| 1 | #pragma once |
| 2 | |
| 3 | #include "common.cuh" |
| 4 | |
| 5 | #include <cstdint> |
| 6 | |
| 7 | static __device__ __forceinline__ int get_int_b1(const void * x, const int & i32) { |
| 8 | const uint8_t * x8 = (const uint8_t *) x; |
| 9 | |
| 10 | int x32 = x8[4*i32 + 0] << 0; |
| 11 | x32 |= x8[4*i32 + 1] << 8; |
| 12 | x32 |= x8[4*i32 + 2] << 16; |
| 13 | x32 |= x8[4*i32 + 3] << 24; |
| 14 | |
| 15 | return x32; |
| 16 | } |
| 17 | |
| 18 | static __device__ __forceinline__ int get_int_b2(const void * x, const int & i32) { |
| 19 | const uint16_t * x16 = (const uint16_t *) x; // assume at least 2 byte alignment |
| 20 | |
| 21 | int x32 = x16[2*i32 + 0] << 0; |
| 22 | x32 |= x16[2*i32 + 1] << 16; |
| 23 | |
| 24 | return x32; |
| 25 | } |
| 26 | |
| 27 | static __device__ __forceinline__ int get_int_b4(const void * x, const int & i32) { |
| 28 | return ((const int *) x)[i32]; // assume at least 4 byte alignment |
| 29 | } |
| 30 | |
| 31 | // q4 contains 8 indices with 4 bit each. |
| 32 | // This function selects those bytes from table that are at those indices and returns them as int2. |
| 33 | // The first int contains the bytes with even indices in q4, the second int contains the bytes with odd indices in q4. |
| 34 | static __device__ __forceinline__ int2 get_int_from_table_16(const int & q4, const int8_t * table) { |
| 35 | #if defined(GGML_USE_HIP) |
| 36 | // Load the 16-byte table into four 32-bit unsigned integers. |
| 37 | const uint32_t *values = (const uint32_t *)table; |
| 38 | |
| 39 | const uint32_t q_even = q4; |
| 40 | const uint32_t q_odd = (q4 >> 4); |
| 41 | |
| 42 | // Perform lookups in the lower half of the table (indices 0-7). |
| 43 | uint32_t v_even_low = __builtin_amdgcn_perm(values[1], values[0], q_even & 0x07070707); |
| 44 | uint32_t v_odd_low = __builtin_amdgcn_perm(values[1], values[0], q_odd & 0x07070707); |
| 45 | |
| 46 | // Perform lookups in the upper half of the table (indices 8-15). |
| 47 | uint32_t v_even_high = __builtin_amdgcn_perm(values[3], values[2], q_even & 0x07070707); |
| 48 | uint32_t v_odd_high = __builtin_amdgcn_perm(values[3], values[2], q_odd & 0x07070707); |
| 49 | |
| 50 | // Select between the low and high results based on the MSB of each index nibble. |
| 51 | uint32_t mask_even = 0x03020100 | ((q_even & 0x08080808) >> 1); |
| 52 | uint32_t res_x = __builtin_amdgcn_perm(v_even_high, v_even_low, mask_even); |
| 53 | uint32_t mask_odd = 0x03020100 | ((q_odd & 0x08080808) >> 1); |
| 54 | uint32_t res_y = __builtin_amdgcn_perm(v_odd_high, v_odd_low, mask_odd); |
| 55 | |
| 56 | return make_int2(res_x, res_y); |
| 57 | #elif !defined(GGML_USE_MUSA) |
| 58 | // CUDA does not have an instruction for selecting bytes with 4 bit indices. |
| 59 | // However, __byte_perm is an instruction that selects bytes with 3 bit indices that can be used instead. |
| 60 | const uint32_t * table32 = (const uint32_t *) table; |
| 61 | |
| 62 | // __byte_perm selects bytes based on the lower 16 bits in its third argument. |
| 63 | // Therefore, do 2 iterations over the 32 bits in q4 with 0 and 16 shift. |
| 64 | // To handle the fourth bit, first call _byte_perm both for the low and the high 64 bit of table, using the low 3 bits. |
| 65 | // Then, call __byte_perm again to select from the low and high bytes based on the fourth bit. |
| 66 | uint32_t tmp[2]; |
| 67 | const uint32_t low_high_selection_indices = (0x32103210 | ((q4 & 0x88888888) >> 1)); |
| 68 | #pragma unroll |
| 69 | for (uint32_t i = 0; i < 2; ++i) { |
| 70 | const uint32_t shift = 16 * i; |
| 71 | |
| 72 | const uint32_t low = __byte_perm(a: table32[0], b: table32[1], c: q4 >> shift); |
| 73 | const uint32_t high = __byte_perm(a: table32[2], b: table32[3], c: q4 >> shift); |
| 74 | tmp[i] = __byte_perm(a: low, b: high, c: low_high_selection_indices >> shift); |
| 75 | } |
| 76 | |
| 77 | // tmp contains the bytes from tyble in the same order as the 4 bit indices in q4. |
| 78 | // However, for the result we need ints with all even/odd 4 bit indices in q4. |
| 79 | // Therefore, 2 more calls to __byte_perm to put the bytes in the correct order. |
| 80 | return make_int2(x: __byte_perm(a: tmp[0], b: tmp[1], c: 0x6420), y: __byte_perm(a: tmp[0], b: tmp[1], c: 0x7531)); |
| 81 | #else |
| 82 | // Generic implementation. |
| 83 | const int q0_32 = (q4 >> 0) & 0x0F0F0F0F; |
| 84 | const int8_t * q0_8 = (const int8_t *) &q0_32; |
| 85 | const char4 val0_8 = make_char4( |
| 86 | table[q0_8[0]], table[q0_8[1]], table[q0_8[2]], table[q0_8[3]]); |
| 87 | |
| 88 | const int q1_32 = (q4 >> 4) & 0x0F0F0F0F; |
| 89 | const int8_t * q1_8 = (const int8_t *) &q1_32; |
| 90 | const char4 val1_8 = make_char4( |
| 91 | table[q1_8[0]], table[q1_8[1]], table[q1_8[2]], table[q1_8[3]]); |
| 92 | |
| 93 | return make_int2(*((const int *) &val0_8), *((const int *) &val1_8)); |
| 94 | #endif |
| 95 | } |
| 96 | |
| 97 | // VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called |
| 98 | // MMVQ = mul_mat_vec_q, MMQ = mul_mat_q |
| 99 | |
| 100 | #define VDR_Q4_0_Q8_1_MMVQ 2 |
| 101 | #define VDR_Q4_0_Q8_1_MMQ 4 |
| 102 | |
| 103 | template <int vdr> static __device__ __forceinline__ float vec_dot_q4_0_q8_1_impl( |
| 104 | const int * v, const int * u, const float & d4, const half2 & ds8) { |
| 105 | |
| 106 | int sumi = 0; |
| 107 | |
| 108 | #pragma unroll |
| 109 | for (int i = 0; i < vdr; ++i) { |
| 110 | const int vi0 = (v[i] >> 0) & 0x0F0F0F0F; |
| 111 | const int vi1 = (v[i] >> 4) & 0x0F0F0F0F; |
| 112 | |
| 113 | // SIMD dot product of quantized values |
| 114 | sumi = ggml_cuda_dp4a(a: vi0, b: u[2*i+0], c: sumi); |
| 115 | sumi = ggml_cuda_dp4a(a: vi1, b: u[2*i+1], c: sumi); |
| 116 | } |
| 117 | |
| 118 | const float2 ds8f = __half22float2(a: ds8); |
| 119 | |
| 120 | // second part effectively subtracts 8 from each quant value |
| 121 | return d4 * (sumi * ds8f.x - (8*vdr/QI4_0) * ds8f.y); |
| 122 | } |
| 123 | |
| 124 | #define VDR_Q4_1_Q8_1_MMVQ 2 |
| 125 | #define VDR_Q4_1_Q8_1_MMQ 4 |
| 126 | |
| 127 | template <int vdr> static __device__ __forceinline__ float vec_dot_q4_1_q8_1_impl( |
| 128 | const int * v, const int * u, const half2 & dm4, const half2 & ds8) { |
| 129 | |
| 130 | int sumi = 0; |
| 131 | |
| 132 | #pragma unroll |
| 133 | for (int i = 0; i < vdr; ++i) { |
| 134 | const int vi0 = (v[i] >> 0) & 0x0F0F0F0F; |
| 135 | const int vi1 = (v[i] >> 4) & 0x0F0F0F0F; |
| 136 | |
| 137 | // SIMD dot product of quantized values |
| 138 | sumi = ggml_cuda_dp4a(a: vi0, b: u[2*i+0], c: sumi); |
| 139 | sumi = ggml_cuda_dp4a(a: vi1, b: u[2*i+1], c: sumi); |
| 140 | } |
| 141 | |
| 142 | #ifdef FAST_FP16_AVAILABLE |
| 143 | const float2 tmp = __half22float2(__hmul2(dm4, ds8)); |
| 144 | const float d4d8 = tmp.x; |
| 145 | const float m4s8 = tmp.y; |
| 146 | #else |
| 147 | const float2 dm4f = __half22float2(a: dm4); |
| 148 | const float2 ds8f = __half22float2(a: ds8); |
| 149 | const float d4d8 = dm4f.x * ds8f.x; |
| 150 | const float m4s8 = dm4f.y * ds8f.y; |
| 151 | #endif // FAST_FP16_AVAILABLE |
| 152 | |
| 153 | // scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it |
| 154 | return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1)); |
| 155 | } |
| 156 | |
| 157 | #define VDR_Q5_0_Q8_1_MMVQ 2 |
| 158 | #define VDR_Q5_0_Q8_1_MMQ 4 |
| 159 | |
| 160 | template <int vdr> static __device__ __forceinline__ float vec_dot_q5_0_q8_1_impl( |
| 161 | const int * vl, const int * vh, const int * u, const float & d5, const half2 & ds8) { |
| 162 | |
| 163 | int sumi = 0; |
| 164 | |
| 165 | #pragma unroll |
| 166 | for (int i = 0; i < vdr; ++i) { |
| 167 | int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits |
| 168 | vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4 |
| 169 | vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12 |
| 170 | vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20 |
| 171 | vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28 |
| 172 | sumi = ggml_cuda_dp4a(a: vi0, b: u[2*i+0], c: sumi); // SIMD dot product of quantized values |
| 173 | |
| 174 | int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits |
| 175 | vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4 |
| 176 | vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12 |
| 177 | vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20 |
| 178 | vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28 |
| 179 | sumi = ggml_cuda_dp4a(a: vi1, b: u[2*i+1], c: sumi); // SIMD dot product of quantized values |
| 180 | } |
| 181 | |
| 182 | const float2 ds8f = __half22float2(a: ds8); |
| 183 | |
| 184 | // second part effectively subtracts 16 from each quant value |
| 185 | return d5 * (sumi * ds8f.x - (16*vdr/QI5_0) * ds8f.y); |
| 186 | } |
| 187 | |
| 188 | #define VDR_Q5_1_Q8_1_MMVQ 2 |
| 189 | #define VDR_Q5_1_Q8_1_MMQ 4 |
| 190 | |
| 191 | template <int vdr> static __device__ __forceinline__ float vec_dot_q5_1_q8_1_impl( |
| 192 | const int * vl, const int * vh, const int * u, const half2 & dm5, const half2 & ds8) { |
| 193 | |
| 194 | int sumi = 0; |
| 195 | |
| 196 | #pragma unroll |
| 197 | for (int i = 0; i < vdr; ++i) { |
| 198 | int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits |
| 199 | vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4 |
| 200 | vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12 |
| 201 | vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20 |
| 202 | vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28 |
| 203 | sumi = ggml_cuda_dp4a(a: vi0, b: u[2*i+0], c: sumi); // SIMD dot product of quantized values |
| 204 | |
| 205 | int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits |
| 206 | vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4 |
| 207 | vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12 |
| 208 | vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20 |
| 209 | vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28 |
| 210 | sumi = ggml_cuda_dp4a(a: vi1, b: u[2*i+1], c: sumi); // SIMD dot product of quantized values |
| 211 | } |
| 212 | |
| 213 | #ifdef FAST_FP16_AVAILABLE |
| 214 | const float2 tmp = __half22float2(__hmul2(dm5, ds8)); |
| 215 | const float d5d8 = tmp.x; |
| 216 | const float m5s8 = tmp.y; |
| 217 | #else |
| 218 | const float2 dm5f = __half22float2(a: dm5); |
| 219 | const float2 ds8f = __half22float2(a: ds8); |
| 220 | const float d5d8 = dm5f.x * ds8f.x; |
| 221 | const float m5s8 = dm5f.y * ds8f.y; |
| 222 | #endif // FAST_FP16_AVAILABLE |
| 223 | |
| 224 | // scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it |
| 225 | return sumi*d5d8 + m5s8 / (QI5_1 / vdr); |
| 226 | } |
| 227 | |
| 228 | #define VDR_Q8_0_Q8_1_MMVQ 2 |
| 229 | #define VDR_Q8_0_Q8_1_MMQ 8 |
| 230 | |
| 231 | template <typename T, int vdr> static __device__ __forceinline__ T vec_dot_q8_0_q8_1_impl( |
| 232 | const int * v, const int * u, const T & d8_0, const T & d8_1) { |
| 233 | |
| 234 | int sumi = 0; |
| 235 | |
| 236 | #pragma unroll |
| 237 | for (int i = 0; i < vdr; ++i) { |
| 238 | // SIMD dot product of quantized values |
| 239 | sumi = ggml_cuda_dp4a(a: v[i], b: u[i], c: sumi); |
| 240 | } |
| 241 | |
| 242 | return d8_0*d8_1 * ((T) sumi); |
| 243 | } |
| 244 | |
| 245 | template <int vdr> static __device__ __forceinline__ float vec_dot_q8_1_q8_1_impl( |
| 246 | const int * v, const int * u, const half2 & dm8, const half2 & ds8) { |
| 247 | |
| 248 | int sumi = 0; |
| 249 | |
| 250 | #pragma unroll |
| 251 | for (int i = 0; i < vdr; ++i) { |
| 252 | // SIMD dot product of quantized values |
| 253 | sumi = ggml_cuda_dp4a(a: v[i], b: u[i], c: sumi); |
| 254 | } |
| 255 | |
| 256 | #ifdef FAST_FP16_AVAILABLE |
| 257 | const float2 tmp = __half22float2(__hmul2(dm8, ds8)); |
| 258 | const float d8d8 = tmp.x; |
| 259 | const float m8s8 = tmp.y; |
| 260 | #else |
| 261 | const float2 dm8f = __half22float2(a: dm8); |
| 262 | const float2 ds8f = __half22float2(a: ds8); |
| 263 | const float d8d8 = dm8f.x * ds8f.x; |
| 264 | const float m8s8 = dm8f.y * ds8f.y; |
| 265 | #endif // FAST_FP16_AVAILABLE |
| 266 | |
| 267 | // scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it |
| 268 | return sumi*d8d8 + m8s8 / (QI8_1 / vdr); |
| 269 | } |
| 270 | |
| 271 | template <int vdr> static __device__ __forceinline__ float vec_dot_q8_0_16_q8_1_impl( |
| 272 | const int * v, const int * u, const float * d8_0, const float & d8_1) { |
| 273 | |
| 274 | float sumf = 0.0f; |
| 275 | |
| 276 | #pragma unroll |
| 277 | for (int i0 = 0; i0 < vdr; i0 += QI8_0/2) { |
| 278 | int sumi = 0; |
| 279 | |
| 280 | #pragma unroll |
| 281 | for (int i = i0; i < i0 + QI8_0/2; ++i) { |
| 282 | // SIMD dot product of quantized values |
| 283 | sumi = ggml_cuda_dp4a(a: v[i], b: u[i], c: sumi); |
| 284 | } |
| 285 | |
| 286 | sumf += d8_0[i0/(QI8_0/2)]*sumi; |
| 287 | } |
| 288 | |
| 289 | return d8_1*sumf; |
| 290 | } |
| 291 | |
| 292 | #define VDR_MXFP4_Q8_1_MMVQ 2 |
| 293 | #define VDR_MXFP4_Q8_1_MMQ 4 |
| 294 | |
| 295 | static __device__ __forceinline__ float vec_dot_mxfp4_q8_1( |
| 296 | const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { |
| 297 | |
| 298 | const block_mxfp4 * bq4 = (const block_mxfp4 *) vbq + kbx; |
| 299 | |
| 300 | const int * q8 = (const int *) bq8_1->qs + iqs; |
| 301 | |
| 302 | int sumi = 0; |
| 303 | #pragma unroll |
| 304 | for (int l = 0; l < VDR_MXFP4_Q8_1_MMVQ; ++l) { |
| 305 | const int aux_q4 = get_int_b1(bq4->qs, iqs + l); |
| 306 | const int2 v = get_int_from_table_16(aux_q4, kvalues_mxfp4); |
| 307 | |
| 308 | sumi = ggml_cuda_dp4a(a: v.x, b: q8[l + 0], c: sumi); |
| 309 | sumi = ggml_cuda_dp4a(a: v.y, b: q8[l + 4], c: sumi); |
| 310 | } |
| 311 | |
| 312 | const float d = ggml_cuda_e8m0_to_fp32(bq4->e) * 0.5f * __low2float(bq8_1->ds); |
| 313 | return d * sumi; |
| 314 | } |
| 315 | |
| 316 | #define VDR_Q2_K_Q8_1_MMVQ 1 |
| 317 | #define VDR_Q2_K_Q8_1_MMQ 4 |
| 318 | |
| 319 | // contiguous v/x values |
| 320 | static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq( |
| 321 | const int & v, const int * __restrict__ u, const uint8_t * __restrict__ scales, |
| 322 | const half2 & dm2, const float * __restrict__ d8) { |
| 323 | |
| 324 | float sumf_d = 0.0f; |
| 325 | float sumf_m = 0.0f; |
| 326 | |
| 327 | #pragma unroll |
| 328 | for (int i = 0; i < QR2_K; ++i) { |
| 329 | const int sc = scales[2*i]; |
| 330 | |
| 331 | const int vi = (v >> (2*i)) & 0x03030303; |
| 332 | |
| 333 | sumf_d += d8[i] * (ggml_cuda_dp4a(a: vi, b: u[i], c: 0) * (sc & 0xF)); // SIMD dot product |
| 334 | |
| 335 | // fill int with 4x m |
| 336 | int m = sc >> 4; |
| 337 | m |= m << 8; |
| 338 | m |= m << 16; |
| 339 | sumf_m += d8[i] * ggml_cuda_dp4a(a: m, b: u[i], c: 0); // multiply constant q2_K part with sum of q8_1 values |
| 340 | } |
| 341 | |
| 342 | const float2 dm2f = __half22float2(a: dm2); |
| 343 | |
| 344 | return dm2f.x*sumf_d - dm2f.y*sumf_m; |
| 345 | } |
| 346 | |
| 347 | // contiguous v/x + u/y values |
| 348 | template <int ns8> |
| 349 | static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq( |
| 350 | const int * __restrict__ v, const int * __restrict__ u, const half2 * dm2, const float & d8, const half2 * s8) { |
| 351 | |
| 352 | float sumf = 0.0f; |
| 353 | float sumf_d8 = 0.0f; |
| 354 | |
| 355 | #pragma unroll |
| 356 | for (int i0 = 0; i0 < QR2_K*VDR_Q2_K_Q8_1_MMQ; i0 += QI8_1) { |
| 357 | const float2 dm2f0 = __half22float2(dm2[i0/(QI8_1/2) + 0]); |
| 358 | int sumi_d0 = 0; |
| 359 | |
| 360 | const float2 dm2f1 = __half22float2(dm2[i0/(QI8_1/2) + 1]); |
| 361 | int sumi_d1 = 0; |
| 362 | |
| 363 | #pragma unroll |
| 364 | for (int i = i0; i < i0 + QI8_1/2; ++i) { |
| 365 | sumi_d0 = ggml_cuda_dp4a(a: v[i], b: u[i], c: sumi_d0); |
| 366 | } |
| 367 | sumf_d8 += dm2f0.x * sumi_d0; |
| 368 | |
| 369 | #pragma unroll |
| 370 | for (int i = i0 + QI8_1/2; i < i0 + QI8_1; ++i) { |
| 371 | sumi_d1 = ggml_cuda_dp4a(a: v[i], b: u[i], c: sumi_d1); |
| 372 | } |
| 373 | sumf_d8 += dm2f1.x * sumi_d1; |
| 374 | |
| 375 | if (i0/QI8_1 < ns8) { |
| 376 | const float2 s8f = __half22float2(s8[i0/QI8_1]); |
| 377 | sumf -= dm2f0.y*s8f.x; |
| 378 | sumf -= dm2f1.y*s8f.y; |
| 379 | } else { |
| 380 | int sumi_m0 = 0; |
| 381 | #pragma unroll |
| 382 | for (int i = i0; i < i0 + QI8_1/2; ++i) { |
| 383 | sumi_m0 = ggml_cuda_dp4a(a: 0x01010101, b: u[i], c: sumi_m0); |
| 384 | } |
| 385 | sumf_d8 -= dm2f0.y * sumi_m0; |
| 386 | |
| 387 | int sumi_m1 = 0; |
| 388 | #pragma unroll |
| 389 | for (int i = i0 + QI8_1/2; i < i0 + QI8_1; ++i) { |
| 390 | sumi_m1 = ggml_cuda_dp4a(a: 0x01010101, b: u[i], c: sumi_m1); |
| 391 | } |
| 392 | sumf_d8 -= dm2f1.y * sumi_m1; |
| 393 | } |
| 394 | } |
| 395 | |
| 396 | return sumf + d8*sumf_d8; |
| 397 | } |
| 398 | |
| 399 | #define VDR_Q3_K_Q8_1_MMVQ 1 |
| 400 | #define VDR_Q3_K_Q8_1_MMQ 2 |
| 401 | |
| 402 | // contiguous v/x values |
| 403 | static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmvq( |
| 404 | const int & vl, const int & vh, const int * __restrict__ u, const uint8_t * __restrict__ scales, |
| 405 | const int & scale_offset, const float & d3, const float * __restrict__ d8) { |
| 406 | |
| 407 | float sumf = 0.0f; |
| 408 | |
| 409 | #pragma unroll |
| 410 | for (int i = 0; i < QR3_K; ++i) { |
| 411 | const int isc = scale_offset + 2*i; |
| 412 | |
| 413 | const int isc_low = isc % (QK_K/32); |
| 414 | const int sc_shift_low = 4 * (isc / (QK_K/32)); |
| 415 | const int sc_low = (scales[isc_low] >> sc_shift_low) & 0xF; |
| 416 | |
| 417 | const int isc_high = isc % (QK_K/64); |
| 418 | const int sc_shift_high = 2 * (isc / (QK_K/64)); |
| 419 | const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4; |
| 420 | |
| 421 | const int sc = (sc_low | sc_high) - 32; |
| 422 | |
| 423 | const int vil = (vl >> (2*i)) & 0x03030303; |
| 424 | |
| 425 | const int vih = ((vh >> i) << 2) & 0x04040404; |
| 426 | |
| 427 | const int vi = __vsubss4(a: vil, b: vih); |
| 428 | |
| 429 | sumf += d8[i] * (ggml_cuda_dp4a(a: vi, b: u[i], c: 0) * sc); // SIMD dot product |
| 430 | } |
| 431 | |
| 432 | return d3 * sumf; |
| 433 | } |
| 434 | |
| 435 | // contiguous v/x + u/y values |
| 436 | static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq( |
| 437 | const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ scales, |
| 438 | const float & d3, const float & d8) { |
| 439 | |
| 440 | int sumi = 0; |
| 441 | |
| 442 | #pragma unroll |
| 443 | for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) { |
| 444 | int sumi_sc = 0; |
| 445 | |
| 446 | #pragma unroll |
| 447 | for (int i = i0; i < i0 + QI8_1/2; ++i) { |
| 448 | sumi_sc = ggml_cuda_dp4a(a: v[i], b: u[i], c: sumi_sc); // SIMD dot product |
| 449 | } |
| 450 | |
| 451 | sumi += sumi_sc * scales[i0 / (QI8_1/2)]; |
| 452 | } |
| 453 | |
| 454 | return d3*d8 * sumi; |
| 455 | } |
| 456 | |
| 457 | #define VDR_Q4_K_Q8_1_MMVQ 2 |
| 458 | #define VDR_Q4_K_Q8_1_MMQ 8 |
| 459 | |
| 460 | // contiguous v/x values |
| 461 | static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq( |
| 462 | const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc, |
| 463 | const uint8_t * __restrict__ m, const half2 & dm4, const float * __restrict__ d8) { |
| 464 | |
| 465 | float sumf_d = 0.0f; |
| 466 | float sumf_m = 0.0f; |
| 467 | |
| 468 | #pragma unroll |
| 469 | for (int i = 0; i < QR4_K; ++i) { |
| 470 | const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F; |
| 471 | const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F; |
| 472 | |
| 473 | const int dot1 = ggml_cuda_dp4a(a: v1i, b: u[2*i+1], c: ggml_cuda_dp4a(a: v0i, b: u[2*i+0], c: 0)); // SIMD dot product |
| 474 | const int dot2 = ggml_cuda_dp4a(a: 0x01010101, b: u[2*i+1], c: ggml_cuda_dp4a(a: 0x01010101, b: u[2*i+0], c: 0)); // sum of u |
| 475 | |
| 476 | sumf_d += d8[i] * (dot1 * sc[i]); |
| 477 | sumf_m += d8[i] * (dot2 * m[i]); // multiply constant part of q4_K with sum of q8_1 values |
| 478 | } |
| 479 | |
| 480 | const float2 dm4f = __half22float2(a: dm4); |
| 481 | |
| 482 | return dm4f.x*sumf_d - dm4f.y*sumf_m; |
| 483 | } |
| 484 | |
| 485 | // contiguous v/x + u/y values |
| 486 | static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq( |
| 487 | const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc, |
| 488 | const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) { |
| 489 | |
| 490 | float sumf_d = 0.0f; |
| 491 | float sumf_m = 0.0f; |
| 492 | |
| 493 | #pragma unroll |
| 494 | for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) { |
| 495 | int sumi_d = 0; |
| 496 | |
| 497 | #pragma unroll |
| 498 | for (int j = 0; j < QI8_1; ++j) { |
| 499 | sumi_d = ggml_cuda_dp4a((v[j] >> (4*i)) & 0x0F0F0F0F, u[i*QI8_1 + j], sumi_d); // SIMD dot product |
| 500 | } |
| 501 | |
| 502 | const float2 ds8f = __half22float2(a: ds8[i]); |
| 503 | |
| 504 | sumf_d += ds8f.x * (sc[i] * sumi_d); |
| 505 | sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val |
| 506 | } |
| 507 | |
| 508 | const float2 dm4f = __half22float2(a: dm4); |
| 509 | |
| 510 | return dm4f.x*sumf_d - dm4f.y*sumf_m; |
| 511 | } |
| 512 | |
| 513 | #define VDR_Q5_K_Q8_1_MMVQ 2 |
| 514 | #define VDR_Q5_K_Q8_1_MMQ 8 |
| 515 | |
| 516 | // contiguous v/x values |
| 517 | static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq( |
| 518 | const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc, |
| 519 | const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) { |
| 520 | |
| 521 | float sumf_d = 0.0f; |
| 522 | float sumf_m = 0.0f; |
| 523 | |
| 524 | #pragma unroll |
| 525 | for (int i = 0; i < QR5_K; ++i) { |
| 526 | const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F; |
| 527 | const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F; |
| 528 | |
| 529 | const int vh0i = ((vh[0] >> i) << 4) & 0x10101010; |
| 530 | const int vh1i = ((vh[1] >> i) << 4) & 0x10101010; |
| 531 | |
| 532 | const int v0i = vl0i | vh0i; |
| 533 | const int v1i = vl1i | vh1i; |
| 534 | |
| 535 | const int dot1 = ggml_cuda_dp4a(a: v0i, b: u[2*i+0], c: ggml_cuda_dp4a(a: v1i, b: u[2*i+1], c: 0)); // SIMD dot product |
| 536 | const int dot2 = ggml_cuda_dp4a(a: 0x01010101, b: u[2*i+0], c: ggml_cuda_dp4a(a: 0x01010101, b: u[2*i+1], c: 0)); // sum of u |
| 537 | |
| 538 | sumf_d += d8[i] * (dot1 * sc[i]); |
| 539 | sumf_m += d8[i] * (dot2 * m[i]); |
| 540 | |
| 541 | } |
| 542 | |
| 543 | const float2 dm5f = __half22float2(a: dm5); |
| 544 | |
| 545 | return dm5f.x*sumf_d - dm5f.y*sumf_m; |
| 546 | } |
| 547 | |
| 548 | // contiguous v/x + u/y values |
| 549 | static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq( |
| 550 | const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc, |
| 551 | const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) { |
| 552 | |
| 553 | float sumf_d = 0.0f; |
| 554 | float sumf_m = 0.0f; |
| 555 | |
| 556 | #pragma unroll |
| 557 | for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) { |
| 558 | int sumi_d = 0; |
| 559 | |
| 560 | #pragma unroll |
| 561 | for (int j = 0; j < QI8_1; ++j) { |
| 562 | sumi_d = ggml_cuda_dp4a(v[i*QI8_1 + j], u[i*QI8_1 + j], sumi_d); // SIMD dot product |
| 563 | } |
| 564 | |
| 565 | const float2 ds8f = __half22float2(a: ds8[i]); |
| 566 | |
| 567 | sumf_d += ds8f.x * (sc[i] * sumi_d); |
| 568 | sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val |
| 569 | } |
| 570 | |
| 571 | const float2 dm4f = __half22float2(a: dm4); |
| 572 | |
| 573 | return dm4f.x*sumf_d - dm4f.y*sumf_m; |
| 574 | } |
| 575 | |
| 576 | #define VDR_Q6_K_Q8_1_MMVQ 1 |
| 577 | #define VDR_Q6_K_Q8_1_MMQ 8 |
| 578 | |
| 579 | // contiguous v/x values |
| 580 | static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmvq( |
| 581 | const int & vl, const int & vh, const int * __restrict__ u, const int8_t * __restrict__ scales, |
| 582 | const float & d, const float * __restrict__ d8) { |
| 583 | |
| 584 | float sumf = 0.0f; |
| 585 | |
| 586 | #pragma unroll |
| 587 | for (int i = 0; i < QR6_K; ++i) { |
| 588 | const int sc = scales[4*i]; |
| 589 | |
| 590 | const int vil = (vl >> (4*i)) & 0x0F0F0F0F; |
| 591 | |
| 592 | const int vih = ((vh >> (4*i)) << 4) & 0x30303030; |
| 593 | |
| 594 | const int vi = __vsubss4(a: (vil | vih), b: 0x20202020); // vi = (vil | vih) - 32 |
| 595 | |
| 596 | sumf += d8[i] * (ggml_cuda_dp4a(a: vi, b: u[i], c: 0) * sc); // SIMD dot product |
| 597 | } |
| 598 | |
| 599 | return d*sumf; |
| 600 | } |
| 601 | |
| 602 | // contiguous v/x + u/y values |
| 603 | static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq( |
| 604 | const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ sc, |
| 605 | const float & d6, const float * __restrict__ d8) { |
| 606 | |
| 607 | float sumf_d = 0.0f; |
| 608 | |
| 609 | const int sc_packed = get_int_b4(x: sc, i32: 0); |
| 610 | const int8_t * sc_reg = (const int8_t *) &sc_packed; |
| 611 | |
| 612 | #pragma unroll |
| 613 | for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) { |
| 614 | int2 sumi_d = {.x: 0, .y: 0}; // 2 q6_K scales per q8_1 scale |
| 615 | |
| 616 | #pragma unroll |
| 617 | for (int i = i0; i < i0 + 2; ++i) { |
| 618 | sumi_d.x = ggml_cuda_dp4a(a: v[2*i+0], b: u[2*i+0], c: sumi_d.x); // SIMD dot product |
| 619 | sumi_d.x = ggml_cuda_dp4a(a: v[2*i+1], b: u[2*i+1], c: sumi_d.x); // SIMD dot product |
| 620 | |
| 621 | sumi_d.y = ggml_cuda_dp4a(a: v[2*i+4], b: u[2*i+4], c: sumi_d.y); // SIMD dot product |
| 622 | sumi_d.y = ggml_cuda_dp4a(a: v[2*i+5], b: u[2*i+5], c: sumi_d.y); // SIMD dot product |
| 623 | } |
| 624 | |
| 625 | sumf_d += d8[i0/4] * (sc_reg[i0/2+0]*sumi_d.x + sc_reg[i0/2+1]*sumi_d.y); |
| 626 | } |
| 627 | |
| 628 | return d6 * sumf_d; |
| 629 | } |
| 630 | |
| 631 | static __device__ __forceinline__ float vec_dot_q4_0_q8_1( |
| 632 | const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { |
| 633 | |
| 634 | const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq + kbx; |
| 635 | |
| 636 | int v[VDR_Q4_0_Q8_1_MMVQ]; |
| 637 | int u[2*VDR_Q4_0_Q8_1_MMVQ]; |
| 638 | |
| 639 | #pragma unroll |
| 640 | for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) { |
| 641 | v[i] = get_int_b2(bq4_0->qs, iqs + i); |
| 642 | u[2*i+0] = get_int_b4(bq8_1->qs, iqs + i); |
| 643 | u[2*i+1] = get_int_b4(bq8_1->qs, iqs + i + QI4_0); |
| 644 | } |
| 645 | |
| 646 | return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMVQ>(v, u, bq4_0->d, bq8_1->ds); |
| 647 | } |
| 648 | |
| 649 | |
| 650 | static __device__ __forceinline__ float vec_dot_q4_1_q8_1( |
| 651 | const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { |
| 652 | |
| 653 | const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq + kbx; |
| 654 | |
| 655 | int v[VDR_Q4_1_Q8_1_MMVQ]; |
| 656 | int u[2*VDR_Q4_1_Q8_1_MMVQ]; |
| 657 | |
| 658 | #pragma unroll |
| 659 | for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) { |
| 660 | v[i] = get_int_b4(bq4_1->qs, iqs + i); |
| 661 | u[2*i+0] = get_int_b4(bq8_1->qs, iqs + i); |
| 662 | u[2*i+1] = get_int_b4(bq8_1->qs, iqs + i + QI4_1); |
| 663 | } |
| 664 | |
| 665 | return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMVQ>(v, u, bq4_1->dm, bq8_1->ds); |
| 666 | } |
| 667 | |
| 668 | static __device__ __forceinline__ float vec_dot_q5_0_q8_1( |
| 669 | const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { |
| 670 | |
| 671 | const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq + kbx; |
| 672 | |
| 673 | int vl[VDR_Q5_0_Q8_1_MMVQ]; |
| 674 | int vh[VDR_Q5_0_Q8_1_MMVQ]; |
| 675 | int u[2*VDR_Q5_0_Q8_1_MMVQ]; |
| 676 | |
| 677 | #pragma unroll |
| 678 | for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) { |
| 679 | vl[i] = get_int_b2(bq5_0->qs, iqs + i); |
| 680 | vh[i] = get_int_b2(bq5_0->qh, 0) >> (4 * (iqs + i)); |
| 681 | u[2*i+0] = get_int_b4(bq8_1->qs, iqs + i); |
| 682 | u[2*i+1] = get_int_b4(bq8_1->qs, iqs + i + QI5_0); |
| 683 | } |
| 684 | |
| 685 | return vec_dot_q5_0_q8_1_impl<VDR_Q5_0_Q8_1_MMVQ>(vl, vh, u, bq5_0->d, bq8_1->ds); |
| 686 | } |
| 687 | |
| 688 | static __device__ __forceinline__ float vec_dot_q5_1_q8_1( |
| 689 | const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { |
| 690 | |
| 691 | const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq + kbx; |
| 692 | |
| 693 | int vl[VDR_Q5_1_Q8_1_MMVQ]; |
| 694 | int vh[VDR_Q5_1_Q8_1_MMVQ]; |
| 695 | int u[2*VDR_Q5_1_Q8_1_MMVQ]; |
| 696 | |
| 697 | #pragma unroll |
| 698 | for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) { |
| 699 | vl[i] = get_int_b4(bq5_1->qs, iqs + i); |
| 700 | vh[i] = get_int_b4(bq5_1->qh, 0) >> (4 * (iqs + i)); |
| 701 | u[2*i+0] = get_int_b4(bq8_1->qs, iqs + i); |
| 702 | u[2*i+1] = get_int_b4(bq8_1->qs, iqs + i + QI5_1); |
| 703 | } |
| 704 | |
| 705 | return vec_dot_q5_1_q8_1_impl<VDR_Q5_1_Q8_1_MMVQ>(vl, vh, u, bq5_1->dm, bq8_1->ds); |
| 706 | } |
| 707 | |
| 708 | static __device__ __forceinline__ float vec_dot_q8_0_q8_1( |
| 709 | const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { |
| 710 | |
| 711 | const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq + kbx; |
| 712 | |
| 713 | int v[VDR_Q8_0_Q8_1_MMVQ]; |
| 714 | int u[VDR_Q8_0_Q8_1_MMVQ]; |
| 715 | |
| 716 | #pragma unroll |
| 717 | for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) { |
| 718 | v[i] = get_int_b2(bq8_0->qs, iqs + i); |
| 719 | u[i] = get_int_b4(bq8_1->qs, iqs + i); |
| 720 | } |
| 721 | |
| 722 | return vec_dot_q8_0_q8_1_impl<float, VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d, __low2half(bq8_1->ds)); |
| 723 | } |
| 724 | |
| 725 | static __device__ __forceinline__ float vec_dot_q2_K_q8_1( |
| 726 | const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { |
| 727 | |
| 728 | const block_q2_K * bq2_K = (const block_q2_K *) vbq + kbx; |
| 729 | |
| 730 | const int bq8_offset = QR2_K * (iqs / QI8_1); |
| 731 | const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2); |
| 732 | |
| 733 | const uint8_t * scales = bq2_K->scales + scale_offset; |
| 734 | |
| 735 | const int v = get_int_b4(bq2_K->qs, iqs); |
| 736 | int u[QR2_K]; |
| 737 | float d8[QR2_K]; |
| 738 | |
| 739 | #pragma unroll |
| 740 | for (int i = 0; i < QR2_K; ++ i) { |
| 741 | u[i] = get_int_b4(bq8_1[bq8_offset + i].qs, iqs % QI8_1); |
| 742 | d8[i] = __low2float(bq8_1[bq8_offset + i].ds); |
| 743 | } |
| 744 | |
| 745 | return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8); |
| 746 | } |
| 747 | |
| 748 | static __device__ __forceinline__ float vec_dot_q3_K_q8_1( |
| 749 | const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { |
| 750 | |
| 751 | const block_q3_K * bq3_K = (const block_q3_K *) vbq + kbx; |
| 752 | |
| 753 | const int bq8_offset = QR3_K * (iqs / (QI3_K/2)); |
| 754 | const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2); |
| 755 | |
| 756 | const float d = bq3_K->d; |
| 757 | |
| 758 | const int vl = get_int_b2(bq3_K->qs, iqs); |
| 759 | |
| 760 | // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted |
| 761 | const int vh = ~get_int_b2(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset; |
| 762 | |
| 763 | int u[QR3_K]; |
| 764 | float d8[QR3_K]; |
| 765 | |
| 766 | #pragma unroll |
| 767 | for (int i = 0; i < QR3_K; ++i) { |
| 768 | u[i] = get_int_b4(bq8_1[bq8_offset + i].qs, iqs % QI8_1); |
| 769 | d8[i] = __low2float(bq8_1[bq8_offset + i].ds); |
| 770 | } |
| 771 | |
| 772 | return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8); |
| 773 | } |
| 774 | |
| 775 | static __device__ __forceinline__ float vec_dot_q4_K_q8_1( |
| 776 | const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { |
| 777 | |
| 778 | const block_q4_K * bq4_K = (const block_q4_K *) vbq + kbx; |
| 779 | |
| 780 | int v[2]; |
| 781 | int u[2*QR4_K]; |
| 782 | float d8[QR4_K]; |
| 783 | |
| 784 | // iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6 |
| 785 | const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2)); |
| 786 | |
| 787 | // iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12 |
| 788 | // iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44 |
| 789 | // iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76 |
| 790 | // iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108 |
| 791 | |
| 792 | const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4)); |
| 793 | v[0] = q4[0]; |
| 794 | v[1] = q4[4]; |
| 795 | |
| 796 | const uint16_t * scales = (const uint16_t *)bq4_K->scales; |
| 797 | uint16_t aux[2]; |
| 798 | const int j = bq8_offset/2; |
| 799 | if (j < 2) { |
| 800 | aux[0] = scales[j+0] & 0x3f3f; |
| 801 | aux[1] = scales[j+2] & 0x3f3f; |
| 802 | } else { |
| 803 | aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2); |
| 804 | aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2); |
| 805 | } |
| 806 | const uint8_t * sc = (const uint8_t *)aux; |
| 807 | const uint8_t * m = sc + 2; |
| 808 | |
| 809 | for (int i = 0; i < QR4_K; ++i) { |
| 810 | const block_q8_1 * bq8i = bq8_1 + bq8_offset + i; |
| 811 | d8[i] = __low2float(bq8i->ds); |
| 812 | |
| 813 | const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4); |
| 814 | u[2*i+0] = q8[0]; |
| 815 | u[2*i+1] = q8[4]; |
| 816 | } |
| 817 | |
| 818 | return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8); |
| 819 | } |
| 820 | |
| 821 | static __device__ __forceinline__ float vec_dot_q5_K_q8_1( |
| 822 | const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { |
| 823 | |
| 824 | const block_q5_K * bq5_K = (const block_q5_K *) vbq + kbx; |
| 825 | |
| 826 | int vl[2]; |
| 827 | int vh[2]; |
| 828 | int u[2*QR5_K]; |
| 829 | float d8[QR5_K]; |
| 830 | |
| 831 | const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2)); |
| 832 | const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4)); |
| 833 | const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4)); |
| 834 | |
| 835 | vl[0] = ql[0]; |
| 836 | vl[1] = ql[4]; |
| 837 | |
| 838 | vh[0] = qh[0] >> bq8_offset; |
| 839 | vh[1] = qh[4] >> bq8_offset; |
| 840 | |
| 841 | const uint16_t * scales = (const uint16_t *)bq5_K->scales; |
| 842 | uint16_t aux[2]; |
| 843 | const int j = bq8_offset/2; |
| 844 | if (j < 2) { |
| 845 | aux[0] = scales[j+0] & 0x3f3f; |
| 846 | aux[1] = scales[j+2] & 0x3f3f; |
| 847 | } else { |
| 848 | aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2); |
| 849 | aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2); |
| 850 | } |
| 851 | const uint8_t * sc = (const uint8_t *)aux; |
| 852 | const uint8_t * m = sc + 2; |
| 853 | |
| 854 | #pragma unroll |
| 855 | for (int i = 0; i < QR5_K; ++i) { |
| 856 | const block_q8_1 * bq8i = bq8_1 + bq8_offset + i; |
| 857 | d8[i] = __low2float(bq8i->ds); |
| 858 | |
| 859 | const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4); |
| 860 | u[2*i+0] = q8[0]; |
| 861 | u[2*i+1] = q8[4]; |
| 862 | } |
| 863 | |
| 864 | return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8); |
| 865 | } |
| 866 | |
| 867 | static __device__ __forceinline__ float vec_dot_q6_K_q8_1( |
| 868 | const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { |
| 869 | |
| 870 | const block_q6_K * bq6_K = (const block_q6_K *) vbq + kbx; |
| 871 | |
| 872 | const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4); |
| 873 | const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8); |
| 874 | const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4)); |
| 875 | |
| 876 | const int vl = get_int_b2(bq6_K->ql, iqs); |
| 877 | const int vh = get_int_b2(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift; |
| 878 | |
| 879 | const int8_t * scales = bq6_K->scales + scale_offset; |
| 880 | |
| 881 | int u[QR6_K]; |
| 882 | float d8[QR6_K]; |
| 883 | |
| 884 | #pragma unroll |
| 885 | for (int i = 0; i < QR6_K; ++i) { |
| 886 | u[i] = get_int_b4(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1); |
| 887 | d8[i] = __low2float(bq8_1[bq8_offset + 2*i].ds); |
| 888 | } |
| 889 | |
| 890 | return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8); |
| 891 | } |
| 892 | |
| 893 | #define VDR_IQ2_XXS_Q8_1_MMVQ 2 |
| 894 | #define VDR_IQ2_XXS_Q8_1_MMQ 2 |
| 895 | |
| 896 | static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1( |
| 897 | const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { |
| 898 | |
| 899 | const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq + kbx; |
| 900 | |
| 901 | const int q2 = get_int_b2(bq2->qs, iqs); |
| 902 | const uint8_t * aux8 = (const uint8_t *) &q2; |
| 903 | const uint32_t aux32 = get_int_b2(bq2->qs, iqs + 1); |
| 904 | |
| 905 | int sumi = 0; |
| 906 | #pragma unroll |
| 907 | for (int k0 = 0; k0 < 8; k0 += 2) { |
| 908 | const int * grid_pos = (const int *) (iq2xxs_grid + aux8[k0/2]); |
| 909 | const int signs_packed = ksigns_iq2xs[(aux32 >> (7*k0/2)) & 0x7F]; |
| 910 | |
| 911 | const int signs0 = __vcmpne4(a: ((signs_packed & 0x03) << 7) | ((signs_packed & 0x0C) << 21), b: 0x00000000); |
| 912 | const int grid0 = __vsub4(a: grid_pos[0] ^ signs0, b: signs0); |
| 913 | const int u0 = get_int_b4(bq8_1[iqs/2].qs, k0 + 0); |
| 914 | sumi = ggml_cuda_dp4a(a: grid0, b: u0, c: sumi); |
| 915 | |
| 916 | const int signs1 = __vcmpne4(a: ((signs_packed & 0x30) << 3) | ((signs_packed & 0xC0) << 17), b: 0x00000000); |
| 917 | const int grid1 = __vsub4(a: grid_pos[1] ^ signs1, b: signs1); |
| 918 | const int u1 = get_int_b4(bq8_1[iqs/2].qs, k0 + 1); |
| 919 | sumi = ggml_cuda_dp4a(a: grid1, b: u1, c: sumi); |
| 920 | } |
| 921 | |
| 922 | const int ls = aux32 >> 28; |
| 923 | sumi = (ls*sumi + sumi/2)/4; |
| 924 | const float d = __half2float(bq2->d) * __low2float(bq8_1[iqs/2].ds); |
| 925 | return d * sumi; |
| 926 | } |
| 927 | |
| 928 | #define VDR_IQ2_XS_Q8_1_MMVQ 2 |
| 929 | #define VDR_IQ2_XS_Q8_1_MMQ 2 |
| 930 | |
| 931 | static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1( |
| 932 | const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { |
| 933 | |
| 934 | const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq + kbx; |
| 935 | |
| 936 | const int2 q2_packed = make_int2(get_int_b2(bq2->qs, iqs + 0), get_int_b2(bq2->qs, iqs + 1)); |
| 937 | const uint16_t * q2 = (const uint16_t *) &q2_packed; |
| 938 | const int ls0 = bq2->scales[iqs/2] & 0x0F; |
| 939 | const int ls1 = bq2->scales[iqs/2] >> 4; |
| 940 | |
| 941 | int sumi0 = 0; |
| 942 | int sumi1 = 0; |
| 943 | #pragma unroll |
| 944 | for (int l0 = 0; l0 < 8; l0 += 2) { |
| 945 | const uint32_t * grid_pos = (const uint32_t *)(iq2xs_grid + (q2[l0/2] & 0x000001FF)); |
| 946 | const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l0/2] >> 9)); |
| 947 | |
| 948 | const int grid_l = __vsub4(a: grid_pos[0] ^ signs[0], b: signs[0]); |
| 949 | const int grid_h = __vsub4(a: grid_pos[1] ^ signs[1], b: signs[1]); |
| 950 | |
| 951 | const int u0 = get_int_b4(bq8_1[iqs/2].qs, l0 + 0); |
| 952 | const int u1 = get_int_b4(bq8_1[iqs/2].qs, l0 + 1); |
| 953 | |
| 954 | if (l0 < 4) { |
| 955 | sumi0 = ggml_cuda_dp4a(a: grid_l, b: u0, c: sumi0); |
| 956 | sumi0 = ggml_cuda_dp4a(a: grid_h, b: u1, c: sumi0); |
| 957 | } else { |
| 958 | sumi1 = ggml_cuda_dp4a(a: grid_l, b: u0, c: sumi1); |
| 959 | sumi1 = ggml_cuda_dp4a(a: grid_h, b: u1, c: sumi1); |
| 960 | } |
| 961 | } |
| 962 | const int sumi = (sumi0*ls0 + sumi1*ls1 + (sumi0 + sumi1)/2)/4; |
| 963 | const float d = __half2float(bq2->d) * __low2float(bq8_1[iqs/2].ds); |
| 964 | return d * sumi; |
| 965 | } |
| 966 | |
| 967 | #define VDR_IQ2_S_Q8_1_MMVQ 2 |
| 968 | #define VDR_IQ2_S_Q8_1_MMQ 2 |
| 969 | |
| 970 | static __device__ __forceinline__ float vec_dot_iq2_s_q8_1( |
| 971 | const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { |
| 972 | |
| 973 | const block_iq2_s * bq2 = (const block_iq2_s *) vbq + kbx; |
| 974 | |
| 975 | const int qs_packed = get_int_b2(bq2->qs, iqs/2); |
| 976 | const uint8_t * qs = (const uint8_t *) &qs_packed; |
| 977 | |
| 978 | const int qh = bq2->qh[iqs/2]; |
| 979 | |
| 980 | const int signs_packed_32 = get_int_b2(bq2->qs, QK_K/32 + iqs/2); |
| 981 | const uint8_t * signs_packed_8 = (const uint8_t *) &signs_packed_32; |
| 982 | |
| 983 | const int ls0 = bq2->scales[iqs/2] & 0x0F; |
| 984 | const int ls1 = bq2->scales[iqs/2] >> 4; |
| 985 | |
| 986 | int sumi0 = 0; |
| 987 | int sumi1 = 0; |
| 988 | #pragma unroll |
| 989 | for (int l0 = 0; l0 < 8; l0 += 2) { |
| 990 | const int * grid_pos = (const int *)(iq2s_grid + (qs[l0/2] | ((qh << (8-l0)) & 0x300))); |
| 991 | |
| 992 | const int signs0 = __vcmpne4(a: ((signs_packed_8[l0/2] & 0x03) << 7) | ((signs_packed_8[l0/2] & 0x0C) << 21), b: 0x00000000); |
| 993 | const int signs1 = __vcmpne4(a: ((signs_packed_8[l0/2] & 0x30) << 3) | ((signs_packed_8[l0/2] & 0xC0) << 17), b: 0x00000000); |
| 994 | |
| 995 | const int grid_l = __vsub4(a: grid_pos[0] ^ signs0, b: signs0); |
| 996 | const int grid_h = __vsub4(a: grid_pos[1] ^ signs1, b: signs1); |
| 997 | |
| 998 | const int u0 = get_int_b4(bq8_1[iqs/2].qs, l0 + 0); |
| 999 | const int u1 = get_int_b4(bq8_1[iqs/2].qs, l0 + 1); |
| 1000 | |
| 1001 | if (l0 < 4) { |
| 1002 | sumi0 = ggml_cuda_dp4a(a: grid_l, b: u0, c: sumi0); |
| 1003 | sumi0 = ggml_cuda_dp4a(a: grid_h, b: u1, c: sumi0); |
| 1004 | } else { |
| 1005 | sumi1 = ggml_cuda_dp4a(a: grid_l, b: u0, c: sumi1); |
| 1006 | sumi1 = ggml_cuda_dp4a(a: grid_h, b: u1, c: sumi1); |
| 1007 | } |
| 1008 | } |
| 1009 | const int sumi = (sumi0*ls0 + sumi1*ls1 + (sumi0 + sumi1)/2)/4; |
| 1010 | |
| 1011 | const float d = __half2float(bq2->d) * __low2float(bq8_1[iqs/2].ds); |
| 1012 | return d * sumi; |
| 1013 | } |
| 1014 | |
| 1015 | #define VDR_IQ3_XXS_Q8_1_MMVQ 2 |
| 1016 | #define VDR_IQ3_XXS_Q8_1_MMQ 2 |
| 1017 | |
| 1018 | static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1( |
| 1019 | const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { |
| 1020 | |
| 1021 | const block_iq3_xxs * bq3 = (const block_iq3_xxs *) vbq + kbx; |
| 1022 | |
| 1023 | const int2 q3_packed = make_int2(get_int_b2(bq3->qs, iqs), get_int_b2(bq3->qs, iqs+1)); |
| 1024 | const uint8_t * q3 = (const uint8_t *) &q3_packed; |
| 1025 | const uint32_t aux32 = get_int_b2(bq3->qs, QK_K/16 + iqs/2); |
| 1026 | |
| 1027 | int sumi = 0; |
| 1028 | #pragma unroll |
| 1029 | for (int l0 = 0; l0 < 8; l0 += 2) { |
| 1030 | const int2 grid_pos = make_int2(iq3xxs_grid[q3[l0 + 0]], iq3xxs_grid[q3[l0 + 1]]); |
| 1031 | |
| 1032 | const int * signs = (const int *)(ksigns64 + ((aux32 >> (7*l0/2)) & 0x7F)); |
| 1033 | |
| 1034 | const int grid_l = __vsub4(a: grid_pos.x ^ signs[0], b: signs[0]); |
| 1035 | const int grid_h = __vsub4(a: grid_pos.y ^ signs[1], b: signs[1]); |
| 1036 | |
| 1037 | const int u0 = get_int_b4(bq8_1[iqs/2].qs, l0 + 0); |
| 1038 | const int u1 = get_int_b4(bq8_1[iqs/2].qs, l0 + 1); |
| 1039 | |
| 1040 | sumi = ggml_cuda_dp4a(a: grid_l, b: u0, c: sumi); |
| 1041 | sumi = ggml_cuda_dp4a(a: grid_h, b: u1, c: sumi); |
| 1042 | } |
| 1043 | |
| 1044 | const int ls = aux32 >> 28; |
| 1045 | sumi = (ls*sumi + sumi/2)/2; |
| 1046 | const float d = __half2float(bq3->d) * __low2float(bq8_1[iqs/2].ds); |
| 1047 | return d * sumi; |
| 1048 | } |
| 1049 | |
| 1050 | #define VDR_IQ3_S_Q8_1_MMVQ 2 |
| 1051 | #define VDR_IQ3_S_Q8_1_MMQ 2 |
| 1052 | |
| 1053 | // TODO: don't use lookup table for signs |
| 1054 | static __device__ __forceinline__ float vec_dot_iq3_s_q8_1( |
| 1055 | const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { |
| 1056 | |
| 1057 | const block_iq3_s * bq3 = (const block_iq3_s *) vbq + kbx; |
| 1058 | |
| 1059 | const int2 qs_packed = make_int2(get_int_b2(bq3->qs, iqs + 0), get_int_b2(bq3->qs, iqs + 1)); |
| 1060 | const uint8_t * qs = (const uint8_t *) &qs_packed; |
| 1061 | |
| 1062 | const int qh = bq3->qh[iqs/2]; |
| 1063 | |
| 1064 | const int signs_packed_32 = get_int_b2(bq3->signs, iqs/2); |
| 1065 | const uint8_t * signs_packed_8 = (const uint8_t *) &signs_packed_32; |
| 1066 | |
| 1067 | int sumi = 0; |
| 1068 | #pragma unroll |
| 1069 | for (int l0 = 0; l0 < 8; l0 += 2) { |
| 1070 | const int2 grid_pos = make_int2( |
| 1071 | iq3s_grid[qs[l0 + 0] | ((qh << (8 - l0)) & 0x100)], |
| 1072 | iq3s_grid[qs[l0 + 1] | ((qh << (7 - l0)) & 0x100)]); |
| 1073 | |
| 1074 | const int signs0 = __vcmpne4(a: ((signs_packed_8[l0/2] & 0x03) << 7) | ((signs_packed_8[l0/2] & 0x0C) << 21), b: 0x00000000); |
| 1075 | const int signs1 = __vcmpne4(a: ((signs_packed_8[l0/2] & 0x30) << 3) | ((signs_packed_8[l0/2] & 0xC0) << 17), b: 0x00000000); |
| 1076 | |
| 1077 | const int grid_l = __vsub4(a: grid_pos.x ^ signs0, b: signs0); |
| 1078 | const int grid_h = __vsub4(a: grid_pos.y ^ signs1, b: signs1); |
| 1079 | |
| 1080 | const int u0 = get_int_b4(bq8_1[iqs/2].qs, l0 + 0); |
| 1081 | const int u1 = get_int_b4(bq8_1[iqs/2].qs, l0 + 1); |
| 1082 | |
| 1083 | sumi = ggml_cuda_dp4a(a: grid_l, b: u0, c: sumi); |
| 1084 | sumi = ggml_cuda_dp4a(a: grid_h, b: u1, c: sumi); |
| 1085 | } |
| 1086 | |
| 1087 | sumi *= 1 + 2*((bq3->scales[iqs/4] >> ((iqs << 1) & 0x04)) & 0x0F); |
| 1088 | |
| 1089 | const float d = __half2float(bq3->d) * __low2float(bq8_1[iqs/2].ds); |
| 1090 | return d * sumi; |
| 1091 | } |
| 1092 | |
| 1093 | #define VDR_IQ1_S_Q8_1_MMVQ 1 |
| 1094 | #define VDR_IQ1_S_Q8_1_MMQ 1 |
| 1095 | |
| 1096 | static __device__ __forceinline__ float vec_dot_iq1_s_q8_1( |
| 1097 | const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { |
| 1098 | const block_iq1_s * bq1 = (const block_iq1_s *) vbq + kbx; |
| 1099 | |
| 1100 | const int qs_packed = get_int_b2(bq1->qs, iqs); |
| 1101 | const uint8_t * qs = (const uint8_t *) &qs_packed; |
| 1102 | |
| 1103 | const int qh = bq1->qh[iqs]; |
| 1104 | |
| 1105 | int sumi = 0; |
| 1106 | #pragma unroll |
| 1107 | for (int l0 = 0; l0 < 8; l0 += 2) { |
| 1108 | const int grid = iq1s_grid_gpu[qs[l0/2] | (((qh >> 3*(l0/2)) & 0x07) << 8)]; |
| 1109 | |
| 1110 | const int grid0 = (grid >> 0) & 0x0F0F0F0F; |
| 1111 | const int grid1 = (grid >> 4) & 0x0F0F0F0F; |
| 1112 | |
| 1113 | const int u0 = get_int_b4(bq8_1[iqs].qs, l0 + 0); |
| 1114 | const int u1 = get_int_b4(bq8_1[iqs].qs, l0 + 1); |
| 1115 | |
| 1116 | sumi = ggml_cuda_dp4a(a: grid0, b: u0, c: sumi); |
| 1117 | sumi = ggml_cuda_dp4a(a: grid1, b: u1, c: sumi); |
| 1118 | } |
| 1119 | |
| 1120 | const float d1q = __half2float(bq1->d) * (((qh >> 11) & 0x0E) + 1); |
| 1121 | const float delta = -1.0f + IQ1S_DELTA - (qh & 0x8000) * (2.0f*IQ1S_DELTA/0x8000); |
| 1122 | const float2 ds = __half22float2(bq8_1[iqs].ds); |
| 1123 | return d1q * (ds.x*sumi + ds.y*delta); |
| 1124 | } |
| 1125 | |
| 1126 | #define VDR_IQ1_M_Q8_1_MMVQ 1 |
| 1127 | #define VDR_IQ1_M_Q8_1_MMQ 1 |
| 1128 | |
| 1129 | static __device__ __forceinline__ float vec_dot_iq1_m_q8_1( |
| 1130 | const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { |
| 1131 | |
| 1132 | const block_iq1_m * bq1 = (const block_iq1_m *) vbq + kbx; |
| 1133 | |
| 1134 | const int qs_packed = get_int_b4(bq1->qs, iqs); |
| 1135 | const uint8_t * qs = (const uint8_t *) &qs_packed; |
| 1136 | |
| 1137 | int sumi[2] = {0}; |
| 1138 | float sumf[2] = {0.0f}; |
| 1139 | #pragma unroll |
| 1140 | for (int l0 = 0; l0 < 8; l0 += 2) { |
| 1141 | const int qhl = bq1->qh[2*iqs + l0/4] >> (4 * ((l0/2) % 2)); |
| 1142 | |
| 1143 | const int grid = iq1s_grid_gpu[qs[l0/2] | ((qhl & 0x07) << 8)]; |
| 1144 | |
| 1145 | const int grid0 = (grid >> 0) & 0x0F0F0F0F; |
| 1146 | const int grid1 = (grid >> 4) & 0x0F0F0F0F; |
| 1147 | |
| 1148 | const int u0 = get_int_b4(bq8_1[iqs].qs, l0 + 0); |
| 1149 | const int u1 = get_int_b4(bq8_1[iqs].qs, l0 + 1); |
| 1150 | |
| 1151 | sumi[l0/4] = ggml_cuda_dp4a(a: grid0, b: u0, c: sumi[l0/4]); |
| 1152 | sumi[l0/4] = ggml_cuda_dp4a(a: grid1, b: u1, c: sumi[l0/4]); |
| 1153 | |
| 1154 | const float delta = -1.0f + IQ1M_DELTA - (qhl & 0x08) * (2.0f*IQ1M_DELTA/0x08); |
| 1155 | int sumy = 0; |
| 1156 | sumy = ggml_cuda_dp4a(a: u0, b: 0x01010101, c: sumy); |
| 1157 | sumy = ggml_cuda_dp4a(a: u1, b: 0x01010101, c: sumy); |
| 1158 | sumf[l0/4] += delta*sumy; |
| 1159 | } |
| 1160 | |
| 1161 | const uint16_t * sc = (const uint16_t *) bq1->scales; |
| 1162 | |
| 1163 | iq1m_scale_t scale; |
| 1164 | scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00F0) | ((sc[2] >> 4) & 0x0F00) | (sc[3] & 0xF000); |
| 1165 | const float d = __half2float(scale.f16) * __low2float(bq8_1[iqs].ds); |
| 1166 | |
| 1167 | const int tmp = sc[iqs/2] >> (6*(iqs%2)); |
| 1168 | const int sc0 = 2*((tmp >> 0) & 0x07) + 1; |
| 1169 | const int sc1 = 2*((tmp >> 3) & 0x07) + 1; |
| 1170 | return d * ((sumi[0] + sumf[0]) * sc0 + (sumi[1] + sumf[1]) * sc1); |
| 1171 | } |
| 1172 | |
| 1173 | #define VDR_IQ4_NL_Q8_1_MMVQ 2 |
| 1174 | #define VDR_IQ4_NL_Q8_1_MMQ 4 |
| 1175 | |
| 1176 | static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1( |
| 1177 | const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { |
| 1178 | |
| 1179 | const block_iq4_nl * bq4 = (const block_iq4_nl *) vbq + kbx; |
| 1180 | |
| 1181 | const int * q8 = (const int *) bq8_1->qs + iqs; |
| 1182 | |
| 1183 | int sumi = 0; |
| 1184 | #pragma unroll |
| 1185 | for (int l = 0; l < VDR_Q4_0_Q8_1_MMVQ; ++l) { |
| 1186 | const int aux_q4 = get_int_b2(bq4->qs, iqs + l); |
| 1187 | const int2 v = get_int_from_table_16(aux_q4, kvalues_iq4nl); |
| 1188 | |
| 1189 | sumi = ggml_cuda_dp4a(a: v.x, b: q8[l + 0], c: sumi); |
| 1190 | sumi = ggml_cuda_dp4a(a: v.y, b: q8[l + 4], c: sumi); |
| 1191 | } |
| 1192 | |
| 1193 | const float d = __half2float(bq4->d) * __low2float(bq8_1->ds); |
| 1194 | return d * sumi; |
| 1195 | } |
| 1196 | |
| 1197 | #define VDR_IQ4_XS_Q8_1_MMVQ 4 |
| 1198 | #define VDR_IQ4_XS_Q8_1_MMQ 4 |
| 1199 | |
| 1200 | static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1( |
| 1201 | const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { |
| 1202 | |
| 1203 | const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq + kbx; |
| 1204 | |
| 1205 | int sumi = 0; |
| 1206 | #pragma unroll |
| 1207 | for (int j = 0; j < 4; ++j) { |
| 1208 | const int aux_q4 = get_int_b4(bq4->qs, iqs + j); |
| 1209 | const int2 v = get_int_from_table_16(aux_q4, kvalues_iq4nl); |
| 1210 | |
| 1211 | const int u0 = get_int_b4(bq8_1[iqs/4].qs, j + 0); |
| 1212 | const int u1 = get_int_b4(bq8_1[iqs/4].qs, j + 4); |
| 1213 | |
| 1214 | sumi = ggml_cuda_dp4a(a: v.x, b: u0, c: sumi); |
| 1215 | sumi = ggml_cuda_dp4a(a: v.y, b: u1, c: sumi); |
| 1216 | } |
| 1217 | |
| 1218 | const int ls = ((bq4->scales_l[iqs/8] >> (iqs & 0x04)) & 0x0F) | (((bq4->scales_h >> (iqs/2)) & 0x03) << 4); |
| 1219 | sumi *= ls - 32; |
| 1220 | |
| 1221 | const float d = __half2float(bq4->d) * __low2float(bq8_1[iqs/4].ds); |
| 1222 | return d * sumi; |
| 1223 | } |
| 1224 | |