| 1 | /* |
| 2 | ** Table handling. |
| 3 | ** Copyright (C) 2005-2021 Mike Pall. See Copyright Notice in luajit.h |
| 4 | ** |
| 5 | ** Major portions taken verbatim or adapted from the Lua interpreter. |
| 6 | ** Copyright (C) 1994-2008 Lua.org, PUC-Rio. See Copyright Notice in lua.h |
| 7 | */ |
| 8 | |
| 9 | #define lj_tab_c |
| 10 | #define LUA_CORE |
| 11 | |
| 12 | #include "lj_obj.h" |
| 13 | #include "lj_gc.h" |
| 14 | #include "lj_err.h" |
| 15 | #include "lj_tab.h" |
| 16 | |
| 17 | /* -- Object hashing ------------------------------------------------------ */ |
| 18 | |
| 19 | /* Hash values are masked with the table hash mask and used as an index. */ |
| 20 | static LJ_AINLINE Node *hashmask(const GCtab *t, uint32_t hash) |
| 21 | { |
| 22 | Node *n = noderef(t->node); |
| 23 | return &n[hash & t->hmask]; |
| 24 | } |
| 25 | |
| 26 | /* String IDs are generated when a string is interned. */ |
| 27 | #define hashstr(t, s) hashmask(t, (s)->sid) |
| 28 | |
| 29 | #define hashlohi(t, lo, hi) hashmask((t), hashrot((lo), (hi))) |
| 30 | #define hashnum(t, o) hashlohi((t), (o)->u32.lo, ((o)->u32.hi << 1)) |
| 31 | #if LJ_GC64 |
| 32 | #define hashgcref(t, r) \ |
| 33 | hashlohi((t), (uint32_t)gcrefu(r), (uint32_t)(gcrefu(r) >> 32)) |
| 34 | #else |
| 35 | #define hashgcref(t, r) hashlohi((t), gcrefu(r), gcrefu(r) + HASH_BIAS) |
| 36 | #endif |
| 37 | |
| 38 | /* Hash an arbitrary key and return its anchor position in the hash table. */ |
| 39 | static Node *hashkey(const GCtab *t, cTValue *key) |
| 40 | { |
| 41 | lj_assertX(!tvisint(key), "attempt to hash integer" ); |
| 42 | if (tvisstr(key)) |
| 43 | return hashstr(t, strV(key)); |
| 44 | else if (tvisnum(key)) |
| 45 | return hashnum(t, key); |
| 46 | else if (tvisbool(key)) |
| 47 | return hashmask(t, boolV(key)); |
| 48 | else |
| 49 | return hashgcref(t, key->gcr); |
| 50 | /* Only hash 32 bits of lightuserdata on a 64 bit CPU. Good enough? */ |
| 51 | } |
| 52 | |
| 53 | /* -- Table creation and destruction -------------------------------------- */ |
| 54 | |
| 55 | /* Create new hash part for table. */ |
| 56 | static LJ_AINLINE void newhpart(lua_State *L, GCtab *t, uint32_t hbits) |
| 57 | { |
| 58 | uint32_t hsize; |
| 59 | Node *node; |
| 60 | lj_assertL(hbits != 0, "zero hash size" ); |
| 61 | if (hbits > LJ_MAX_HBITS) |
| 62 | lj_err_msg(L, LJ_ERR_TABOV); |
| 63 | hsize = 1u << hbits; |
| 64 | node = lj_mem_newvec(L, hsize, Node); |
| 65 | setmref(t->node, node); |
| 66 | setfreetop(t, node, &node[hsize]); |
| 67 | t->hmask = hsize-1; |
| 68 | } |
| 69 | |
| 70 | /* |
| 71 | ** Q: Why all of these copies of t->hmask, t->node etc. to local variables? |
| 72 | ** A: Because alias analysis for C is _really_ tough. |
| 73 | ** Even state-of-the-art C compilers won't produce good code without this. |
| 74 | */ |
| 75 | |
| 76 | /* Clear hash part of table. */ |
| 77 | static LJ_AINLINE void clearhpart(GCtab *t) |
| 78 | { |
| 79 | uint32_t i, hmask = t->hmask; |
| 80 | Node *node = noderef(t->node); |
| 81 | lj_assertX(t->hmask != 0, "empty hash part" ); |
| 82 | for (i = 0; i <= hmask; i++) { |
| 83 | Node *n = &node[i]; |
| 84 | setmref(n->next, NULL); |
| 85 | setnilV(&n->key); |
| 86 | setnilV(&n->val); |
| 87 | } |
| 88 | } |
| 89 | |
| 90 | /* Clear array part of table. */ |
| 91 | static LJ_AINLINE void clearapart(GCtab *t) |
| 92 | { |
| 93 | uint32_t i, asize = t->asize; |
| 94 | TValue *array = tvref(t->array); |
| 95 | for (i = 0; i < asize; i++) |
| 96 | setnilV(&array[i]); |
| 97 | } |
| 98 | |
| 99 | /* Create a new table. Note: the slots are not initialized (yet). */ |
| 100 | static GCtab *newtab(lua_State *L, uint32_t asize, uint32_t hbits) |
| 101 | { |
| 102 | GCtab *t; |
| 103 | /* First try to colocate the array part. */ |
| 104 | if (LJ_MAX_COLOSIZE != 0 && asize > 0 && asize <= LJ_MAX_COLOSIZE) { |
| 105 | Node *nilnode; |
| 106 | lj_assertL((sizeof(GCtab) & 7) == 0, "bad GCtab size" ); |
| 107 | t = (GCtab *)lj_mem_newgco(L, sizetabcolo(asize)); |
| 108 | t->gct = ~LJ_TTAB; |
| 109 | t->nomm = (uint8_t)~0; |
| 110 | t->colo = (int8_t)asize; |
| 111 | setmref(t->array, (TValue *)((char *)t + sizeof(GCtab))); |
| 112 | setgcrefnull(t->metatable); |
| 113 | t->asize = asize; |
| 114 | t->hmask = 0; |
| 115 | nilnode = &G(L)->nilnode; |
| 116 | setmref(t->node, nilnode); |
| 117 | #if LJ_GC64 |
| 118 | setmref(t->freetop, nilnode); |
| 119 | #endif |
| 120 | } else { /* Otherwise separately allocate the array part. */ |
| 121 | Node *nilnode; |
| 122 | t = lj_mem_newobj(L, GCtab); |
| 123 | t->gct = ~LJ_TTAB; |
| 124 | t->nomm = (uint8_t)~0; |
| 125 | t->colo = 0; |
| 126 | setmref(t->array, NULL); |
| 127 | setgcrefnull(t->metatable); |
| 128 | t->asize = 0; /* In case the array allocation fails. */ |
| 129 | t->hmask = 0; |
| 130 | nilnode = &G(L)->nilnode; |
| 131 | setmref(t->node, nilnode); |
| 132 | #if LJ_GC64 |
| 133 | setmref(t->freetop, nilnode); |
| 134 | #endif |
| 135 | if (asize > 0) { |
| 136 | if (asize > LJ_MAX_ASIZE) |
| 137 | lj_err_msg(L, LJ_ERR_TABOV); |
| 138 | setmref(t->array, lj_mem_newvec(L, asize, TValue)); |
| 139 | t->asize = asize; |
| 140 | } |
| 141 | } |
| 142 | if (hbits) |
| 143 | newhpart(L, t, hbits); |
| 144 | return t; |
| 145 | } |
| 146 | |
| 147 | /* Create a new table. |
| 148 | ** |
| 149 | ** IMPORTANT NOTE: The API differs from lua_createtable()! |
| 150 | ** |
| 151 | ** The array size is non-inclusive. E.g. asize=128 creates array slots |
| 152 | ** for 0..127, but not for 128. If you need slots 1..128, pass asize=129 |
| 153 | ** (slot 0 is wasted in this case). |
| 154 | ** |
| 155 | ** The hash size is given in hash bits. hbits=0 means no hash part. |
| 156 | ** hbits=1 creates 2 hash slots, hbits=2 creates 4 hash slots and so on. |
| 157 | */ |
| 158 | GCtab *lj_tab_new(lua_State *L, uint32_t asize, uint32_t hbits) |
| 159 | { |
| 160 | GCtab *t = newtab(L, asize, hbits); |
| 161 | clearapart(t); |
| 162 | if (t->hmask > 0) clearhpart(t); |
| 163 | return t; |
| 164 | } |
| 165 | |
| 166 | /* The API of this function conforms to lua_createtable(). */ |
| 167 | GCtab *lj_tab_new_ah(lua_State *L, int32_t a, int32_t h) |
| 168 | { |
| 169 | return lj_tab_new(L, (uint32_t)(a > 0 ? a+1 : 0), hsize2hbits(h)); |
| 170 | } |
| 171 | |
| 172 | #if LJ_HASJIT |
| 173 | GCtab * LJ_FASTCALL lj_tab_new1(lua_State *L, uint32_t ahsize) |
| 174 | { |
| 175 | GCtab *t = newtab(L, ahsize & 0xffffff, ahsize >> 24); |
| 176 | clearapart(t); |
| 177 | if (t->hmask > 0) clearhpart(t); |
| 178 | return t; |
| 179 | } |
| 180 | #endif |
| 181 | |
| 182 | /* Duplicate a table. */ |
| 183 | GCtab * LJ_FASTCALL lj_tab_dup(lua_State *L, const GCtab *kt) |
| 184 | { |
| 185 | GCtab *t; |
| 186 | uint32_t asize, hmask; |
| 187 | t = newtab(L, kt->asize, kt->hmask > 0 ? lj_fls(kt->hmask)+1 : 0); |
| 188 | lj_assertL(kt->asize == t->asize && kt->hmask == t->hmask, |
| 189 | "mismatched size of table and template" ); |
| 190 | t->nomm = 0; /* Keys with metamethod names may be present. */ |
| 191 | asize = kt->asize; |
| 192 | if (asize > 0) { |
| 193 | TValue *array = tvref(t->array); |
| 194 | TValue *karray = tvref(kt->array); |
| 195 | if (asize < 64) { /* An inlined loop beats memcpy for < 512 bytes. */ |
| 196 | uint32_t i; |
| 197 | for (i = 0; i < asize; i++) |
| 198 | copyTV(L, &array[i], &karray[i]); |
| 199 | } else { |
| 200 | memcpy(array, karray, asize*sizeof(TValue)); |
| 201 | } |
| 202 | } |
| 203 | hmask = kt->hmask; |
| 204 | if (hmask > 0) { |
| 205 | uint32_t i; |
| 206 | Node *node = noderef(t->node); |
| 207 | Node *knode = noderef(kt->node); |
| 208 | ptrdiff_t d = (char *)node - (char *)knode; |
| 209 | setfreetop(t, node, (Node *)((char *)getfreetop(kt, knode) + d)); |
| 210 | for (i = 0; i <= hmask; i++) { |
| 211 | Node *kn = &knode[i]; |
| 212 | Node *n = &node[i]; |
| 213 | Node *next = nextnode(kn); |
| 214 | /* Don't use copyTV here, since it asserts on a copy of a dead key. */ |
| 215 | n->val = kn->val; n->key = kn->key; |
| 216 | setmref(n->next, next == NULL? next : (Node *)((char *)next + d)); |
| 217 | } |
| 218 | } |
| 219 | return t; |
| 220 | } |
| 221 | |
| 222 | /* Clear a table. */ |
| 223 | void LJ_FASTCALL lj_tab_clear(GCtab *t) |
| 224 | { |
| 225 | clearapart(t); |
| 226 | if (t->hmask > 0) { |
| 227 | Node *node = noderef(t->node); |
| 228 | setfreetop(t, node, &node[t->hmask+1]); |
| 229 | clearhpart(t); |
| 230 | } |
| 231 | } |
| 232 | |
| 233 | /* Free a table. */ |
| 234 | void LJ_FASTCALL lj_tab_free(global_State *g, GCtab *t) |
| 235 | { |
| 236 | if (t->hmask > 0) |
| 237 | lj_mem_freevec(g, noderef(t->node), t->hmask+1, Node); |
| 238 | if (t->asize > 0 && LJ_MAX_COLOSIZE != 0 && t->colo <= 0) |
| 239 | lj_mem_freevec(g, tvref(t->array), t->asize, TValue); |
| 240 | if (LJ_MAX_COLOSIZE != 0 && t->colo) |
| 241 | lj_mem_free(g, t, sizetabcolo((uint32_t)t->colo & 0x7f)); |
| 242 | else |
| 243 | lj_mem_freet(g, t); |
| 244 | } |
| 245 | |
| 246 | /* -- Table resizing ------------------------------------------------------ */ |
| 247 | |
| 248 | /* Resize a table to fit the new array/hash part sizes. */ |
| 249 | void lj_tab_resize(lua_State *L, GCtab *t, uint32_t asize, uint32_t hbits) |
| 250 | { |
| 251 | Node *oldnode = noderef(t->node); |
| 252 | uint32_t oldasize = t->asize; |
| 253 | uint32_t oldhmask = t->hmask; |
| 254 | if (asize > oldasize) { /* Array part grows? */ |
| 255 | TValue *array; |
| 256 | uint32_t i; |
| 257 | if (asize > LJ_MAX_ASIZE) |
| 258 | lj_err_msg(L, LJ_ERR_TABOV); |
| 259 | if (LJ_MAX_COLOSIZE != 0 && t->colo > 0) { |
| 260 | /* A colocated array must be separated and copied. */ |
| 261 | TValue *oarray = tvref(t->array); |
| 262 | array = lj_mem_newvec(L, asize, TValue); |
| 263 | t->colo = (int8_t)(t->colo | 0x80); /* Mark as separated (colo < 0). */ |
| 264 | for (i = 0; i < oldasize; i++) |
| 265 | copyTV(L, &array[i], &oarray[i]); |
| 266 | } else { |
| 267 | array = (TValue *)lj_mem_realloc(L, tvref(t->array), |
| 268 | oldasize*sizeof(TValue), asize*sizeof(TValue)); |
| 269 | } |
| 270 | setmref(t->array, array); |
| 271 | t->asize = asize; |
| 272 | for (i = oldasize; i < asize; i++) /* Clear newly allocated slots. */ |
| 273 | setnilV(&array[i]); |
| 274 | } |
| 275 | /* Create new (empty) hash part. */ |
| 276 | if (hbits) { |
| 277 | newhpart(L, t, hbits); |
| 278 | clearhpart(t); |
| 279 | } else { |
| 280 | global_State *g = G(L); |
| 281 | setmref(t->node, &g->nilnode); |
| 282 | #if LJ_GC64 |
| 283 | setmref(t->freetop, &g->nilnode); |
| 284 | #endif |
| 285 | t->hmask = 0; |
| 286 | } |
| 287 | if (asize < oldasize) { /* Array part shrinks? */ |
| 288 | TValue *array = tvref(t->array); |
| 289 | uint32_t i; |
| 290 | t->asize = asize; /* Note: This 'shrinks' even colocated arrays. */ |
| 291 | for (i = asize; i < oldasize; i++) /* Reinsert old array values. */ |
| 292 | if (!tvisnil(&array[i])) |
| 293 | copyTV(L, lj_tab_setinth(L, t, (int32_t)i), &array[i]); |
| 294 | /* Physically shrink only separated arrays. */ |
| 295 | if (LJ_MAX_COLOSIZE != 0 && t->colo <= 0) |
| 296 | setmref(t->array, lj_mem_realloc(L, array, |
| 297 | oldasize*sizeof(TValue), asize*sizeof(TValue))); |
| 298 | } |
| 299 | if (oldhmask > 0) { /* Reinsert pairs from old hash part. */ |
| 300 | global_State *g; |
| 301 | uint32_t i; |
| 302 | for (i = 0; i <= oldhmask; i++) { |
| 303 | Node *n = &oldnode[i]; |
| 304 | if (!tvisnil(&n->val)) |
| 305 | copyTV(L, lj_tab_set(L, t, &n->key), &n->val); |
| 306 | } |
| 307 | g = G(L); |
| 308 | lj_mem_freevec(g, oldnode, oldhmask+1, Node); |
| 309 | } |
| 310 | } |
| 311 | |
| 312 | static uint32_t countint(cTValue *key, uint32_t *bins) |
| 313 | { |
| 314 | lj_assertX(!tvisint(key), "bad integer key" ); |
| 315 | if (tvisnum(key)) { |
| 316 | lua_Number nk = numV(key); |
| 317 | int32_t k = lj_num2int(nk); |
| 318 | if ((uint32_t)k < LJ_MAX_ASIZE && nk == (lua_Number)k) { |
| 319 | bins[(k > 2 ? lj_fls((uint32_t)(k-1)) : 0)]++; |
| 320 | return 1; |
| 321 | } |
| 322 | } |
| 323 | return 0; |
| 324 | } |
| 325 | |
| 326 | static uint32_t countarray(const GCtab *t, uint32_t *bins) |
| 327 | { |
| 328 | uint32_t na, b, i; |
| 329 | if (t->asize == 0) return 0; |
| 330 | for (na = i = b = 0; b < LJ_MAX_ABITS; b++) { |
| 331 | uint32_t n, top = 2u << b; |
| 332 | TValue *array; |
| 333 | if (top >= t->asize) { |
| 334 | top = t->asize-1; |
| 335 | if (i > top) |
| 336 | break; |
| 337 | } |
| 338 | array = tvref(t->array); |
| 339 | for (n = 0; i <= top; i++) |
| 340 | if (!tvisnil(&array[i])) |
| 341 | n++; |
| 342 | bins[b] += n; |
| 343 | na += n; |
| 344 | } |
| 345 | return na; |
| 346 | } |
| 347 | |
| 348 | static uint32_t counthash(const GCtab *t, uint32_t *bins, uint32_t *narray) |
| 349 | { |
| 350 | uint32_t total, na, i, hmask = t->hmask; |
| 351 | Node *node = noderef(t->node); |
| 352 | for (total = na = 0, i = 0; i <= hmask; i++) { |
| 353 | Node *n = &node[i]; |
| 354 | if (!tvisnil(&n->val)) { |
| 355 | na += countint(&n->key, bins); |
| 356 | total++; |
| 357 | } |
| 358 | } |
| 359 | *narray += na; |
| 360 | return total; |
| 361 | } |
| 362 | |
| 363 | static uint32_t bestasize(uint32_t bins[], uint32_t *narray) |
| 364 | { |
| 365 | uint32_t b, sum, na = 0, sz = 0, nn = *narray; |
| 366 | for (b = 0, sum = 0; 2*nn > (1u<<b) && sum != nn; b++) |
| 367 | if (bins[b] > 0 && 2*(sum += bins[b]) > (1u<<b)) { |
| 368 | sz = (2u<<b)+1; |
| 369 | na = sum; |
| 370 | } |
| 371 | *narray = sz; |
| 372 | return na; |
| 373 | } |
| 374 | |
| 375 | static void rehashtab(lua_State *L, GCtab *t, cTValue *ek) |
| 376 | { |
| 377 | uint32_t bins[LJ_MAX_ABITS]; |
| 378 | uint32_t total, asize, na, i; |
| 379 | for (i = 0; i < LJ_MAX_ABITS; i++) bins[i] = 0; |
| 380 | asize = countarray(t, bins); |
| 381 | total = 1 + asize; |
| 382 | total += counthash(t, bins, &asize); |
| 383 | asize += countint(ek, bins); |
| 384 | na = bestasize(bins, &asize); |
| 385 | total -= na; |
| 386 | lj_tab_resize(L, t, asize, hsize2hbits(total)); |
| 387 | } |
| 388 | |
| 389 | #if LJ_HASFFI |
| 390 | void lj_tab_rehash(lua_State *L, GCtab *t) |
| 391 | { |
| 392 | rehashtab(L, t, niltv(L)); |
| 393 | } |
| 394 | #endif |
| 395 | |
| 396 | void lj_tab_reasize(lua_State *L, GCtab *t, uint32_t nasize) |
| 397 | { |
| 398 | lj_tab_resize(L, t, nasize+1, t->hmask > 0 ? lj_fls(t->hmask)+1 : 0); |
| 399 | } |
| 400 | |
| 401 | /* -- Table getters ------------------------------------------------------- */ |
| 402 | |
| 403 | cTValue * LJ_FASTCALL lj_tab_getinth(GCtab *t, int32_t key) |
| 404 | { |
| 405 | TValue k; |
| 406 | Node *n; |
| 407 | k.n = (lua_Number)key; |
| 408 | n = hashnum(t, &k); |
| 409 | do { |
| 410 | if (tvisnum(&n->key) && n->key.n == k.n) |
| 411 | return &n->val; |
| 412 | } while ((n = nextnode(n))); |
| 413 | return NULL; |
| 414 | } |
| 415 | |
| 416 | cTValue *lj_tab_getstr(GCtab *t, GCstr *key) |
| 417 | { |
| 418 | Node *n = hashstr(t, key); |
| 419 | do { |
| 420 | if (tvisstr(&n->key) && strV(&n->key) == key) |
| 421 | return &n->val; |
| 422 | } while ((n = nextnode(n))); |
| 423 | return NULL; |
| 424 | } |
| 425 | |
| 426 | cTValue *lj_tab_get(lua_State *L, GCtab *t, cTValue *key) |
| 427 | { |
| 428 | if (tvisstr(key)) { |
| 429 | cTValue *tv = lj_tab_getstr(t, strV(key)); |
| 430 | if (tv) |
| 431 | return tv; |
| 432 | } else if (tvisint(key)) { |
| 433 | cTValue *tv = lj_tab_getint(t, intV(key)); |
| 434 | if (tv) |
| 435 | return tv; |
| 436 | } else if (tvisnum(key)) { |
| 437 | lua_Number nk = numV(key); |
| 438 | int32_t k = lj_num2int(nk); |
| 439 | if (nk == (lua_Number)k) { |
| 440 | cTValue *tv = lj_tab_getint(t, k); |
| 441 | if (tv) |
| 442 | return tv; |
| 443 | } else { |
| 444 | goto genlookup; /* Else use the generic lookup. */ |
| 445 | } |
| 446 | } else if (!tvisnil(key)) { |
| 447 | Node *n; |
| 448 | genlookup: |
| 449 | n = hashkey(t, key); |
| 450 | do { |
| 451 | if (lj_obj_equal(&n->key, key)) |
| 452 | return &n->val; |
| 453 | } while ((n = nextnode(n))); |
| 454 | } |
| 455 | return niltv(L); |
| 456 | } |
| 457 | |
| 458 | /* -- Table setters ------------------------------------------------------- */ |
| 459 | |
| 460 | /* Insert new key. Use Brent's variation to optimize the chain length. */ |
| 461 | TValue *lj_tab_newkey(lua_State *L, GCtab *t, cTValue *key) |
| 462 | { |
| 463 | Node *n = hashkey(t, key); |
| 464 | if (!tvisnil(&n->val) || t->hmask == 0) { |
| 465 | Node *nodebase = noderef(t->node); |
| 466 | Node *collide, *freenode = getfreetop(t, nodebase); |
| 467 | lj_assertL(freenode >= nodebase && freenode <= nodebase+t->hmask+1, |
| 468 | "bad freenode" ); |
| 469 | do { |
| 470 | if (freenode == nodebase) { /* No free node found? */ |
| 471 | rehashtab(L, t, key); /* Rehash table. */ |
| 472 | return lj_tab_set(L, t, key); /* Retry key insertion. */ |
| 473 | } |
| 474 | } while (!tvisnil(&(--freenode)->key)); |
| 475 | setfreetop(t, nodebase, freenode); |
| 476 | lj_assertL(freenode != &G(L)->nilnode, "store to fallback hash" ); |
| 477 | collide = hashkey(t, &n->key); |
| 478 | if (collide != n) { /* Colliding node not the main node? */ |
| 479 | while (noderef(collide->next) != n) /* Find predecessor. */ |
| 480 | collide = nextnode(collide); |
| 481 | setmref(collide->next, freenode); /* Relink chain. */ |
| 482 | /* Copy colliding node into free node and free main node. */ |
| 483 | freenode->val = n->val; |
| 484 | freenode->key = n->key; |
| 485 | freenode->next = n->next; |
| 486 | setmref(n->next, NULL); |
| 487 | setnilV(&n->val); |
| 488 | /* Rechain pseudo-resurrected string keys with colliding hashes. */ |
| 489 | while (nextnode(freenode)) { |
| 490 | Node *nn = nextnode(freenode); |
| 491 | if (!tvisnil(&nn->val) && hashkey(t, &nn->key) == n) { |
| 492 | freenode->next = nn->next; |
| 493 | nn->next = n->next; |
| 494 | setmref(n->next, nn); |
| 495 | /* |
| 496 | ** Rechaining a resurrected string key creates a new dilemma: |
| 497 | ** Another string key may have originally been resurrected via |
| 498 | ** _any_ of the previous nodes as a chain anchor. Including |
| 499 | ** a node that had to be moved, which makes them unreachable. |
| 500 | ** It's not feasible to check for all previous nodes, so rechain |
| 501 | ** any string key that's currently in a non-main positions. |
| 502 | */ |
| 503 | while ((nn = nextnode(freenode))) { |
| 504 | if (!tvisnil(&nn->val)) { |
| 505 | Node *mn = hashkey(t, &nn->key); |
| 506 | if (mn != freenode && mn != nn) { |
| 507 | freenode->next = nn->next; |
| 508 | nn->next = mn->next; |
| 509 | setmref(mn->next, nn); |
| 510 | } else { |
| 511 | freenode = nn; |
| 512 | } |
| 513 | } else { |
| 514 | freenode = nn; |
| 515 | } |
| 516 | } |
| 517 | break; |
| 518 | } else { |
| 519 | freenode = nn; |
| 520 | } |
| 521 | } |
| 522 | } else { /* Otherwise use free node. */ |
| 523 | setmrefr(freenode->next, n->next); /* Insert into chain. */ |
| 524 | setmref(n->next, freenode); |
| 525 | n = freenode; |
| 526 | } |
| 527 | } |
| 528 | n->key.u64 = key->u64; |
| 529 | if (LJ_UNLIKELY(tvismzero(&n->key))) |
| 530 | n->key.u64 = 0; |
| 531 | lj_gc_anybarriert(L, t); |
| 532 | lj_assertL(tvisnil(&n->val), "new hash slot is not empty" ); |
| 533 | return &n->val; |
| 534 | } |
| 535 | |
| 536 | TValue *lj_tab_setinth(lua_State *L, GCtab *t, int32_t key) |
| 537 | { |
| 538 | TValue k; |
| 539 | Node *n; |
| 540 | k.n = (lua_Number)key; |
| 541 | n = hashnum(t, &k); |
| 542 | do { |
| 543 | if (tvisnum(&n->key) && n->key.n == k.n) |
| 544 | return &n->val; |
| 545 | } while ((n = nextnode(n))); |
| 546 | return lj_tab_newkey(L, t, &k); |
| 547 | } |
| 548 | |
| 549 | TValue *lj_tab_setstr(lua_State *L, GCtab *t, GCstr *key) |
| 550 | { |
| 551 | TValue k; |
| 552 | Node *n = hashstr(t, key); |
| 553 | do { |
| 554 | if (tvisstr(&n->key) && strV(&n->key) == key) |
| 555 | return &n->val; |
| 556 | } while ((n = nextnode(n))); |
| 557 | setstrV(L, &k, key); |
| 558 | return lj_tab_newkey(L, t, &k); |
| 559 | } |
| 560 | |
| 561 | TValue *lj_tab_set(lua_State *L, GCtab *t, cTValue *key) |
| 562 | { |
| 563 | Node *n; |
| 564 | t->nomm = 0; /* Invalidate negative metamethod cache. */ |
| 565 | if (tvisstr(key)) { |
| 566 | return lj_tab_setstr(L, t, strV(key)); |
| 567 | } else if (tvisint(key)) { |
| 568 | return lj_tab_setint(L, t, intV(key)); |
| 569 | } else if (tvisnum(key)) { |
| 570 | lua_Number nk = numV(key); |
| 571 | int32_t k = lj_num2int(nk); |
| 572 | if (nk == (lua_Number)k) |
| 573 | return lj_tab_setint(L, t, k); |
| 574 | if (tvisnan(key)) |
| 575 | lj_err_msg(L, LJ_ERR_NANIDX); |
| 576 | /* Else use the generic lookup. */ |
| 577 | } else if (tvisnil(key)) { |
| 578 | lj_err_msg(L, LJ_ERR_NILIDX); |
| 579 | } |
| 580 | n = hashkey(t, key); |
| 581 | do { |
| 582 | if (lj_obj_equal(&n->key, key)) |
| 583 | return &n->val; |
| 584 | } while ((n = nextnode(n))); |
| 585 | return lj_tab_newkey(L, t, key); |
| 586 | } |
| 587 | |
| 588 | /* -- Table traversal ----------------------------------------------------- */ |
| 589 | |
| 590 | /* Get the traversal index of a key. */ |
| 591 | static uint32_t keyindex(lua_State *L, GCtab *t, cTValue *key) |
| 592 | { |
| 593 | TValue tmp; |
| 594 | if (tvisint(key)) { |
| 595 | int32_t k = intV(key); |
| 596 | if ((uint32_t)k < t->asize) |
| 597 | return (uint32_t)k; /* Array key indexes: [0..t->asize-1] */ |
| 598 | setnumV(&tmp, (lua_Number)k); |
| 599 | key = &tmp; |
| 600 | } else if (tvisnum(key)) { |
| 601 | lua_Number nk = numV(key); |
| 602 | int32_t k = lj_num2int(nk); |
| 603 | if ((uint32_t)k < t->asize && nk == (lua_Number)k) |
| 604 | return (uint32_t)k; /* Array key indexes: [0..t->asize-1] */ |
| 605 | } |
| 606 | if (!tvisnil(key)) { |
| 607 | Node *n = hashkey(t, key); |
| 608 | do { |
| 609 | if (lj_obj_equal(&n->key, key)) |
| 610 | return t->asize + (uint32_t)(n - noderef(t->node)); |
| 611 | /* Hash key indexes: [t->asize..t->asize+t->nmask] */ |
| 612 | } while ((n = nextnode(n))); |
| 613 | if (key->u32.hi == 0xfffe7fff) /* ITERN was despecialized while running. */ |
| 614 | return key->u32.lo - 1; |
| 615 | lj_err_msg(L, LJ_ERR_NEXTIDX); |
| 616 | return 0; /* unreachable */ |
| 617 | } |
| 618 | return ~0u; /* A nil key starts the traversal. */ |
| 619 | } |
| 620 | |
| 621 | /* Advance to the next step in a table traversal. */ |
| 622 | int lj_tab_next(lua_State *L, GCtab *t, TValue *key) |
| 623 | { |
| 624 | uint32_t i = keyindex(L, t, key); /* Find predecessor key index. */ |
| 625 | for (i++; i < t->asize; i++) /* First traverse the array keys. */ |
| 626 | if (!tvisnil(arrayslot(t, i))) { |
| 627 | setintV(key, i); |
| 628 | copyTV(L, key+1, arrayslot(t, i)); |
| 629 | return 1; |
| 630 | } |
| 631 | for (i -= t->asize; i <= t->hmask; i++) { /* Then traverse the hash keys. */ |
| 632 | Node *n = &noderef(t->node)[i]; |
| 633 | if (!tvisnil(&n->val)) { |
| 634 | copyTV(L, key, &n->key); |
| 635 | copyTV(L, key+1, &n->val); |
| 636 | return 1; |
| 637 | } |
| 638 | } |
| 639 | return 0; /* End of traversal. */ |
| 640 | } |
| 641 | |
| 642 | /* -- Table length calculation -------------------------------------------- */ |
| 643 | |
| 644 | /* Compute table length. Slow path with mixed array/hash lookups. */ |
| 645 | LJ_NOINLINE static MSize tab_len_slow(GCtab *t, size_t hi) |
| 646 | { |
| 647 | cTValue *tv; |
| 648 | size_t lo = hi; |
| 649 | hi++; |
| 650 | /* Widening search for an upper bound. */ |
| 651 | while ((tv = lj_tab_getint(t, (int32_t)hi)) && !tvisnil(tv)) { |
| 652 | lo = hi; |
| 653 | hi += hi; |
| 654 | if (hi > (size_t)(INT_MAX-2)) { /* Punt and do a linear search. */ |
| 655 | lo = 1; |
| 656 | while ((tv = lj_tab_getint(t, (int32_t)lo)) && !tvisnil(tv)) lo++; |
| 657 | return (MSize)(lo - 1); |
| 658 | } |
| 659 | } |
| 660 | /* Binary search to find a non-nil to nil transition. */ |
| 661 | while (hi - lo > 1) { |
| 662 | size_t mid = (lo+hi) >> 1; |
| 663 | cTValue *tvb = lj_tab_getint(t, (int32_t)mid); |
| 664 | if (tvb && !tvisnil(tvb)) lo = mid; else hi = mid; |
| 665 | } |
| 666 | return (MSize)lo; |
| 667 | } |
| 668 | |
| 669 | /* Compute table length. Fast path. */ |
| 670 | MSize LJ_FASTCALL lj_tab_len(GCtab *t) |
| 671 | { |
| 672 | size_t hi = (size_t)t->asize; |
| 673 | if (hi) hi--; |
| 674 | /* In a growing array the last array element is very likely nil. */ |
| 675 | if (hi > 0 && LJ_LIKELY(tvisnil(arrayslot(t, hi)))) { |
| 676 | /* Binary search to find a non-nil to nil transition in the array. */ |
| 677 | size_t lo = 0; |
| 678 | while (hi - lo > 1) { |
| 679 | size_t mid = (lo+hi) >> 1; |
| 680 | if (tvisnil(arrayslot(t, mid))) hi = mid; else lo = mid; |
| 681 | } |
| 682 | return (MSize)lo; |
| 683 | } |
| 684 | /* Without a hash part, there's an implicit nil after the last element. */ |
| 685 | return t->hmask ? tab_len_slow(t, hi) : (MSize)hi; |
| 686 | } |
| 687 | |
| 688 | #if LJ_HASJIT |
| 689 | /* Verify hinted table length or compute it. */ |
| 690 | MSize LJ_FASTCALL lj_tab_len_hint(GCtab *t, size_t hint) |
| 691 | { |
| 692 | size_t asize = (size_t)t->asize; |
| 693 | cTValue *tv = arrayslot(t, hint); |
| 694 | if (LJ_LIKELY(hint+1 < asize)) { |
| 695 | if (LJ_LIKELY(!tvisnil(tv) && tvisnil(tv+1))) return (MSize)hint; |
| 696 | } else if (hint+1 <= asize && LJ_LIKELY(t->hmask == 0) && !tvisnil(tv)) { |
| 697 | return (MSize)hint; |
| 698 | } |
| 699 | return lj_tab_len(t); |
| 700 | } |
| 701 | #endif |
| 702 | |
| 703 | |