| 1 | /* $Id$ $Revision$ */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | |
| 15 | #include "config.h" |
| 16 | |
| 17 | #include "neato.h" |
| 18 | #include "stress.h" |
| 19 | #include <time.h> |
| 20 | #ifndef _WIN32 |
| 21 | #include <unistd.h> |
| 22 | #endif |
| 23 | |
| 24 | static double Epsilon2; |
| 25 | |
| 26 | |
| 27 | double fpow32(double x) |
| 28 | { |
| 29 | x = sqrt(x); |
| 30 | return x * x * x; |
| 31 | } |
| 32 | |
| 33 | double distvec(double *p0, double *p1, double *vec) |
| 34 | { |
| 35 | int k; |
| 36 | double dist = 0.0; |
| 37 | |
| 38 | for (k = 0; k < Ndim; k++) { |
| 39 | vec[k] = p0[k] - p1[k]; |
| 40 | dist += (vec[k] * vec[k]); |
| 41 | } |
| 42 | dist = sqrt(dist); |
| 43 | return dist; |
| 44 | } |
| 45 | |
| 46 | double **new_array(int m, int n, double ival) |
| 47 | { |
| 48 | double **rv; |
| 49 | double *mem; |
| 50 | int i, j; |
| 51 | |
| 52 | rv = N_NEW(m, double *); |
| 53 | mem = N_NEW(m * n, double); |
| 54 | for (i = 0; i < m; i++) { |
| 55 | rv[i] = mem; |
| 56 | mem = mem + n; |
| 57 | for (j = 0; j < n; j++) |
| 58 | rv[i][j] = ival; |
| 59 | } |
| 60 | return rv; |
| 61 | } |
| 62 | |
| 63 | void free_array(double **rv) |
| 64 | { |
| 65 | if (rv) { |
| 66 | free(rv[0]); |
| 67 | free(rv); |
| 68 | } |
| 69 | } |
| 70 | |
| 71 | |
| 72 | static double ***new_3array(int m, int n, int p, double ival) |
| 73 | { |
| 74 | double ***rv; |
| 75 | int i, j, k; |
| 76 | |
| 77 | rv = N_NEW(m + 1, double **); |
| 78 | for (i = 0; i < m; i++) { |
| 79 | rv[i] = N_NEW(n + 1, double *); |
| 80 | for (j = 0; j < n; j++) { |
| 81 | rv[i][j] = N_NEW(p, double); |
| 82 | for (k = 0; k < p; k++) |
| 83 | rv[i][j][k] = ival; |
| 84 | } |
| 85 | rv[i][j] = NULL; /* NULL terminate so we can clean up */ |
| 86 | } |
| 87 | rv[i] = NULL; |
| 88 | return rv; |
| 89 | } |
| 90 | |
| 91 | static void free_3array(double ***rv) |
| 92 | { |
| 93 | int i, j; |
| 94 | |
| 95 | if (rv) { |
| 96 | for (i = 0; rv[i]; i++) { |
| 97 | for (j = 0; rv[i][j]; j++) |
| 98 | free(rv[i][j]); |
| 99 | free(rv[i]); |
| 100 | } |
| 101 | free(rv); |
| 102 | } |
| 103 | } |
| 104 | |
| 105 | |
| 106 | /* lenattr: |
| 107 | * Return 1 if attribute not defined |
| 108 | * Return 2 if attribute string bad |
| 109 | */ |
| 110 | static int lenattr(edge_t* e, Agsym_t* index, double* val) |
| 111 | { |
| 112 | char* s; |
| 113 | |
| 114 | if (index == NULL) |
| 115 | return 1; |
| 116 | |
| 117 | s = agxget(e, index); |
| 118 | if (*s == '\0') return 1; |
| 119 | |
| 120 | if ((sscanf(s, "%lf" , val) < 1) || (*val < 0) || ((*val == 0) && !Nop)) { |
| 121 | agerr(AGWARN, "bad edge len \"%s\"" , s); |
| 122 | return 2; |
| 123 | } |
| 124 | else |
| 125 | return 0; |
| 126 | } |
| 127 | |
| 128 | |
| 129 | /* degreeKind; |
| 130 | * Returns degree of n ignoring loops and multiedges. |
| 131 | * Returns 0, 1 or many (2) |
| 132 | * For case of 1, returns other endpoint of edge. |
| 133 | */ |
| 134 | static int degreeKind(graph_t * g, node_t * n, node_t ** op) |
| 135 | { |
| 136 | edge_t *ep; |
| 137 | int deg = 0; |
| 138 | node_t *other = NULL; |
| 139 | |
| 140 | for (ep = agfstedge(g, n); ep; ep = agnxtedge(g, ep, n)) { |
| 141 | if (aghead(ep) == agtail(ep)) |
| 142 | continue; /* ignore loops */ |
| 143 | if (deg == 1) { |
| 144 | if (((agtail(ep) == n) && (aghead(ep) == other)) || /* ignore multiedge */ |
| 145 | ((agtail(ep) == other) && (aghead(ep) == n))) |
| 146 | continue; |
| 147 | return 2; |
| 148 | } else { /* deg == 0 */ |
| 149 | if (agtail(ep) == n) |
| 150 | other = aghead(ep); |
| 151 | else |
| 152 | other = agtail(ep); |
| 153 | *op = other; |
| 154 | deg++; |
| 155 | } |
| 156 | } |
| 157 | return deg; |
| 158 | } |
| 159 | |
| 160 | |
| 161 | /* prune: |
| 162 | * np is at end of a chain. If its degree is 0, remove it. |
| 163 | * If its degree is 1, remove it and recurse. |
| 164 | * If its degree > 1, stop. |
| 165 | * The node next is the next node to be visited during iteration. |
| 166 | * If it is equal to a node being deleted, set it to next one. |
| 167 | * Delete from root graph, since G may be a connected component subgraph. |
| 168 | * Return next. |
| 169 | */ |
| 170 | static node_t *prune(graph_t * G, node_t * np, node_t * next) |
| 171 | { |
| 172 | node_t *other; |
| 173 | int deg; |
| 174 | |
| 175 | while (np) { |
| 176 | deg = degreeKind(G, np, &other); |
| 177 | if (deg == 0) { |
| 178 | if (next == np) |
| 179 | next = agnxtnode(G, np); |
| 180 | agdelete(G->root, np); |
| 181 | np = 0; |
| 182 | } else if (deg == 1) { |
| 183 | if (next == np) |
| 184 | next = agnxtnode(G, np); |
| 185 | agdelete(G->root, np); |
| 186 | np = other; |
| 187 | } else |
| 188 | np = 0; |
| 189 | |
| 190 | } |
| 191 | return next; |
| 192 | } |
| 193 | |
| 194 | static double setEdgeLen(graph_t * G, node_t * np, Agsym_t* lenx, double dfltlen) |
| 195 | { |
| 196 | edge_t *ep; |
| 197 | double total_len = 0.0; |
| 198 | double len; |
| 199 | int err; |
| 200 | |
| 201 | for (ep = agfstout(G, np); ep; ep = agnxtout(G, ep)) { |
| 202 | if ((err = lenattr(ep, lenx, &len))) { |
| 203 | if (err == 2) agerr(AGPREV, " in %s - setting to %.02f\n" , agnameof(G), dfltlen); |
| 204 | len = dfltlen; |
| 205 | } |
| 206 | ED_dist(ep) = len; |
| 207 | total_len += len; |
| 208 | } |
| 209 | return total_len; |
| 210 | } |
| 211 | |
| 212 | /* scan_graph_mode: |
| 213 | * Prepare the graph and data structures depending on the layout mode. |
| 214 | * If Reduce is true, eliminate singletons and trees. Since G may be a |
| 215 | * subgraph, we remove the nodes from the root graph. |
| 216 | * Return the number of nodes in the reduced graph. |
| 217 | */ |
| 218 | int scan_graph_mode(graph_t * G, int mode) |
| 219 | { |
| 220 | int i, nV, nE, deg; |
| 221 | char *str; |
| 222 | node_t *np, *xp, *other; |
| 223 | double total_len = 0.0; |
| 224 | double dfltlen = 1.0; |
| 225 | Agsym_t* lenx; |
| 226 | |
| 227 | if (Verbose) |
| 228 | fprintf(stderr, "Scanning graph %s, %d nodes\n" , agnameof(G), |
| 229 | agnnodes(G)); |
| 230 | |
| 231 | |
| 232 | /* Eliminate singletons and trees */ |
| 233 | if (Reduce) { |
| 234 | for (np = agfstnode(G); np; np = xp) { |
| 235 | xp = agnxtnode(G, np); |
| 236 | deg = degreeKind(G, np, &other); |
| 237 | if (deg == 0) { /* singleton node */ |
| 238 | agdelete(G->root, np); |
| 239 | } else if (deg == 1) { |
| 240 | agdelete(G->root, np); |
| 241 | xp = prune(G, other, xp); |
| 242 | } |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | nV = agnnodes(G); |
| 247 | nE = agnedges(G); |
| 248 | |
| 249 | lenx = agattr(G, AGEDGE, "len" , 0); |
| 250 | if (mode == MODE_KK) { |
| 251 | Epsilon = .0001 * nV; |
| 252 | getdouble(G, "epsilon" , &Epsilon); |
| 253 | if ((str = agget(G->root, "Damping" ))) |
| 254 | Damping = atof(str); |
| 255 | else |
| 256 | Damping = .99; |
| 257 | GD_neato_nlist(G) = N_NEW(nV + 1, node_t *); |
| 258 | for (i = 0, np = agfstnode(G); np; np = agnxtnode(G, np)) { |
| 259 | GD_neato_nlist(G)[i] = np; |
| 260 | ND_id(np) = i++; |
| 261 | ND_heapindex(np) = -1; |
| 262 | total_len += setEdgeLen(G, np, lenx, dfltlen); |
| 263 | } |
| 264 | } else { |
| 265 | Epsilon = DFLT_TOLERANCE; |
| 266 | getdouble(G, "epsilon" , &Epsilon); |
| 267 | for (i = 0, np = agfstnode(G); np; np = agnxtnode(G, np)) { |
| 268 | ND_id(np) = i++; |
| 269 | total_len += setEdgeLen(G, np, lenx, dfltlen); |
| 270 | } |
| 271 | } |
| 272 | |
| 273 | str = agget(G, "defaultdist" ); |
| 274 | if (str && str[0]) |
| 275 | Initial_dist = MAX(Epsilon, atof(str)); |
| 276 | else |
| 277 | Initial_dist = total_len / (nE > 0 ? nE : 1) * sqrt(nV) + 1; |
| 278 | |
| 279 | if (!Nop && (mode == MODE_KK)) { |
| 280 | GD_dist(G) = new_array(nV, nV, Initial_dist); |
| 281 | GD_spring(G) = new_array(nV, nV, 1.0); |
| 282 | GD_sum_t(G) = new_array(nV, Ndim, 1.0); |
| 283 | GD_t(G) = new_3array(nV, nV, Ndim, 0.0); |
| 284 | } |
| 285 | |
| 286 | return nV; |
| 287 | } |
| 288 | |
| 289 | int scan_graph(graph_t * g) |
| 290 | { |
| 291 | return scan_graph_mode(g, MODE_KK); |
| 292 | } |
| 293 | |
| 294 | void free_scan_graph(graph_t * g) |
| 295 | { |
| 296 | free(GD_neato_nlist(g)); |
| 297 | if (!Nop) { |
| 298 | free_array(GD_dist(g)); |
| 299 | free_array(GD_spring(g)); |
| 300 | free_array(GD_sum_t(g)); |
| 301 | free_3array(GD_t(g)); |
| 302 | GD_t(g) = NULL; |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | void jitter_d(node_t * np, int nG, int n) |
| 307 | { |
| 308 | int k; |
| 309 | for (k = n; k < Ndim; k++) |
| 310 | ND_pos(np)[k] = nG * drand48(); |
| 311 | } |
| 312 | |
| 313 | void jitter3d(node_t * np, int nG) |
| 314 | { |
| 315 | jitter_d(np, nG, 2); |
| 316 | } |
| 317 | |
| 318 | void randompos(node_t * np, int nG) |
| 319 | { |
| 320 | ND_pos(np)[0] = nG * drand48(); |
| 321 | ND_pos(np)[1] = nG * drand48(); |
| 322 | if (Ndim > 2) |
| 323 | jitter3d(np, nG); |
| 324 | } |
| 325 | |
| 326 | void initial_positions(graph_t * G, int nG) |
| 327 | { |
| 328 | int init, i; |
| 329 | node_t *np; |
| 330 | static int once = 0; |
| 331 | |
| 332 | if (Verbose) |
| 333 | fprintf(stderr, "Setting initial positions\n" ); |
| 334 | |
| 335 | init = checkStart(G, nG, INIT_RANDOM); |
| 336 | if (init == INIT_REGULAR) |
| 337 | return; |
| 338 | if ((init == INIT_SELF) && (once == 0)) { |
| 339 | agerr(AGWARN, "start=%s not supported with mode=self - ignored\n" ); |
| 340 | once = 1; |
| 341 | } |
| 342 | |
| 343 | for (i = 0; (np = GD_neato_nlist(G)[i]); i++) { |
| 344 | if (hasPos(np)) |
| 345 | continue; |
| 346 | randompos(np, 1); |
| 347 | } |
| 348 | } |
| 349 | |
| 350 | void diffeq_model(graph_t * G, int nG) |
| 351 | { |
| 352 | int i, j, k; |
| 353 | double dist, **D, **K, del[MAXDIM], f; |
| 354 | node_t *vi, *vj; |
| 355 | edge_t *e; |
| 356 | |
| 357 | if (Verbose) { |
| 358 | fprintf(stderr, "Setting up spring model: " ); |
| 359 | start_timer(); |
| 360 | } |
| 361 | /* init springs */ |
| 362 | K = GD_spring(G); |
| 363 | D = GD_dist(G); |
| 364 | for (i = 0; i < nG; i++) { |
| 365 | for (j = 0; j < i; j++) { |
| 366 | f = Spring_coeff / (D[i][j] * D[i][j]); |
| 367 | if ((e = agfindedge(G, GD_neato_nlist(G)[i], GD_neato_nlist(G)[j]))) |
| 368 | f = f * ED_factor(e); |
| 369 | K[i][j] = K[j][i] = f; |
| 370 | } |
| 371 | } |
| 372 | |
| 373 | /* init differential equation solver */ |
| 374 | for (i = 0; i < nG; i++) |
| 375 | for (k = 0; k < Ndim; k++) |
| 376 | GD_sum_t(G)[i][k] = 0.0; |
| 377 | |
| 378 | for (i = 0; (vi = GD_neato_nlist(G)[i]); i++) { |
| 379 | for (j = 0; j < nG; j++) { |
| 380 | if (i == j) |
| 381 | continue; |
| 382 | vj = GD_neato_nlist(G)[j]; |
| 383 | dist = distvec(ND_pos(vi), ND_pos(vj), del); |
| 384 | for (k = 0; k < Ndim; k++) { |
| 385 | GD_t(G)[i][j][k] = |
| 386 | GD_spring(G)[i][j] * (del[k] - |
| 387 | GD_dist(G)[i][j] * del[k] / |
| 388 | dist); |
| 389 | GD_sum_t(G)[i][k] += GD_t(G)[i][j][k]; |
| 390 | } |
| 391 | } |
| 392 | } |
| 393 | if (Verbose) { |
| 394 | fprintf(stderr, "%.2f sec\n" , elapsed_sec()); |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | /* total_e: |
| 399 | * Return 2*energy of system. |
| 400 | */ |
| 401 | static double total_e(graph_t * G, int nG) |
| 402 | { |
| 403 | int i, j, d; |
| 404 | double e = 0.0; /* 2*energy */ |
| 405 | double t0; /* distance squared */ |
| 406 | double t1; |
| 407 | node_t *ip, *jp; |
| 408 | |
| 409 | for (i = 0; i < nG - 1; i++) { |
| 410 | ip = GD_neato_nlist(G)[i]; |
| 411 | for (j = i + 1; j < nG; j++) { |
| 412 | jp = GD_neato_nlist(G)[j]; |
| 413 | for (t0 = 0.0, d = 0; d < Ndim; d++) { |
| 414 | t1 = (ND_pos(ip)[d] - ND_pos(jp)[d]); |
| 415 | t0 += t1 * t1; |
| 416 | } |
| 417 | e = e + GD_spring(G)[i][j] * |
| 418 | (t0 + GD_dist(G)[i][j] * GD_dist(G)[i][j] |
| 419 | - 2.0 * GD_dist(G)[i][j] * sqrt(t0)); |
| 420 | } |
| 421 | } |
| 422 | return e; |
| 423 | } |
| 424 | |
| 425 | void solve_model(graph_t * G, int nG) |
| 426 | { |
| 427 | node_t *np; |
| 428 | |
| 429 | Epsilon2 = Epsilon * Epsilon; |
| 430 | |
| 431 | while ((np = choose_node(G, nG))) { |
| 432 | move_node(G, nG, np); |
| 433 | } |
| 434 | if (Verbose) { |
| 435 | fprintf(stderr, "\nfinal e = %f" , total_e(G, nG)); |
| 436 | fprintf(stderr, " %d%s iterations %.2f sec\n" , |
| 437 | GD_move(G), (GD_move(G) == MaxIter ? "!" : "" ), |
| 438 | elapsed_sec()); |
| 439 | } |
| 440 | if (GD_move(G) == MaxIter) |
| 441 | agerr(AGWARN, "Max. iterations (%d) reached on graph %s\n" , |
| 442 | MaxIter, agnameof(G)); |
| 443 | } |
| 444 | |
| 445 | void update_arrays(graph_t * G, int nG, int i) |
| 446 | { |
| 447 | int j, k; |
| 448 | double del[MAXDIM], dist, old; |
| 449 | node_t *vi, *vj; |
| 450 | |
| 451 | vi = GD_neato_nlist(G)[i]; |
| 452 | for (k = 0; k < Ndim; k++) |
| 453 | GD_sum_t(G)[i][k] = 0.0; |
| 454 | for (j = 0; j < nG; j++) { |
| 455 | if (i == j) |
| 456 | continue; |
| 457 | vj = GD_neato_nlist(G)[j]; |
| 458 | dist = distvec(ND_pos(vi), ND_pos(vj), del); |
| 459 | for (k = 0; k < Ndim; k++) { |
| 460 | old = GD_t(G)[i][j][k]; |
| 461 | GD_t(G)[i][j][k] = |
| 462 | GD_spring(G)[i][j] * (del[k] - |
| 463 | GD_dist(G)[i][j] * del[k] / dist); |
| 464 | GD_sum_t(G)[i][k] += GD_t(G)[i][j][k]; |
| 465 | old = GD_t(G)[j][i][k]; |
| 466 | GD_t(G)[j][i][k] = -GD_t(G)[i][j][k]; |
| 467 | GD_sum_t(G)[j][k] += (GD_t(G)[j][i][k] - old); |
| 468 | } |
| 469 | } |
| 470 | } |
| 471 | |
| 472 | #define Msub(i,j) M[(i)*Ndim+(j)] |
| 473 | void D2E(graph_t * G, int nG, int n, double *M) |
| 474 | { |
| 475 | int i, l, k; |
| 476 | node_t *vi, *vn; |
| 477 | double scale, sq, t[MAXDIM]; |
| 478 | double **K = GD_spring(G); |
| 479 | double **D = GD_dist(G); |
| 480 | |
| 481 | vn = GD_neato_nlist(G)[n]; |
| 482 | for (l = 0; l < Ndim; l++) |
| 483 | for (k = 0; k < Ndim; k++) |
| 484 | Msub(l, k) = 0.0; |
| 485 | for (i = 0; i < nG; i++) { |
| 486 | if (n == i) |
| 487 | continue; |
| 488 | vi = GD_neato_nlist(G)[i]; |
| 489 | sq = 0.0; |
| 490 | for (k = 0; k < Ndim; k++) { |
| 491 | t[k] = ND_pos(vn)[k] - ND_pos(vi)[k]; |
| 492 | sq += (t[k] * t[k]); |
| 493 | } |
| 494 | scale = 1 / fpow32(sq); |
| 495 | for (k = 0; k < Ndim; k++) { |
| 496 | for (l = 0; l < k; l++) |
| 497 | Msub(l, k) += K[n][i] * D[n][i] * t[k] * t[l] * scale; |
| 498 | Msub(k, k) += |
| 499 | K[n][i] * (1.0 - D[n][i] * (sq - (t[k] * t[k])) * scale); |
| 500 | } |
| 501 | } |
| 502 | for (k = 1; k < Ndim; k++) |
| 503 | for (l = 0; l < k; l++) |
| 504 | Msub(k, l) = Msub(l, k); |
| 505 | } |
| 506 | |
| 507 | void final_energy(graph_t * G, int nG) |
| 508 | { |
| 509 | fprintf(stderr, "iterations = %d final e = %f\n" , GD_move(G), |
| 510 | total_e(G, nG)); |
| 511 | } |
| 512 | |
| 513 | node_t *choose_node(graph_t * G, int nG) |
| 514 | { |
| 515 | int i, k; |
| 516 | double m, max; |
| 517 | node_t *choice, *np; |
| 518 | static int cnt = 0; |
| 519 | #if 0 |
| 520 | double e; |
| 521 | static double save_e = MAXDOUBLE; |
| 522 | #endif |
| 523 | |
| 524 | cnt++; |
| 525 | if (GD_move(G) >= MaxIter) |
| 526 | return NULL; |
| 527 | #if 0 |
| 528 | if ((cnt % 100) == 0) { |
| 529 | e = total_e(G, nG); |
| 530 | if (e - save_e > 0) |
| 531 | return NULL; |
| 532 | save_e = e; |
| 533 | } |
| 534 | #endif |
| 535 | max = 0.0; |
| 536 | choice = NULL; |
| 537 | for (i = 0; i < nG; i++) { |
| 538 | np = GD_neato_nlist(G)[i]; |
| 539 | if (ND_pinned(np) > P_SET) |
| 540 | continue; |
| 541 | for (m = 0.0, k = 0; k < Ndim; k++) |
| 542 | m += (GD_sum_t(G)[i][k] * GD_sum_t(G)[i][k]); |
| 543 | /* could set the color=energy of the node here */ |
| 544 | if (m > max) { |
| 545 | choice = np; |
| 546 | max = m; |
| 547 | } |
| 548 | } |
| 549 | if (max < Epsilon2) |
| 550 | choice = NULL; |
| 551 | else { |
| 552 | if (Verbose && (cnt % 100 == 0)) { |
| 553 | fprintf(stderr, "%.3f " , sqrt(max)); |
| 554 | if (cnt % 1000 == 0) |
| 555 | fprintf(stderr, "\n" ); |
| 556 | } |
| 557 | #if 0 |
| 558 | e = total_e(G, nG); |
| 559 | if (fabs((e - save_e) / save_e) < 1e-5) { |
| 560 | choice = NULL; |
| 561 | } |
| 562 | #endif |
| 563 | } |
| 564 | return choice; |
| 565 | } |
| 566 | |
| 567 | void move_node(graph_t * G, int nG, node_t * n) |
| 568 | { |
| 569 | int i, m; |
| 570 | static double *a, b[MAXDIM], c[MAXDIM]; |
| 571 | |
| 572 | m = ND_id(n); |
| 573 | a = ALLOC(Ndim * Ndim, a, double); |
| 574 | D2E(G, nG, m, a); |
| 575 | for (i = 0; i < Ndim; i++) |
| 576 | c[i] = -GD_sum_t(G)[m][i]; |
| 577 | solve(a, b, c, Ndim); |
| 578 | for (i = 0; i < Ndim; i++) { |
| 579 | b[i] = (Damping + 2 * (1 - Damping) * drand48()) * b[i]; |
| 580 | ND_pos(n)[i] += b[i]; |
| 581 | } |
| 582 | GD_move(G)++; |
| 583 | update_arrays(G, nG, m); |
| 584 | if (test_toggle()) { |
| 585 | double sum = 0; |
| 586 | for (i = 0; i < Ndim; i++) { |
| 587 | sum += fabs(b[i]); |
| 588 | } /* Why not squared? */ |
| 589 | sum = sqrt(sum); |
| 590 | fprintf(stderr, "%s %.3f\n" , agnameof(n), sum); |
| 591 | } |
| 592 | } |
| 593 | |
| 594 | static node_t **Heap; |
| 595 | static int Heapsize; |
| 596 | static node_t *Src; |
| 597 | |
| 598 | void heapup(node_t * v) |
| 599 | { |
| 600 | int i, par; |
| 601 | node_t *u; |
| 602 | |
| 603 | for (i = ND_heapindex(v); i > 0; i = par) { |
| 604 | par = (i - 1) / 2; |
| 605 | u = Heap[par]; |
| 606 | if (ND_dist(u) <= ND_dist(v)) |
| 607 | break; |
| 608 | Heap[par] = v; |
| 609 | ND_heapindex(v) = par; |
| 610 | Heap[i] = u; |
| 611 | ND_heapindex(u) = i; |
| 612 | } |
| 613 | } |
| 614 | |
| 615 | void heapdown(node_t * v) |
| 616 | { |
| 617 | int i, left, right, c; |
| 618 | node_t *u; |
| 619 | |
| 620 | i = ND_heapindex(v); |
| 621 | while ((left = 2 * i + 1) < Heapsize) { |
| 622 | right = left + 1; |
| 623 | if ((right < Heapsize) |
| 624 | && (ND_dist(Heap[right]) < ND_dist(Heap[left]))) |
| 625 | c = right; |
| 626 | else |
| 627 | c = left; |
| 628 | u = Heap[c]; |
| 629 | if (ND_dist(v) <= ND_dist(u)) |
| 630 | break; |
| 631 | Heap[c] = v; |
| 632 | ND_heapindex(v) = c; |
| 633 | Heap[i] = u; |
| 634 | ND_heapindex(u) = i; |
| 635 | i = c; |
| 636 | } |
| 637 | } |
| 638 | |
| 639 | void neato_enqueue(node_t * v) |
| 640 | { |
| 641 | int i; |
| 642 | |
| 643 | assert(ND_heapindex(v) < 0); |
| 644 | i = Heapsize++; |
| 645 | ND_heapindex(v) = i; |
| 646 | Heap[i] = v; |
| 647 | if (i > 0) |
| 648 | heapup(v); |
| 649 | } |
| 650 | |
| 651 | node_t *neato_dequeue(void) |
| 652 | { |
| 653 | int i; |
| 654 | node_t *rv, *v; |
| 655 | |
| 656 | if (Heapsize == 0) |
| 657 | return NULL; |
| 658 | rv = Heap[0]; |
| 659 | i = --Heapsize; |
| 660 | v = Heap[i]; |
| 661 | Heap[0] = v; |
| 662 | ND_heapindex(v) = 0; |
| 663 | if (i > 1) |
| 664 | heapdown(v); |
| 665 | ND_heapindex(rv) = -1; |
| 666 | return rv; |
| 667 | } |
| 668 | |
| 669 | void shortest_path(graph_t * G, int nG) |
| 670 | { |
| 671 | node_t *v; |
| 672 | |
| 673 | Heap = N_NEW(nG + 1, node_t *); |
| 674 | if (Verbose) { |
| 675 | fprintf(stderr, "Calculating shortest paths: " ); |
| 676 | start_timer(); |
| 677 | } |
| 678 | for (v = agfstnode(G); v; v = agnxtnode(G, v)) |
| 679 | s1(G, v); |
| 680 | if (Verbose) { |
| 681 | fprintf(stderr, "%.2f sec\n" , elapsed_sec()); |
| 682 | } |
| 683 | free(Heap); |
| 684 | } |
| 685 | |
| 686 | void s1(graph_t * G, node_t * node) |
| 687 | { |
| 688 | node_t *v, *u; |
| 689 | edge_t *e; |
| 690 | int t; |
| 691 | double f; |
| 692 | |
| 693 | for (t = 0; (v = GD_neato_nlist(G)[t]); t++) |
| 694 | ND_dist(v) = Initial_dist; |
| 695 | Src = node; |
| 696 | ND_dist(Src) = 0; |
| 697 | ND_hops(Src) = 0; |
| 698 | neato_enqueue(Src); |
| 699 | |
| 700 | while ((v = neato_dequeue())) { |
| 701 | if (v != Src) |
| 702 | make_spring(G, Src, v, ND_dist(v)); |
| 703 | for (e = agfstedge(G, v); e; e = agnxtedge(G, e, v)) { |
| 704 | if ((u = agtail(e)) == v) |
| 705 | u = aghead(e); |
| 706 | f = ND_dist(v) + ED_dist(e); |
| 707 | if (ND_dist(u) > f) { |
| 708 | ND_dist(u) = f; |
| 709 | if (ND_heapindex(u) >= 0) |
| 710 | heapup(u); |
| 711 | else { |
| 712 | ND_hops(u) = ND_hops(v) + 1; |
| 713 | neato_enqueue(u); |
| 714 | } |
| 715 | } |
| 716 | } |
| 717 | } |
| 718 | } |
| 719 | |
| 720 | void make_spring(graph_t * G, node_t * u, node_t * v, double f) |
| 721 | { |
| 722 | int i, j; |
| 723 | |
| 724 | i = ND_id(u); |
| 725 | j = ND_id(v); |
| 726 | GD_dist(G)[i][j] = GD_dist(G)[j][i] = f; |
| 727 | } |
| 728 | |