| 1 | /* $Id$ $Revision$ */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | #include "digcola.h" |
| 15 | #ifdef DIGCOLA |
| 16 | #include <math.h> |
| 17 | #include <stdlib.h> |
| 18 | #include <time.h> |
| 19 | #include <stdio.h> |
| 20 | #include <float.h> |
| 21 | #include <assert.h> |
| 22 | #include "matrix_ops.h" |
| 23 | #include "kkutils.h" |
| 24 | #include "quad_prog_solver.h" |
| 25 | |
| 26 | #define quad_prog_tol 1e-2 |
| 27 | |
| 28 | float **unpackMatrix(float *packedMat, int n) |
| 29 | { |
| 30 | float **mat; |
| 31 | int i, j, k; |
| 32 | |
| 33 | mat = N_GNEW(n, float *); |
| 34 | mat[0] = N_GNEW(n * n, float); |
| 35 | set_vector_valf(n * n, 0, mat[0]); |
| 36 | for (i = 1; i < n; i++) { |
| 37 | mat[i] = mat[0] + i * n; |
| 38 | } |
| 39 | |
| 40 | for (i = 0, k = 0; i < n; i++) { |
| 41 | for (j = i; j < n; j++, k++) { |
| 42 | mat[j][i] = mat[i][j] = packedMat[k]; |
| 43 | } |
| 44 | } |
| 45 | return mat; |
| 46 | } |
| 47 | |
| 48 | static void ensureMonotonicOrdering(float *place, int n, int *ordering) |
| 49 | { |
| 50 | /* ensure that 'ordering' is monotonically increasing by 'place', */ |
| 51 | /* this also implies that levels are separated in the initial layout */ |
| 52 | int i, node; |
| 53 | float lower_bound = place[ordering[0]]; |
| 54 | for (i = 1; i < n; i++) { |
| 55 | node = ordering[i]; |
| 56 | if (place[node] < lower_bound) { |
| 57 | place[node] = lower_bound; |
| 58 | } |
| 59 | lower_bound = place[node]; |
| 60 | } |
| 61 | } |
| 62 | |
| 63 | static void |
| 64 | ensureMonotonicOrderingWithGaps(float *place, int n, int *ordering, |
| 65 | int *levels, int num_levels, |
| 66 | float levels_gap) |
| 67 | { |
| 68 | /* ensure that levels are separated in the initial layout and that |
| 69 | * places are monotonic increasing within layer |
| 70 | */ |
| 71 | |
| 72 | int i; |
| 73 | int node, level, max_in_level; |
| 74 | float lower_bound = (float) -1e9; |
| 75 | |
| 76 | level = -1; |
| 77 | max_in_level = 0; |
| 78 | for (i = 0; i < n; i++) { |
| 79 | if (i >= max_in_level) { |
| 80 | /* we are entering a new level */ |
| 81 | level++; |
| 82 | if (level == num_levels) { |
| 83 | /* last_level */ |
| 84 | max_in_level = n; |
| 85 | } else { |
| 86 | max_in_level = levels[level]; |
| 87 | } |
| 88 | lower_bound = |
| 89 | i > 0 ? place[ordering[i - 1]] + levels_gap : (float) -1e9; |
| 90 | quicksort_placef(place, ordering, i, max_in_level - 1); |
| 91 | } |
| 92 | |
| 93 | node = ordering[i]; |
| 94 | if (place[node] < lower_bound) { |
| 95 | place[node] = lower_bound; |
| 96 | } |
| 97 | } |
| 98 | } |
| 99 | |
| 100 | static void |
| 101 | computeHierarchyBoundaries(float *place, int n, int *ordering, int *levels, |
| 102 | int num_levels, float *hierarchy_boundaries) |
| 103 | { |
| 104 | int i; |
| 105 | for (i = 0; i < num_levels; i++) { |
| 106 | hierarchy_boundaries[i] = place[ordering[levels[i] - 1]]; |
| 107 | } |
| 108 | } |
| 109 | |
| 110 | |
| 111 | int |
| 112 | constrained_majorization_new(CMajEnv * e, float *b, float **coords, |
| 113 | int cur_axis, int dims, int max_iterations, |
| 114 | float *hierarchy_boundaries, float levels_gap) |
| 115 | { |
| 116 | int n = e->n; |
| 117 | float *place = coords[cur_axis]; |
| 118 | float **lap = e->A; |
| 119 | int *ordering = e->ordering; |
| 120 | int *levels = e->levels; |
| 121 | int num_levels = e->num_levels; |
| 122 | int i, j; |
| 123 | float new_place_i; |
| 124 | boolean converged = FALSE; |
| 125 | float upper_bound, lower_bound; |
| 126 | int node; |
| 127 | int left, right; |
| 128 | float cur_place; |
| 129 | float des_place_block; |
| 130 | float block_deg; |
| 131 | float toBlockConnectivity; |
| 132 | float *lap_node; |
| 133 | int block_len; |
| 134 | int first_next_level; |
| 135 | int level = -1, max_in_level = 0; |
| 136 | float *desired_place; |
| 137 | float *prefix_desired_place; |
| 138 | float *suffix_desired_place; |
| 139 | int *block; |
| 140 | int *lev; |
| 141 | int counter; |
| 142 | |
| 143 | if (max_iterations <= 0) { |
| 144 | return 0; |
| 145 | } |
| 146 | if (levels_gap != 0) { |
| 147 | return constrained_majorization_new_with_gaps(e, b, coords, |
| 148 | cur_axis, dims, |
| 149 | max_iterations, |
| 150 | hierarchy_boundaries, |
| 151 | levels_gap); |
| 152 | } |
| 153 | |
| 154 | /* ensureMonotonicOrderingWithGaps(place, n, ordering, levels, num_levels); */ |
| 155 | ensureMonotonicOrdering(place, n, ordering); |
| 156 | /* it is important that in 'ordering' nodes are always sorted by layers, |
| 157 | * and within a layer by 'place' |
| 158 | */ |
| 159 | |
| 160 | /* the desired place of each individual node in the current block */ |
| 161 | desired_place = e->fArray1; |
| 162 | /* the desired place of each prefix of current block */ |
| 163 | prefix_desired_place = e->fArray2; |
| 164 | /* the desired place of each suffix of current block */ |
| 165 | suffix_desired_place = e->fArray3; |
| 166 | /* current block (nodes connected by active constraints) */ |
| 167 | block = e->iArray1; |
| 168 | |
| 169 | lev = e->iArray2; /* level of each node */ |
| 170 | for (i = 0; i < n; i++) { |
| 171 | if (i >= max_in_level) { |
| 172 | /* we are entering a new level */ |
| 173 | level++; |
| 174 | if (level == num_levels) { |
| 175 | /* last_level */ |
| 176 | max_in_level = n; |
| 177 | } else { |
| 178 | max_in_level = levels[level]; |
| 179 | } |
| 180 | } |
| 181 | node = ordering[i]; |
| 182 | lev[node] = level; |
| 183 | } |
| 184 | |
| 185 | for (counter = 0; counter < max_iterations && !converged; counter++) { |
| 186 | converged = TRUE; |
| 187 | lower_bound = -1e9; /* no lower bound for first level */ |
| 188 | for (left = 0; left < n; left = right) { |
| 189 | int best_i; |
| 190 | double max_movement; |
| 191 | double movement; |
| 192 | float prefix_des_place, suffix_des_place; |
| 193 | /* compute a block 'ordering[left]...ordering[right-1]' of |
| 194 | * nodes with the same coordinate: |
| 195 | */ |
| 196 | cur_place = place[ordering[left]]; |
| 197 | for (right = left + 1; right < n; right++) { |
| 198 | if (place[ordering[right]] != cur_place) { |
| 199 | break; |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | /* compute desired place of nodes in block: */ |
| 204 | for (i = left; i < right; i++) { |
| 205 | node = ordering[i]; |
| 206 | new_place_i = -b[node]; |
| 207 | lap_node = lap[node]; |
| 208 | for (j = 0; j < n; j++) { |
| 209 | if (j == node) { |
| 210 | continue; |
| 211 | } |
| 212 | new_place_i += lap_node[j] * place[j]; |
| 213 | } |
| 214 | desired_place[node] = new_place_i / (-lap_node[node]); |
| 215 | } |
| 216 | |
| 217 | /* reorder block by levels, and within levels by "relaxed" desired position */ |
| 218 | block_len = 0; |
| 219 | first_next_level = 0; |
| 220 | for (i = left; i < right; i = first_next_level) { |
| 221 | level = lev[ordering[i]]; |
| 222 | if (level == num_levels) { |
| 223 | /* last_level */ |
| 224 | first_next_level = right; |
| 225 | } else { |
| 226 | first_next_level = MIN(right, levels[level]); |
| 227 | } |
| 228 | |
| 229 | /* First, collect all nodes with desired places smaller than current place */ |
| 230 | for (j = i; j < first_next_level; j++) { |
| 231 | node = ordering[j]; |
| 232 | if (desired_place[node] < cur_place) { |
| 233 | block[block_len++] = node; |
| 234 | } |
| 235 | } |
| 236 | /* Second, collect all nodes with desired places equal to current place */ |
| 237 | for (j = i; j < first_next_level; j++) { |
| 238 | node = ordering[j]; |
| 239 | if (desired_place[node] == cur_place) { |
| 240 | block[block_len++] = node; |
| 241 | } |
| 242 | } |
| 243 | /* Third, collect all nodes with desired places greater than current place */ |
| 244 | for (j = i; j < first_next_level; j++) { |
| 245 | node = ordering[j]; |
| 246 | if (desired_place[node] > cur_place) { |
| 247 | block[block_len++] = node; |
| 248 | } |
| 249 | } |
| 250 | } |
| 251 | |
| 252 | /* loop through block and compute desired places of its prefixes */ |
| 253 | des_place_block = 0; |
| 254 | block_deg = 0; |
| 255 | for (i = 0; i < block_len; i++) { |
| 256 | node = block[i]; |
| 257 | toBlockConnectivity = 0; |
| 258 | lap_node = lap[node]; |
| 259 | for (j = 0; j < i; j++) { |
| 260 | toBlockConnectivity -= lap_node[block[j]]; |
| 261 | } |
| 262 | toBlockConnectivity *= 2; |
| 263 | /* update block stats */ |
| 264 | des_place_block = |
| 265 | (block_deg * des_place_block + |
| 266 | (-lap_node[node]) * desired_place[node] + |
| 267 | toBlockConnectivity * cur_place) / (block_deg - |
| 268 | lap_node[node] + |
| 269 | toBlockConnectivity); |
| 270 | prefix_desired_place[i] = des_place_block; |
| 271 | block_deg += toBlockConnectivity - lap_node[node]; |
| 272 | } |
| 273 | |
| 274 | /* loop through block and compute desired places of its suffixes */ |
| 275 | des_place_block = 0; |
| 276 | block_deg = 0; |
| 277 | for (i = block_len - 1; i >= 0; i--) { |
| 278 | node = block[i]; |
| 279 | toBlockConnectivity = 0; |
| 280 | lap_node = lap[node]; |
| 281 | for (j = i + 1; j < block_len; j++) { |
| 282 | toBlockConnectivity -= lap_node[block[j]]; |
| 283 | } |
| 284 | toBlockConnectivity *= 2; |
| 285 | /* update block stats */ |
| 286 | des_place_block = |
| 287 | (block_deg * des_place_block + |
| 288 | (-lap_node[node]) * desired_place[node] + |
| 289 | toBlockConnectivity * cur_place) / (block_deg - |
| 290 | lap_node[node] + |
| 291 | toBlockConnectivity); |
| 292 | suffix_desired_place[i] = des_place_block; |
| 293 | block_deg += toBlockConnectivity - lap_node[node]; |
| 294 | } |
| 295 | |
| 296 | |
| 297 | /* now, find best place to split block */ |
| 298 | best_i = -1; |
| 299 | max_movement = 0; |
| 300 | for (i = 0; i < block_len; i++) { |
| 301 | suffix_des_place = suffix_desired_place[i]; |
| 302 | prefix_des_place = |
| 303 | i > 0 ? prefix_desired_place[i - 1] : suffix_des_place; |
| 304 | /* limit moves to ensure that the prefix is placed before the suffix */ |
| 305 | if (suffix_des_place < prefix_des_place) { |
| 306 | if (suffix_des_place < cur_place) { |
| 307 | if (prefix_des_place > cur_place) { |
| 308 | prefix_des_place = cur_place; |
| 309 | } |
| 310 | suffix_des_place = prefix_des_place; |
| 311 | } else if (prefix_des_place > cur_place) { |
| 312 | prefix_des_place = suffix_des_place; |
| 313 | } |
| 314 | } |
| 315 | movement = |
| 316 | (block_len - i) * fabs(suffix_des_place - cur_place) + |
| 317 | i * fabs(prefix_des_place - cur_place); |
| 318 | if (movement > max_movement) { |
| 319 | max_movement = movement; |
| 320 | best_i = i; |
| 321 | } |
| 322 | } |
| 323 | /* Actually move prefix and suffix */ |
| 324 | if (best_i >= 0) { |
| 325 | suffix_des_place = suffix_desired_place[best_i]; |
| 326 | prefix_des_place = |
| 327 | best_i > |
| 328 | 0 ? prefix_desired_place[best_i - |
| 329 | 1] : suffix_des_place; |
| 330 | |
| 331 | /* compute right border of feasible move */ |
| 332 | if (right >= n) { |
| 333 | /* no nodes after current block */ |
| 334 | upper_bound = 1e9; |
| 335 | } else { |
| 336 | upper_bound = place[ordering[right]]; |
| 337 | } |
| 338 | suffix_des_place = MIN(suffix_des_place, upper_bound); |
| 339 | prefix_des_place = MAX(prefix_des_place, lower_bound); |
| 340 | |
| 341 | /* limit moves to ensure that the prefix is placed before the suffix */ |
| 342 | if (suffix_des_place < prefix_des_place) { |
| 343 | if (suffix_des_place < cur_place) { |
| 344 | if (prefix_des_place > cur_place) { |
| 345 | prefix_des_place = cur_place; |
| 346 | } |
| 347 | suffix_des_place = prefix_des_place; |
| 348 | } else if (prefix_des_place > cur_place) { |
| 349 | prefix_des_place = suffix_des_place; |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | /* move prefix: */ |
| 354 | for (i = 0; i < best_i; i++) { |
| 355 | place[block[i]] = prefix_des_place; |
| 356 | } |
| 357 | /* move suffix: */ |
| 358 | for (i = best_i; i < block_len; i++) { |
| 359 | place[block[i]] = suffix_des_place; |
| 360 | } |
| 361 | |
| 362 | lower_bound = suffix_des_place; /* lower bound for next block */ |
| 363 | |
| 364 | /* reorder 'ordering' to reflect change of places |
| 365 | * Note that it is enough to reorder the level where |
| 366 | * the split was done |
| 367 | */ |
| 368 | #if 0 |
| 369 | int max_in_level, min_in_level; |
| 370 | |
| 371 | level = lev[best_i]; |
| 372 | if (level == num_levels) { |
| 373 | /* last_level */ |
| 374 | max_in_level = MIN(right, n); |
| 375 | } else { |
| 376 | max_in_level = MIN(right, levels[level]); |
| 377 | } |
| 378 | if (level == 0) { |
| 379 | /* first level */ |
| 380 | min_in_level = MAX(left, 0); |
| 381 | } else { |
| 382 | min_in_level = MAX(left, levels[level - 1]); |
| 383 | } |
| 384 | #endif |
| 385 | for (i = left; i < right; i++) { |
| 386 | ordering[i] = block[i - left]; |
| 387 | } |
| 388 | converged = converged |
| 389 | && fabs(prefix_des_place - cur_place) < quad_prog_tol |
| 390 | && fabs(suffix_des_place - cur_place) < quad_prog_tol; |
| 391 | |
| 392 | } else { |
| 393 | /* no movement */ |
| 394 | lower_bound = cur_place; /* lower bound for next block */ |
| 395 | } |
| 396 | |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | computeHierarchyBoundaries(place, n, ordering, levels, num_levels, |
| 401 | hierarchy_boundaries); |
| 402 | |
| 403 | return counter; |
| 404 | } |
| 405 | |
| 406 | #ifdef IPSEPCOLA |
| 407 | static float *place; |
| 408 | static int compare_incr(const void *a, const void *b) |
| 409 | { |
| 410 | if (place[*(int *) a] > place[*(int *) b]) { |
| 411 | return 1; |
| 412 | } else if (place[*(int *) a] < place[*(int *) b]) { |
| 413 | return -1; |
| 414 | } |
| 415 | return 0; |
| 416 | } |
| 417 | |
| 418 | /* |
| 419 | While not converged: move everything towards the optimum, then satisfy constraints with as little displacement as possible. |
| 420 | Returns number of iterations before convergence. |
| 421 | */ |
| 422 | int constrained_majorization_gradient_projection(CMajEnv * e, |
| 423 | float *b, float **coords, |
| 424 | int ndims, int cur_axis, |
| 425 | int max_iterations, |
| 426 | float |
| 427 | *hierarchy_boundaries, |
| 428 | float levels_gap) |
| 429 | { |
| 430 | |
| 431 | int i, j, counter; |
| 432 | int *ordering = e->ordering; |
| 433 | int *levels = e->levels; |
| 434 | int num_levels = e->num_levels; |
| 435 | boolean converged = FALSE; |
| 436 | float *g = e->fArray1; |
| 437 | float *old_place = e->fArray2; |
| 438 | float *d = e->fArray4; |
| 439 | float test = 0, tmptest = 0; |
| 440 | float beta; |
| 441 | |
| 442 | if (max_iterations == 0) |
| 443 | return 0; |
| 444 | |
| 445 | place = coords[cur_axis]; |
| 446 | #ifdef CONMAJ_LOGGING |
| 447 | double prev_stress = 0; |
| 448 | static int call_no = 0; |
| 449 | for (i = 0; i < e->n; i++) { |
| 450 | prev_stress += 2 * b[i] * place[i]; |
| 451 | for (j = 0; j < e->n; j++) { |
| 452 | prev_stress -= e->A[i][j] * place[j] * place[i]; |
| 453 | } |
| 454 | } |
| 455 | FILE *logfile = fopen("constrained_majorization_log" , "a" ); |
| 456 | |
| 457 | fprintf(logfile, "grad proj %d: stress=%f\n" , call_no, prev_stress); |
| 458 | #endif |
| 459 | for (counter = 0; counter < max_iterations && !converged; counter++) { |
| 460 | float alpha; |
| 461 | float numerator = 0, denominator = 0, r; |
| 462 | converged = TRUE; |
| 463 | /* find steepest descent direction */ |
| 464 | for (i = 0; i < e->n; i++) { |
| 465 | old_place[i] = place[i]; |
| 466 | g[i] = 2 * b[i]; |
| 467 | for (j = 0; j < e->n; j++) { |
| 468 | g[i] -= 2 * e->A[i][j] * place[j]; |
| 469 | } |
| 470 | } |
| 471 | for (i = 0; i < e->n; i++) { |
| 472 | numerator += g[i] * g[i]; |
| 473 | r = 0; |
| 474 | for (j = 0; j < e->n; j++) { |
| 475 | r += 2 * e->A[i][j] * g[j]; |
| 476 | } |
| 477 | denominator -= r * g[i]; |
| 478 | } |
| 479 | alpha = numerator / denominator; |
| 480 | for (i = 0; i < e->n; i++) { |
| 481 | if (alpha > 0 && alpha < 1000) { |
| 482 | place[i] -= alpha * g[i]; |
| 483 | } |
| 484 | } |
| 485 | if (num_levels) |
| 486 | qsort((int *) ordering, (size_t) levels[0], sizeof(int), |
| 487 | compare_incr); |
| 488 | /* project to constraint boundary */ |
| 489 | for (i = 0; i < num_levels; i++) { |
| 490 | int endOfLevel = i == num_levels - 1 ? e->n : levels[i + 1]; |
| 491 | int ui, li, u, l; |
| 492 | |
| 493 | /* ensure monotic increase in position within levels */ |
| 494 | qsort((int *) ordering + levels[i], |
| 495 | (size_t) endOfLevel - levels[i], sizeof(int), |
| 496 | compare_incr); |
| 497 | /* If there are overlapping levels find offending nodes and place at average position */ |
| 498 | ui = levels[i]; li = ui - 1; |
| 499 | l = ordering[li--]; u = ordering[ui++]; |
| 500 | if (place[l] + levels_gap > place[u]) { |
| 501 | float sum = |
| 502 | place[l] + place[u] - levels_gap * (e->lev[l] + |
| 503 | e->lev[u]), w = 2; |
| 504 | float avgPos = sum / w; |
| 505 | float pos; |
| 506 | boolean finished; |
| 507 | do { |
| 508 | finished = TRUE; |
| 509 | if (ui < endOfLevel) { |
| 510 | u = ordering[ui]; |
| 511 | pos = place[u] - levels_gap * e->lev[u]; |
| 512 | if (pos < avgPos) { |
| 513 | ui++; |
| 514 | w++; |
| 515 | sum += pos; |
| 516 | avgPos = sum / w; |
| 517 | finished = FALSE; |
| 518 | } |
| 519 | } |
| 520 | |
| 521 | if (li >= 0) { |
| 522 | l = ordering[li]; |
| 523 | pos = place[l] - levels_gap * e->lev[l]; |
| 524 | if (pos > avgPos) { |
| 525 | li--; |
| 526 | w++; |
| 527 | sum += pos; |
| 528 | avgPos = sum / w; |
| 529 | finished = FALSE; |
| 530 | } |
| 531 | } |
| 532 | } while (!finished); |
| 533 | for (j = li + 1; j < ui; j++) { |
| 534 | place[ordering[j]] = |
| 535 | avgPos + levels_gap * e->lev[ordering[j]]; |
| 536 | } |
| 537 | } |
| 538 | } |
| 539 | /* set place to the intersection of old_place-g and boundary and compute d, the vector from intersection pnt to projection pnt */ |
| 540 | for (i = 0; i < e->n; i++) { |
| 541 | d[i] = place[i] - old_place[i]; |
| 542 | } |
| 543 | /* now compute beta */ |
| 544 | numerator = 0, denominator = 0; |
| 545 | for (i = 0; i < e->n; i++) { |
| 546 | numerator += g[i] * d[i]; |
| 547 | r = 0; |
| 548 | for (j = 0; j < e->n; j++) { |
| 549 | r += 2 * e->A[i][j] * d[j]; |
| 550 | } |
| 551 | denominator += r * d[i]; |
| 552 | } |
| 553 | beta = numerator / denominator; |
| 554 | |
| 555 | for (i = 0; i < e->n; i++) { |
| 556 | if (beta > 0 && beta < 1.0) { |
| 557 | place[i] = old_place[i] + beta * d[i]; |
| 558 | } |
| 559 | tmptest = fabs(place[i] - old_place[i]); |
| 560 | if (test < tmptest) |
| 561 | test = tmptest; |
| 562 | } |
| 563 | computeHierarchyBoundaries(place, e->n, ordering, levels, |
| 564 | num_levels, hierarchy_boundaries); |
| 565 | #if 0 |
| 566 | if (num_levels) |
| 567 | qsort((int *) ordering, (size_t) levels[0], sizeof(int), |
| 568 | compare_incr); |
| 569 | for (i = 0; i < num_levels; i++) { |
| 570 | int endOfLevel = i == num_levels - 1 ? e->n : levels[i + 1]; |
| 571 | /* ensure monotic increase in position within levels */ |
| 572 | qsort((int *) ordering + levels[i], |
| 573 | (size_t) endOfLevel - levels[i], sizeof(int), |
| 574 | compare_incr); |
| 575 | /* If there are overlapping levels find offending nodes and place at average position */ |
| 576 | int l = ordering[levels[i] - 1], u = ordering[levels[i]]; |
| 577 | /* assert(place[l]+levels_gap<=place[u]+0.00001); */ |
| 578 | } |
| 579 | #endif |
| 580 | #ifdef CONMAJ_LOGGING |
| 581 | double stress = 0; |
| 582 | for (i = 0; i < e->n; i++) { |
| 583 | stress += 2 * b[i] * place[i]; |
| 584 | for (j = 0; j < e->n; j++) { |
| 585 | stress -= e->A[i][j] * place[j] * place[i]; |
| 586 | } |
| 587 | } |
| 588 | fprintf(logfile, "%d: stress=%f, test=%f, %s\n" , call_no, stress, |
| 589 | test, (stress >= prev_stress) ? "No Improvement" : "" ); |
| 590 | prev_stress = stress; |
| 591 | #endif |
| 592 | if (test > quad_prog_tol) { |
| 593 | converged = FALSE; |
| 594 | } |
| 595 | } |
| 596 | #ifdef CONMAJ_LOGGING |
| 597 | call_no++; |
| 598 | fclose(logfile); |
| 599 | #endif |
| 600 | return counter; |
| 601 | } |
| 602 | #endif |
| 603 | |
| 604 | int |
| 605 | constrained_majorization_new_with_gaps(CMajEnv * e, float *b, |
| 606 | float **coords, int ndims, |
| 607 | int cur_axis, int max_iterations, |
| 608 | float *hierarchy_boundaries, |
| 609 | float levels_gap) |
| 610 | { |
| 611 | float *place = coords[cur_axis]; |
| 612 | int i, j; |
| 613 | int n = e->n; |
| 614 | float **lap = e->A; |
| 615 | int *ordering = e->ordering; |
| 616 | int *levels = e->levels; |
| 617 | int num_levels = e->num_levels; |
| 618 | float new_place_i; |
| 619 | boolean converged = FALSE; |
| 620 | float upper_bound, lower_bound; |
| 621 | int node; |
| 622 | int left, right; |
| 623 | float cur_place; |
| 624 | float des_place_block; |
| 625 | float block_deg; |
| 626 | float toBlockConnectivity; |
| 627 | float *lap_node; |
| 628 | float *desired_place; |
| 629 | float *prefix_desired_place; |
| 630 | float *suffix_desired_place; |
| 631 | int *block; |
| 632 | int block_len; |
| 633 | int first_next_level; |
| 634 | int *lev; |
| 635 | int level = -1, max_in_level = 0; |
| 636 | int counter; |
| 637 | float *gap; |
| 638 | float total_gap, target_place; |
| 639 | |
| 640 | if (max_iterations <= 0) { |
| 641 | return 0; |
| 642 | } |
| 643 | |
| 644 | ensureMonotonicOrderingWithGaps(place, n, ordering, levels, num_levels, |
| 645 | levels_gap); |
| 646 | /* it is important that in 'ordering' nodes are always sorted by layers, |
| 647 | * and within a layer by 'place' |
| 648 | */ |
| 649 | |
| 650 | /* the desired place of each individual node in the current block */ |
| 651 | desired_place = e->fArray1; |
| 652 | /* the desired place of each prefix of current block */ |
| 653 | prefix_desired_place = e->fArray2; |
| 654 | /* the desired place of each suffix of current block */ |
| 655 | suffix_desired_place = e->fArray3; |
| 656 | /* current block (nodes connected by active constraints) */ |
| 657 | block = e->iArray1; |
| 658 | |
| 659 | lev = e->iArray2; /* level of each node */ |
| 660 | for (i = 0; i < n; i++) { |
| 661 | if (i >= max_in_level) { |
| 662 | /* we are entering a new level */ |
| 663 | level++; |
| 664 | if (level == num_levels) { |
| 665 | /* last_level */ |
| 666 | max_in_level = n; |
| 667 | } else { |
| 668 | max_in_level = levels[level]; |
| 669 | } |
| 670 | } |
| 671 | node = ordering[i]; |
| 672 | lev[node] = level; |
| 673 | } |
| 674 | |
| 675 | /* displacement of block's nodes from block's reference point */ |
| 676 | gap = e->fArray4; |
| 677 | |
| 678 | for (counter = 0; counter < max_iterations && !converged; counter++) { |
| 679 | converged = TRUE; |
| 680 | lower_bound = -1e9; /* no lower bound for first level */ |
| 681 | for (left = 0; left < n; left = right) { |
| 682 | int best_i; |
| 683 | double max_movement; |
| 684 | double movement; |
| 685 | float prefix_des_place, suffix_des_place; |
| 686 | /* compute a block 'ordering[left]...ordering[right-1]' of |
| 687 | * nodes connected with active constraints |
| 688 | */ |
| 689 | cur_place = place[ordering[left]]; |
| 690 | total_gap = 0; |
| 691 | target_place = cur_place; |
| 692 | gap[ordering[left]] = 0; |
| 693 | for (right = left + 1; right < n; right++) { |
| 694 | if (lev[right] > lev[right - 1]) { |
| 695 | /* we are entering a new level */ |
| 696 | target_place += levels_gap; /* note that 'levels_gap' may be negative */ |
| 697 | total_gap += levels_gap; |
| 698 | } |
| 699 | node = ordering[right]; |
| 700 | #if 0 |
| 701 | if (place[node] != target_place) |
| 702 | #endif |
| 703 | /* not sure if this is better than 'place[node]!=target_place' */ |
| 704 | if (fabs(place[node] - target_place) > 1e-9) { |
| 705 | break; |
| 706 | } |
| 707 | gap[node] = place[node] - cur_place; |
| 708 | } |
| 709 | |
| 710 | /* compute desired place of block's reference point according |
| 711 | * to each node in the block: |
| 712 | */ |
| 713 | for (i = left; i < right; i++) { |
| 714 | node = ordering[i]; |
| 715 | new_place_i = -b[node]; |
| 716 | lap_node = lap[node]; |
| 717 | for (j = 0; j < n; j++) { |
| 718 | if (j == node) { |
| 719 | continue; |
| 720 | } |
| 721 | new_place_i += lap_node[j] * place[j]; |
| 722 | } |
| 723 | desired_place[node] = |
| 724 | new_place_i / (-lap_node[node]) - gap[node]; |
| 725 | } |
| 726 | |
| 727 | /* reorder block by levels, and within levels |
| 728 | * by "relaxed" desired position |
| 729 | */ |
| 730 | block_len = 0; |
| 731 | first_next_level = 0; |
| 732 | for (i = left; i < right; i = first_next_level) { |
| 733 | level = lev[ordering[i]]; |
| 734 | if (level == num_levels) { |
| 735 | /* last_level */ |
| 736 | first_next_level = right; |
| 737 | } else { |
| 738 | first_next_level = MIN(right, levels[level]); |
| 739 | } |
| 740 | |
| 741 | /* First, collect all nodes with desired places smaller |
| 742 | * than current place |
| 743 | */ |
| 744 | for (j = i; j < first_next_level; j++) { |
| 745 | node = ordering[j]; |
| 746 | if (desired_place[node] < cur_place) { |
| 747 | block[block_len++] = node; |
| 748 | } |
| 749 | } |
| 750 | /* Second, collect all nodes with desired places equal |
| 751 | * to current place |
| 752 | */ |
| 753 | for (j = i; j < first_next_level; j++) { |
| 754 | node = ordering[j]; |
| 755 | if (desired_place[node] == cur_place) { |
| 756 | block[block_len++] = node; |
| 757 | } |
| 758 | } |
| 759 | /* Third, collect all nodes with desired places greater |
| 760 | * than current place |
| 761 | */ |
| 762 | for (j = i; j < first_next_level; j++) { |
| 763 | node = ordering[j]; |
| 764 | if (desired_place[node] > cur_place) { |
| 765 | block[block_len++] = node; |
| 766 | } |
| 767 | } |
| 768 | } |
| 769 | |
| 770 | /* loop through block and compute desired places of its prefixes */ |
| 771 | des_place_block = 0; |
| 772 | block_deg = 0; |
| 773 | for (i = 0; i < block_len; i++) { |
| 774 | node = block[i]; |
| 775 | toBlockConnectivity = 0; |
| 776 | lap_node = lap[node]; |
| 777 | for (j = 0; j < i; j++) { |
| 778 | toBlockConnectivity -= lap_node[block[j]]; |
| 779 | } |
| 780 | toBlockConnectivity *= 2; |
| 781 | /* update block stats */ |
| 782 | des_place_block = |
| 783 | (block_deg * des_place_block + |
| 784 | (-lap_node[node]) * desired_place[node] + |
| 785 | toBlockConnectivity * cur_place) / (block_deg - |
| 786 | lap_node[node] + |
| 787 | toBlockConnectivity); |
| 788 | prefix_desired_place[i] = des_place_block; |
| 789 | block_deg += toBlockConnectivity - lap_node[node]; |
| 790 | } |
| 791 | |
| 792 | if (block_len == n) { |
| 793 | /* fix is needed since denominator was 0 in this case */ |
| 794 | prefix_desired_place[n - 1] = cur_place; /* a "neutral" value */ |
| 795 | } |
| 796 | |
| 797 | /* loop through block and compute desired places of its suffixes */ |
| 798 | des_place_block = 0; |
| 799 | block_deg = 0; |
| 800 | for (i = block_len - 1; i >= 0; i--) { |
| 801 | node = block[i]; |
| 802 | toBlockConnectivity = 0; |
| 803 | lap_node = lap[node]; |
| 804 | for (j = i + 1; j < block_len; j++) { |
| 805 | toBlockConnectivity -= lap_node[block[j]]; |
| 806 | } |
| 807 | toBlockConnectivity *= 2; |
| 808 | /* update block stats */ |
| 809 | des_place_block = |
| 810 | (block_deg * des_place_block + |
| 811 | (-lap_node[node]) * desired_place[node] + |
| 812 | toBlockConnectivity * cur_place) / (block_deg - |
| 813 | lap_node[node] + |
| 814 | toBlockConnectivity); |
| 815 | suffix_desired_place[i] = des_place_block; |
| 816 | block_deg += toBlockConnectivity - lap_node[node]; |
| 817 | } |
| 818 | |
| 819 | if (block_len == n) { |
| 820 | /* fix is needed since denominator was 0 in this case */ |
| 821 | suffix_desired_place[0] = cur_place; /* a "neutral" value? */ |
| 822 | } |
| 823 | |
| 824 | |
| 825 | /* now, find best place to split block */ |
| 826 | best_i = -1; |
| 827 | max_movement = 0; |
| 828 | for (i = 0; i < block_len; i++) { |
| 829 | suffix_des_place = suffix_desired_place[i]; |
| 830 | prefix_des_place = |
| 831 | i > 0 ? prefix_desired_place[i - 1] : suffix_des_place; |
| 832 | /* limit moves to ensure that the prefix is placed before the suffix */ |
| 833 | if (suffix_des_place < prefix_des_place) { |
| 834 | if (suffix_des_place < cur_place) { |
| 835 | if (prefix_des_place > cur_place) { |
| 836 | prefix_des_place = cur_place; |
| 837 | } |
| 838 | suffix_des_place = prefix_des_place; |
| 839 | } else if (prefix_des_place > cur_place) { |
| 840 | prefix_des_place = suffix_des_place; |
| 841 | } |
| 842 | } |
| 843 | movement = |
| 844 | (block_len - i) * fabs(suffix_des_place - cur_place) + |
| 845 | i * fabs(prefix_des_place - cur_place); |
| 846 | if (movement > max_movement) { |
| 847 | max_movement = movement; |
| 848 | best_i = i; |
| 849 | } |
| 850 | } |
| 851 | /* Actually move prefix and suffix */ |
| 852 | if (best_i >= 0) { |
| 853 | suffix_des_place = suffix_desired_place[best_i]; |
| 854 | prefix_des_place = |
| 855 | best_i > |
| 856 | 0 ? prefix_desired_place[best_i - |
| 857 | 1] : suffix_des_place; |
| 858 | |
| 859 | /* compute right border of feasible move */ |
| 860 | if (right >= n) { |
| 861 | /* no nodes after current block */ |
| 862 | upper_bound = 1e9; |
| 863 | } else { |
| 864 | /* notice that we have to deduct 'gap[block[block_len-1]]' |
| 865 | * since all computations should be relative to |
| 866 | * the block's reference point |
| 867 | */ |
| 868 | if (lev[ordering[right]] > lev[ordering[right - 1]]) { |
| 869 | upper_bound = |
| 870 | place[ordering[right]] - levels_gap - |
| 871 | gap[block[block_len - 1]]; |
| 872 | } else { |
| 873 | upper_bound = |
| 874 | place[ordering[right]] - |
| 875 | gap[block[block_len - 1]]; |
| 876 | } |
| 877 | } |
| 878 | suffix_des_place = MIN(suffix_des_place, upper_bound); |
| 879 | prefix_des_place = MAX(prefix_des_place, lower_bound); |
| 880 | |
| 881 | /* limit moves to ensure that the prefix is placed before the suffix */ |
| 882 | if (suffix_des_place < prefix_des_place) { |
| 883 | if (suffix_des_place < cur_place) { |
| 884 | if (prefix_des_place > cur_place) { |
| 885 | prefix_des_place = cur_place; |
| 886 | } |
| 887 | suffix_des_place = prefix_des_place; |
| 888 | } else if (prefix_des_place > cur_place) { |
| 889 | prefix_des_place = suffix_des_place; |
| 890 | } |
| 891 | } |
| 892 | |
| 893 | /* move prefix: */ |
| 894 | for (i = 0; i < best_i; i++) { |
| 895 | place[block[i]] = prefix_des_place + gap[block[i]]; |
| 896 | } |
| 897 | /* move suffix: */ |
| 898 | for (i = best_i; i < block_len; i++) { |
| 899 | place[block[i]] = suffix_des_place + gap[block[i]]; |
| 900 | } |
| 901 | |
| 902 | |
| 903 | /* compute lower bound for next block */ |
| 904 | if (right < n |
| 905 | && lev[ordering[right]] > lev[ordering[right - 1]]) { |
| 906 | lower_bound = place[block[block_len - 1]] + levels_gap; |
| 907 | } else { |
| 908 | lower_bound = place[block[block_len - 1]]; |
| 909 | } |
| 910 | |
| 911 | |
| 912 | /* reorder 'ordering' to reflect change of places |
| 913 | * Note that it is enough to reorder the level where |
| 914 | * the split was done |
| 915 | */ |
| 916 | #if 0 |
| 917 | int max_in_level, min_in_level; |
| 918 | |
| 919 | level = lev[best_i]; |
| 920 | if (level == num_levels) { |
| 921 | /* last_level */ |
| 922 | max_in_level = MIN(right, n); |
| 923 | } else { |
| 924 | max_in_level = MIN(right, levels[level]); |
| 925 | } |
| 926 | if (level == 0) { |
| 927 | /* first level */ |
| 928 | min_in_level = MAX(left, 0); |
| 929 | } else { |
| 930 | min_in_level = MAX(left, levels[level - 1]); |
| 931 | } |
| 932 | #endif |
| 933 | for (i = left; i < right; i++) { |
| 934 | ordering[i] = block[i - left]; |
| 935 | } |
| 936 | converged = converged |
| 937 | && fabs(prefix_des_place - cur_place) < quad_prog_tol |
| 938 | && fabs(suffix_des_place - cur_place) < quad_prog_tol; |
| 939 | |
| 940 | |
| 941 | } else { |
| 942 | /* no movement */ |
| 943 | /* compute lower bound for next block */ |
| 944 | if (right < n |
| 945 | && lev[ordering[right]] > lev[ordering[right - 1]]) { |
| 946 | lower_bound = place[block[block_len - 1]] + levels_gap; |
| 947 | } else { |
| 948 | lower_bound = place[block[block_len - 1]]; |
| 949 | } |
| 950 | } |
| 951 | } |
| 952 | orthog1f(n, place); /* for numerical stability, keep ||place|| small */ |
| 953 | computeHierarchyBoundaries(place, n, ordering, levels, num_levels, |
| 954 | hierarchy_boundaries); |
| 955 | } |
| 956 | |
| 957 | return counter; |
| 958 | } |
| 959 | |
| 960 | void deleteCMajEnv(CMajEnv * e) |
| 961 | { |
| 962 | free(e->A[0]); |
| 963 | free(e->A); |
| 964 | free(e->lev); |
| 965 | free(e->fArray1); |
| 966 | free(e->fArray2); |
| 967 | free(e->fArray3); |
| 968 | free(e->fArray4); |
| 969 | free(e->iArray1); |
| 970 | free(e->iArray2); |
| 971 | free(e->iArray3); |
| 972 | free(e->iArray4); |
| 973 | free(e); |
| 974 | } |
| 975 | |
| 976 | CMajEnv *initConstrainedMajorization(float *packedMat, int n, |
| 977 | int *ordering, int *levels, |
| 978 | int num_levels) |
| 979 | { |
| 980 | int i, level = -1, start_of_level_above = 0; |
| 981 | CMajEnv *e = GNEW(CMajEnv); |
| 982 | e->A = NULL; |
| 983 | e->n = n; |
| 984 | e->ordering = ordering; |
| 985 | e->levels = levels; |
| 986 | e->num_levels = num_levels; |
| 987 | e->A = unpackMatrix(packedMat, n); |
| 988 | e->lev = N_GNEW(n, int); |
| 989 | for (i = 0; i < e->n; i++) { |
| 990 | if (i >= start_of_level_above) { |
| 991 | level++; |
| 992 | start_of_level_above = |
| 993 | (level == num_levels) ? e->n : levels[level]; |
| 994 | } |
| 995 | e->lev[ordering[i]] = level; |
| 996 | } |
| 997 | e->fArray1 = N_GNEW(n, float); |
| 998 | e->fArray2 = N_GNEW(n, float); |
| 999 | e->fArray3 = N_GNEW(n, float); |
| 1000 | e->fArray4 = N_GNEW(n, float); |
| 1001 | e->iArray1 = N_GNEW(n, int); |
| 1002 | e->iArray2 = N_GNEW(n, int); |
| 1003 | e->iArray3 = N_GNEW(n, int); |
| 1004 | e->iArray4 = N_GNEW(n, int); |
| 1005 | return e; |
| 1006 | } |
| 1007 | #endif /* DIGCOLA */ |
| 1008 | |