read_view.is_open() |
| 4479 | || prebuilt->table->no_rollback() |
| 4480 | || srv_read_only_mode); |
| 4481 | |
| 4482 | if (trx->isolation_level <= TRX_ISO_READ_COMMITTED |
| 4483 | && prebuilt->select_lock_type != LOCK_NONE |
| 4484 | && trx->mysql_thd != NULL |
| 4485 | && thd_is_select(trx->mysql_thd)) { |
| 4486 | /* It is a plain locking SELECT and the isolation |
| 4487 | level is low: do not lock gaps */ |
| 4488 | |
| 4489 | set_also_gap_locks = FALSE; |
| 4490 | } |
| 4491 | |
| 4492 | /* Note that if the search mode was GE or G, then the cursor |
| 4493 | naturally moves upward (in fetch next) in alphabetical order, |
| 4494 | otherwise downward */ |
| 4495 | |
| 4496 | if (UNIV_UNLIKELY(direction == 0)) { |
| 4497 | if (mode == PAGE_CUR_GE || mode == PAGE_CUR_G |
| 4498 | || mode >= PAGE_CUR_CONTAIN) { |
| 4499 | moves_up = TRUE; |
| 4500 | } |
| 4501 | } else if (direction == ROW_SEL_NEXT) { |
| 4502 | moves_up = TRUE; |
| 4503 | } |
| 4504 | |
| 4505 | thr = que_fork_get_first_thr(prebuilt->sel_graph); |
| 4506 | |
| 4507 | que_thr_move_to_run_state_for_mysql(thr, trx); |
| 4508 | |
| 4509 | clust_index = dict_table_get_first_index(prebuilt->table); |
| 4510 | |
| 4511 | /* Do some start-of-statement preparations */ |
| 4512 | |
| 4513 | if (prebuilt->table->no_rollback()) { |
| 4514 | /* NO_ROLLBACK tables do not support MVCC or locking. */ |
| 4515 | prebuilt->select_lock_type = LOCK_NONE; |
| 4516 | prebuilt->sql_stat_start = FALSE; |
| 4517 | } else if (!prebuilt->sql_stat_start) { |
| 4518 | /* No need to set an intention lock or assign a read view */ |
| 4519 | ut_a(prebuilt->select_lock_type != LOCK_NONE |
| 4520 | || srv_read_only_mode || trx->read_view.is_open()); |
| 4521 | } else { |
| 4522 | prebuilt->sql_stat_start = FALSE; |
| 4523 | trx_start_if_not_started(trx, false); |
| 4524 | |
| 4525 | if (prebuilt->select_lock_type == LOCK_NONE) { |
| 4526 | trx->read_view.open(trx); |
| 4527 | } else { |
| 4528 | wait_table_again: |
| 4529 | err = lock_table(0, prebuilt->table, |
| 4530 | prebuilt->select_lock_type == LOCK_S |
| 4531 | ? LOCK_IS : LOCK_IX, thr); |
| 4532 | |
| 4533 | if (err != DB_SUCCESS) { |
| 4534 | |
| 4535 | table_lock_waited = TRUE; |
| 4536 | goto lock_table_wait; |
| 4537 | } |
| 4538 | } |
| 4539 | } |
| 4540 | |
| 4541 | /* Open or restore index cursor position */ |
| 4542 | |
| 4543 | if (UNIV_LIKELY(direction != 0)) { |
| 4544 | if (spatial_search) { |
| 4545 | /* R-Tree access does not need to do |
| 4546 | cursor position and resposition */ |
| 4547 | goto next_rec; |
| 4548 | } |
| 4549 | |
| 4550 | bool need_to_process = sel_restore_position_for_mysql( |
| 4551 | &same_user_rec, BTR_SEARCH_LEAF, |
| 4552 | pcur, moves_up, &mtr); |
| 4553 | |
| 4554 | if (UNIV_UNLIKELY(need_to_process)) { |
| 4555 | if (UNIV_UNLIKELY(prebuilt->row_read_type |
| 4556 | == ROW_READ_DID_SEMI_CONSISTENT)) { |
| 4557 | /* We did a semi-consistent read, |
| 4558 | but the record was removed in |
| 4559 | the meantime. */ |
| 4560 | prebuilt->row_read_type |
| 4561 | = ROW_READ_TRY_SEMI_CONSISTENT; |
| 4562 | } |
| 4563 | } else if (UNIV_LIKELY(prebuilt->row_read_type |
| 4564 | != ROW_READ_DID_SEMI_CONSISTENT)) { |
| 4565 | |
| 4566 | /* The cursor was positioned on the record |
| 4567 | that we returned previously. If we need |
| 4568 | to repeat a semi-consistent read as a |
| 4569 | pessimistic locking read, the record |
| 4570 | cannot be skipped. */ |
| 4571 | |
| 4572 | goto next_rec; |
| 4573 | } |
| 4574 | |
| 4575 | } else if (dtuple_get_n_fields(search_tuple) > 0) { |
| 4576 | pcur->btr_cur.thr = thr; |
| 4577 | |
| 4578 | if (dict_index_is_spatial(index)) { |
| 4579 | bool need_pred_lock; |
| 4580 | |
| 4581 | need_pred_lock = (set_also_gap_locks |
| 4582 | && !(srv_locks_unsafe_for_binlog |
| 4583 | || trx->isolation_level |
| 4584 | <= TRX_ISO_READ_COMMITTED) |
| 4585 | && prebuilt->select_lock_type |
| 4586 | != LOCK_NONE); |
| 4587 | |
| 4588 | if (!prebuilt->rtr_info) { |
| 4589 | prebuilt->rtr_info = rtr_create_rtr_info( |
| 4590 | need_pred_lock, true, |
| 4591 | btr_pcur_get_btr_cur(pcur), index); |
| 4592 | prebuilt->rtr_info->search_tuple = search_tuple; |
| 4593 | prebuilt->rtr_info->search_mode = mode; |
| 4594 | rtr_info_update_btr(btr_pcur_get_btr_cur(pcur), |
| 4595 | prebuilt->rtr_info); |
| 4596 | } else { |
| 4597 | rtr_info_reinit_in_cursor( |
| 4598 | btr_pcur_get_btr_cur(pcur), |
| 4599 | index, need_pred_lock); |
| 4600 | prebuilt->rtr_info->search_tuple = search_tuple; |
| 4601 | prebuilt->rtr_info->search_mode = mode; |
| 4602 | } |
| 4603 | } |
| 4604 | |
| 4605 | err = btr_pcur_open_with_no_init(index, search_tuple, mode, |
| 4606 | BTR_SEARCH_LEAF, |
| 4607 | pcur, 0, &mtr); |
| 4608 | |
| 4609 | if (err != DB_SUCCESS) { |
| 4610 | rec = NULL; |
| 4611 | goto lock_wait_or_error; |
| 4612 | } |
| 4613 | |
| 4614 | pcur->trx_if_known = trx; |
| 4615 | |
| 4616 | rec = btr_pcur_get_rec(pcur); |
| 4617 | ut_ad(page_rec_is_leaf(rec)); |
| 4618 | |
| 4619 | if (!moves_up |
| 4620 | && !page_rec_is_supremum(rec) |
| 4621 | && set_also_gap_locks |
| 4622 | && !(srv_locks_unsafe_for_binlog |
| 4623 | || trx->isolation_level <= TRX_ISO_READ_COMMITTED) |
| 4624 | && prebuilt->select_lock_type != LOCK_NONE |
| 4625 | && !dict_index_is_spatial(index)) { |
| 4626 | |
| 4627 | /* Try to place a gap lock on the next index record |
| 4628 | to prevent phantoms in ORDER BY ... DESC queries */ |
| 4629 | const rec_t* next_rec = page_rec_get_next_const(rec); |
| 4630 | |
| 4631 | offsets = rec_get_offsets(next_rec, index, offsets, |
| 4632 | true, |
| 4633 | ULINT_UNDEFINED, &heap); |
| 4634 | err = sel_set_rec_lock(pcur, |
| 4635 | next_rec, index, offsets, |
| 4636 | prebuilt->select_lock_type, |
| 4637 | LOCK_GAP, thr, &mtr); |
| 4638 | |
| 4639 | switch (err) { |
| 4640 | case DB_SUCCESS_LOCKED_REC: |
| 4641 | err = DB_SUCCESS; |
| 4642 | /* fall through */ |
| 4643 | case DB_SUCCESS: |
| 4644 | break; |
| 4645 | default: |
| 4646 | goto lock_wait_or_error; |
| 4647 | } |
| 4648 | } |
| 4649 | } else if (mode == PAGE_CUR_G || mode == PAGE_CUR_L) { |
| 4650 | err = btr_pcur_open_at_index_side( |
| 4651 | mode == PAGE_CUR_G, index, BTR_SEARCH_LEAF, |
| 4652 | pcur, false, 0, &mtr); |
| 4653 | |
| 4654 | if (err != DB_SUCCESS) { |
| 4655 | if (err == DB_DECRYPTION_FAILED) { |
| 4656 | ib_push_warning(trx->mysql_thd, |
| 4657 | DB_DECRYPTION_FAILED, |
| 4658 | "Table %s is encrypted but encryption service or" |
| 4659 | " used key_id is not available. " |
| 4660 | " Can't continue reading table." , |
| 4661 | prebuilt->table->name); |
| 4662 | index->table->file_unreadable = true; |
| 4663 | } |
| 4664 | rec = NULL; |
| 4665 | goto lock_wait_or_error; |
| 4666 | } |
| 4667 | } |
| 4668 | |
| 4669 | rec_loop: |
| 4670 | DEBUG_SYNC_C("row_search_rec_loop" ); |
| 4671 | if (trx_is_interrupted(trx)) { |
| 4672 | if (!spatial_search) { |
| 4673 | btr_pcur_store_position(pcur, &mtr); |
| 4674 | } |
| 4675 | err = DB_INTERRUPTED; |
| 4676 | goto normal_return; |
| 4677 | } |
| 4678 | |
| 4679 | /*-------------------------------------------------------------*/ |
| 4680 | /* PHASE 4: Look for matching records in a loop */ |
| 4681 | |
| 4682 | rec = btr_pcur_get_rec(pcur); |
| 4683 | |
| 4684 | if (!index->table->is_readable()) { |
| 4685 | err = DB_DECRYPTION_FAILED; |
| 4686 | goto lock_wait_or_error; |
| 4687 | } |
| 4688 | |
| 4689 | ut_ad(!!page_rec_is_comp(rec) == comp); |
| 4690 | ut_ad(page_rec_is_leaf(rec)); |
| 4691 | |
| 4692 | if (page_rec_is_infimum(rec)) { |
| 4693 | |
| 4694 | /* The infimum record on a page cannot be in the result set, |
| 4695 | and neither can a record lock be placed on it: we skip such |
| 4696 | a record. */ |
| 4697 | |
| 4698 | goto next_rec; |
| 4699 | } |
| 4700 | |
| 4701 | if (page_rec_is_supremum(rec)) { |
| 4702 | |
| 4703 | if (set_also_gap_locks |
| 4704 | && !(srv_locks_unsafe_for_binlog |
| 4705 | || trx->isolation_level <= TRX_ISO_READ_COMMITTED) |
| 4706 | && prebuilt->select_lock_type != LOCK_NONE |
| 4707 | && !dict_index_is_spatial(index)) { |
| 4708 | |
| 4709 | /* Try to place a lock on the index record */ |
| 4710 | |
| 4711 | /* If innodb_locks_unsafe_for_binlog option is used |
| 4712 | or this session is using a READ COMMITTED or lower isolation |
| 4713 | level we do not lock gaps. Supremum record is really |
| 4714 | a gap and therefore we do not set locks there. */ |
| 4715 | |
| 4716 | offsets = rec_get_offsets(rec, index, offsets, true, |
| 4717 | ULINT_UNDEFINED, &heap); |
| 4718 | err = sel_set_rec_lock(pcur, |
| 4719 | rec, index, offsets, |
| 4720 | prebuilt->select_lock_type, |
| 4721 | LOCK_ORDINARY, thr, &mtr); |
| 4722 | |
| 4723 | switch (err) { |
| 4724 | case DB_SUCCESS_LOCKED_REC: |
| 4725 | err = DB_SUCCESS; |
| 4726 | /* fall through */ |
| 4727 | case DB_SUCCESS: |
| 4728 | break; |
| 4729 | default: |
| 4730 | goto lock_wait_or_error; |
| 4731 | } |
| 4732 | } |
| 4733 | |
| 4734 | /* A page supremum record cannot be in the result set: skip |
| 4735 | it now that we have placed a possible lock on it */ |
| 4736 | |
| 4737 | goto next_rec; |
| 4738 | } |
| 4739 | |
| 4740 | /*-------------------------------------------------------------*/ |
| 4741 | /* Do sanity checks in case our cursor has bumped into page |
| 4742 | corruption */ |
| 4743 | |
| 4744 | if (comp) { |
| 4745 | if (rec_get_info_bits(rec, true) & REC_INFO_MIN_REC_FLAG) { |
| 4746 | /* Skip the 'default row' pseudo-record. */ |
| 4747 | ut_ad(index->is_instant()); |
| 4748 | goto next_rec; |
| 4749 | } |
| 4750 | |
| 4751 | next_offs = rec_get_next_offs(rec, TRUE); |
| 4752 | if (UNIV_UNLIKELY(next_offs < PAGE_NEW_SUPREMUM)) { |
| 4753 | |
| 4754 | goto wrong_offs; |
| 4755 | } |
| 4756 | } else { |
| 4757 | if (rec_get_info_bits(rec, false) & REC_INFO_MIN_REC_FLAG) { |
| 4758 | /* Skip the 'default row' pseudo-record. */ |
| 4759 | ut_ad(index->is_instant()); |
| 4760 | goto next_rec; |
| 4761 | } |
| 4762 | |
| 4763 | next_offs = rec_get_next_offs(rec, FALSE); |
| 4764 | if (UNIV_UNLIKELY(next_offs < PAGE_OLD_SUPREMUM)) { |
| 4765 | |
| 4766 | goto wrong_offs; |
| 4767 | } |
| 4768 | } |
| 4769 | |
| 4770 | if (UNIV_UNLIKELY(next_offs >= srv_page_size - PAGE_DIR)) { |
| 4771 | |
| 4772 | wrong_offs: |
| 4773 | if (srv_force_recovery == 0 || moves_up == FALSE) { |
| 4774 | ib::error() << "Rec address " |
| 4775 | << static_cast<const void*>(rec) |
| 4776 | << ", buf block fix count " |
| 4777 | << btr_cur_get_block( |
| 4778 | btr_pcur_get_btr_cur(pcur))->page |
| 4779 | .buf_fix_count; |
| 4780 | |
| 4781 | ib::error() << "Index corruption: rec offs " |
| 4782 | << page_offset(rec) << " next offs " |
| 4783 | << next_offs << ", page no " |
| 4784 | << page_get_page_no(page_align(rec)) |
| 4785 | << ", index " << index->name |
| 4786 | << " of table " << index->table->name |
| 4787 | << ". Run CHECK TABLE. You may need to" |
| 4788 | " restore from a backup, or dump + drop +" |
| 4789 | " reimport the table." ; |
| 4790 | ut_ad(0); |
| 4791 | err = DB_CORRUPTION; |
| 4792 | |
| 4793 | goto lock_wait_or_error; |
| 4794 | } else { |
| 4795 | /* The user may be dumping a corrupt table. Jump |
| 4796 | over the corruption to recover as much as possible. */ |
| 4797 | |
| 4798 | ib::info() << "Index corruption: rec offs " |
| 4799 | << page_offset(rec) << " next offs " |
| 4800 | << next_offs << ", page no " |
| 4801 | << page_get_page_no(page_align(rec)) |
| 4802 | << ", index " << index->name |
| 4803 | << " of table " << index->table->name |
| 4804 | << ". We try to skip the rest of the page." ; |
| 4805 | |
| 4806 | btr_pcur_move_to_last_on_page(pcur, &mtr); |
| 4807 | |
| 4808 | goto next_rec; |
| 4809 | } |
| 4810 | } |
| 4811 | /*-------------------------------------------------------------*/ |
| 4812 | |
| 4813 | /* Calculate the 'offsets' associated with 'rec' */ |
| 4814 | |
| 4815 | ut_ad(fil_page_index_page_check(btr_pcur_get_page(pcur))); |
| 4816 | ut_ad(btr_page_get_index_id(btr_pcur_get_page(pcur)) == index->id); |
| 4817 | |
| 4818 | offsets = rec_get_offsets(rec, index, offsets, true, |
| 4819 | ULINT_UNDEFINED, &heap); |
| 4820 | |
| 4821 | if (UNIV_UNLIKELY(srv_force_recovery > 0)) { |
| 4822 | if (!rec_validate(rec, offsets) |
| 4823 | || !btr_index_rec_validate(rec, index, FALSE)) { |
| 4824 | |
| 4825 | ib::error() << "Index corruption: rec offs " |
| 4826 | << page_offset(rec) << " next offs " |
| 4827 | << next_offs << ", page no " |
| 4828 | << page_get_page_no(page_align(rec)) |
| 4829 | << ", index " << index->name |
| 4830 | << " of table " << index->table->name |
| 4831 | << ". We try to skip the record." ; |
| 4832 | |
| 4833 | goto next_rec; |
| 4834 | } |
| 4835 | } |
| 4836 | |
| 4837 | /* Note that we cannot trust the up_match value in the cursor at this |
| 4838 | place because we can arrive here after moving the cursor! Thus |
| 4839 | we have to recompare rec and search_tuple to determine if they |
| 4840 | match enough. */ |
| 4841 | |
| 4842 | if (match_mode == ROW_SEL_EXACT) { |
| 4843 | /* Test if the index record matches completely to search_tuple |
| 4844 | in prebuilt: if not, then we return with DB_RECORD_NOT_FOUND */ |
| 4845 | |
| 4846 | /* fputs("Comparing rec and search tuple\n", stderr); */ |
| 4847 | |
| 4848 | if (0 != cmp_dtuple_rec(search_tuple, rec, offsets)) { |
| 4849 | |
| 4850 | if (set_also_gap_locks |
| 4851 | && !(srv_locks_unsafe_for_binlog |
| 4852 | || trx->isolation_level |
| 4853 | <= TRX_ISO_READ_COMMITTED) |
| 4854 | && prebuilt->select_lock_type != LOCK_NONE |
| 4855 | && !dict_index_is_spatial(index)) { |
| 4856 | |
| 4857 | /* Try to place a gap lock on the index |
| 4858 | record only if innodb_locks_unsafe_for_binlog |
| 4859 | option is not set or this session is not |
| 4860 | using a READ COMMITTED or lower isolation level. */ |
| 4861 | |
| 4862 | err = sel_set_rec_lock( |
| 4863 | pcur, |
| 4864 | rec, index, offsets, |
| 4865 | prebuilt->select_lock_type, LOCK_GAP, |
| 4866 | thr, &mtr); |
| 4867 | |
| 4868 | switch (err) { |
| 4869 | case DB_SUCCESS_LOCKED_REC: |
| 4870 | case DB_SUCCESS: |
| 4871 | break; |
| 4872 | default: |
| 4873 | goto lock_wait_or_error; |
| 4874 | } |
| 4875 | } |
| 4876 | |
| 4877 | btr_pcur_store_position(pcur, &mtr); |
| 4878 | |
| 4879 | /* The found record was not a match, but may be used |
| 4880 | as NEXT record (index_next). Set the relative position |
| 4881 | to BTR_PCUR_BEFORE, to reflect that the position of |
| 4882 | the persistent cursor is before the found/stored row |
| 4883 | (pcur->old_rec). */ |
| 4884 | ut_ad(pcur->rel_pos == BTR_PCUR_ON); |
| 4885 | pcur->rel_pos = BTR_PCUR_BEFORE; |
| 4886 | |
| 4887 | err = DB_RECORD_NOT_FOUND; |
| 4888 | goto normal_return; |
| 4889 | } |
| 4890 | |
| 4891 | } else if (match_mode == ROW_SEL_EXACT_PREFIX) { |
| 4892 | |
| 4893 | if (!cmp_dtuple_is_prefix_of_rec(search_tuple, rec, offsets)) { |
| 4894 | |
| 4895 | if (set_also_gap_locks |
| 4896 | && !(srv_locks_unsafe_for_binlog |
| 4897 | || trx->isolation_level |
| 4898 | <= TRX_ISO_READ_COMMITTED) |
| 4899 | && prebuilt->select_lock_type != LOCK_NONE |
| 4900 | && !dict_index_is_spatial(index)) { |
| 4901 | |
| 4902 | /* Try to place a gap lock on the index |
| 4903 | record only if innodb_locks_unsafe_for_binlog |
| 4904 | option is not set or this session is not |
| 4905 | using a READ COMMITTED or lower isolation level. */ |
| 4906 | |
| 4907 | err = sel_set_rec_lock( |
| 4908 | pcur, |
| 4909 | rec, index, offsets, |
| 4910 | prebuilt->select_lock_type, LOCK_GAP, |
| 4911 | thr, &mtr); |
| 4912 | |
| 4913 | switch (err) { |
| 4914 | case DB_SUCCESS_LOCKED_REC: |
| 4915 | case DB_SUCCESS: |
| 4916 | break; |
| 4917 | default: |
| 4918 | goto lock_wait_or_error; |
| 4919 | } |
| 4920 | } |
| 4921 | |
| 4922 | btr_pcur_store_position(pcur, &mtr); |
| 4923 | |
| 4924 | /* The found record was not a match, but may be used |
| 4925 | as NEXT record (index_next). Set the relative position |
| 4926 | to BTR_PCUR_BEFORE, to reflect that the position of |
| 4927 | the persistent cursor is before the found/stored row |
| 4928 | (pcur->old_rec). */ |
| 4929 | ut_ad(pcur->rel_pos == BTR_PCUR_ON); |
| 4930 | pcur->rel_pos = BTR_PCUR_BEFORE; |
| 4931 | |
| 4932 | err = DB_RECORD_NOT_FOUND; |
| 4933 | goto normal_return; |
| 4934 | } |
| 4935 | } |
| 4936 | |
| 4937 | /* We are ready to look at a possible new index entry in the result |
| 4938 | set: the cursor is now placed on a user record */ |
| 4939 | |
| 4940 | if (prebuilt->select_lock_type != LOCK_NONE) { |
| 4941 | /* Try to place a lock on the index record; note that delete |
| 4942 | marked records are a special case in a unique search. If there |
| 4943 | is a non-delete marked record, then it is enough to lock its |
| 4944 | existence with LOCK_REC_NOT_GAP. */ |
| 4945 | |
| 4946 | /* If innodb_locks_unsafe_for_binlog option is used |
| 4947 | or this session is using a READ COMMITED isolation |
| 4948 | level we lock only the record, i.e., next-key locking is |
| 4949 | not used. */ |
| 4950 | |
| 4951 | ulint lock_type; |
| 4952 | |
| 4953 | if (srv_locks_unsafe_for_binlog |
| 4954 | || trx->isolation_level <= TRX_ISO_READ_COMMITTED) { |
| 4955 | /* At READ COMMITTED or READ UNCOMMITTED |
| 4956 | isolation levels, do not lock committed |
| 4957 | delete-marked records. */ |
| 4958 | if (!rec_get_deleted_flag(rec, comp)) { |
| 4959 | goto no_gap_lock; |
| 4960 | } |
| 4961 | if (index == clust_index) { |
| 4962 | trx_id_t trx_id = row_get_rec_trx_id( |
| 4963 | rec, index, offsets); |
| 4964 | /* In delete-marked records, DB_TRX_ID must |
| 4965 | always refer to an existing undo log record. */ |
| 4966 | ut_ad(trx_id); |
| 4967 | if (!trx_sys.is_registered(trx, trx_id)) { |
| 4968 | /* The clustered index record |
| 4969 | was delete-marked in a committed |
| 4970 | transaction. Ignore the record. */ |
| 4971 | goto locks_ok_del_marked; |
| 4972 | } |
| 4973 | } else if (trx_t* t = row_vers_impl_x_locked( |
| 4974 | trx, rec, index, offsets)) { |
| 4975 | /* The record belongs to an active |
| 4976 | transaction. We must acquire a lock. */ |
| 4977 | t->release_reference(); |
| 4978 | } else { |
| 4979 | /* The secondary index record does not |
| 4980 | point to a delete-marked clustered index |
| 4981 | record that belongs to an active transaction. |
| 4982 | Ignore the secondary index record, because |
| 4983 | it is not locked. */ |
| 4984 | goto next_rec; |
| 4985 | } |
| 4986 | |
| 4987 | goto no_gap_lock; |
| 4988 | } |
| 4989 | |
| 4990 | if (!set_also_gap_locks |
| 4991 | || (unique_search && !rec_get_deleted_flag(rec, comp)) |
| 4992 | || dict_index_is_spatial(index)) { |
| 4993 | |
| 4994 | goto no_gap_lock; |
| 4995 | } else { |
| 4996 | lock_type = LOCK_ORDINARY; |
| 4997 | } |
| 4998 | |
| 4999 | /* If we are doing a 'greater or equal than a primary key |
| 5000 | value' search from a clustered index, and we find a record |
| 5001 | that has that exact primary key value, then there is no need |
| 5002 | to lock the gap before the record, because no insert in the |
| 5003 | gap can be in our search range. That is, no phantom row can |
| 5004 | appear that way. |
| 5005 | |
| 5006 | An example: if col1 is the primary key, the search is WHERE |
| 5007 | col1 >= 100, and we find a record where col1 = 100, then no |
| 5008 | need to lock the gap before that record. */ |
| 5009 | |
| 5010 | if (index == clust_index |
| 5011 | && mode == PAGE_CUR_GE |
| 5012 | && direction == 0 |
| 5013 | && dtuple_get_n_fields_cmp(search_tuple) |
| 5014 | == dict_index_get_n_unique(index) |
| 5015 | && 0 == cmp_dtuple_rec(search_tuple, rec, offsets)) { |
| 5016 | no_gap_lock: |
| 5017 | lock_type = LOCK_REC_NOT_GAP; |
| 5018 | } |
| 5019 | |
| 5020 | err = sel_set_rec_lock(pcur, |
| 5021 | rec, index, offsets, |
| 5022 | prebuilt->select_lock_type, |
| 5023 | lock_type, thr, &mtr); |
| 5024 | |
| 5025 | switch (err) { |
| 5026 | const rec_t* old_vers; |
| 5027 | case DB_SUCCESS_LOCKED_REC: |
| 5028 | if (srv_locks_unsafe_for_binlog |
| 5029 | || trx->isolation_level |
| 5030 | <= TRX_ISO_READ_COMMITTED) { |
| 5031 | /* Note that a record of |
| 5032 | prebuilt->index was locked. */ |
| 5033 | prebuilt->new_rec_locks = 1; |
| 5034 | } |
| 5035 | err = DB_SUCCESS; |
| 5036 | /* fall through */ |
| 5037 | case DB_SUCCESS: |
| 5038 | break; |
| 5039 | case DB_LOCK_WAIT: |
| 5040 | /* Lock wait for R-tree should already |
| 5041 | be handled in sel_set_rtr_rec_lock() */ |
| 5042 | ut_ad(!dict_index_is_spatial(index)); |
| 5043 | /* Never unlock rows that were part of a conflict. */ |
| 5044 | prebuilt->new_rec_locks = 0; |
| 5045 | |
| 5046 | if (UNIV_LIKELY(prebuilt->row_read_type |
| 5047 | != ROW_READ_TRY_SEMI_CONSISTENT) |
| 5048 | || unique_search |
| 5049 | || index != clust_index) { |
| 5050 | |
| 5051 | goto lock_wait_or_error; |
| 5052 | } |
| 5053 | |
| 5054 | /* The following call returns 'offsets' |
| 5055 | associated with 'old_vers' */ |
| 5056 | row_sel_build_committed_vers_for_mysql( |
| 5057 | clust_index, prebuilt, rec, |
| 5058 | &offsets, &heap, &old_vers, need_vrow ? &vrow : NULL, |
| 5059 | &mtr); |
| 5060 | |
| 5061 | /* Check whether it was a deadlock or not, if not |
| 5062 | a deadlock and the transaction had to wait then |
| 5063 | release the lock it is waiting on. */ |
| 5064 | |
| 5065 | err = lock_trx_handle_wait(trx); |
| 5066 | |
| 5067 | switch (err) { |
| 5068 | case DB_SUCCESS: |
| 5069 | /* The lock was granted while we were |
| 5070 | searching for the last committed version. |
| 5071 | Do a normal locking read. */ |
| 5072 | |
| 5073 | offsets = rec_get_offsets( |
| 5074 | rec, index, offsets, true, |
| 5075 | ULINT_UNDEFINED, &heap); |
| 5076 | goto locks_ok; |
| 5077 | case DB_DEADLOCK: |
| 5078 | goto lock_wait_or_error; |
| 5079 | case DB_LOCK_WAIT: |
| 5080 | ut_ad(!dict_index_is_spatial(index)); |
| 5081 | err = DB_SUCCESS; |
| 5082 | break; |
| 5083 | default: |
| 5084 | ut_error; |
| 5085 | } |
| 5086 | |
| 5087 | if (old_vers == NULL) { |
| 5088 | /* The row was not yet committed */ |
| 5089 | |
| 5090 | goto next_rec; |
| 5091 | } |
| 5092 | |
| 5093 | did_semi_consistent_read = TRUE; |
| 5094 | rec = old_vers; |
| 5095 | break; |
| 5096 | case DB_RECORD_NOT_FOUND: |
| 5097 | if (dict_index_is_spatial(index)) { |
| 5098 | goto next_rec; |
| 5099 | } else { |
| 5100 | goto lock_wait_or_error; |
| 5101 | } |
| 5102 | |
| 5103 | default: |
| 5104 | |
| 5105 | goto lock_wait_or_error; |
| 5106 | } |
| 5107 | } else { |
| 5108 | /* This is a non-locking consistent read: if necessary, fetch |
| 5109 | a previous version of the record */ |
| 5110 | |
| 5111 | if (trx->isolation_level == TRX_ISO_READ_UNCOMMITTED |
| 5112 | || prebuilt->table->no_rollback()) { |
| 5113 | |
| 5114 | /* Do nothing: we let a non-locking SELECT read the |
| 5115 | latest version of the record */ |
| 5116 | |
| 5117 | } else if (index == clust_index) { |
| 5118 | |
| 5119 | /* Fetch a previous version of the row if the current |
| 5120 | one is not visible in the snapshot; if we have a very |
| 5121 | high force recovery level set, we try to avoid crashes |
| 5122 | by skipping this lookup */ |
| 5123 | |
| 5124 | if (!lock_clust_rec_cons_read_sees( |
| 5125 | rec, index, offsets, &trx->read_view)) { |
| 5126 | ut_ad(srv_force_recovery |
| 5127 | < SRV_FORCE_NO_UNDO_LOG_SCAN); |
| 5128 | rec_t* old_vers; |
| 5129 | /* The following call returns 'offsets' |
| 5130 | associated with 'old_vers' */ |
| 5131 | err = row_sel_build_prev_vers_for_mysql( |
| 5132 | &trx->read_view, clust_index, |
| 5133 | prebuilt, rec, &offsets, &heap, |
| 5134 | &old_vers, need_vrow ? &vrow : NULL, |
| 5135 | &mtr); |
| 5136 | |
| 5137 | if (err != DB_SUCCESS) { |
| 5138 | |
| 5139 | goto lock_wait_or_error; |
| 5140 | } |
| 5141 | |
| 5142 | if (old_vers == NULL) { |
| 5143 | /* The row did not exist yet in |
| 5144 | the read view */ |
| 5145 | |
| 5146 | goto next_rec; |
| 5147 | } |
| 5148 | |
| 5149 | rec = old_vers; |
| 5150 | } |
| 5151 | } else { |
| 5152 | /* We are looking into a non-clustered index, |
| 5153 | and to get the right version of the record we |
| 5154 | have to look also into the clustered index: this |
| 5155 | is necessary, because we can only get the undo |
| 5156 | information via the clustered index record. */ |
| 5157 | |
| 5158 | ut_ad(!dict_index_is_clust(index)); |
| 5159 | |
| 5160 | if (!srv_read_only_mode |
| 5161 | && !lock_sec_rec_cons_read_sees( |
| 5162 | rec, index, &trx->read_view)) { |
| 5163 | /* We should look at the clustered index. |
| 5164 | However, as this is a non-locking read, |
| 5165 | we can skip the clustered index lookup if |
| 5166 | the condition does not match the secondary |
| 5167 | index entry. */ |
| 5168 | switch (row_search_idx_cond_check( |
| 5169 | buf, prebuilt, rec, offsets)) { |
| 5170 | case ICP_NO_MATCH: |
| 5171 | goto next_rec; |
| 5172 | case ICP_OUT_OF_RANGE: |
| 5173 | case ICP_ABORTED_BY_USER: |
| 5174 | case ICP_ERROR: |
| 5175 | err = DB_RECORD_NOT_FOUND; |
| 5176 | goto idx_cond_failed; |
| 5177 | case ICP_MATCH: |
| 5178 | goto requires_clust_rec; |
| 5179 | } |
| 5180 | |
| 5181 | ut_error; |
| 5182 | } |
| 5183 | } |
| 5184 | } |
| 5185 | |
| 5186 | locks_ok: |
| 5187 | /* NOTE that at this point rec can be an old version of a clustered |
| 5188 | index record built for a consistent read. We cannot assume after this |
| 5189 | point that rec is on a buffer pool page. Functions like |
| 5190 | page_rec_is_comp() cannot be used! */ |
| 5191 | |
| 5192 | if (rec_get_deleted_flag(rec, comp)) { |
| 5193 | locks_ok_del_marked: |
| 5194 | /* In delete-marked records, DB_TRX_ID must |
| 5195 | always refer to an existing undo log record. */ |
| 5196 | ut_ad(index != clust_index |
| 5197 | || row_get_rec_trx_id(rec, index, offsets)); |
| 5198 | |
| 5199 | /* The record is delete-marked: we can skip it */ |
| 5200 | |
| 5201 | /* This is an optimization to skip setting the next key lock |
| 5202 | on the record that follows this delete-marked record. This |
| 5203 | optimization works because of the unique search criteria |
| 5204 | which precludes the presence of a range lock between this |
| 5205 | delete marked record and the record following it. |
| 5206 | |
| 5207 | For now this is applicable only to clustered indexes while |
| 5208 | doing a unique search except for HANDLER queries because |
| 5209 | HANDLER allows NEXT and PREV even in unique search on |
| 5210 | clustered index. There is scope for further optimization |
| 5211 | applicable to unique secondary indexes. Current behaviour is |
| 5212 | to widen the scope of a lock on an already delete marked record |
| 5213 | if the same record is deleted twice by the same transaction */ |
| 5214 | if (index == clust_index && unique_search |
| 5215 | && !prebuilt->used_in_HANDLER) { |
| 5216 | |
| 5217 | err = DB_RECORD_NOT_FOUND; |
| 5218 | |
| 5219 | goto normal_return; |
| 5220 | } |
| 5221 | |
| 5222 | goto next_rec; |
| 5223 | } |
| 5224 | |
| 5225 | /* Check if the record matches the index condition. */ |
| 5226 | switch (row_search_idx_cond_check(buf, prebuilt, rec, offsets)) { |
| 5227 | case ICP_NO_MATCH: |
| 5228 | if (did_semi_consistent_read) { |
| 5229 | row_unlock_for_mysql(prebuilt, TRUE); |
| 5230 | } |
| 5231 | goto next_rec; |
| 5232 | case ICP_OUT_OF_RANGE: |
| 5233 | case ICP_ABORTED_BY_USER: |
| 5234 | case ICP_ERROR: |
| 5235 | err = DB_RECORD_NOT_FOUND; |
| 5236 | goto idx_cond_failed; |
| 5237 | case ICP_MATCH: |
| 5238 | break; |
| 5239 | } |
| 5240 | |
| 5241 | if (index != clust_index && prebuilt->need_to_access_clustered) { |
| 5242 | if (row_search_with_covering_prefix(prebuilt, rec, offsets)) { |
| 5243 | goto use_covering_index; |
| 5244 | } |
| 5245 | requires_clust_rec: |
| 5246 | ut_ad(index != clust_index); |
| 5247 | /* We use a 'goto' to the preceding label if a consistent |
| 5248 | read of a secondary index record requires us to look up old |
| 5249 | versions of the associated clustered index record. */ |
| 5250 | |
| 5251 | ut_ad(rec_offs_validate(rec, index, offsets)); |
| 5252 | |
| 5253 | /* It was a non-clustered index and we must fetch also the |
| 5254 | clustered index record */ |
| 5255 | |
| 5256 | mtr_has_extra_clust_latch = TRUE; |
| 5257 | |
| 5258 | ut_ad(!vrow); |
| 5259 | /* The following call returns 'offsets' associated with |
| 5260 | 'clust_rec'. Note that 'clust_rec' can be an old version |
| 5261 | built for a consistent read. */ |
| 5262 | |
| 5263 | err = row_sel_get_clust_rec_for_mysql(prebuilt, index, rec, |
| 5264 | thr, &clust_rec, |
| 5265 | &offsets, &heap, |
| 5266 | need_vrow ? &vrow : NULL, |
| 5267 | &mtr); |
| 5268 | switch (err) { |
| 5269 | case DB_SUCCESS: |
| 5270 | if (clust_rec == NULL) { |
| 5271 | /* The record did not exist in the read view */ |
| 5272 | ut_ad(prebuilt->select_lock_type == LOCK_NONE |
| 5273 | || dict_index_is_spatial(index)); |
| 5274 | |
| 5275 | goto next_rec; |
| 5276 | } |
| 5277 | break; |
| 5278 | case DB_SUCCESS_LOCKED_REC: |
| 5279 | ut_a(clust_rec != NULL); |
| 5280 | if (srv_locks_unsafe_for_binlog |
| 5281 | || trx->isolation_level |
| 5282 | <= TRX_ISO_READ_COMMITTED) { |
| 5283 | /* Note that the clustered index record |
| 5284 | was locked. */ |
| 5285 | prebuilt->new_rec_locks = 2; |
| 5286 | } |
| 5287 | err = DB_SUCCESS; |
| 5288 | break; |
| 5289 | default: |
| 5290 | vrow = NULL; |
| 5291 | goto lock_wait_or_error; |
| 5292 | } |
| 5293 | |
| 5294 | if (rec_get_deleted_flag(clust_rec, comp)) { |
| 5295 | |
| 5296 | /* The record is delete marked: we can skip it */ |
| 5297 | |
| 5298 | if ((srv_locks_unsafe_for_binlog |
| 5299 | || trx->isolation_level <= TRX_ISO_READ_COMMITTED) |
| 5300 | && prebuilt->select_lock_type != LOCK_NONE) { |
| 5301 | |
| 5302 | /* No need to keep a lock on a delete-marked |
| 5303 | record if we do not want to use next-key |
| 5304 | locking. */ |
| 5305 | |
| 5306 | row_unlock_for_mysql(prebuilt, TRUE); |
| 5307 | } |
| 5308 | |
| 5309 | goto next_rec; |
| 5310 | } |
| 5311 | |
| 5312 | if (need_vrow && !vrow) { |
| 5313 | if (!heap) { |
| 5314 | heap = mem_heap_create(100); |
| 5315 | } |
| 5316 | row_sel_fill_vrow(rec, index, &vrow, heap); |
| 5317 | } |
| 5318 | |
| 5319 | result_rec = clust_rec; |
| 5320 | ut_ad(rec_offs_validate(result_rec, clust_index, offsets)); |
| 5321 | |
| 5322 | if (prebuilt->idx_cond) { |
| 5323 | /* Convert the record to MySQL format. We were |
| 5324 | unable to do this in row_search_idx_cond_check(), |
| 5325 | because the condition is on the secondary index |
| 5326 | and the requested column is in the clustered index. |
| 5327 | We convert all fields, including those that |
| 5328 | may have been used in ICP, because the |
| 5329 | secondary index may contain a column prefix |
| 5330 | rather than the full column. Also, as noted |
| 5331 | in Bug #56680, the column in the secondary |
| 5332 | index may be in the wrong case, and the |
| 5333 | authoritative case is in result_rec, the |
| 5334 | appropriate version of the clustered index record. */ |
| 5335 | if (!row_sel_store_mysql_rec( |
| 5336 | buf, prebuilt, result_rec, vrow, |
| 5337 | true, clust_index, offsets)) { |
| 5338 | goto next_rec; |
| 5339 | } |
| 5340 | } |
| 5341 | } else { |
| 5342 | use_covering_index: |
| 5343 | result_rec = rec; |
| 5344 | } |
| 5345 | |
| 5346 | /* We found a qualifying record 'result_rec'. At this point, |
| 5347 | 'offsets' are associated with 'result_rec'. */ |
| 5348 | |
| 5349 | ut_ad(rec_offs_validate(result_rec, |
| 5350 | result_rec != rec ? clust_index : index, |
| 5351 | offsets)); |
| 5352 | ut_ad(!rec_get_deleted_flag(result_rec, comp)); |
| 5353 | |
| 5354 | /* Decide whether to prefetch extra rows. |
| 5355 | At this point, the clustered index record is protected |
| 5356 | by a page latch that was acquired when pcur was positioned. |
| 5357 | The latch will not be released until mtr.commit(). */ |
| 5358 | |
| 5359 | if ((match_mode == ROW_SEL_EXACT |
| 5360 | || prebuilt->n_rows_fetched >= MYSQL_FETCH_CACHE_THRESHOLD) |
| 5361 | && prebuilt->select_lock_type == LOCK_NONE |
| 5362 | && !prebuilt->m_no_prefetch |
| 5363 | && !prebuilt->templ_contains_blob |
| 5364 | && !prebuilt->clust_index_was_generated |
| 5365 | && !prebuilt->used_in_HANDLER |
| 5366 | && prebuilt->template_type != ROW_MYSQL_DUMMY_TEMPLATE |
| 5367 | && !prebuilt->in_fts_query) { |
| 5368 | |
| 5369 | /* Inside an update, for example, we do not cache rows, |
| 5370 | since we may use the cursor position to do the actual |
| 5371 | update, that is why we require ...lock_type == LOCK_NONE. |
| 5372 | Since we keep space in prebuilt only for the BLOBs of |
| 5373 | a single row, we cannot cache rows in the case there |
| 5374 | are BLOBs in the fields to be fetched. In HANDLER we do |
| 5375 | not cache rows because there the cursor is a scrollable |
| 5376 | cursor. */ |
| 5377 | |
| 5378 | ut_a(prebuilt->n_fetch_cached < MYSQL_FETCH_CACHE_SIZE); |
| 5379 | |
| 5380 | /* We only convert from InnoDB row format to MySQL row |
| 5381 | format when ICP is disabled. */ |
| 5382 | |
| 5383 | if (!prebuilt->idx_cond) { |
| 5384 | |
| 5385 | /* We use next_buf to track the allocation of buffers |
| 5386 | where we store and enqueue the buffers for our |
| 5387 | pre-fetch optimisation. |
| 5388 | |
| 5389 | If next_buf == 0 then we store the converted record |
| 5390 | directly into the MySQL record buffer (buf). If it is |
| 5391 | != 0 then we allocate a pre-fetch buffer and store the |
| 5392 | converted record there. |
| 5393 | |
| 5394 | If the conversion fails and the MySQL record buffer |
| 5395 | was not written to then we reset next_buf so that |
| 5396 | we can re-use the MySQL record buffer in the next |
| 5397 | iteration. */ |
| 5398 | |
| 5399 | next_buf = next_buf |
| 5400 | ? row_sel_fetch_last_buf(prebuilt) : buf; |
| 5401 | |
| 5402 | if (!row_sel_store_mysql_rec( |
| 5403 | next_buf, prebuilt, result_rec, vrow, |
| 5404 | result_rec != rec, |
| 5405 | result_rec != rec ? clust_index : index, |
| 5406 | offsets)) { |
| 5407 | |
| 5408 | if (next_buf == buf) { |
| 5409 | ut_a(prebuilt->n_fetch_cached == 0); |
| 5410 | next_buf = 0; |
| 5411 | } |
| 5412 | |
| 5413 | /* Only fresh inserts may contain incomplete |
| 5414 | externally stored columns. Pretend that such |
| 5415 | records do not exist. Such records may only be |
| 5416 | accessed at the READ UNCOMMITTED isolation |
| 5417 | level or when rolling back a recovered |
| 5418 | transaction. Rollback happens at a lower |
| 5419 | level, not here. */ |
| 5420 | goto next_rec; |
| 5421 | } |
| 5422 | |
| 5423 | if (next_buf != buf) { |
| 5424 | row_sel_enqueue_cache_row_for_mysql( |
| 5425 | next_buf, prebuilt); |
| 5426 | } |
| 5427 | } else { |
| 5428 | row_sel_enqueue_cache_row_for_mysql(buf, prebuilt); |
| 5429 | } |
| 5430 | |
| 5431 | if (prebuilt->n_fetch_cached < MYSQL_FETCH_CACHE_SIZE) { |
| 5432 | goto next_rec; |
| 5433 | } |
| 5434 | |
| 5435 | } else { |
| 5436 | if (UNIV_UNLIKELY |
| 5437 | (prebuilt->template_type == ROW_MYSQL_DUMMY_TEMPLATE)) { |
| 5438 | /* CHECK TABLE: fetch the row */ |
| 5439 | |
| 5440 | if (result_rec != rec |
| 5441 | && !prebuilt->need_to_access_clustered) { |
| 5442 | /* We used 'offsets' for the clust |
| 5443 | rec, recalculate them for 'rec' */ |
| 5444 | offsets = rec_get_offsets(rec, index, offsets, |
| 5445 | true, |
| 5446 | ULINT_UNDEFINED, |
| 5447 | &heap); |
| 5448 | result_rec = rec; |
| 5449 | } |
| 5450 | |
| 5451 | memcpy(buf + 4, result_rec |
| 5452 | - rec_offs_extra_size(offsets), |
| 5453 | rec_offs_size(offsets)); |
| 5454 | mach_write_to_4(buf, |
| 5455 | rec_offs_extra_size(offsets) + 4); |
| 5456 | } else if (!prebuilt->idx_cond) { |
| 5457 | /* The record was not yet converted to MySQL format. */ |
| 5458 | if (!row_sel_store_mysql_rec( |
| 5459 | buf, prebuilt, result_rec, vrow, |
| 5460 | result_rec != rec, |
| 5461 | result_rec != rec ? clust_index : index, |
| 5462 | offsets)) { |
| 5463 | /* Only fresh inserts may contain |
| 5464 | incomplete externally stored |
| 5465 | columns. Pretend that such records do |
| 5466 | not exist. Such records may only be |
| 5467 | accessed at the READ UNCOMMITTED |
| 5468 | isolation level or when rolling back a |
| 5469 | recovered transaction. Rollback |
| 5470 | happens at a lower level, not here. */ |
| 5471 | goto next_rec; |
| 5472 | } |
| 5473 | } |
| 5474 | |
| 5475 | if (prebuilt->clust_index_was_generated) { |
| 5476 | row_sel_store_row_id_to_prebuilt( |
| 5477 | prebuilt, result_rec, |
| 5478 | result_rec == rec ? index : clust_index, |
| 5479 | offsets); |
| 5480 | } |
| 5481 | } |
| 5482 | |
| 5483 | /* From this point on, 'offsets' are invalid. */ |
| 5484 | |
| 5485 | /* We have an optimization to save CPU time: if this is a consistent |
| 5486 | read on a unique condition on the clustered index, then we do not |
| 5487 | store the pcur position, because any fetch next or prev will anyway |
| 5488 | return 'end of file'. Exceptions are locking reads and the MySQL |
| 5489 | HANDLER command where the user can move the cursor with PREV or NEXT |
| 5490 | even after a unique search. */ |
| 5491 | |
| 5492 | err = DB_SUCCESS; |
| 5493 | |
| 5494 | idx_cond_failed: |
| 5495 | if (!unique_search |
| 5496 | || !dict_index_is_clust(index) |
| 5497 | || direction != 0 |
| 5498 | || prebuilt->select_lock_type != LOCK_NONE |
| 5499 | || prebuilt->used_in_HANDLER) { |
| 5500 | |
| 5501 | /* Inside an update always store the cursor position */ |
| 5502 | |
| 5503 | if (!spatial_search) { |
| 5504 | btr_pcur_store_position(pcur, &mtr); |
| 5505 | } |
| 5506 | } |
| 5507 | |
| 5508 | goto normal_return; |
| 5509 | |
| 5510 | next_rec: |
| 5511 | /* Reset the old and new "did semi-consistent read" flags. */ |
| 5512 | if (UNIV_UNLIKELY(prebuilt->row_read_type |
| 5513 | == ROW_READ_DID_SEMI_CONSISTENT)) { |
| 5514 | prebuilt->row_read_type = ROW_READ_TRY_SEMI_CONSISTENT; |
| 5515 | } |
| 5516 | did_semi_consistent_read = FALSE; |
| 5517 | prebuilt->new_rec_locks = 0; |
| 5518 | vrow = NULL; |
| 5519 | |
| 5520 | /*-------------------------------------------------------------*/ |
| 5521 | /* PHASE 5: Move the cursor to the next index record */ |
| 5522 | |
| 5523 | /* NOTE: For moves_up==FALSE, the mini-transaction will be |
| 5524 | committed and restarted every time when switching b-tree |
| 5525 | pages. For moves_up==TRUE in index condition pushdown, we can |
| 5526 | scan an entire secondary index tree within a single |
| 5527 | mini-transaction. As long as the prebuilt->idx_cond does not |
| 5528 | match, we do not need to consult the clustered index or |
| 5529 | return records to MySQL, and thus we can avoid repositioning |
| 5530 | the cursor. What prevents us from buffer-fixing all leaf pages |
| 5531 | within the mini-transaction is the btr_leaf_page_release() |
| 5532 | call in btr_pcur_move_to_next_page(). Only the leaf page where |
| 5533 | the cursor is positioned will remain buffer-fixed. |
| 5534 | For R-tree spatial search, we also commit the mini-transaction |
| 5535 | each time */ |
| 5536 | |
| 5537 | if (spatial_search) { |
| 5538 | /* No need to do store restore for R-tree */ |
| 5539 | mtr.commit(); |
| 5540 | mtr.start(); |
| 5541 | mtr_has_extra_clust_latch = FALSE; |
| 5542 | } else if (mtr_has_extra_clust_latch) { |
| 5543 | /* If we have extra cluster latch, we must commit |
| 5544 | mtr if we are moving to the next non-clustered |
| 5545 | index record, because we could break the latching |
| 5546 | order if we would access a different clustered |
| 5547 | index page right away without releasing the previous. */ |
| 5548 | |
| 5549 | btr_pcur_store_position(pcur, &mtr); |
| 5550 | mtr.commit(); |
| 5551 | mtr_has_extra_clust_latch = FALSE; |
| 5552 | |
| 5553 | mtr.start(); |
| 5554 | |
| 5555 | if (sel_restore_position_for_mysql(&same_user_rec, |
| 5556 | BTR_SEARCH_LEAF, |
| 5557 | pcur, moves_up, &mtr)) { |
| 5558 | goto rec_loop; |
| 5559 | } |
| 5560 | } |
| 5561 | |
| 5562 | if (moves_up) { |
| 5563 | bool move; |
| 5564 | |
| 5565 | if (spatial_search) { |
| 5566 | move = rtr_pcur_move_to_next( |
| 5567 | search_tuple, mode, pcur, 0, &mtr); |
| 5568 | } else { |
| 5569 | move = btr_pcur_move_to_next(pcur, &mtr); |
| 5570 | } |
| 5571 | |
| 5572 | if (!move) { |
| 5573 | not_moved: |
| 5574 | if (!spatial_search) { |
| 5575 | btr_pcur_store_position(pcur, &mtr); |
| 5576 | } |
| 5577 | |
| 5578 | if (match_mode != 0) { |
| 5579 | err = DB_RECORD_NOT_FOUND; |
| 5580 | } else { |
| 5581 | err = DB_END_OF_INDEX; |
| 5582 | } |
| 5583 | |
| 5584 | goto normal_return; |
| 5585 | } |
| 5586 | } else { |
| 5587 | if (UNIV_UNLIKELY(!btr_pcur_move_to_prev(pcur, &mtr))) { |
| 5588 | goto not_moved; |
| 5589 | } |
| 5590 | } |
| 5591 | |
| 5592 | goto rec_loop; |
| 5593 | |
| 5594 | lock_wait_or_error: |
| 5595 | /* Reset the old and new "did semi-consistent read" flags. */ |
| 5596 | if (UNIV_UNLIKELY(prebuilt->row_read_type |
| 5597 | == ROW_READ_DID_SEMI_CONSISTENT)) { |
| 5598 | prebuilt->row_read_type = ROW_READ_TRY_SEMI_CONSISTENT; |
| 5599 | } |
| 5600 | did_semi_consistent_read = FALSE; |
| 5601 | |
| 5602 | /*-------------------------------------------------------------*/ |
| 5603 | if (!dict_index_is_spatial(index)) { |
| 5604 | if (rec) { |
| 5605 | btr_pcur_store_position(pcur, &mtr); |
| 5606 | } |
| 5607 | } |
| 5608 | |
| 5609 | lock_table_wait: |
| 5610 | mtr.commit(); |
| 5611 | mtr_has_extra_clust_latch = FALSE; |
| 5612 | |
| 5613 | trx->error_state = err; |
| 5614 | |
| 5615 | /* The following is a patch for MySQL */ |
| 5616 | |
| 5617 | if (thr->is_active) { |
| 5618 | que_thr_stop_for_mysql(thr); |
| 5619 | } |
| 5620 | |
| 5621 | thr->lock_state = QUE_THR_LOCK_ROW; |
| 5622 | |
| 5623 | if (row_mysql_handle_errors(&err, trx, thr, NULL)) { |
| 5624 | /* It was a lock wait, and it ended */ |
| 5625 | |
| 5626 | thr->lock_state = QUE_THR_LOCK_NOLOCK; |
| 5627 | mtr.start(); |
| 5628 | |
| 5629 | /* Table lock waited, go try to obtain table lock |
| 5630 | again */ |
| 5631 | if (table_lock_waited) { |
| 5632 | table_lock_waited = FALSE; |
| 5633 | |
| 5634 | goto wait_table_again; |
| 5635 | } |
| 5636 | |
| 5637 | if (!dict_index_is_spatial(index)) { |
| 5638 | sel_restore_position_for_mysql( |
| 5639 | &same_user_rec, BTR_SEARCH_LEAF, pcur, |
| 5640 | moves_up, &mtr); |
| 5641 | } |
| 5642 | |
| 5643 | if ((srv_locks_unsafe_for_binlog |
| 5644 | || trx->isolation_level <= TRX_ISO_READ_COMMITTED) |
| 5645 | && !same_user_rec) { |
| 5646 | |
| 5647 | /* Since we were not able to restore the cursor |
| 5648 | on the same user record, we cannot use |
| 5649 | row_unlock_for_mysql() to unlock any records, and |
| 5650 | we must thus reset the new rec lock info. Since |
| 5651 | in lock0lock.cc we have blocked the inheriting of gap |
| 5652 | X-locks, we actually do not have any new record locks |
| 5653 | set in this case. |
| 5654 | |
| 5655 | Note that if we were able to restore on the 'same' |
| 5656 | user record, it is still possible that we were actually |
| 5657 | waiting on a delete-marked record, and meanwhile |
| 5658 | it was removed by purge and inserted again by some |
| 5659 | other user. But that is no problem, because in |
| 5660 | rec_loop we will again try to set a lock, and |
| 5661 | new_rec_lock_info in trx will be right at the end. */ |
| 5662 | |
| 5663 | prebuilt->new_rec_locks = 0; |
| 5664 | } |
| 5665 | |
| 5666 | mode = pcur->search_mode; |
| 5667 | |
| 5668 | goto rec_loop; |
| 5669 | } |
| 5670 | |
| 5671 | thr->lock_state = QUE_THR_LOCK_NOLOCK; |
| 5672 | |
| 5673 | goto func_exit; |
| 5674 | |
| 5675 | normal_return: |
| 5676 | /*-------------------------------------------------------------*/ |
| 5677 | { |
| 5678 | /* handler_index_cond_check() may pull TR_table search |
| 5679 | which initates another row_search_mvcc(). */ |
| 5680 | ulint n_active_thrs= trx->lock.n_active_thrs; |
| 5681 | trx->lock.n_active_thrs= 1; |
| 5682 | que_thr_stop_for_mysql_no_error(thr, trx); |
| 5683 | trx->lock.n_active_thrs= n_active_thrs - 1; |
| 5684 | } |
| 5685 | |
| 5686 | mtr.commit(); |
| 5687 | |
| 5688 | DEBUG_SYNC_C("row_search_for_mysql_before_return" ); |
| 5689 | |
| 5690 | if (prebuilt->idx_cond != 0) { |
| 5691 | |
| 5692 | /* When ICP is active we don't write to the MySQL buffer |
| 5693 | directly, only to buffers that are enqueued in the pre-fetch |
| 5694 | queue. We need to dequeue the first buffer and copy the contents |
| 5695 | to the record buffer that was passed in by MySQL. */ |
| 5696 | |
| 5697 | if (prebuilt->n_fetch_cached > 0) { |
| 5698 | row_sel_dequeue_cached_row_for_mysql(buf, prebuilt); |
| 5699 | err = DB_SUCCESS; |
| 5700 | } |
| 5701 | |
| 5702 | } else if (next_buf != 0) { |
| 5703 | |
| 5704 | /* We may or may not have enqueued some buffers to the |
| 5705 | pre-fetch queue, but we definitely wrote to the record |
| 5706 | buffer passed to use by MySQL. */ |
| 5707 | |
| 5708 | DEBUG_SYNC_C("row_search_cached_row" ); |
| 5709 | err = DB_SUCCESS; |
| 5710 | } |
| 5711 | |
| 5712 | #ifdef UNIV_DEBUG |
| 5713 | if (dict_index_is_spatial(index) && err != DB_SUCCESS |
| 5714 | && err != DB_END_OF_INDEX && err != DB_INTERRUPTED) { |
| 5715 | rtr_node_path_t* path = pcur->btr_cur.rtr_info->path; |
| 5716 | |
| 5717 | ut_ad(path->empty()); |
| 5718 | } |
| 5719 | #endif |
| 5720 | |
| 5721 | func_exit: |
| 5722 | trx->op_info = "" ; |
| 5723 | if (heap != NULL) { |
| 5724 | mem_heap_free(heap); |
| 5725 | } |
| 5726 | |
| 5727 | /* Set or reset the "did semi-consistent read" flag on return. |
| 5728 | The flag did_semi_consistent_read is set if and only if |
| 5729 | the record being returned was fetched with a semi-consistent read. */ |
| 5730 | ut_ad(prebuilt->row_read_type != ROW_READ_WITH_LOCKS |
| 5731 | || !did_semi_consistent_read); |
| 5732 | |
| 5733 | if (prebuilt->row_read_type != ROW_READ_WITH_LOCKS) { |
| 5734 | if (did_semi_consistent_read) { |
| 5735 | prebuilt->row_read_type = ROW_READ_DID_SEMI_CONSISTENT; |
| 5736 | } else { |
| 5737 | prebuilt->row_read_type = ROW_READ_TRY_SEMI_CONSISTENT; |
| 5738 | } |
| 5739 | } |
| 5740 | |
| 5741 | ut_ad(!sync_check_iterate(sync_check())); |
| 5742 | |
| 5743 | DEBUG_SYNC_C("innodb_row_search_for_mysql_exit" ); |
| 5744 | |
| 5745 | DBUG_RETURN(err); |
| 5746 | } |
| 5747 | |
| 5748 | /********************************************************************//** |
| 5749 | Count rows in a R-Tree leaf level. |
| 5750 | @return DB_SUCCESS if successful */ |
| 5751 | dberr_t |
| 5752 | row_count_rtree_recs( |
| 5753 | /*=================*/ |
| 5754 | row_prebuilt_t* prebuilt, /*!< in: prebuilt struct for the |
| 5755 | table handle; this contains the info |
| 5756 | of search_tuple, index; if search |
| 5757 | tuple contains 0 fields then we |
| 5758 | position the cursor at the start or |
| 5759 | the end of the index, depending on |
| 5760 | 'mode' */ |
| 5761 | ulint* n_rows) /*!< out: number of entries |
| 5762 | seen in the consistent read */ |
| 5763 | { |
| 5764 | dict_index_t* index = prebuilt->index; |
| 5765 | dberr_t ret = DB_SUCCESS; |
| 5766 | mtr_t mtr; |
| 5767 | mem_heap_t* heap; |
| 5768 | dtuple_t* entry; |
| 5769 | dtuple_t* search_entry = prebuilt->search_tuple; |
| 5770 | ulint entry_len; |
| 5771 | ulint i; |
| 5772 | byte* buf; |
| 5773 | |
| 5774 | ut_a(dict_index_is_spatial(index)); |
| 5775 | |
| 5776 | *n_rows = 0; |
| 5777 | |
| 5778 | heap = mem_heap_create(256); |
| 5779 | |
| 5780 | /* Build a search tuple. */ |
| 5781 | entry_len = dict_index_get_n_fields(index); |
| 5782 | entry = dtuple_create(heap, entry_len); |
| 5783 | |
| 5784 | for (i = 0; i < entry_len; i++) { |
| 5785 | const dict_field_t* ind_field |
| 5786 | = dict_index_get_nth_field(index, i); |
| 5787 | const dict_col_t* col |
| 5788 | = ind_field->col; |
| 5789 | dfield_t* dfield |
| 5790 | = dtuple_get_nth_field(entry, i); |
| 5791 | |
| 5792 | if (i == 0) { |
| 5793 | double* mbr; |
| 5794 | double tmp_mbr[SPDIMS * 2]; |
| 5795 | |
| 5796 | dfield->type.mtype = DATA_GEOMETRY; |
| 5797 | dfield->type.prtype |= DATA_GIS_MBR; |
| 5798 | |
| 5799 | /* Allocate memory for mbr field */ |
| 5800 | mbr = static_cast<double*> |
| 5801 | (mem_heap_alloc(heap, DATA_MBR_LEN)); |
| 5802 | |
| 5803 | /* Set mbr field data. */ |
| 5804 | dfield_set_data(dfield, mbr, DATA_MBR_LEN); |
| 5805 | |
| 5806 | for (uint j = 0; j < SPDIMS; j++) { |
| 5807 | tmp_mbr[j * 2] = DBL_MAX; |
| 5808 | tmp_mbr[j * 2 + 1] = -DBL_MAX; |
| 5809 | } |
| 5810 | dfield_write_mbr(dfield, tmp_mbr); |
| 5811 | continue; |
| 5812 | } |
| 5813 | |
| 5814 | dfield->type.mtype = col->mtype; |
| 5815 | dfield->type.prtype = col->prtype; |
| 5816 | |
| 5817 | } |
| 5818 | |
| 5819 | prebuilt->search_tuple = entry; |
| 5820 | |
| 5821 | ulint bufsize = std::max<ulint>(srv_page_size, |
| 5822 | prebuilt->mysql_row_len); |
| 5823 | buf = static_cast<byte*>(ut_malloc_nokey(bufsize)); |
| 5824 | |
| 5825 | ulint cnt = 1000; |
| 5826 | |
| 5827 | ret = row_search_for_mysql(buf, PAGE_CUR_WITHIN, prebuilt, 0, 0); |
| 5828 | loop: |
| 5829 | /* Check thd->killed every 1,000 scanned rows */ |
| 5830 | if (--cnt == 0) { |
| 5831 | if (trx_is_interrupted(prebuilt->trx)) { |
| 5832 | ret = DB_INTERRUPTED; |
| 5833 | goto func_exit; |
| 5834 | } |
| 5835 | cnt = 1000; |
| 5836 | } |
| 5837 | |
| 5838 | switch (ret) { |
| 5839 | case DB_SUCCESS: |
| 5840 | break; |
| 5841 | case DB_DEADLOCK: |
| 5842 | case DB_LOCK_TABLE_FULL: |
| 5843 | case DB_LOCK_WAIT_TIMEOUT: |
| 5844 | case DB_INTERRUPTED: |
| 5845 | goto func_exit; |
| 5846 | default: |
| 5847 | /* fall through (this error is ignored by CHECK TABLE) */ |
| 5848 | case DB_END_OF_INDEX: |
| 5849 | ret = DB_SUCCESS; |
| 5850 | func_exit: |
| 5851 | prebuilt->search_tuple = search_entry; |
| 5852 | ut_free(buf); |
| 5853 | mem_heap_free(heap); |
| 5854 | |
| 5855 | return(ret); |
| 5856 | } |
| 5857 | |
| 5858 | *n_rows = *n_rows + 1; |
| 5859 | |
| 5860 | ret = row_search_for_mysql( |
| 5861 | buf, PAGE_CUR_WITHIN, prebuilt, 0, ROW_SEL_NEXT); |
| 5862 | |
| 5863 | goto loop; |
| 5864 | } |
| 5865 | |
| 5866 | /*******************************************************************//** |
| 5867 | Checks if MySQL at the moment is allowed for this table to retrieve a |
| 5868 | consistent read result, or store it to the query cache. |
| 5869 | @return whether storing or retrieving from the query cache is permitted */ |
| 5870 | bool |
| 5871 | row_search_check_if_query_cache_permitted( |
| 5872 | /*======================================*/ |
| 5873 | trx_t* trx, /*!< in: transaction object */ |
| 5874 | const char* norm_name) /*!< in: concatenation of database name, |
| 5875 | '/' char, table name */ |
| 5876 | { |
| 5877 | dict_table_t* table = dict_table_open_on_name( |
| 5878 | norm_name, FALSE, FALSE, DICT_ERR_IGNORE_NONE); |
| 5879 | |
| 5880 | if (table == NULL) { |
| 5881 | |
| 5882 | return(false); |
| 5883 | } |
| 5884 | |
| 5885 | /* Start the transaction if it is not started yet */ |
| 5886 | |
| 5887 | trx_start_if_not_started(trx, false); |
| 5888 | |
| 5889 | /* If there are locks on the table or some trx has invalidated the |
| 5890 | cache before this transaction started then this transaction cannot |
| 5891 | read/write from/to the cache. |
| 5892 | |
| 5893 | If a read view has not been created for the transaction then it doesn't |
| 5894 | really matter what this transaction sees. If a read view was created |
| 5895 | then the view low_limit_id is the max trx id that this transaction |
| 5896 | saw at the time of the read view creation. */ |
| 5897 | |
| 5898 | const bool ret = lock_table_get_n_locks(table) == 0 |
| 5899 | && ((trx->id != 0 && trx->id >= table->query_cache_inv_id) |
| 5900 | || !trx->read_view.is_open() |
| 5901 | || trx->read_view.low_limit_id() |
| 5902 | >= table->query_cache_inv_id); |
| 5903 | if (ret) { |
| 5904 | /* If the isolation level is high, assign a read view for the |
| 5905 | transaction if it does not yet have one */ |
| 5906 | |
| 5907 | if (trx->isolation_level >= TRX_ISO_REPEATABLE_READ) { |
| 5908 | trx->read_view.open(trx); |
| 5909 | } |
| 5910 | } |
| 5911 | |
| 5912 | dict_table_close(table, FALSE, FALSE); |
| 5913 | |
| 5914 | return(ret); |
| 5915 | } |
| 5916 | |
| 5917 | /*******************************************************************//** |
| 5918 | Read the AUTOINC column from the current row. If the value is less than |
| 5919 | 0 and the type is not unsigned then we reset the value to 0. |
| 5920 | @return value read from the column */ |
| 5921 | static |
| 5922 | ib_uint64_t |
| 5923 | row_search_autoinc_read_column( |
| 5924 | /*===========================*/ |
| 5925 | dict_index_t* index, /*!< in: index to read from */ |
| 5926 | const rec_t* rec, /*!< in: current rec */ |
| 5927 | ulint col_no, /*!< in: column number */ |
| 5928 | ulint mtype, /*!< in: column main type */ |
| 5929 | ibool unsigned_type) /*!< in: signed or unsigned flag */ |
| 5930 | { |
| 5931 | ulint len; |
| 5932 | const byte* data; |
| 5933 | ib_uint64_t value; |
| 5934 | mem_heap_t* heap = NULL; |
| 5935 | ulint offsets_[REC_OFFS_NORMAL_SIZE]; |
| 5936 | ulint* offsets = offsets_; |
| 5937 | |
| 5938 | rec_offs_init(offsets_); |
| 5939 | ut_ad(page_rec_is_leaf(rec)); |
| 5940 | |
| 5941 | offsets = rec_get_offsets(rec, index, offsets, true, |
| 5942 | col_no + 1, &heap); |
| 5943 | |
| 5944 | if (rec_offs_nth_sql_null(offsets, col_no)) { |
| 5945 | /* There is no non-NULL value in the auto-increment column. */ |
| 5946 | value = 0; |
| 5947 | goto func_exit; |
| 5948 | } |
| 5949 | |
| 5950 | data = rec_get_nth_field(rec, offsets, col_no, &len); |
| 5951 | |
| 5952 | value = row_parse_int(data, len, mtype, unsigned_type); |
| 5953 | |
| 5954 | func_exit: |
| 5955 | if (UNIV_LIKELY_NULL(heap)) { |
| 5956 | mem_heap_free(heap); |
| 5957 | } |
| 5958 | |
| 5959 | return(value); |
| 5960 | } |
| 5961 | |
| 5962 | /** Get the maximum and non-delete-marked record in an index. |
| 5963 | @param[in] index index tree |
| 5964 | @param[in,out] mtr mini-transaction (may be committed and restarted) |
| 5965 | @return maximum record, page s-latched in mtr |
| 5966 | @retval NULL if there are no records, or if all of them are delete-marked */ |
| 5967 | static |
| 5968 | const rec_t* |
| 5969 | row_search_get_max_rec( |
| 5970 | dict_index_t* index, |
| 5971 | mtr_t* mtr) |
| 5972 | { |
| 5973 | btr_pcur_t pcur; |
| 5974 | const rec_t* rec; |
| 5975 | /* Open at the high/right end (false), and init cursor */ |
| 5976 | btr_pcur_open_at_index_side( |
| 5977 | false, index, BTR_SEARCH_LEAF, &pcur, true, 0, mtr); |
| 5978 | |
| 5979 | do { |
| 5980 | const page_t* page; |
| 5981 | |
| 5982 | page = btr_pcur_get_page(&pcur); |
| 5983 | rec = page_find_rec_max_not_deleted(page); |
| 5984 | |
| 5985 | if (page_rec_is_user_rec(rec)) { |
| 5986 | break; |
| 5987 | } else { |
| 5988 | rec = NULL; |
| 5989 | } |
| 5990 | btr_pcur_move_before_first_on_page(&pcur); |
| 5991 | } while (btr_pcur_move_to_prev(&pcur, mtr)); |
| 5992 | |
| 5993 | btr_pcur_close(&pcur); |
| 5994 | |
| 5995 | ut_ad(!rec |
| 5996 | || !(rec_get_info_bits(rec, dict_table_is_comp(index->table)) |
| 5997 | & (REC_INFO_MIN_REC_FLAG | REC_INFO_DELETED_FLAG))); |
| 5998 | return(rec); |
| 5999 | } |
| 6000 | |
| 6001 | /** Read the max AUTOINC value from an index. |
| 6002 | @param[in] index index starting with an AUTO_INCREMENT column |
| 6003 | @return the largest AUTO_INCREMENT value |
| 6004 | @retval 0 if no records were found */ |
| 6005 | ib_uint64_t |
| 6006 | row_search_max_autoinc(dict_index_t* index) |
| 6007 | { |
| 6008 | const dict_field_t* dfield = dict_index_get_nth_field(index, 0); |
| 6009 | |
| 6010 | ib_uint64_t value = 0; |
| 6011 | |
| 6012 | mtr_t mtr; |
| 6013 | mtr.start(); |
| 6014 | |
| 6015 | if (const rec_t* rec = row_search_get_max_rec(index, &mtr)) { |
| 6016 | value = row_search_autoinc_read_column( |
| 6017 | index, rec, 0, |
| 6018 | dfield->col->mtype, |
| 6019 | dfield->col->prtype & DATA_UNSIGNED); |
| 6020 | } |
| 6021 | |
| 6022 | mtr.commit(); |
| 6023 | return(value); |
| 6024 | } |
| 6025 | |