| 1 | #include "common.cuh" |
| 2 | #include "fattn-common.cuh" |
| 3 | #include "fattn-wmma-f16.cuh" |
| 4 | |
| 5 | // nbatch_fa == number of KQ rows to process per iteration |
| 6 | // nbatch_K == number of K columns to load in parallel for KQ calculation |
| 7 | |
| 8 | // TODO optimize kernel parameters for FP16 NVIDIA (P100) |
| 9 | // TODO optimize kernel parameters for head sizes 40, 72, 80, 96, 112 |
| 10 | |
| 11 | // The ROCm compiler cannot handle templating in __launch_bounds__. |
| 12 | // As a workaround, define a macro to package the kernel parameters as uint32_t: |
| 13 | #define GGML_CUDA_FATTN_TILE_CONFIG_CASE(DKQ_, DV_, ncols_, nthreads, occupancy, nbatch_fa, nbatch_K) \ |
| 14 | if (DKQ == (DKQ_) && DV == (DV_) && ncols == (ncols_)) { \ |
| 15 | static_assert((nthreads) <= 512, "bad nthreads"); \ |
| 16 | static_assert((occupancy) <= 8, "bad occupancy"); \ |
| 17 | static_assert((nbatch_fa) <= 256, "bad nbatch_fa"); \ |
| 18 | static_assert((nbatch_K) <= 256, "bad nbatch_K"); \ |
| 19 | return ((nthreads) << 0) | ((occupancy) << 10) | ((nbatch_fa) << 14) | ((nbatch_K) << 23); \ |
| 20 | } \ |
| 21 | |
| 22 | static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_nvidia_fp16(const int DKQ, const int DV, const int ncols) { |
| 23 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 2, 64, 2, 64, 40) |
| 24 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 4, 128, 2, 64, 40) |
| 25 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 8, 256, 2, 64, 40) |
| 26 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 16, 256, 2, 64, 40) |
| 27 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 32, 256, 2, 64, 40) |
| 28 | |
| 29 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 2, 64, 2, 64, 64) |
| 30 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 4, 128, 2, 64, 64) |
| 31 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 8, 256, 2, 64, 64) |
| 32 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 16, 256, 2, 64, 64) |
| 33 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 32, 256, 2, 64, 64) |
| 34 | |
| 35 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 2, 64, 2, 64, 72) |
| 36 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 4, 128, 2, 64, 72) |
| 37 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 8, 256, 2, 64, 72) |
| 38 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 16, 256, 2, 64, 72) |
| 39 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 32, 256, 2, 64, 72) |
| 40 | |
| 41 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 2, 64, 2, 64, 40) |
| 42 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 4, 128, 2, 64, 40) |
| 43 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 8, 256, 2, 64, 40) |
| 44 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 16, 256, 2, 64, 40) |
| 45 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 32, 256, 2, 64, 40) |
| 46 | |
| 47 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 2, 64, 2, 64, 48) |
| 48 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 4, 128, 2, 64, 48) |
| 49 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 8, 256, 2, 64, 48) |
| 50 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 16, 256, 2, 64, 48) |
| 51 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 32, 256, 2, 64, 48) |
| 52 | |
| 53 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 2, 64, 2, 64, 56) |
| 54 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 4, 128, 2, 64, 56) |
| 55 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 8, 256, 2, 64, 56) |
| 56 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 16, 256, 2, 64, 56) |
| 57 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 32, 256, 2, 64, 56) |
| 58 | |
| 59 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 2, 64, 2, 64, 64) |
| 60 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 4, 128, 2, 64, 64) |
| 61 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 8, 256, 2, 64, 64) |
| 62 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 16, 256, 2, 64, 64) |
| 63 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 32, 256, 2, 64, 64) |
| 64 | |
| 65 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 2, 64, 2, 64, 64) |
| 66 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 4, 128, 2, 64, 64) |
| 67 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 8, 256, 2, 64, 64) |
| 68 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 2, 64, 64) |
| 69 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 2, 64, 64) |
| 70 | |
| 71 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 2, 64, 64) |
| 72 | |
| 73 | return 0; |
| 74 | } |
| 75 | |
| 76 | static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_nvidia_fp32(const int DKQ, const int DV, const int ncols) { |
| 77 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 2, 64, 2, 32, 40) |
| 78 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 4, 128, 2, 32, 40) |
| 79 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 8, 256, 2, 32, 40) |
| 80 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 16, 256, 2, 32, 40) |
| 81 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 32, 256, 2, 32, 40) |
| 82 | |
| 83 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 2, 128, 3, 64, 64) |
| 84 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 4, 128, 3, 32, 64) |
| 85 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 8, 128, 3, 32, 64) |
| 86 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 16, 128, 3, 64, 64) |
| 87 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 32, 256, 2, 64, 64) |
| 88 | |
| 89 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 2, 64, 2, 32, 72) |
| 90 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 4, 128, 2, 32, 72) |
| 91 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 8, 256, 2, 32, 72) |
| 92 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 16, 256, 2, 32, 72) |
| 93 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 32, 256, 2, 32, 72) |
| 94 | |
| 95 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 2, 64, 2, 32, 40) |
| 96 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 4, 128, 2, 32, 40) |
| 97 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 8, 256, 2, 32, 40) |
| 98 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 16, 256, 2, 32, 40) |
| 99 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 32, 256, 2, 32, 40) |
| 100 | |
| 101 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 2, 64, 2, 32, 48) |
| 102 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 4, 128, 2, 32, 48) |
| 103 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 8, 256, 2, 32, 48) |
| 104 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 16, 256, 2, 32, 48) |
| 105 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 32, 256, 2, 32, 48) |
| 106 | |
| 107 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 2, 64, 2, 32, 56) |
| 108 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 4, 128, 2, 32, 56) |
| 109 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 8, 256, 2, 32, 56) |
| 110 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 16, 256, 2, 32, 56) |
| 111 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 32, 256, 2, 32, 56) |
| 112 | |
| 113 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 2, 128, 3, 64, 64) |
| 114 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 4, 128, 3, 32, 128) |
| 115 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 8, 128, 3, 64, 128) |
| 116 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 16, 128, 3, 32, 128) |
| 117 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 32, 256, 2, 64, 64) |
| 118 | |
| 119 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 2, 128, 3, 64, 64) |
| 120 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 4, 128, 3, 32, 64) |
| 121 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 8, 256, 2, 32, 256) |
| 122 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 2, 32, 128) |
| 123 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 2, 32, 64) |
| 124 | |
| 125 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 2, 32, 64) |
| 126 | |
| 127 | return 0; |
| 128 | } |
| 129 | |
| 130 | static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_amd(const int DKQ, const int DV, const int ncols) { |
| 131 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 2, 64, 2, 32, 40) |
| 132 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 4, 128, 2, 32, 40) |
| 133 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 8, 256, 2, 32, 40) |
| 134 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 16, 256, 2, 32, 40) |
| 135 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 32, 256, 2, 32, 40) |
| 136 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 64, 256, 2, 32, 40) |
| 137 | |
| 138 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 2, 64, 3, 32, 64) |
| 139 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 4, 128, 3, 64, 64) |
| 140 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 8, 128, 2, 32, 64) |
| 141 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 16, 256, 2, 128, 64) |
| 142 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 32, 256, 2, 64, 64) |
| 143 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 64, 256, 2, 64, 64) |
| 144 | |
| 145 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 2, 64, 2, 32, 72) |
| 146 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 4, 128, 2, 32, 72) |
| 147 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 8, 256, 2, 32, 72) |
| 148 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 16, 256, 2, 32, 72) |
| 149 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 32, 256, 2, 32, 72) |
| 150 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 64, 256, 2, 32, 72) |
| 151 | |
| 152 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 2, 64, 2, 32, 40) |
| 153 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 4, 128, 2, 32, 40) |
| 154 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 8, 256, 2, 32, 40) |
| 155 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 16, 256, 2, 32, 40) |
| 156 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 32, 256, 2, 32, 40) |
| 157 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 64, 256, 2, 32, 40) |
| 158 | |
| 159 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 2, 64, 2, 32, 48) |
| 160 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 4, 128, 2, 32, 48) |
| 161 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 8, 256, 2, 32, 48) |
| 162 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 16, 256, 2, 32, 48) |
| 163 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 32, 256, 2, 32, 48) |
| 164 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 64, 256, 2, 32, 48) |
| 165 | |
| 166 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 2, 64, 2, 32, 56) |
| 167 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 4, 128, 2, 32, 56) |
| 168 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 8, 256, 2, 32, 56) |
| 169 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 16, 256, 2, 32, 56) |
| 170 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 32, 256, 2, 32, 56) |
| 171 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 64, 256, 2, 32, 56) |
| 172 | |
| 173 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 2, 256, 2, 128, 64) |
| 174 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 4, 128, 2, 64, 128) |
| 175 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 8, 256, 2, 64, 128) |
| 176 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 16, 256, 2, 64, 128) |
| 177 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 32, 256, 2, 64, 64) |
| 178 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 64, 256, 2, 64, 32) |
| 179 | |
| 180 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 2, 256, 2, 128, 64) |
| 181 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 4, 256, 2, 64, 128) |
| 182 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 8, 256, 2, 64, 128) |
| 183 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 2, 32, 128) |
| 184 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 2, 32, 128) |
| 185 | |
| 186 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 2, 64, 64) |
| 187 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 32, 512, 1, 128, 64) |
| 188 | |
| 189 | return 0; |
| 190 | } |
| 191 | |
| 192 | static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_amd_rdna(const int DKQ, const int DV, const int ncols) { |
| 193 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 2, 64, 2, 32, 40) |
| 194 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 4, 128, 2, 32, 40) |
| 195 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 8, 256, 2, 32, 40) |
| 196 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 16, 256, 2, 32, 40) |
| 197 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 32, 256, 2, 32, 40) |
| 198 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 64, 256, 2, 32, 40) |
| 199 | |
| 200 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 2, 64, 8, 32, 64) |
| 201 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 4, 64, 8, 32, 64) |
| 202 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 8, 128, 5, 128, 64) |
| 203 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 16, 128, 5, 128, 64) |
| 204 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 32, 128, 4, 64, 64) |
| 205 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 64, 128, 5, 64, 64) |
| 206 | |
| 207 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 2, 64, 2, 32, 72) |
| 208 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 4, 128, 2, 32, 72) |
| 209 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 8, 256, 2, 32, 72) |
| 210 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 16, 256, 2, 32, 72) |
| 211 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 32, 256, 2, 32, 72) |
| 212 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 64, 256, 2, 32, 72) |
| 213 | |
| 214 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 2, 64, 2, 32, 40) |
| 215 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 4, 128, 2, 32, 40) |
| 216 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 8, 256, 2, 32, 40) |
| 217 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 16, 256, 2, 32, 40) |
| 218 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 32, 256, 2, 32, 40) |
| 219 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 64, 256, 2, 32, 40) |
| 220 | |
| 221 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 2, 64, 2, 32, 48) |
| 222 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 4, 128, 2, 32, 48) |
| 223 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 8, 256, 2, 32, 48) |
| 224 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 16, 256, 2, 32, 48) |
| 225 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 32, 256, 2, 32, 48) |
| 226 | GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 64, 256, 2, 32, 48) |
| 227 | |
| 228 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 2, 64, 2, 32, 56) |
| 229 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 4, 128, 2, 32, 56) |
| 230 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 8, 256, 2, 32, 56) |
| 231 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 16, 256, 2, 32, 56) |
| 232 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 32, 256, 2, 32, 56) |
| 233 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 64, 256, 2, 32, 56) |
| 234 | |
| 235 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 2, 64, 8, 32, 64) |
| 236 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 4, 128, 8, 64, 64) |
| 237 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 8, 128, 8, 64, 64) |
| 238 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 16, 256, 3, 128, 128) |
| 239 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 32, 256, 3, 128, 64) |
| 240 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 64, 256, 3, 64, 64) |
| 241 | |
| 242 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 2, 64, 8, 32, 64) |
| 243 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 4, 128, 6, 32, 256) |
| 244 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 8, 128, 6, 32, 256) |
| 245 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 5, 32, 256) |
| 246 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 3, 64, 128) |
| 247 | |
| 248 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 4, 64, 64) |
| 249 | GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 32, 256, 2, 128, 64) |
| 250 | |
| 251 | return 0; |
| 252 | } |
| 253 | |
| 254 | static __host__ uint32_t ggml_cuda_fattn_tile_get_config(const int DKQ, const int DV, const int ncols, const int cc) { |
| 255 | if (GGML_CUDA_CC_IS_AMD(cc)) { |
| 256 | if (GGML_CUDA_CC_IS_RDNA(cc)) { |
| 257 | return ggml_cuda_fattn_tile_get_config_amd_rdna(DKQ, DV, ncols); |
| 258 | } |
| 259 | return ggml_cuda_fattn_tile_get_config_amd(DKQ, DV, ncols); |
| 260 | } |
| 261 | if (fast_fp16_available(cc)) { |
| 262 | return ggml_cuda_fattn_tile_get_config_nvidia_fp16(DKQ, DV, ncols); |
| 263 | } |
| 264 | return ggml_cuda_fattn_tile_get_config_nvidia_fp32(DKQ, DV, ncols); |
| 265 | } |
| 266 | |
| 267 | static constexpr __device__ uint32_t ggml_cuda_fattn_tile_get_config(const int DKQ, const int DV, const int ncols) { |
| 268 | #ifdef GGML_USE_HIP |
| 269 | #ifdef RDNA |
| 270 | return ggml_cuda_fattn_tile_get_config_amd_rdna(DKQ, DV, ncols); |
| 271 | #else |
| 272 | return ggml_cuda_fattn_tile_get_config_amd(DKQ, DV, ncols); |
| 273 | #endif // RDNA |
| 274 | #else |
| 275 | #ifdef FAST_FP16_AVAILABLE |
| 276 | return ggml_cuda_fattn_tile_get_config_nvidia_fp16(DKQ, DV, ncols); |
| 277 | #else |
| 278 | return ggml_cuda_fattn_tile_get_config_nvidia_fp32(DKQ, DV, ncols); |
| 279 | #endif // FAST_FP16_AVAILABLE |
| 280 | #endif // GGML_USE_HIP |
| 281 | } |
| 282 | |
| 283 | static __host__ int ggml_cuda_fattn_tile_get_nthreads(const int DKQ, const int DV, const int ncols, const int cc) { |
| 284 | return (ggml_cuda_fattn_tile_get_config(DKQ, DV, ncols, cc) >> 0) & ((1 << 10) - 1); |
| 285 | } |
| 286 | |
| 287 | static constexpr __device__ int ggml_cuda_fattn_tile_get_nthreads(const int DKQ, const int DV, const int ncols) { |
| 288 | return (ggml_cuda_fattn_tile_get_config(DKQ, DV, ncols) >> 0) & ((1 << 10) - 1); |
| 289 | } |
| 290 | |
| 291 | static __host__ int ggml_cuda_fattn_tile_get_occupancy(const int DKQ, const int DV, const int ncols, const int cc) { |
| 292 | return (ggml_cuda_fattn_tile_get_config(DKQ, DV, ncols, cc) >> 10) & ((1 << 4) - 1); |
| 293 | } |
| 294 | |
| 295 | static constexpr __device__ int ggml_cuda_fattn_tile_get_occupancy(const int DKQ, const int DV, const int ncols) { |
| 296 | return (ggml_cuda_fattn_tile_get_config(DKQ, DV, ncols) >> 10) & ((1 << 4) - 1); |
| 297 | } |
| 298 | |
| 299 | static __host__ int ggml_cuda_fattn_tile_get_nbatch_fa(const int DKQ, const int DV, const int ncols, const int cc) { |
| 300 | return (ggml_cuda_fattn_tile_get_config(DKQ, DV, ncols, cc) >> 14) & ((1 << 9) - 1); |
| 301 | } |
| 302 | |
| 303 | static constexpr __device__ int ggml_cuda_fattn_tile_get_nbatch_fa(const int DKQ, const int DV, const int ncols) { |
| 304 | return (ggml_cuda_fattn_tile_get_config(DKQ, DV, ncols) >> 14) & ((1 << 9) - 1); |
| 305 | } |
| 306 | |
| 307 | static __host__ int ggml_cuda_fattn_tile_get_nbatch_K(const int DKQ, const int DV, const int ncols, const int cc) { |
| 308 | return (ggml_cuda_fattn_tile_get_config(DKQ, DV, ncols, cc) >> 23) & ((1 << 9) - 1); |
| 309 | } |
| 310 | |
| 311 | static constexpr __device__ int ggml_cuda_fattn_tile_get_nbatch_K(const int DKQ, const int DV, const int ncols) { |
| 312 | return (ggml_cuda_fattn_tile_get_config(DKQ, DV, ncols) >> 23) & ((1 << 9) - 1); |
| 313 | } |
| 314 | |
| 315 | // TODO: deduplicate with mma-f16 |
| 316 | template<int warp_size, int nwarps, int I, int J, int J_padding, bool oob_check> |
| 317 | static __device__ __forceinline__ void flash_attn_tile_load_tile( |
| 318 | const half2 * const __restrict__ KV, half2 * const __restrict__ tile_KV, const int stride_KV, const int i_sup) { |
| 319 | constexpr int cpy_nb = ggml_cuda_get_max_cpy_bytes(); |
| 320 | constexpr int cpy_ne = cpy_nb / 4; |
| 321 | |
| 322 | auto load = [&] __device__ (const int n) { |
| 323 | const int stride_j = warp_size >> n; |
| 324 | |
| 325 | if (stride_j == 0) { |
| 326 | return; |
| 327 | } |
| 328 | |
| 329 | const int j0_start = stride_j == warp_size ? 0 : ((J/2)/cpy_ne) - ((J/2)/cpy_ne) % (2*stride_j); |
| 330 | const int j0_stop = ((J/2)/cpy_ne) - ((J/2)/cpy_ne) % (1*stride_j); |
| 331 | const int stride_i = warp_size / stride_j; |
| 332 | |
| 333 | if (j0_start == j0_stop) { |
| 334 | return; |
| 335 | } |
| 336 | |
| 337 | #pragma unroll |
| 338 | for (int i0 = 0; i0 < I; i0 += nwarps*stride_i) { |
| 339 | const int i = i0 + threadIdx.y*stride_i + (stride_j == warp_size ? 0 : threadIdx.x / stride_j); |
| 340 | |
| 341 | if (i0 + nwarps*stride_i <= I || i < I) { |
| 342 | #pragma unroll |
| 343 | for (int j0 = j0_start; j0 < j0_stop; j0 += stride_j) { |
| 344 | const int j = j0*cpy_ne + (stride_j == warp_size ? threadIdx.x : threadIdx.x % stride_j)*cpy_ne; |
| 345 | |
| 346 | const half2 zero[cpy_ne] = {{0.0f, 0.0f}}; |
| 347 | ggml_cuda_memcpy_1<cpy_nb>( |
| 348 | dst: tile_KV + i*(J/2 + J_padding) + j, |
| 349 | src: !oob_check || i < i_sup ? KV + i*stride_KV + j : zero); |
| 350 | } |
| 351 | } |
| 352 | } |
| 353 | }; |
| 354 | // 1: max 64*16=512 bytes, 512 half |
| 355 | // 2: max 32*16=512 bytes, 256 half |
| 356 | // 3: max 16*16=256 bytes, 128 half |
| 357 | // 4: max 8*16=128 bytes, 64 half |
| 358 | // 5: max 4*16= 64 bytes, 32 half |
| 359 | // 6: max 2*16= 32 bytes, 16 half |
| 360 | // 7: max 1*16= 16 bytes, 8 half |
| 361 | static_assert(J % 8 == 0, "bad J" ); |
| 362 | static_assert((J/2) % cpy_ne == 0, "bad J" ); |
| 363 | ggml_cuda_unroll<7>{}(load); |
| 364 | } |
| 365 | |
| 366 | template<int warp_size, int nwarps, int I, int J, int J_padding, bool oob_check> |
| 367 | static __device__ __forceinline__ void flash_attn_tile_load_tile( |
| 368 | const half2 * const __restrict__ KV, float * const __restrict__ tile_KV, const int stride_KV, const int i_sup) { |
| 369 | constexpr int cpy_nb = ggml_cuda_get_max_cpy_bytes(); |
| 370 | constexpr int cpy_ne = cpy_nb / 4; |
| 371 | |
| 372 | auto load = [&] __device__ (const int n) { |
| 373 | const int stride_j = warp_size >> n; |
| 374 | |
| 375 | if (stride_j == 0) { |
| 376 | return; |
| 377 | } |
| 378 | |
| 379 | const int j0_start = stride_j == warp_size ? 0 : (J/cpy_ne) - (J/cpy_ne) % (2*stride_j); |
| 380 | const int j0_stop = (J/cpy_ne) - (J/cpy_ne) % (1*stride_j); |
| 381 | const int stride_i = warp_size / stride_j; |
| 382 | |
| 383 | if (j0_start == j0_stop) { |
| 384 | return; |
| 385 | } |
| 386 | |
| 387 | #pragma unroll |
| 388 | for (int i0 = 0; i0 < I; i0 += nwarps*stride_i) { |
| 389 | const int i = i0 + threadIdx.y*stride_i + (stride_j == warp_size ? 0 : threadIdx.x / stride_j); |
| 390 | |
| 391 | if (i0 + nwarps*stride_i <= I || i < I) { |
| 392 | #pragma unroll |
| 393 | for (int j0 = j0_start; j0 < j0_stop; j0 += stride_j) { |
| 394 | const int j = j0*(cpy_ne/2) + (stride_j == warp_size ? threadIdx.x : threadIdx.x % stride_j)*(cpy_ne/2); |
| 395 | |
| 396 | const half2 zero[cpy_ne/2] = {{0.0f, 0.0f}}; |
| 397 | half2 tmp_h2[cpy_ne/2]; |
| 398 | ggml_cuda_memcpy_1<sizeof(tmp_h2)>( |
| 399 | dst: tmp_h2, src: !oob_check || i < i_sup ? KV + i*stride_KV + j : zero); |
| 400 | |
| 401 | float2 tmp_f2[cpy_ne/2]; |
| 402 | #pragma unroll |
| 403 | for (int l = 0; l < cpy_ne/2; ++l) { |
| 404 | tmp_f2[l] = __half22float2(a: tmp_h2[l]); |
| 405 | } |
| 406 | ggml_cuda_memcpy_1<sizeof(tmp_f2)>(dst: tile_KV + i*(J + J_padding) + 2*j, src: tmp_f2); |
| 407 | } |
| 408 | } |
| 409 | } |
| 410 | }; |
| 411 | // 1: max 32*16=512 bytes, 128 float |
| 412 | // 2: max 16*16=256 bytes, 64 float |
| 413 | // 3: max 8*16=128 bytes, 32 float |
| 414 | // 4: max 4*16= 64 bytes, 16 float |
| 415 | // 5: max 2*16= 32 bytes, 8 float |
| 416 | static_assert(J % 8 == 0, "bad J" ); |
| 417 | static_assert(J % cpy_ne == 0, "bad J" ); |
| 418 | ggml_cuda_unroll<5>{}(load); |
| 419 | } |
| 420 | |
| 421 | // Function that performs a single iteration in for the KQ matrix multiplication: |
| 422 | template <int warp_size, int nwarps, int ncols1, int ncols2, int DKQ, int nbatch_fa, int nbatch_K, |
| 423 | bool use_logit_softcap, bool oob_check, typename T_vec_dot> |
| 424 | static __device__ __forceinline__ void flash_attn_tile_iter_KQ( |
| 425 | T_vec_dot * const Q_tmp, |
| 426 | const half2 * const __restrict__ K_h2, |
| 427 | T_vec_dot * const KV_tmp, |
| 428 | const int stride_K2, |
| 429 | const int k_VKQ_0, |
| 430 | const int k_VKQ_sup, |
| 431 | const int k_KQ_0, |
| 432 | float * KQ_acc) { |
| 433 | constexpr int cpy_nb = ggml_cuda_get_max_cpy_bytes(); |
| 434 | constexpr int cpy_ne = cpy_nb / 4; |
| 435 | |
| 436 | constexpr int ncols = ncols1*ncols2; |
| 437 | constexpr int cpw = ncols > nwarps ? ncols/nwarps : 1; // Q columns per warp |
| 438 | constexpr int np = nwarps > ncols ? nwarps/ncols : 1; // number of parallel warps per Q column |
| 439 | |
| 440 | flash_attn_tile_load_tile<warp_size, nwarps, nbatch_fa, nbatch_K, cpy_ne, oob_check> |
| 441 | (K_h2 + int64_t(k_VKQ_0)*stride_K2 + k_KQ_0/2, KV_tmp, stride_K2, k_VKQ_sup); |
| 442 | __syncthreads(); |
| 443 | |
| 444 | #ifdef FAST_FP16_AVAILABLE |
| 445 | static_assert((nbatch_K/2) % cpy_ne == 0, "bad nbatch_K" ); |
| 446 | #pragma unroll |
| 447 | for (int k_KQ_1 = 0; k_KQ_1 < nbatch_K/2; k_KQ_1 += cpy_ne) { |
| 448 | half2 K_k[nbatch_fa/(np*warp_size)][cpy_ne]; |
| 449 | half2 Q_k[cpw][cpy_ne]; |
| 450 | #else |
| 451 | static_assert(nbatch_K % cpy_ne == 0, "bad nbatch_K" ); |
| 452 | #pragma unroll |
| 453 | for (int k_KQ_1 = 0; k_KQ_1 < nbatch_K; k_KQ_1 += cpy_ne) { |
| 454 | float K_k[nbatch_fa/(np*warp_size)][cpy_ne]; |
| 455 | float Q_k[cpw][cpy_ne]; |
| 456 | #endif // FAST_FP16_AVAILABLE |
| 457 | |
| 458 | #pragma unroll |
| 459 | for (int i_KQ_0 = 0; i_KQ_0 < nbatch_fa; i_KQ_0 += np*warp_size) { |
| 460 | const int i_KQ = i_KQ_0 + (threadIdx.y % np)*warp_size + threadIdx.x; |
| 461 | |
| 462 | #ifdef FAST_FP16_AVAILABLE |
| 463 | ggml_cuda_memcpy_1<cpy_nb>(&K_k[i_KQ_0/(np*warp_size)], &KV_tmp[i_KQ*(nbatch_K/2 + cpy_ne) + k_KQ_1]); |
| 464 | #else |
| 465 | ggml_cuda_memcpy_1<cpy_nb>(&K_k[i_KQ_0/(np*warp_size)], &KV_tmp[i_KQ*(nbatch_K + cpy_ne) + k_KQ_1]); |
| 466 | #endif // FAST_FP16_AVAILABLE |
| 467 | } |
| 468 | #pragma unroll |
| 469 | for (int jc0 = 0; jc0 < cpw; ++jc0) { |
| 470 | const int jc = jc0 + (threadIdx.y / np)*cpw; |
| 471 | |
| 472 | #ifdef FAST_FP16_AVAILABLE |
| 473 | ggml_cuda_memcpy_1<cpy_nb>(&Q_k[jc0], &Q_tmp[jc*(DKQ/2) + k_KQ_0/2 + k_KQ_1]); |
| 474 | #else |
| 475 | ggml_cuda_memcpy_1<cpy_nb>(&Q_k[jc0], &Q_tmp[jc* DKQ + k_KQ_0 + k_KQ_1]); |
| 476 | #endif // FAST_FP16_AVAILABLE |
| 477 | } |
| 478 | |
| 479 | #pragma unroll |
| 480 | for (int i_KQ_0 = 0; i_KQ_0 < nbatch_fa; i_KQ_0 += np*warp_size) { |
| 481 | #pragma unroll |
| 482 | for (int jc0 = 0; jc0 < cpw; ++jc0) { |
| 483 | #pragma unroll |
| 484 | for (int k = 0; k < cpy_ne; ++k) { |
| 485 | ggml_cuda_mad(KQ_acc[i_KQ_0/(np*warp_size)*cpw + jc0], K_k[i_KQ_0/(np*warp_size)][k], Q_k[jc0][k]); |
| 486 | } |
| 487 | } |
| 488 | } |
| 489 | } |
| 490 | |
| 491 | if (k_KQ_0 + nbatch_K < DKQ) { |
| 492 | __syncthreads(); // Sync not needed on last iteration. |
| 493 | } |
| 494 | } |
| 495 | |
| 496 | // Function that performs a single iteration of the main loop over up to nbatch_fa tokens. |
| 497 | template <int warp_size, int nwarps, int ncols1, int ncols2, int DKQ, int DV, int nbatch_fa, int nbatch_K, |
| 498 | bool use_logit_softcap, bool oob_check, typename T_vec_dot, typename T_KQ, typename T_acc> |
| 499 | static __device__ __forceinline__ void flash_attn_tile_iter( |
| 500 | T_vec_dot * const Q_tmp, |
| 501 | const half2 * const __restrict__ K_h2, |
| 502 | const half2 * const __restrict__ V_h2, |
| 503 | const half * const __restrict__ mask, |
| 504 | const float logit_softcap, |
| 505 | const float slope, |
| 506 | T_KQ * const KQ, |
| 507 | T_vec_dot * const KV_tmp, |
| 508 | const int stride_K2, |
| 509 | const int stride_V2, |
| 510 | const int stride_mask, |
| 511 | float * const KQ_max, |
| 512 | float * const KQ_sum, |
| 513 | T_acc * const VKQ, |
| 514 | const int k_VKQ_0, |
| 515 | const int k_VKQ_max) { |
| 516 | constexpr int cpy_nb = ggml_cuda_get_max_cpy_bytes(); |
| 517 | constexpr int cpy_ne = cpy_nb / 4; |
| 518 | |
| 519 | constexpr int ncols = ncols1*ncols2; |
| 520 | constexpr int cpw = ncols > nwarps ? ncols/nwarps : 1; // Q columns per warp |
| 521 | constexpr int np = nwarps > ncols ? nwarps/ncols : 1; // number of parallel warps per Q column |
| 522 | |
| 523 | constexpr int DVp = (DV + 2*warp_size - 1) & ~(2*warp_size - 1); // DV padded to multiple of 2*warp_size. |
| 524 | |
| 525 | // KQ_cs == KQ chunk size, number of KQ values in j direction to store as one contiguous chunk in memory. |
| 526 | // KQ is originally 2D but uses a Z-shaped 3D memory pattern like KQ[ncols/KQ_cs][DVp][KQ_cs]. |
| 527 | #ifdef FAST_FP16_AVAILABLE |
| 528 | constexpr int KQ_cs = cpw < 2*cpy_ne ? cpw : 2*cpy_ne; |
| 529 | #else |
| 530 | constexpr int KQ_cs = cpw < 1*cpy_ne ? cpw : 1*cpy_ne; |
| 531 | #endif // FAST_FP16_AVAILABLE |
| 532 | static_assert(cpw % KQ_cs == 0, "bad KQ_cs" ); |
| 533 | const int k_VKQ_sup = k_VKQ_max - k_VKQ_0; // k supremum, only smaller k values have valid KV data |
| 534 | |
| 535 | float KQ_max_new[cpw]; |
| 536 | #pragma unroll |
| 537 | for (int jc0 = 0; jc0 < cpw; ++jc0) { |
| 538 | KQ_max_new[jc0] = KQ_max[jc0]; |
| 539 | } |
| 540 | |
| 541 | float KQ_acc[nbatch_fa/(np*warp_size) * cpw] = {0.0f}; // Accumulators for KQ matrix multiplication. |
| 542 | |
| 543 | // KQ = K @ Q matrix multiplication: |
| 544 | constexpr int nbatch_K_last = DKQ % nbatch_K; |
| 545 | #pragma unroll |
| 546 | for (int k_KQ_0 = 0; k_KQ_0 < DKQ - nbatch_K_last; k_KQ_0 += nbatch_K) { |
| 547 | flash_attn_tile_iter_KQ<warp_size, nwarps, ncols1, ncols2, DKQ, nbatch_fa, nbatch_K, use_logit_softcap, oob_check>( |
| 548 | Q_tmp, K_h2, KV_tmp, stride_K2, k_VKQ_0, k_VKQ_sup, k_KQ_0, KQ_acc); |
| 549 | } |
| 550 | if (nbatch_K_last > 0) { |
| 551 | constexpr int k_KQ_0 = DKQ - nbatch_K_last; |
| 552 | flash_attn_tile_iter_KQ<warp_size, nwarps, ncols1, ncols2, DKQ, nbatch_fa, nbatch_K_last, use_logit_softcap, oob_check>( |
| 553 | Q_tmp, K_h2, KV_tmp, stride_K2, k_VKQ_0, k_VKQ_sup, k_KQ_0, KQ_acc); |
| 554 | } |
| 555 | |
| 556 | // Apply logit softcap + mask, update KQ_max: |
| 557 | #pragma unroll |
| 558 | for (int jc0 = 0; jc0 < cpw; ++jc0) { |
| 559 | const int j = (jc0 + (threadIdx.y / np)*cpw)/ncols2; |
| 560 | |
| 561 | #pragma unroll |
| 562 | for (int i_KQ_0 = 0; i_KQ_0 < nbatch_fa; i_KQ_0 += np*warp_size) { |
| 563 | const int i_KQ = i_KQ_0 + (threadIdx.y % np)*warp_size + threadIdx.x; |
| 564 | |
| 565 | if (use_logit_softcap) { |
| 566 | KQ_acc[(i_KQ_0/(np*warp_size))*cpw + jc0] = logit_softcap * tanhf(KQ_acc[(i_KQ_0/(np*warp_size))*cpw + jc0]); |
| 567 | } |
| 568 | |
| 569 | if (!oob_check || i_KQ < k_VKQ_sup) { |
| 570 | KQ_acc[(i_KQ_0/(np*warp_size))*cpw + jc0] += (ncols2 > 1 || mask) ? |
| 571 | slope*__half2float(a: mask[j*stride_mask + k_VKQ_0 + i_KQ]) : 0.0f; |
| 572 | |
| 573 | KQ_max_new[jc0] = fmaxf(KQ_max_new[jc0], KQ_acc[(i_KQ_0/(np*warp_size))*cpw + jc0]); |
| 574 | } |
| 575 | } |
| 576 | |
| 577 | KQ_max_new[jc0] = warp_reduce_max<warp_size>(KQ_max_new[jc0]); |
| 578 | } |
| 579 | |
| 580 | if constexpr (np == 1) { |
| 581 | __syncthreads(); |
| 582 | } else { |
| 583 | static_assert(cpw == 1, "bad cpw" ); |
| 584 | __shared__ float KQ_max_new_shared[nwarps]; |
| 585 | if (threadIdx.x == 0) { |
| 586 | KQ_max_new_shared[threadIdx.y] = KQ_max_new[0]; |
| 587 | } |
| 588 | __syncthreads(); |
| 589 | KQ_max_new[0] = KQ_max_new_shared[(threadIdx.y & ~(np-1)) + threadIdx.x % np]; |
| 590 | KQ_max_new[0] = warp_reduce_max<np>(KQ_max_new[0]); |
| 591 | } |
| 592 | |
| 593 | // Calculate KQ softmax, write to shared KQ buffer, re-scale VKQ accumulators: |
| 594 | #pragma unroll |
| 595 | for (int jc0 = 0; jc0 < cpw; jc0 += KQ_cs) { |
| 596 | #ifdef FAST_FP16_AVAILABLE |
| 597 | half tmp[nbatch_fa/(np*warp_size)][KQ_cs]; |
| 598 | #else |
| 599 | float tmp[nbatch_fa/(np*warp_size)][KQ_cs]; |
| 600 | #endif // FAST_FP16_AVAILABLE |
| 601 | |
| 602 | #pragma unroll |
| 603 | for (int jc1 = 0; jc1 < KQ_cs; ++jc1) { |
| 604 | const int jc = jc0 + jc1; |
| 605 | |
| 606 | const float KQ_max_scale = expf(KQ_max[jc] - KQ_max_new[jc]); |
| 607 | KQ_max[jc] = KQ_max_new[jc]; |
| 608 | |
| 609 | float KQ_sum_add = 0.0f; |
| 610 | #pragma unroll |
| 611 | for (int i0 = 0; i0 < nbatch_fa; i0 += np*warp_size) { |
| 612 | const float val = !oob_check || i0 + (threadIdx.y % np)*warp_size + threadIdx.x < k_VKQ_sup ? |
| 613 | expf(KQ_acc[(i0/(np*warp_size))*cpw + jc] - KQ_max[jc]) : 0.0f; |
| 614 | KQ_sum_add += val; |
| 615 | tmp[i0/(np*warp_size)][jc1] = val; |
| 616 | } |
| 617 | KQ_sum[jc] = KQ_sum[jc]*KQ_max_scale + KQ_sum_add; |
| 618 | |
| 619 | #ifdef FAST_FP16_AVAILABLE |
| 620 | const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale, KQ_max_scale); |
| 621 | #pragma unroll |
| 622 | for (int i0 = 0; i0 < DVp/2; i0 += warp_size) { |
| 623 | VKQ[jc*((DVp/2)/warp_size) + i0/warp_size] *= KQ_max_scale_h2; |
| 624 | } |
| 625 | #else |
| 626 | #pragma unroll |
| 627 | for (int i0 = 0; i0 < DVp/2; i0 += warp_size) { |
| 628 | VKQ[jc*((DVp/2)/warp_size) + i0/warp_size].x *= KQ_max_scale; |
| 629 | VKQ[jc*((DVp/2)/warp_size) + i0/warp_size].y *= KQ_max_scale; |
| 630 | } |
| 631 | #endif // FAST_FP16_AVAILABLE |
| 632 | } |
| 633 | |
| 634 | #pragma unroll |
| 635 | for (int i0 = 0; i0 < nbatch_fa; i0 += np*warp_size) { |
| 636 | const int i = i0 + (threadIdx.y % np)*warp_size + threadIdx.x; |
| 637 | |
| 638 | ggml_cuda_memcpy_1<sizeof(tmp[0])>( |
| 639 | KQ + (jc0/KQ_cs + (threadIdx.y / np)*(cpw/KQ_cs))*(nbatch_fa*KQ_cs) + i*KQ_cs, |
| 640 | tmp[i0/(np*warp_size)]); |
| 641 | } |
| 642 | } |
| 643 | |
| 644 | // VKQ = V @ KQ matrix multiplication: |
| 645 | static_assert(DV <= DKQ, "bad DV" ); |
| 646 | static_assert(DV % nbatch_K == 0 || (nbatch_K % 3 == 0 && DV % (nbatch_K*2/3) == 0), "bad nbatch_K" ); |
| 647 | constexpr int nbatch_V = (DV % nbatch_K == 0 ? nbatch_K : nbatch_K*2/3) * nbatch_fa / DV; // Number of V columns that fit in SRAM for K. |
| 648 | static_assert(nbatch_fa % nbatch_V == 0, "bad nbatch_V" ); |
| 649 | static_assert(nbatch_V % np == 0, "bad nbatch_V" ); |
| 650 | #pragma unroll |
| 651 | for (int k0 = 0; k0 < nbatch_fa; k0 += nbatch_V) { |
| 652 | flash_attn_tile_load_tile<warp_size, nwarps, nbatch_V, DV, 0, oob_check> |
| 653 | (V_h2 + int64_t(k_VKQ_0 + k0)*stride_V2, KV_tmp, stride_V2, k_VKQ_sup - k0); |
| 654 | __syncthreads(); |
| 655 | |
| 656 | #ifdef FAST_FP16_AVAILABLE |
| 657 | #pragma unroll |
| 658 | for (int k1 = 0; k1 < nbatch_V; k1 += np) { |
| 659 | half2 V_k[(DVp/2)/warp_size]; |
| 660 | half2 KQ_k[cpw]; |
| 661 | |
| 662 | constexpr int cpy_ne_D = cpy_ne/2 < (DVp/2)/warp_size ? cpy_ne/2 : (DVp/2)/warp_size; |
| 663 | #pragma unroll |
| 664 | for (int i0 = 0; i0 < DVp/2; i0 += warp_size*cpy_ne_D) { |
| 665 | ggml_cuda_memcpy_1<cpy_ne_D*4>(&V_k[i0/warp_size], &KV_tmp[(k1 + threadIdx.y % np)*(DV/2) + i0 + threadIdx.x*cpy_ne_D]); |
| 666 | } |
| 667 | #pragma unroll |
| 668 | for (int jc_VKQ_0 = 0; jc_VKQ_0 < cpw; jc_VKQ_0 += KQ_cs) { |
| 669 | const int jc_KQ = jc_VKQ_0/KQ_cs + (threadIdx.y / np)*(cpw/KQ_cs); |
| 670 | |
| 671 | half tmp[KQ_cs]; |
| 672 | ggml_cuda_memcpy_1<KQ_cs*sizeof(half)>( |
| 673 | &tmp, KQ + jc_KQ*(nbatch_fa*KQ_cs) + (k0 + k1 + threadIdx.y % np)*KQ_cs); |
| 674 | #pragma unroll |
| 675 | for (int jc_VKQ_1 = 0; jc_VKQ_1 < KQ_cs; ++jc_VKQ_1) { |
| 676 | KQ_k[jc_VKQ_0+jc_VKQ_1] = __half2half2(tmp[jc_VKQ_1]); |
| 677 | } |
| 678 | } |
| 679 | |
| 680 | #pragma unroll |
| 681 | for (int i0 = 0; i0 < DVp/2; i0 += warp_size) { |
| 682 | #pragma unroll |
| 683 | for (int jc_VKQ_0 = 0; jc_VKQ_0 < cpw; ++jc_VKQ_0) { |
| 684 | VKQ[jc_VKQ_0*((DVp/2)/warp_size) + i0/warp_size] += V_k[i0/warp_size]*KQ_k[jc_VKQ_0]; |
| 685 | } |
| 686 | } |
| 687 | } |
| 688 | #else |
| 689 | #pragma unroll |
| 690 | for (int k1 = 0; k1 < nbatch_V; k1 += np) { |
| 691 | float2 V_k[(DVp/2)/warp_size]; |
| 692 | float KQ_k[cpw]; |
| 693 | |
| 694 | constexpr int cpy_ne_D = cpy_ne < DVp/warp_size ? cpy_ne : DVp/warp_size; |
| 695 | #pragma unroll |
| 696 | for (int i0 = 0; i0 < DVp; i0 += warp_size*cpy_ne_D) { |
| 697 | ggml_cuda_memcpy_1<cpy_ne_D*4>(&V_k[i0/(2*warp_size)], &KV_tmp[(k1 + threadIdx.y % np)*DV + i0 + threadIdx.x*cpy_ne_D]); |
| 698 | } |
| 699 | #pragma unroll |
| 700 | for (int jc_VKQ_0 = 0; jc_VKQ_0 < cpw; jc_VKQ_0 += KQ_cs) { |
| 701 | const int jc_KQ = jc_VKQ_0/KQ_cs + (threadIdx.y / np)*(cpw/KQ_cs); |
| 702 | |
| 703 | ggml_cuda_memcpy_1<KQ_cs*sizeof(float)>( |
| 704 | &KQ_k[jc_VKQ_0], KQ + jc_KQ*(nbatch_fa*KQ_cs) + (k0 + k1 + threadIdx.y % np)*KQ_cs); |
| 705 | } |
| 706 | |
| 707 | #pragma unroll |
| 708 | for (int i0 = 0; i0 < DVp/2; i0 += warp_size) { |
| 709 | #pragma unroll |
| 710 | for (int jc_VKQ_0 = 0; jc_VKQ_0 < cpw; ++jc_VKQ_0) { |
| 711 | VKQ[jc_VKQ_0*((DVp/2)/warp_size) + i0/warp_size].x += V_k[i0/warp_size].x*KQ_k[jc_VKQ_0]; |
| 712 | VKQ[jc_VKQ_0*((DVp/2)/warp_size) + i0/warp_size].y += V_k[i0/warp_size].y*KQ_k[jc_VKQ_0]; |
| 713 | } |
| 714 | } |
| 715 | } |
| 716 | #endif // FAST_FP16_AVAILABLE |
| 717 | |
| 718 | __syncthreads(); |
| 719 | } |
| 720 | } |
| 721 | |
| 722 | template<int DKQ, int DV, int ncols1, int ncols2, bool use_logit_softcap> // D == head size |
| 723 | __launch_bounds__(ggml_cuda_fattn_tile_get_nthreads(DKQ, DV, ncols1*ncols2), ggml_cuda_fattn_tile_get_occupancy(DKQ, DV, ncols1*ncols2)) |
| 724 | static __global__ void flash_attn_tile( |
| 725 | const char * __restrict__ Q, |
| 726 | const char * __restrict__ K, |
| 727 | const char * __restrict__ V, |
| 728 | const char * __restrict__ mask, |
| 729 | const char * __restrict__ sinks, |
| 730 | const int * __restrict__ KV_max, |
| 731 | float * __restrict__ dst, |
| 732 | float2 * __restrict__ dst_meta, |
| 733 | const float scale, |
| 734 | const float max_bias, |
| 735 | const float m0, |
| 736 | const float m1, |
| 737 | const uint32_t n_head_log2, |
| 738 | const float logit_softcap, |
| 739 | const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03, |
| 740 | const int32_t nb01, const int32_t nb02, const int32_t nb03, |
| 741 | const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13, |
| 742 | const int32_t nb11, const int32_t nb12, const int64_t nb13, |
| 743 | const int32_t nb21, const int32_t nb22, const int64_t nb23, |
| 744 | const int32_t ne31, const int32_t ne32, const int32_t ne33, |
| 745 | const int32_t nb31, const int32_t nb32, const int64_t nb33) { |
| 746 | #ifdef FLASH_ATTN_AVAILABLE |
| 747 | |
| 748 | // Skip unused kernel variants for faster compilation: |
| 749 | |
| 750 | if ( |
| 751 | #ifdef GGML_USE_WMMA_FATTN |
| 752 | (ncols2 != 1 && DV != 40 && DV != 72 && DV != 512) || |
| 753 | #endif // GGML_USE_WMMA_FATTN |
| 754 | (use_logit_softcap && !(DV == 128 || DV == 256)) |
| 755 | ) { |
| 756 | GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale, |
| 757 | max_bias, m0, m1, n_head_log2, logit_softcap, |
| 758 | ne00, ne01, ne02, ne03, |
| 759 | nb01, nb02, nb03, |
| 760 | ne10, ne11, ne12, ne13, |
| 761 | nb11, nb12, nb13, |
| 762 | nb21, nb22, nb23, |
| 763 | ne31, ne32, ne33, |
| 764 | nb31, nb32, nb33); |
| 765 | NO_DEVICE_CODE; |
| 766 | return; |
| 767 | } |
| 768 | |
| 769 | static_assert(ggml_cuda_fattn_tile_get_config(DKQ, DV, ncols: ncols1*ncols2) != 0, "kernel config not defined" ); |
| 770 | |
| 771 | constexpr int ncols = ncols1*ncols2; |
| 772 | constexpr int warp_size = 32; |
| 773 | constexpr int nwarps = ggml_cuda_fattn_tile_get_nthreads (DKQ, DV, ncols: ncols1*ncols2) / warp_size; |
| 774 | constexpr int nbatch_fa = ggml_cuda_fattn_tile_get_nbatch_fa(DKQ, DV, ncols: ncols1*ncols2); |
| 775 | constexpr int nbatch_K = ggml_cuda_fattn_tile_get_nbatch_K (DKQ, DV, ncols: ncols1*ncols2); |
| 776 | |
| 777 | // In this kernel Q, K, V are matrices while i, j, k are matrix indices. |
| 778 | |
| 779 | const int col_Q_0 = blockIdx.x * ncols1; // Index of the first Q column for this CUDA block to work on. |
| 780 | |
| 781 | const int sequence = blockIdx.z / (ne02/ncols2); |
| 782 | const int head0 = blockIdx.z*ncols2 - sequence*ne02; // == blockIdx.z % (ne02/ncols2) |
| 783 | const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix. |
| 784 | const float * Q_f = (const float *) (Q + nb03*sequence + nb02* head0 + nb01*col_Q_0); |
| 785 | const half2 * K_h2 = (const half2 *) (K + nb13*sequence + nb12*(head0 / gqa_ratio)); |
| 786 | const half2 * V_h2 = (const half2 *) (V + nb23*sequence + nb22*(head0 / gqa_ratio)); // K and V have same shape |
| 787 | |
| 788 | const half * maskh = mask ? (const half *) (mask + nb33*(sequence % ne33) + nb31*col_Q_0) : nullptr; |
| 789 | |
| 790 | const int stride_K2 = nb11 / sizeof(half2); |
| 791 | const int stride_V2 = nb21 / sizeof(half2); |
| 792 | const int stride_mask = nb31 / sizeof(half); |
| 793 | |
| 794 | const float slope = ncols2 == 1 ? get_alibi_slope(max_bias, h: head0, n_head_log2, m0, m1) : 1.0f; |
| 795 | |
| 796 | constexpr int cpy_nb = ggml_cuda_get_max_cpy_bytes(); |
| 797 | constexpr int cpy_ne = cpy_nb / 4; |
| 798 | |
| 799 | constexpr int cpw = ncols > nwarps ? ncols/nwarps : 1; // Q columns per warp. |
| 800 | constexpr int np = nwarps > ncols ? nwarps/ncols : 1; // Number of parallel warps per Q column. |
| 801 | static_assert(cpw == 1 || np == 1, "bad cpw / np" ); |
| 802 | static_assert(nbatch_fa % (np*warp_size) == 0, "nbatch_fa % (np*warp_size) != 0" ); |
| 803 | |
| 804 | constexpr int DKQp = (DKQ + 2*warp_size - 1) & ~(2*warp_size - 1); // DKQ padded to multiple of 2*warp_size. |
| 805 | constexpr int DVp = (DV + 2*warp_size - 1) & ~(2*warp_size - 1); // DV padded to multiple of 2*warp_size. |
| 806 | |
| 807 | // Q_tmp == SRAM buffer to hold Q data for the entire lifetime of the kernel. |
| 808 | // KV_tmp == SRAM buffer to hold fragments of K/V data while iterating over ne11. |
| 809 | // KV_tmp is padded to avoid memory conflicts for K (cpy_ne) and OOB accesses for V (DVp-DV). |
| 810 | // KQ == SRAM buffer to hold KQ fragments between KQ and VKQ matrix multiplications. |
| 811 | // VKQ == Accumulators in registers for the final VKQ result. |
| 812 | #ifdef FAST_FP16_AVAILABLE |
| 813 | __shared__ half2 Q_tmp[ncols * DKQ/2]; |
| 814 | __shared__ half2 KV_tmp[nbatch_fa * (nbatch_K/2 + cpy_ne) + DVp-DV]; |
| 815 | __shared__ half KQ[ncols * nbatch_fa]; |
| 816 | half2 VKQ[cpw * ((DVp/2)/warp_size)] = {{0.0f, 0.0f}}; |
| 817 | #else |
| 818 | __shared__ float Q_tmp[ncols * DKQ]; |
| 819 | __shared__ float KV_tmp[nbatch_fa * (nbatch_K + cpy_ne) + DVp-DV]; |
| 820 | __shared__ float KQ[ncols * nbatch_fa]; |
| 821 | float2 VKQ[cpw * ((DVp/2)/warp_size)] = {{0.0f, 0.0f}}; |
| 822 | #endif // FAST_FP16_AVAILABLE |
| 823 | |
| 824 | float KQ_max[cpw]; |
| 825 | #pragma unroll |
| 826 | for (int j0 = 0; j0 < ncols; j0 += nwarps) { |
| 827 | KQ_max[j0/nwarps] = -FLT_MAX/2.0f; |
| 828 | } |
| 829 | float KQ_sum[cpw] = {0.0f}; |
| 830 | |
| 831 | // Load Q data, convert to FP16 if fast: |
| 832 | #pragma unroll |
| 833 | for (int jc0 = 0; jc0 < cpw; ++jc0) { |
| 834 | const int jc = jc0 + (threadIdx.y / np)*cpw; |
| 835 | |
| 836 | const int j = jc / ncols2; |
| 837 | const int c = jc % ncols2; |
| 838 | |
| 839 | constexpr int cpy_ne_D = cpy_ne < DKQp/warp_size ? cpy_ne : DKQp/warp_size; |
| 840 | |
| 841 | #pragma unroll |
| 842 | for (int i0 = 0; i0 < DKQp; i0 += np*warp_size*cpy_ne_D) { |
| 843 | if (i0 + np*warp_size*cpy_ne_D <= DKQ || i0 + (threadIdx.y % np)*(warp_size*cpy_ne_D) + threadIdx.x*cpy_ne_D < DKQ) { |
| 844 | float tmp_f[cpy_ne_D] = {0.0f}; |
| 845 | if (ncols1 == 1 || col_Q_0 + j < ne01) { |
| 846 | ggml_cuda_memcpy_1<sizeof(tmp_f)> |
| 847 | (tmp_f, &Q_f[c*(nb02/sizeof(float)) + j*(nb01/sizeof(float)) |
| 848 | + i0 + (threadIdx.y % np)*(warp_size*cpy_ne_D) + threadIdx.x*cpy_ne_D]); |
| 849 | } |
| 850 | |
| 851 | #pragma unroll |
| 852 | for (int i1 = 0; i1 < cpy_ne_D; ++i1) { |
| 853 | tmp_f[i1] *= scale; |
| 854 | } |
| 855 | |
| 856 | #ifdef FAST_FP16_AVAILABLE |
| 857 | half2 tmp_h2[cpy_ne_D/2]; |
| 858 | #pragma unroll |
| 859 | for (int i1 = 0; i1 < cpy_ne_D; i1 += 2) { |
| 860 | tmp_h2[i1/2] = make_half2(tmp_f[i1 + 0], tmp_f[i1 + 1]); |
| 861 | } |
| 862 | ggml_cuda_memcpy_1<sizeof(tmp_h2)>( |
| 863 | &Q_tmp[jc*(DKQ/2) + i0/2 + (threadIdx.y % np)*(warp_size*cpy_ne_D/2) + threadIdx.x*(cpy_ne_D/2)], |
| 864 | tmp_h2); |
| 865 | #else |
| 866 | ggml_cuda_memcpy_1<sizeof(tmp_f)>( |
| 867 | &Q_tmp[jc* DKQ + i0 + (threadIdx.y % np)*(warp_size*cpy_ne_D) + threadIdx.x* cpy_ne_D], |
| 868 | tmp_f); |
| 869 | #endif // FAST_FP16_AVAILABLE |
| 870 | } |
| 871 | } |
| 872 | } |
| 873 | |
| 874 | __syncthreads(); |
| 875 | |
| 876 | // Main loop over KV cache: |
| 877 | const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11; |
| 878 | if (ncols2 == 1) { |
| 879 | // Branch with out-of-bounds checks. |
| 880 | int k_VKQ_0 = blockIdx.y*nbatch_fa; |
| 881 | while (k_VKQ_0 < k_VKQ_max - nbatch_fa) { |
| 882 | constexpr bool oob_check = false; |
| 883 | flash_attn_tile_iter<warp_size, nwarps, ncols1, ncols2, DKQ, DV, nbatch_fa, nbatch_K, use_logit_softcap, oob_check> |
| 884 | (Q_tmp, K_h2, V_h2, maskh, logit_softcap, slope, KQ, KV_tmp, |
| 885 | stride_K2, stride_V2, stride_mask, KQ_max, KQ_sum, VKQ, k_VKQ_0, k_VKQ_max); |
| 886 | k_VKQ_0 += gridDim.y*nbatch_fa; |
| 887 | } |
| 888 | if (k_VKQ_0 < k_VKQ_max) { |
| 889 | constexpr bool oob_check = true; |
| 890 | flash_attn_tile_iter<warp_size, nwarps, ncols1, ncols2, DKQ, DV, nbatch_fa, nbatch_K, use_logit_softcap, oob_check> |
| 891 | (Q_tmp, K_h2, V_h2, maskh, logit_softcap, slope, KQ, KV_tmp, |
| 892 | stride_K2, stride_V2, stride_mask, KQ_max, KQ_sum, VKQ, k_VKQ_0, k_VKQ_max); |
| 893 | } |
| 894 | } else { |
| 895 | // Branch without out-of-bounds checks. |
| 896 | for (int k_VKQ_0 = blockIdx.y*nbatch_fa; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*nbatch_fa) { |
| 897 | constexpr bool oob_check = false; |
| 898 | flash_attn_tile_iter<warp_size, nwarps, ncols1, ncols2, DKQ, DV, nbatch_fa, nbatch_K, use_logit_softcap, oob_check> |
| 899 | (Q_tmp, K_h2, V_h2, maskh, logit_softcap, slope, KQ, KV_tmp, |
| 900 | stride_K2, stride_V2, stride_mask, KQ_max, KQ_sum, VKQ, k_VKQ_0, k_VKQ_max); |
| 901 | } |
| 902 | } |
| 903 | |
| 904 | #pragma unroll |
| 905 | for (int jc0 = 0; jc0 < cpw; ++jc0) { |
| 906 | KQ_sum[jc0] = warp_reduce_sum<warp_size>(KQ_sum[jc0]); |
| 907 | } |
| 908 | |
| 909 | if constexpr (np > 1) { |
| 910 | static_assert(cpw == 1, "bad cpw" ); |
| 911 | static_assert(nbatch_fa*nbatch_K >= nwarps*DVp, "KV_tmp too small" ); |
| 912 | |
| 913 | #ifdef FAST_FP16_AVAILABLE |
| 914 | half2 * VKQ_combine = (half2 *) KV_tmp; |
| 915 | #else |
| 916 | float * VKQ_combine = (float *) KV_tmp; |
| 917 | #endif // FAST_FP16_AVAILABLE |
| 918 | float * KQ_sum_combine = (float *) Q_tmp; |
| 919 | |
| 920 | if (threadIdx.y % np != 0) { |
| 921 | #ifdef FAST_FP16_AVAILABLE |
| 922 | constexpr int cpy_ne_D = cpy_ne < (DVp/2)/warp_size ? cpy_ne : (DVp/2)/warp_size; |
| 923 | #pragma unroll |
| 924 | for (int i0 = 0; i0 < DVp/2; i0 += warp_size*cpy_ne_D) { |
| 925 | ggml_cuda_memcpy_1<cpy_ne_D*4>(&VKQ_combine[threadIdx.y*(DVp/2) + i0 + threadIdx.x*cpy_ne_D], &VKQ[i0/warp_size]); |
| 926 | } |
| 927 | #else |
| 928 | constexpr int cpy_ne_D = cpy_ne < DVp/warp_size ? cpy_ne : DVp/warp_size; |
| 929 | #pragma unroll |
| 930 | for (int i0 = 0; i0 < DVp; i0 += warp_size*cpy_ne_D) { |
| 931 | ggml_cuda_memcpy_1<cpy_ne_D*4>( |
| 932 | &VKQ_combine[threadIdx.y*DVp + i0 + threadIdx.x*cpy_ne_D], ((const float *) VKQ) + i0/warp_size); |
| 933 | } |
| 934 | #endif // FAST_FP16_AVAILABLE |
| 935 | |
| 936 | if (threadIdx.x == 0) { |
| 937 | KQ_sum_combine[threadIdx.y] = KQ_sum[0]; |
| 938 | } |
| 939 | |
| 940 | return; |
| 941 | } |
| 942 | |
| 943 | __syncthreads(); |
| 944 | |
| 945 | #pragma unroll |
| 946 | for (int ip = 1; ip < np; ++ip) { |
| 947 | #ifdef FAST_FP16_AVAILABLE |
| 948 | constexpr int cpy_ne_D = cpy_ne < (DVp/2)/warp_size ? cpy_ne : (DVp/2)/warp_size; |
| 949 | #pragma unroll |
| 950 | for (int i0 = 0; i0 < DVp/2; i0 += warp_size*cpy_ne_D) { |
| 951 | half2 tmp[cpy_ne_D]; |
| 952 | ggml_cuda_memcpy_1<cpy_ne_D*4>(tmp, &VKQ_combine[(threadIdx.y + ip)*(DVp/2) + i0 + threadIdx.x*cpy_ne_D]); |
| 953 | #pragma unroll |
| 954 | for (int i1 = 0; i1 < cpy_ne_D; ++i1) { |
| 955 | VKQ[i0/warp_size + i1] += tmp[i1]; |
| 956 | } |
| 957 | } |
| 958 | #else |
| 959 | constexpr int cpy_ne_D = cpy_ne < DVp/warp_size ? cpy_ne : DVp/warp_size; |
| 960 | #pragma unroll |
| 961 | for (int i0 = 0; i0 < DVp; i0 += warp_size*cpy_ne_D) { |
| 962 | float tmp[cpy_ne_D]; |
| 963 | ggml_cuda_memcpy_1<cpy_ne_D*4>(tmp, &VKQ_combine[(threadIdx.y + ip)*DVp + i0 + threadIdx.x*cpy_ne_D]); |
| 964 | #pragma unroll |
| 965 | for (int i1 = 0; i1 < cpy_ne_D; ++i1) { |
| 966 | ((float *)VKQ)[i0/warp_size + i1] += tmp[i1]; |
| 967 | } |
| 968 | } |
| 969 | #endif // FAST_FP16_AVAILABLE |
| 970 | |
| 971 | KQ_sum[0] += KQ_sum_combine[threadIdx.y + ip]; |
| 972 | } |
| 973 | } |
| 974 | |
| 975 | // Attention sink: adjust KQ max and sum only for the first of all parallel blocks: |
| 976 | if (sinks && blockIdx.y == 0) { |
| 977 | #pragma unroll |
| 978 | for (int jc0 = 0; jc0 < cpw; ++jc0) { |
| 979 | const int jc = jc0 + (threadIdx.y/np)*cpw; |
| 980 | const float sink = ((const float *) sinks)[head0 + jc % ncols2]; |
| 981 | |
| 982 | float KQ_max_new_j = fmaxf(KQ_max[jc0], sink); |
| 983 | const float KQ_max_scale = expf(KQ_max[jc0] - KQ_max_new_j); |
| 984 | KQ_max[jc0] = KQ_max_new_j; |
| 985 | |
| 986 | const float val = expf(sink - KQ_max[jc0]); |
| 987 | KQ_sum[jc0] = KQ_sum[jc0]*KQ_max_scale + val; |
| 988 | |
| 989 | #ifdef FAST_FP16_AVAILABLE |
| 990 | const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale, KQ_max_scale); |
| 991 | #pragma unroll |
| 992 | for (int i0 = 0; i0 < DVp/2; i0 += warp_size) { |
| 993 | VKQ[jc0*((DVp/2)/warp_size) + i0/warp_size] *= KQ_max_scale_h2; |
| 994 | } |
| 995 | #else |
| 996 | #pragma unroll |
| 997 | for (int i0 = 0; i0 < DVp/2; i0 += warp_size) { |
| 998 | VKQ[jc0*((DVp/2)/warp_size) + i0/warp_size].x *= KQ_max_scale; |
| 999 | VKQ[jc0*((DVp/2)/warp_size) + i0/warp_size].y *= KQ_max_scale; |
| 1000 | } |
| 1001 | #endif // FAST_FP16_AVAILABLE |
| 1002 | } |
| 1003 | } |
| 1004 | |
| 1005 | // Write back results: |
| 1006 | #pragma unroll |
| 1007 | for (int jc0 = 0; jc0 < cpw; ++jc0) { |
| 1008 | const int jc = jc0 + (threadIdx.y/np)*cpw; |
| 1009 | |
| 1010 | const int j = jc / ncols2; |
| 1011 | const int c = jc % ncols2; |
| 1012 | |
| 1013 | if (ncols1 > 1 && col_Q_0 + j >= ne01) { |
| 1014 | return; |
| 1015 | } |
| 1016 | |
| 1017 | const float scale = gridDim.y == 1 ? 1.0f/KQ_sum[jc0] : 1.0f; |
| 1018 | |
| 1019 | const int j_dst_unrolled = ((sequence*ne01 + col_Q_0 + j)*ne02 + head0 + c)*gridDim.y + blockIdx.y; |
| 1020 | |
| 1021 | #ifdef FAST_FP16_AVAILABLE |
| 1022 | constexpr int cpy_ne_D = cpy_ne/2 < (DVp/2)/warp_size ? cpy_ne/2 : (DVp/2)/warp_size; |
| 1023 | #pragma unroll |
| 1024 | for (int i0 = 0; i0 < DVp/2; i0 += warp_size*cpy_ne_D) { |
| 1025 | float2 tmp[cpy_ne_D]; |
| 1026 | #pragma unroll |
| 1027 | for (int i1 = 0; i1 < cpy_ne_D; ++i1) { |
| 1028 | tmp[i1] = __half22float2(VKQ[jc0*((DVp/2)/warp_size) + i0/warp_size + i1]); |
| 1029 | tmp[i1].x *= scale; |
| 1030 | tmp[i1].y *= scale; |
| 1031 | } |
| 1032 | if (i0 + warp_size*cpy_ne_D <= DV/2 || i0 + threadIdx.x*cpy_ne_D < DV/2) { |
| 1033 | ggml_cuda_memcpy_1<sizeof(tmp)>(&dst[j_dst_unrolled*DV + 2*i0 + threadIdx.x*(2*cpy_ne_D)], tmp); |
| 1034 | } |
| 1035 | } |
| 1036 | #else |
| 1037 | constexpr int cpy_ne_D = cpy_ne < DVp/warp_size ? cpy_ne : DVp/warp_size; |
| 1038 | #pragma unroll |
| 1039 | for (int i0 = 0; i0 < DVp; i0 += warp_size*cpy_ne_D) { |
| 1040 | if (i0 + warp_size*cpy_ne_D <= DV || i0 + threadIdx.x*cpy_ne_D < DV) { |
| 1041 | #pragma unroll |
| 1042 | for (int i1 = 0; i1 < cpy_ne_D/2; ++i1) { |
| 1043 | VKQ[jc0*((DVp/2)/warp_size) + i0/(2*warp_size) + i1].x *= scale; |
| 1044 | VKQ[jc0*((DVp/2)/warp_size) + i0/(2*warp_size) + i1].y *= scale; |
| 1045 | } |
| 1046 | ggml_cuda_memcpy_1<cpy_ne_D*4>( |
| 1047 | &dst[j_dst_unrolled*DV + i0 + threadIdx.x*cpy_ne_D], |
| 1048 | &VKQ[jc0*((DVp/2)/warp_size) + i0/(2*warp_size)]); |
| 1049 | } |
| 1050 | } |
| 1051 | #endif // FAST_FP16_AVAILABLE |
| 1052 | |
| 1053 | if (gridDim.y != 1 && threadIdx.x == 0) { |
| 1054 | dst_meta[j_dst_unrolled] = make_float2(KQ_max[jc0], KQ_sum[jc0]); |
| 1055 | } |
| 1056 | } |
| 1057 | #else |
| 1058 | GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale, |
| 1059 | max_bias, m0, m1, n_head_log2, logit_softcap, |
| 1060 | ne00, ne01, ne02, ne03, |
| 1061 | nb01, nb02, nb03, |
| 1062 | ne10, ne11, ne12, ne13, |
| 1063 | nb11, nb12, nb13, |
| 1064 | nb21, nb22, nb23, |
| 1065 | ne31, ne32, ne33, |
| 1066 | nb31, nb32, nb33); |
| 1067 | NO_DEVICE_CODE; |
| 1068 | #endif // FLASH_ATTN_AVAILABLE |
| 1069 | } |
| 1070 | |
| 1071 | template <int DKQ, int DV, int ncols2, bool use_logit_softcap> |
| 1072 | static void launch_fattn_tile_switch_ncols1(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { |
| 1073 | const ggml_tensor * Q = dst->src[0]; |
| 1074 | |
| 1075 | const int id = ggml_cuda_get_device(); |
| 1076 | const int cc = ggml_cuda_info().devices[id].cc; |
| 1077 | const int warp_size = 32; |
| 1078 | |
| 1079 | constexpr size_t nbytes_shared = 0; |
| 1080 | |
| 1081 | #ifdef GGML_USE_HIP |
| 1082 | if constexpr (DV <= 128) { |
| 1083 | if (Q->ne[1] > 32/ncols2) { |
| 1084 | constexpr int cols_per_block = 64; |
| 1085 | const int nwarps = ggml_cuda_fattn_tile_get_nthreads (DKQ, DV, cols_per_block, cc) / warp_size; |
| 1086 | const int nbatch_fa = ggml_cuda_fattn_tile_get_nbatch_fa(DKQ, DV, cols_per_block, cc); |
| 1087 | fattn_kernel_t fattn_kernel = flash_attn_tile<DKQ, DV, cols_per_block/ncols2, ncols2, use_logit_softcap>; |
| 1088 | launch_fattn<DV, cols_per_block/ncols2, ncols2> |
| 1089 | (ctx, dst, fattn_kernel, nwarps, nbytes_shared, nbatch_fa, true, true, false, warp_size); |
| 1090 | return; |
| 1091 | } |
| 1092 | } |
| 1093 | #endif // GGML_USE_HIP |
| 1094 | |
| 1095 | #ifndef GGML_USE_HIP |
| 1096 | if constexpr (DV <= 256) |
| 1097 | #endif // GGML_USE_HIP |
| 1098 | { |
| 1099 | if (Q->ne[1] > 16/ncols2) { |
| 1100 | constexpr int cols_per_block = 32; |
| 1101 | const int nwarps = ggml_cuda_fattn_tile_get_nthreads (DKQ, DV, ncols: cols_per_block, cc) / warp_size; |
| 1102 | const int nbatch_fa = ggml_cuda_fattn_tile_get_nbatch_fa(DKQ, DV, ncols: cols_per_block, cc); |
| 1103 | fattn_kernel_t fattn_kernel = flash_attn_tile<DKQ, DV, cols_per_block/ncols2, ncols2, use_logit_softcap>; |
| 1104 | launch_fattn<DV, cols_per_block/ncols2, ncols2> |
| 1105 | (ctx, dst, fattn_kernel, nwarps, nbytes_shared, nbatch_fa, true, true, false, warp_size); |
| 1106 | return; |
| 1107 | } |
| 1108 | } |
| 1109 | |
| 1110 | if (Q->ne[1] > 8/ncols2) { |
| 1111 | constexpr int cols_per_block = 16; |
| 1112 | const int nwarps = ggml_cuda_fattn_tile_get_nthreads (DKQ, DV, ncols: cols_per_block, cc) / warp_size; |
| 1113 | const int nbatch_fa = ggml_cuda_fattn_tile_get_nbatch_fa(DKQ, DV, ncols: cols_per_block, cc); |
| 1114 | fattn_kernel_t fattn_kernel = flash_attn_tile<DKQ, DV, cols_per_block/ncols2, ncols2, use_logit_softcap>; |
| 1115 | launch_fattn<DV, cols_per_block/ncols2, ncols2> |
| 1116 | (ctx, dst, fattn_kernel, nwarps, nbytes_shared, nbatch_fa, true, true, false, warp_size); |
| 1117 | return; |
| 1118 | } |
| 1119 | |
| 1120 | if constexpr (ncols2 <= 8) { |
| 1121 | if (Q->ne[1] > 4/ncols2) { |
| 1122 | constexpr int cols_per_block = 8; |
| 1123 | const int nwarps = ggml_cuda_fattn_tile_get_nthreads (DKQ, DV, ncols: cols_per_block, cc) / warp_size; |
| 1124 | const int nbatch_fa = ggml_cuda_fattn_tile_get_nbatch_fa(DKQ, DV, ncols: cols_per_block, cc); |
| 1125 | fattn_kernel_t fattn_kernel = flash_attn_tile<DKQ, DV, cols_per_block/ncols2, ncols2, use_logit_softcap>; |
| 1126 | launch_fattn<DV, cols_per_block/ncols2, ncols2> |
| 1127 | (ctx, dst, fattn_kernel, nwarps, nbytes_shared, nbatch_fa, true, true, false, warp_size); |
| 1128 | return; |
| 1129 | } |
| 1130 | } |
| 1131 | |
| 1132 | if constexpr (ncols2 <= 4) { |
| 1133 | if (Q->ne[1] > 2/ncols2) { |
| 1134 | constexpr int cols_per_block = 4; |
| 1135 | const int nwarps = ggml_cuda_fattn_tile_get_nthreads (DKQ, DV, ncols: cols_per_block, cc) / warp_size; |
| 1136 | const int nbatch_fa = ggml_cuda_fattn_tile_get_nbatch_fa(DKQ, DV, ncols: cols_per_block, cc); |
| 1137 | fattn_kernel_t fattn_kernel = flash_attn_tile<DKQ, DV, cols_per_block/ncols2, ncols2, use_logit_softcap>; |
| 1138 | launch_fattn<DV, cols_per_block/ncols2, ncols2> |
| 1139 | (ctx, dst, fattn_kernel, nwarps, nbytes_shared, nbatch_fa, true, true, false, warp_size); |
| 1140 | return; |
| 1141 | } |
| 1142 | } |
| 1143 | |
| 1144 | if constexpr (ncols2 <= 2) { |
| 1145 | constexpr int cols_per_block = 2; |
| 1146 | const int nwarps = ggml_cuda_fattn_tile_get_nthreads (DKQ, DV, ncols: cols_per_block, cc) / warp_size; |
| 1147 | const int nbatch_fa = ggml_cuda_fattn_tile_get_nbatch_fa(DKQ, DV, ncols: cols_per_block, cc); |
| 1148 | fattn_kernel_t fattn_kernel = flash_attn_tile<DKQ, DV, cols_per_block/ncols2, ncols2, use_logit_softcap>; |
| 1149 | launch_fattn<DV, cols_per_block/ncols2, ncols2> |
| 1150 | (ctx, dst, fattn_kernel, nwarps, nbytes_shared, nbatch_fa, true, true, false, warp_size); |
| 1151 | return; |
| 1152 | } |
| 1153 | |
| 1154 | GGML_ABORT("fatal error" ); |
| 1155 | } |
| 1156 | |
| 1157 | template <int DKQ, int DV, bool use_logit_softcap> |
| 1158 | static void launch_fattn_tile_switch_ncols2(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { |
| 1159 | const ggml_tensor * KQV = dst; |
| 1160 | const ggml_tensor * Q = dst->src[0]; |
| 1161 | const ggml_tensor * K = dst->src[1]; |
| 1162 | const ggml_tensor * mask = dst->src[3]; |
| 1163 | |
| 1164 | float max_bias = 0.0f; |
| 1165 | memcpy(dest: &max_bias, src: (const float *) KQV->op_params + 1, n: sizeof(float)); |
| 1166 | |
| 1167 | GGML_ASSERT(Q->ne[2] % K->ne[2] == 0); |
| 1168 | const int gqa_ratio = Q->ne[2] / K->ne[2]; |
| 1169 | |
| 1170 | const bool nvidia = GGML_CUDA_CC_IS_NVIDIA(ggml_cuda_info().devices[ggml_cuda_get_device()].cc); |
| 1171 | const int gqa_limit = nvidia && gqa_ratio <= 4 ? 16 : INT_MAX; |
| 1172 | const bool use_gqa_opt = mask && max_bias == 0.0f && Q->ne[1] <= gqa_limit && K->ne[1] % FATTN_KQ_STRIDE == 0; |
| 1173 | |
| 1174 | if constexpr (DV == 512) { |
| 1175 | if (use_gqa_opt && gqa_ratio % 16 == 0) { |
| 1176 | launch_fattn_tile_switch_ncols1<DKQ, DV, 16, use_logit_softcap>(ctx, dst); |
| 1177 | return; |
| 1178 | } |
| 1179 | } |
| 1180 | |
| 1181 | if constexpr (DV <= 256) { |
| 1182 | if (use_gqa_opt && gqa_ratio % 8 == 0) { |
| 1183 | launch_fattn_tile_switch_ncols1<DKQ, DV, 8, use_logit_softcap>(ctx, dst); |
| 1184 | return; |
| 1185 | } |
| 1186 | |
| 1187 | if (use_gqa_opt && gqa_ratio % 4 == 0) { |
| 1188 | launch_fattn_tile_switch_ncols1<DKQ, DV, 4, use_logit_softcap>(ctx, dst); |
| 1189 | return; |
| 1190 | } |
| 1191 | |
| 1192 | if (use_gqa_opt && gqa_ratio % 2 == 0) { |
| 1193 | launch_fattn_tile_switch_ncols1<DKQ, DV, 2, use_logit_softcap>(ctx, dst); |
| 1194 | return; |
| 1195 | } |
| 1196 | |
| 1197 | launch_fattn_tile_switch_ncols1<DKQ, DV, 1, use_logit_softcap>(ctx, dst); |
| 1198 | return; |
| 1199 | } |
| 1200 | GGML_ABORT("fatal error" ); |
| 1201 | } |
| 1202 | |
| 1203 | template <int DKQ, int DV> |
| 1204 | void ggml_cuda_flash_attn_ext_tile_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { |
| 1205 | const ggml_tensor * KQV = dst; |
| 1206 | |
| 1207 | float logit_softcap; |
| 1208 | memcpy(dest: &logit_softcap, src: (const float *) KQV->op_params + 2, n: sizeof(float)); |
| 1209 | |
| 1210 | if (logit_softcap == 0.0f) { |
| 1211 | constexpr bool use_logit_softcap = false; |
| 1212 | launch_fattn_tile_switch_ncols2<DKQ, DV, use_logit_softcap>(ctx, dst); |
| 1213 | } else { |
| 1214 | constexpr bool use_logit_softcap = true; |
| 1215 | launch_fattn_tile_switch_ncols2<DKQ, DV, use_logit_softcap>(ctx, dst); |
| 1216 | } |
| 1217 | } |
| 1218 | |
| 1219 | void ggml_cuda_flash_attn_ext_tile(ggml_backend_cuda_context & ctx, ggml_tensor * dst); |
| 1220 | |
| 1221 | #define DECL_FATTN_TILE_CASE(DKQ, DV) \ |
| 1222 | template void ggml_cuda_flash_attn_ext_tile_case \ |
| 1223 | <DKQ, DV>(ggml_backend_cuda_context & ctx, ggml_tensor * dst) \ |
| 1224 | |
| 1225 | extern DECL_FATTN_TILE_CASE( 40, 40); |
| 1226 | extern DECL_FATTN_TILE_CASE( 64, 64); |
| 1227 | extern DECL_FATTN_TILE_CASE( 72, 72); |
| 1228 | extern DECL_FATTN_TILE_CASE( 80, 80); |
| 1229 | extern DECL_FATTN_TILE_CASE( 96, 96); |
| 1230 | extern DECL_FATTN_TILE_CASE(112, 112); |
| 1231 | extern DECL_FATTN_TILE_CASE(128, 128); |
| 1232 | extern DECL_FATTN_TILE_CASE(256, 256); |
| 1233 | extern DECL_FATTN_TILE_CASE(576, 512); |
| 1234 | |