| 1 | /* vim:set shiftwidth=4 ts=8: */ |
| 2 | |
| 3 | /************************************************************************* |
| 4 | * Copyright (c) 2011 AT&T Intellectual Property |
| 5 | * All rights reserved. This program and the accompanying materials |
| 6 | * are made available under the terms of the Eclipse Public License v1.0 |
| 7 | * which accompanies this distribution, and is available at |
| 8 | * http://www.eclipse.org/legal/epl-v10.html |
| 9 | * |
| 10 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 11 | *************************************************************************/ |
| 12 | |
| 13 | #include <stdlib.h> |
| 14 | |
| 15 | #include "index.h" |
| 16 | #include <stdio.h> |
| 17 | #include <assert.h> |
| 18 | #include "logic.h" |
| 19 | #include "memory.h" |
| 20 | |
| 21 | LeafList_t *RTreeNewLeafList(Leaf_t * lp) |
| 22 | { |
| 23 | LeafList_t *llp; |
| 24 | |
| 25 | if ((llp = NEW(LeafList_t))) { |
| 26 | llp->leaf = lp; |
| 27 | llp->next = 0; |
| 28 | } |
| 29 | return llp; |
| 30 | } |
| 31 | |
| 32 | LeafList_t *RTreeLeafListAdd(LeafList_t * llp, Leaf_t * lp) |
| 33 | { |
| 34 | LeafList_t *nlp; |
| 35 | if (!lp) |
| 36 | return llp; |
| 37 | |
| 38 | nlp = RTreeNewLeafList(lp); |
| 39 | nlp->next = llp; |
| 40 | return nlp; |
| 41 | } |
| 42 | |
| 43 | void RTreeLeafListFree(LeafList_t * llp) |
| 44 | { |
| 45 | LeafList_t *tlp; |
| 46 | while (llp->next) { |
| 47 | tlp = llp->next; |
| 48 | free(llp); |
| 49 | llp = tlp; |
| 50 | } |
| 51 | free(llp); |
| 52 | return; |
| 53 | } |
| 54 | |
| 55 | /* Allocate space for a node in the list used in DeletRect to |
| 56 | * store Nodes that are too empty. |
| 57 | */ |
| 58 | static struct ListNode *RTreeNewListNode(void) |
| 59 | { |
| 60 | return NEW(struct ListNode); |
| 61 | } |
| 62 | |
| 63 | #if UNUSED |
| 64 | static void RTreeFreeListNode(struct ListNode *p) |
| 65 | { |
| 66 | free(p); |
| 67 | } |
| 68 | #endif |
| 69 | |
| 70 | /* Add a node to the reinsertion list. All its branches will later |
| 71 | * be reinserted into the index structure. |
| 72 | */ |
| 73 | static int RTreeReInsert(RTree_t * rtp, Node_t * n, struct ListNode **ee) |
| 74 | { |
| 75 | register struct ListNode *l; |
| 76 | |
| 77 | if (!(l = RTreeNewListNode())) |
| 78 | return -1; |
| 79 | l->node = n; |
| 80 | l->next = *ee; |
| 81 | *ee = l; |
| 82 | return 0; |
| 83 | } |
| 84 | |
| 85 | RTree_t *RTreeOpen() |
| 86 | { |
| 87 | RTree_t *rtp; |
| 88 | |
| 89 | if ((rtp = NEW(RTree_t))) |
| 90 | rtp->root = RTreeNewIndex(rtp); |
| 91 | return rtp; |
| 92 | } |
| 93 | |
| 94 | /* Make a new index, empty. Consists of a single node. */ |
| 95 | Node_t *RTreeNewIndex(RTree_t * rtp) |
| 96 | { |
| 97 | Node_t *x; |
| 98 | x = RTreeNewNode(rtp); |
| 99 | x->level = 0; /* leaf */ |
| 100 | rtp->LeafCount++; |
| 101 | return x; |
| 102 | } |
| 103 | |
| 104 | static int RTreeClose2(RTree_t * rtp, Node_t * n) |
| 105 | { |
| 106 | int i; |
| 107 | |
| 108 | if (n->level > 0) { |
| 109 | for (i = 0; i < NODECARD; i++) { |
| 110 | if (!n->branch[i].child) |
| 111 | continue; |
| 112 | if (!RTreeClose2(rtp, n->branch[i].child)) { |
| 113 | free(n->branch[i].child); |
| 114 | DisconBranch(n, i); |
| 115 | rtp->EntryCount--; |
| 116 | if (rtp->StatFlag) |
| 117 | rtp->ElimCount++; |
| 118 | } |
| 119 | } |
| 120 | } else { |
| 121 | for (i = 0; i < NODECARD; i++) { |
| 122 | if (!n->branch[i].child) |
| 123 | continue; |
| 124 | // free(n->branch[i].child); |
| 125 | DisconBranch(n, i); |
| 126 | rtp->EntryCount--; |
| 127 | if (rtp->StatFlag) |
| 128 | rtp->ElimCount++; |
| 129 | } |
| 130 | //free(n); |
| 131 | } |
| 132 | return 0; |
| 133 | } |
| 134 | |
| 135 | |
| 136 | int RTreeClose(RTree_t * rtp) |
| 137 | { |
| 138 | RTreeClose2(rtp, rtp->root); |
| 139 | free(rtp->root); |
| 140 | free(rtp); |
| 141 | return 0; |
| 142 | } |
| 143 | |
| 144 | #ifdef RTDEBUG |
| 145 | /* Print out all the nodes in an index. |
| 146 | ** Prints from root downward. |
| 147 | */ |
| 148 | void PrintIndex(Node_t * n) |
| 149 | { |
| 150 | int i; |
| 151 | Node_t *nn; |
| 152 | assert(n); |
| 153 | assert(n->level >= 0); |
| 154 | |
| 155 | if (n->level > 0) { |
| 156 | for (i = 0; i < NODECARD; i++) { |
| 157 | if ((nn = n->branch[i].child) != NULL) |
| 158 | PrintIndex(nn); |
| 159 | } |
| 160 | } |
| 161 | |
| 162 | PrintNode(n); |
| 163 | } |
| 164 | |
| 165 | /* Print out all the data rectangles in an index. |
| 166 | */ |
| 167 | void PrintData(Node_t * n) |
| 168 | { |
| 169 | int i; |
| 170 | Node_t *nn; |
| 171 | assert(n); |
| 172 | assert(n->level >= 0); |
| 173 | |
| 174 | if (n->level == 0) |
| 175 | PrintNode(n); |
| 176 | else { |
| 177 | for (i = 0; i < NODECARD; i++) { |
| 178 | if ((nn = n->branch[i].child) != NULL) |
| 179 | PrintData(nn); |
| 180 | } |
| 181 | } |
| 182 | } |
| 183 | #endif |
| 184 | |
| 185 | /* RTreeSearch in an index tree or subtree for all data retangles that |
| 186 | ** overlap the argument rectangle. |
| 187 | ** Returns the number of qualifying data rects. |
| 188 | */ |
| 189 | LeafList_t *RTreeSearch(RTree_t * rtp, Node_t * n, Rect_t * r) |
| 190 | { |
| 191 | register int i; |
| 192 | LeafList_t *llp = 0; |
| 193 | |
| 194 | assert(n); |
| 195 | assert(n->level >= 0); |
| 196 | assert(r); |
| 197 | |
| 198 | rtp->SeTouchCount++; |
| 199 | |
| 200 | if (n->level > 0) { /* this is an internal node in the tree */ |
| 201 | for (i = 0; i < NODECARD; i++) |
| 202 | if (n->branch[i].child && Overlap(r, &n->branch[i].rect)) { |
| 203 | LeafList_t *tlp = RTreeSearch(rtp, n->branch[i].child, r); |
| 204 | if (llp) { |
| 205 | LeafList_t *xlp = llp; |
| 206 | while (xlp->next) |
| 207 | xlp = xlp->next; |
| 208 | xlp->next = tlp; |
| 209 | } else |
| 210 | llp = tlp; |
| 211 | } |
| 212 | } else { /* this is a leaf node */ |
| 213 | for (i = 0; i < NODECARD; i++) { |
| 214 | if (n->branch[i].child && Overlap(r, &n->branch[i].rect)) { |
| 215 | llp = RTreeLeafListAdd(llp, (Leaf_t *) & n->branch[i]); |
| 216 | # ifdef RTDEBUG |
| 217 | PrintRect(&n->branch[i].rect); |
| 218 | # endif |
| 219 | } |
| 220 | } |
| 221 | } |
| 222 | return llp; |
| 223 | } |
| 224 | |
| 225 | /* Insert a data rectangle into an index structure. |
| 226 | ** RTreeInsert provides for splitting the root; |
| 227 | ** returns 1 if root was split, 0 if it was not. |
| 228 | ** The level argument specifies the number of steps up from the leaf |
| 229 | ** level to insert; e.g. a data rectangle goes in at level = 0. |
| 230 | ** RTreeInsert2 does the recursion. |
| 231 | */ |
| 232 | static int RTreeInsert2(RTree_t *, Rect_t *, void *, Node_t *, Node_t **, |
| 233 | int); |
| 234 | /*static int RTreeInsert2(RTree_t*, Rect_t*, int, Node_t*, Node_t**, int); */ |
| 235 | |
| 236 | int |
| 237 | RTreeInsert(RTree_t * rtp, Rect_t * r, void *data, Node_t ** n, int level) |
| 238 | { |
| 239 | /* RTreeInsert(RTree_t*rtp, Rect_t*r, int data, Node_t**n, int level) { */ |
| 240 | register int i; |
| 241 | register Node_t *newroot; |
| 242 | Node_t *newnode=0; |
| 243 | Branch_t b; |
| 244 | int result = 0; |
| 245 | |
| 246 | |
| 247 | assert(r && n); |
| 248 | assert(level >= 0 && level <= (*n)->level); |
| 249 | for (i = 0; i < NUMDIMS; i++) |
| 250 | assert(r->boundary[i] <= r->boundary[NUMDIMS + i]); |
| 251 | |
| 252 | # ifdef RTDEBUG |
| 253 | fprintf(stderr, "RTreeInsert level=%d\n" , level); |
| 254 | # endif |
| 255 | |
| 256 | if (rtp->StatFlag) { |
| 257 | if (rtp->Deleting) |
| 258 | rtp->ReInsertCount++; |
| 259 | else |
| 260 | rtp->InsertCount++; |
| 261 | } |
| 262 | if (!rtp->Deleting) |
| 263 | rtp->RectCount++; |
| 264 | |
| 265 | if (RTreeInsert2(rtp, r, data, *n, &newnode, level)) { /* root was split */ |
| 266 | if (rtp->StatFlag) { |
| 267 | if (rtp->Deleting) |
| 268 | rtp->DeTouchCount++; |
| 269 | else |
| 270 | rtp->InTouchCount++; |
| 271 | } |
| 272 | |
| 273 | newroot = RTreeNewNode(rtp); /* grow a new root, make tree taller */ |
| 274 | rtp->NonLeafCount++; |
| 275 | newroot->level = (*n)->level + 1; |
| 276 | b.rect = NodeCover(*n); |
| 277 | b.child = *n; |
| 278 | AddBranch(rtp, &b, newroot, NULL); |
| 279 | b.rect = NodeCover(newnode); |
| 280 | b.child = newnode; |
| 281 | AddBranch(rtp, &b, newroot, NULL); |
| 282 | *n = newroot; |
| 283 | // rtp->root = newroot; |
| 284 | rtp->EntryCount += 2; |
| 285 | result = 1; |
| 286 | } |
| 287 | |
| 288 | return result; |
| 289 | } |
| 290 | |
| 291 | /* Inserts a new data rectangle into the index structure. |
| 292 | ** Recursively descends tree, propagates splits back up. |
| 293 | ** Returns 0 if node was not split. Old node updated. |
| 294 | ** If node was split, returns 1 and sets the pointer pointed to by |
| 295 | ** new to point to the new node. Old node updated to become one of two. |
| 296 | ** The level argument specifies the number of steps up from the leaf |
| 297 | ** level to insert; e.g. a data rectangle goes in at level = 0. |
| 298 | */ |
| 299 | static int |
| 300 | RTreeInsert2(RTree_t * rtp, Rect_t * r, void *data, |
| 301 | Node_t * n, Node_t ** new, int level) |
| 302 | { |
| 303 | /*static int */ |
| 304 | /* RTreeInsert2(RTree_t*rtp, Rect_t*r, |
| 305 | int data, Node_t*n, Node_t**new, int level) { |
| 306 | */ |
| 307 | register int i=0; |
| 308 | Branch_t b; |
| 309 | Node_t *n2=0; |
| 310 | |
| 311 | assert(r && n && new); |
| 312 | assert(level >= 0 && level <= n->level); |
| 313 | |
| 314 | if (rtp->StatFlag) { |
| 315 | if (rtp->Deleting) |
| 316 | rtp->DeTouchCount++; |
| 317 | else |
| 318 | rtp->InTouchCount++; |
| 319 | } |
| 320 | |
| 321 | /* Still above level for insertion, go down tree recursively */ |
| 322 | if (n->level > level) { |
| 323 | i = PickBranch(r, n); |
| 324 | if (!RTreeInsert2(rtp, r, data, n->branch[i].child, &n2, level)) { /* recurse: child was not split */ |
| 325 | n->branch[i].rect = CombineRect(r, &(n->branch[i].rect)); |
| 326 | return 0; |
| 327 | } else { /* child was split */ |
| 328 | n->branch[i].rect = NodeCover(n->branch[i].child); |
| 329 | b.child = n2; |
| 330 | b.rect = NodeCover(n2); |
| 331 | rtp->EntryCount++; |
| 332 | return AddBranch(rtp, &b, n, new); |
| 333 | } |
| 334 | } else if (n->level == level) { /* at level for insertion. */ |
| 335 | /*Add rect, split if necessary */ |
| 336 | b.rect = *r; |
| 337 | b.child = (Node_t *) data; |
| 338 | rtp->EntryCount++; |
| 339 | return AddBranch(rtp, &b, n, new); |
| 340 | } else { /* Not supposed to happen */ |
| 341 | assert(FALSE); |
| 342 | return 0; |
| 343 | } |
| 344 | } |
| 345 | |
| 346 | static void FreeListNode(register struct ListNode *p) |
| 347 | { |
| 348 | free(p); |
| 349 | } |
| 350 | |
| 351 | /* Delete a data rectangle from an index structure. |
| 352 | ** Pass in a pointer to a Rect, the data of the record, ptr to ptr to root node. |
| 353 | ** Returns 1 if record not found, 0 if success. |
| 354 | ** RTreeDelete provides for eliminating the root. |
| 355 | */ |
| 356 | static int RTreeDelete2(RTree_t *, Rect_t *, void *, Node_t *, |
| 357 | ListNode_t **); |
| 358 | /* static int RTreeDelete2(RTree_t*, Rect_t*, int, Node_t*, ListNode_t**); */ |
| 359 | |
| 360 | int RTreeDelete(RTree_t * rtp, Rect_t * r, void *data, Node_t ** nn) |
| 361 | { |
| 362 | /* int */ |
| 363 | /* RTreeDelete(RTree_t*rtp, Rect_t*r, int data, Node_t**nn) { */ |
| 364 | register int i; |
| 365 | register Node_t *t; |
| 366 | struct ListNode *reInsertList = NULL; |
| 367 | register struct ListNode *e; |
| 368 | |
| 369 | assert(r && nn); |
| 370 | assert(*nn); |
| 371 | assert(data); |
| 372 | |
| 373 | rtp->Deleting = TRUE; |
| 374 | |
| 375 | # ifdef RTDEBUG |
| 376 | fprintf(stderr, "RTreeDelete\n" ); |
| 377 | # endif |
| 378 | |
| 379 | if (!RTreeDelete2(rtp, r, data, *nn, &reInsertList)) { |
| 380 | /* found and deleted a data item */ |
| 381 | if (rtp->StatFlag) |
| 382 | rtp->DeleteCount++; |
| 383 | rtp->RectCount--; |
| 384 | |
| 385 | /* reinsert any branches from eliminated nodes */ |
| 386 | while (reInsertList) { |
| 387 | t = reInsertList->node; |
| 388 | for (i = 0; i < NODECARD; i++) { |
| 389 | if (t->branch[i].child) { |
| 390 | RTreeInsert(rtp, &(t->branch[i].rect), |
| 391 | /* (int)t->branch[i].child, nn, t->level); */ |
| 392 | t->branch[i].child, nn, t->level); |
| 393 | rtp->EntryCount--; |
| 394 | } |
| 395 | } |
| 396 | e = reInsertList; |
| 397 | reInsertList = reInsertList->next; |
| 398 | RTreeFreeNode(rtp, e->node); |
| 399 | FreeListNode(e); |
| 400 | } |
| 401 | |
| 402 | /* check for redundant root (not leaf, 1 child) and eliminate */ |
| 403 | if ((*nn)->count == 1 && (*nn)->level > 0) { |
| 404 | if (rtp->StatFlag) |
| 405 | rtp->ElimCount++; |
| 406 | rtp->EntryCount--; |
| 407 | for (i = 0; i < NODECARD; i++) { |
| 408 | if ((t = (*nn)->branch[i].child)) |
| 409 | break; |
| 410 | } |
| 411 | RTreeFreeNode(rtp, *nn); |
| 412 | *nn = t; |
| 413 | } |
| 414 | rtp->Deleting = FALSE; |
| 415 | return 0; |
| 416 | } else { |
| 417 | rtp->Deleting = FALSE; |
| 418 | return 1; |
| 419 | } |
| 420 | } |
| 421 | |
| 422 | /* Delete a rectangle from non-root part of an index structure. |
| 423 | ** Called by RTreeDelete. Descends tree recursively, |
| 424 | ** merges branches on the way back up. |
| 425 | */ |
| 426 | static int |
| 427 | RTreeDelete2(RTree_t * rtp, Rect_t * r, void *data, Node_t * n, |
| 428 | ListNode_t ** ee) |
| 429 | /* static int */ |
| 430 | /* RTreeDelete2(RTree_t*rtp, Rect_t*r, int data, Node_t*n, ListNode_t**ee) */ |
| 431 | { |
| 432 | register int i; |
| 433 | |
| 434 | assert(r && n && ee); |
| 435 | assert(data); |
| 436 | assert(n->level >= 0); |
| 437 | |
| 438 | if (rtp->StatFlag) |
| 439 | rtp->DeTouchCount++; |
| 440 | |
| 441 | if (n->level > 0) { /* not a leaf node */ |
| 442 | for (i = 0; i < NODECARD; i++) { |
| 443 | if (n->branch[i].child && Overlap(r, &(n->branch[i].rect))) { |
| 444 | if (!RTreeDelete2(rtp, r, data, n->branch[i].child, ee)) { /*recurse */ |
| 445 | if (n->branch[i].child->count >= rtp->MinFill) |
| 446 | n->branch[i].rect = NodeCover(n->branch[i].child); |
| 447 | else { /* not enough entries in child, eliminate child node */ |
| 448 | RTreeReInsert(rtp, n->branch[i].child, ee); |
| 449 | DisconBranch(n, i); |
| 450 | rtp->EntryCount--; |
| 451 | if (rtp->StatFlag) |
| 452 | rtp->ElimCount++; |
| 453 | } |
| 454 | return 0; |
| 455 | } |
| 456 | } |
| 457 | } |
| 458 | return 1; |
| 459 | } else { /* a leaf node */ |
| 460 | for (i = 0; i < NODECARD; i++) { |
| 461 | if (n->branch[i].child |
| 462 | && n->branch[i].child == (Node_t *) data) { |
| 463 | DisconBranch(n, i); |
| 464 | rtp->EntryCount--; |
| 465 | return 0; |
| 466 | } |
| 467 | } |
| 468 | return 1; |
| 469 | } |
| 470 | } |
| 471 | |
| 472 | #ifdef UNUSED |
| 473 | /* Allocate space for a node in the list used in DeletRect to |
| 474 | ** store Nodes that are too empty. |
| 475 | */ |
| 476 | struct ListNode *NewListNode() |
| 477 | { |
| 478 | return (struct ListNode *) NEW(sizeof(struct ListNode)); |
| 479 | } |
| 480 | |
| 481 | #endif |
| 482 | |