| 1 | /* $Id$ $Revision$ */ |
| 2 | /* vim:set shiftwidth=4 ts=8: */ |
| 3 | |
| 4 | /************************************************************************* |
| 5 | * Copyright (c) 2011 AT&T Intellectual Property |
| 6 | * All rights reserved. This program and the accompanying materials |
| 7 | * are made available under the terms of the Eclipse Public License v1.0 |
| 8 | * which accompanies this distribution, and is available at |
| 9 | * http://www.eclipse.org/legal/epl-v10.html |
| 10 | * |
| 11 | * Contributors: See CVS logs. Details at http://www.graphviz.org/ |
| 12 | *************************************************************************/ |
| 13 | |
| 14 | |
| 15 | /* |
| 16 | * Network Simplex Algorithm for Ranking Nodes of a DAG |
| 17 | */ |
| 18 | |
| 19 | #include "render.h" |
| 20 | #include <setjmp.h> |
| 21 | |
| 22 | static int init_graph(graph_t *); |
| 23 | static void dfs_cutval(node_t * v, edge_t * par); |
| 24 | static int dfs_range(node_t * v, edge_t * par, int low); |
| 25 | static int x_val(edge_t * e, node_t * v, int dir); |
| 26 | #ifdef DEBUG |
| 27 | static void check_cycles(graph_t * g); |
| 28 | #endif |
| 29 | |
| 30 | #define LENGTH(e) (ND_rank(aghead(e)) - ND_rank(agtail(e))) |
| 31 | #define SLACK(e) (LENGTH(e) - ED_minlen(e)) |
| 32 | #define SEQ(a,b,c) (((a) <= (b)) && ((b) <= (c))) |
| 33 | #define TREE_EDGE(e) (ED_tree_index(e) >= 0) |
| 34 | |
| 35 | static jmp_buf jbuf; |
| 36 | static graph_t *G; |
| 37 | static int N_nodes, N_edges; |
| 38 | static int Minrank, Maxrank; |
| 39 | static int S_i; /* search index for enter_edge */ |
| 40 | static int Search_size; |
| 41 | #define SEARCHSIZE 30 |
| 42 | static nlist_t Tree_node; |
| 43 | static elist Tree_edge; |
| 44 | |
| 45 | static void add_tree_edge(edge_t * e) |
| 46 | { |
| 47 | node_t *n; |
| 48 | //fprintf(stderr,"add tree edge %p %s ", (void*)e, agnameof(agtail(e))) ; fprintf(stderr,"%s\n", agnameof(aghead(e))) ; |
| 49 | if (TREE_EDGE(e)) { |
| 50 | agerr(AGERR, "add_tree_edge: missing tree edge\n" ); |
| 51 | longjmp (jbuf, 1); |
| 52 | } |
| 53 | ED_tree_index(e) = Tree_edge.size; |
| 54 | Tree_edge.list[Tree_edge.size++] = e; |
| 55 | if (ND_mark(agtail(e)) == FALSE) |
| 56 | Tree_node.list[Tree_node.size++] = agtail(e); |
| 57 | if (ND_mark(aghead(e)) == FALSE) |
| 58 | Tree_node.list[Tree_node.size++] = aghead(e); |
| 59 | n = agtail(e); |
| 60 | ND_mark(n) = TRUE; |
| 61 | ND_tree_out(n).list[ND_tree_out(n).size++] = e; |
| 62 | ND_tree_out(n).list[ND_tree_out(n).size] = NULL; |
| 63 | if (ND_out(n).list[ND_tree_out(n).size - 1] == 0) { |
| 64 | agerr(AGERR, "add_tree_edge: empty outedge list\n" ); |
| 65 | longjmp (jbuf, 1); |
| 66 | } |
| 67 | n = aghead(e); |
| 68 | ND_mark(n) = TRUE; |
| 69 | ND_tree_in(n).list[ND_tree_in(n).size++] = e; |
| 70 | ND_tree_in(n).list[ND_tree_in(n).size] = NULL; |
| 71 | if (ND_in(n).list[ND_tree_in(n).size - 1] == 0) { |
| 72 | agerr(AGERR, "add_tree_edge: empty inedge list\n" ); |
| 73 | longjmp (jbuf, 1); |
| 74 | } |
| 75 | } |
| 76 | |
| 77 | static void exchange_tree_edges(edge_t * e, edge_t * f) |
| 78 | { |
| 79 | int i, j; |
| 80 | node_t *n; |
| 81 | |
| 82 | ED_tree_index(f) = ED_tree_index(e); |
| 83 | Tree_edge.list[ED_tree_index(e)] = f; |
| 84 | ED_tree_index(e) = -1; |
| 85 | |
| 86 | n = agtail(e); |
| 87 | i = --(ND_tree_out(n).size); |
| 88 | for (j = 0; j <= i; j++) |
| 89 | if (ND_tree_out(n).list[j] == e) |
| 90 | break; |
| 91 | ND_tree_out(n).list[j] = ND_tree_out(n).list[i]; |
| 92 | ND_tree_out(n).list[i] = NULL; |
| 93 | n = aghead(e); |
| 94 | i = --(ND_tree_in(n).size); |
| 95 | for (j = 0; j <= i; j++) |
| 96 | if (ND_tree_in(n).list[j] == e) |
| 97 | break; |
| 98 | ND_tree_in(n).list[j] = ND_tree_in(n).list[i]; |
| 99 | ND_tree_in(n).list[i] = NULL; |
| 100 | |
| 101 | n = agtail(f); |
| 102 | ND_tree_out(n).list[ND_tree_out(n).size++] = f; |
| 103 | ND_tree_out(n).list[ND_tree_out(n).size] = NULL; |
| 104 | n = aghead(f); |
| 105 | ND_tree_in(n).list[ND_tree_in(n).size++] = f; |
| 106 | ND_tree_in(n).list[ND_tree_in(n).size] = NULL; |
| 107 | } |
| 108 | |
| 109 | static |
| 110 | void init_rank(void) |
| 111 | { |
| 112 | int i, ctr; |
| 113 | nodequeue *Q; |
| 114 | node_t *v; |
| 115 | edge_t *e; |
| 116 | |
| 117 | Q = new_queue(N_nodes); |
| 118 | ctr = 0; |
| 119 | |
| 120 | for (v = GD_nlist(G); v; v = ND_next(v)) { |
| 121 | if (ND_priority(v) == 0) |
| 122 | enqueue(Q, v); |
| 123 | } |
| 124 | |
| 125 | while ((v = dequeue(Q))) { |
| 126 | ND_rank(v) = 0; |
| 127 | ctr++; |
| 128 | for (i = 0; (e = ND_in(v).list[i]); i++) |
| 129 | ND_rank(v) = MAX(ND_rank(v), ND_rank(agtail(e)) + ED_minlen(e)); |
| 130 | for (i = 0; (e = ND_out(v).list[i]); i++) { |
| 131 | if (--(ND_priority(aghead(e))) <= 0) |
| 132 | enqueue(Q, aghead(e)); |
| 133 | } |
| 134 | } |
| 135 | if (ctr != N_nodes) { |
| 136 | agerr(AGERR, "trouble in init_rank\n" ); |
| 137 | for (v = GD_nlist(G); v; v = ND_next(v)) |
| 138 | if (ND_priority(v)) |
| 139 | agerr(AGPREV, "\t%s %d\n" , agnameof(v), ND_priority(v)); |
| 140 | } |
| 141 | free_queue(Q); |
| 142 | } |
| 143 | |
| 144 | static edge_t *leave_edge(void) |
| 145 | { |
| 146 | edge_t *f, *rv = NULL; |
| 147 | int j, cnt = 0; |
| 148 | |
| 149 | j = S_i; |
| 150 | while (S_i < Tree_edge.size) { |
| 151 | if (ED_cutvalue(f = Tree_edge.list[S_i]) < 0) { |
| 152 | if (rv) { |
| 153 | if (ED_cutvalue(rv) > ED_cutvalue(f)) |
| 154 | rv = f; |
| 155 | } else |
| 156 | rv = Tree_edge.list[S_i]; |
| 157 | if (++cnt >= Search_size) |
| 158 | return rv; |
| 159 | } |
| 160 | S_i++; |
| 161 | } |
| 162 | if (j > 0) { |
| 163 | S_i = 0; |
| 164 | while (S_i < j) { |
| 165 | if (ED_cutvalue(f = Tree_edge.list[S_i]) < 0) { |
| 166 | if (rv) { |
| 167 | if (ED_cutvalue(rv) > ED_cutvalue(f)) |
| 168 | rv = f; |
| 169 | } else |
| 170 | rv = Tree_edge.list[S_i]; |
| 171 | if (++cnt >= Search_size) |
| 172 | return rv; |
| 173 | } |
| 174 | S_i++; |
| 175 | } |
| 176 | } |
| 177 | return rv; |
| 178 | } |
| 179 | |
| 180 | static edge_t *Enter; |
| 181 | static int Low, Lim, Slack; |
| 182 | |
| 183 | static void dfs_enter_outedge(node_t * v) |
| 184 | { |
| 185 | int i, slack; |
| 186 | edge_t *e; |
| 187 | |
| 188 | for (i = 0; (e = ND_out(v).list[i]); i++) { |
| 189 | if (TREE_EDGE(e) == FALSE) { |
| 190 | if (!SEQ(Low, ND_lim(aghead(e)), Lim)) { |
| 191 | slack = SLACK(e); |
| 192 | if ((slack < Slack) || (Enter == NULL)) { |
| 193 | Enter = e; |
| 194 | Slack = slack; |
| 195 | } |
| 196 | } |
| 197 | } else if (ND_lim(aghead(e)) < ND_lim(v)) |
| 198 | dfs_enter_outedge(aghead(e)); |
| 199 | } |
| 200 | for (i = 0; (e = ND_tree_in(v).list[i]) && (Slack > 0); i++) |
| 201 | if (ND_lim(agtail(e)) < ND_lim(v)) |
| 202 | dfs_enter_outedge(agtail(e)); |
| 203 | } |
| 204 | |
| 205 | static void dfs_enter_inedge(node_t * v) |
| 206 | { |
| 207 | int i, slack; |
| 208 | edge_t *e; |
| 209 | |
| 210 | for (i = 0; (e = ND_in(v).list[i]); i++) { |
| 211 | if (TREE_EDGE(e) == FALSE) { |
| 212 | if (!SEQ(Low, ND_lim(agtail(e)), Lim)) { |
| 213 | slack = SLACK(e); |
| 214 | if ((slack < Slack) || (Enter == NULL)) { |
| 215 | Enter = e; |
| 216 | Slack = slack; |
| 217 | } |
| 218 | } |
| 219 | } else if (ND_lim(agtail(e)) < ND_lim(v)) |
| 220 | dfs_enter_inedge(agtail(e)); |
| 221 | } |
| 222 | for (i = 0; (e = ND_tree_out(v).list[i]) && (Slack > 0); i++) |
| 223 | if (ND_lim(aghead(e)) < ND_lim(v)) |
| 224 | dfs_enter_inedge(aghead(e)); |
| 225 | } |
| 226 | |
| 227 | static edge_t *enter_edge(edge_t * e) |
| 228 | { |
| 229 | node_t *v; |
| 230 | int outsearch; |
| 231 | |
| 232 | /* v is the down node */ |
| 233 | if (ND_lim(agtail(e)) < ND_lim(aghead(e))) { |
| 234 | v = agtail(e); |
| 235 | outsearch = FALSE; |
| 236 | } else { |
| 237 | v = aghead(e); |
| 238 | outsearch = TRUE; |
| 239 | } |
| 240 | Enter = NULL; |
| 241 | Slack = INT_MAX; |
| 242 | Low = ND_low(v); |
| 243 | Lim = ND_lim(v); |
| 244 | if (outsearch) |
| 245 | dfs_enter_outedge(v); |
| 246 | else |
| 247 | dfs_enter_inedge(v); |
| 248 | return Enter; |
| 249 | } |
| 250 | |
| 251 | static void init_cutvalues(void) |
| 252 | { |
| 253 | dfs_range(GD_nlist(G), NULL, 1); |
| 254 | dfs_cutval(GD_nlist(G), NULL); |
| 255 | } |
| 256 | |
| 257 | /* functions for initial tight tree construction */ |
| 258 | // borrow field from network simplex - overwritten in init_cutvalues() forgive me |
| 259 | #define ND_subtree(n) (subtree_t*)ND_par(n) |
| 260 | #define ND_subtree_set(n,value) (ND_par(n) = (edge_t*)value) |
| 261 | |
| 262 | typedef struct subtree_s { |
| 263 | node_t *rep; /* some node in the tree */ |
| 264 | int size; /* total tight tree size */ |
| 265 | int heap_index; /* required to find non-min elts when merged */ |
| 266 | struct subtree_s *par; /* union find */ |
| 267 | } subtree_t; |
| 268 | |
| 269 | /* find initial tight subtrees */ |
| 270 | static int tight_subtree_search(Agnode_t *v, subtree_t *st) |
| 271 | { |
| 272 | Agedge_t *e; |
| 273 | int i; |
| 274 | int rv; |
| 275 | |
| 276 | rv = 1; |
| 277 | ND_subtree_set(v,st); |
| 278 | for (i = 0; (e = ND_in(v).list[i]); i++) { |
| 279 | if (TREE_EDGE(e)) continue; |
| 280 | if ((ND_subtree(agtail(e)) == 0) && (SLACK(e) == 0)) { |
| 281 | add_tree_edge(e); |
| 282 | rv += tight_subtree_search(agtail(e),st); |
| 283 | } |
| 284 | } |
| 285 | for (i = 0; (e = ND_out(v).list[i]); i++) { |
| 286 | if (TREE_EDGE(e)) continue; |
| 287 | if ((ND_subtree(aghead(e)) == 0) && (SLACK(e) == 0)) { |
| 288 | add_tree_edge(e); |
| 289 | rv += tight_subtree_search(aghead(e),st); |
| 290 | } |
| 291 | } |
| 292 | return rv; |
| 293 | } |
| 294 | |
| 295 | static subtree_t *find_tight_subtree(Agnode_t *v) |
| 296 | { |
| 297 | subtree_t *rv; |
| 298 | rv = NEW(subtree_t); |
| 299 | rv->rep = v; |
| 300 | rv->size = tight_subtree_search(v,rv); |
| 301 | rv->par = rv; |
| 302 | return rv; |
| 303 | } |
| 304 | |
| 305 | typedef struct STheap_s { |
| 306 | subtree_t **elt; |
| 307 | int size; |
| 308 | } STheap_t; |
| 309 | |
| 310 | static subtree_t *STsetFind(Agnode_t *n0) |
| 311 | { |
| 312 | subtree_t *s0 = ND_subtree(n0); |
| 313 | while (s0->par && (s0->par != s0)) { |
| 314 | if (s0->par->par) {s0->par = s0->par->par;} /* path compression for the code weary */ |
| 315 | s0 = s0->par; |
| 316 | } |
| 317 | return s0; |
| 318 | } |
| 319 | |
| 320 | static subtree_t *STsetUnion(subtree_t *s0, subtree_t *s1) |
| 321 | { |
| 322 | subtree_t *r0, *r1, *r; |
| 323 | |
| 324 | for (r0 = s0; r0->par && (r0->par != r0); r0 = r0->par); |
| 325 | for (r1 = s1; r1->par && (r1->par != r1); r1 = r1->par); |
| 326 | if (r0 == r1) return r0; /* safety code but shouldn't happen */ |
| 327 | assert((r0->heap_index > -1) || (r1->heap_index > -1)); |
| 328 | if (r1->heap_index == -1) r = r0; |
| 329 | else if (r0->heap_index == -1) r = r1; |
| 330 | else if (r1->size < r0->size) r = r0; |
| 331 | else r = r1; |
| 332 | |
| 333 | r0->par = r1->par = r; |
| 334 | r->size = r0->size + r1->size; |
| 335 | assert(r->heap_index >= 0); |
| 336 | return r; |
| 337 | } |
| 338 | |
| 339 | #define INCIDENT(e,treeset) ((STsetFind(agtail(e),treeset)) != STsetFind(aghead(e),treeset)) |
| 340 | |
| 341 | /* find tightest edge to another tree incident on the given tree */ |
| 342 | static Agedge_t *inter_tree_edge_search(Agnode_t *v, Agnode_t *from, Agedge_t *best) |
| 343 | { |
| 344 | int i; |
| 345 | Agedge_t *e; |
| 346 | subtree_t *ts = STsetFind(v); |
| 347 | if (best && SLACK(best) == 0) return best; |
| 348 | for (i = 0; (e = ND_out(v).list[i]); i++) { |
| 349 | if (TREE_EDGE(e)) { |
| 350 | if (aghead(e) == from) continue; // do not search back in tree |
| 351 | best = inter_tree_edge_search(aghead(e),v,best); // search forward in tree |
| 352 | } |
| 353 | else { |
| 354 | if (STsetFind(aghead(e)) != ts) { // encountered candidate edge |
| 355 | if ((best == 0) || (SLACK(e) < SLACK(best))) best = e; |
| 356 | } |
| 357 | /* else ignore non-tree edge between nodes in the same tree */ |
| 358 | } |
| 359 | } |
| 360 | /* the following code must mirror the above, but for in-edges */ |
| 361 | for (i = 0; (e = ND_in(v).list[i]); i++) { |
| 362 | if (TREE_EDGE(e)) { |
| 363 | if (agtail(e) == from) continue; |
| 364 | best = inter_tree_edge_search(agtail(e),v,best); |
| 365 | } |
| 366 | else { |
| 367 | if (STsetFind(agtail(e)) != ts) { |
| 368 | if ((best == 0) || (SLACK(e) < SLACK(best))) best = e; |
| 369 | } |
| 370 | } |
| 371 | } |
| 372 | return best; |
| 373 | } |
| 374 | |
| 375 | static Agedge_t *inter_tree_edge(subtree_t *tree) |
| 376 | { |
| 377 | Agedge_t *rv; |
| 378 | rv = inter_tree_edge_search(tree->rep, (Agnode_t *)0, (Agedge_t *)0); |
| 379 | return rv; |
| 380 | } |
| 381 | |
| 382 | static |
| 383 | int STheapsize(STheap_t *heap) { return heap->size; } |
| 384 | |
| 385 | static |
| 386 | void STheapify(STheap_t *heap, int i) |
| 387 | { |
| 388 | int left, right, smallest; |
| 389 | subtree_t **elt = heap->elt; |
| 390 | do { |
| 391 | left = 2*(i+1)-1; |
| 392 | right = 2*(i+1); |
| 393 | if ((left < heap->size) && (elt[left]->size < elt[i]->size)) smallest = left; |
| 394 | else smallest = i; |
| 395 | if ((right < heap->size) && (elt[right]->size < elt[smallest]->size)) smallest = right; |
| 396 | else smallest = i; |
| 397 | if (smallest != i) { |
| 398 | subtree_t *temp; |
| 399 | temp = elt[i]; |
| 400 | elt[i] = elt[smallest]; |
| 401 | elt[smallest] = temp; |
| 402 | elt[i]->heap_index = i; |
| 403 | elt[smallest]->heap_index = smallest; |
| 404 | i = smallest; |
| 405 | } |
| 406 | else break; |
| 407 | } while (i < heap->size); |
| 408 | } |
| 409 | |
| 410 | static |
| 411 | STheap_t *STbuildheap(subtree_t **elt, int size) |
| 412 | { |
| 413 | int i; |
| 414 | STheap_t *heap; |
| 415 | heap = NEW(STheap_t); |
| 416 | heap->elt = elt; |
| 417 | heap->size = size; |
| 418 | for (i = 0; i < heap->size; i++) heap->elt[i]->heap_index = i; |
| 419 | for (i = heap->size/2; i >= 0; i--) |
| 420 | STheapify(heap,i); |
| 421 | return heap; |
| 422 | } |
| 423 | |
| 424 | static |
| 425 | subtree_t *(STheap_t *heap) |
| 426 | { |
| 427 | subtree_t *rv; |
| 428 | rv = heap->elt[0]; |
| 429 | rv->heap_index = -1; |
| 430 | heap->elt[0] = heap->elt[heap->size - 1]; |
| 431 | heap->elt[0]->heap_index = 0; |
| 432 | heap->elt[heap->size -1] = rv; /* needed to free storage later */ |
| 433 | heap->size--; |
| 434 | STheapify(heap,0); |
| 435 | return rv; |
| 436 | } |
| 437 | |
| 438 | static |
| 439 | void tree_adjust(Agnode_t *v, Agnode_t *from, int delta) |
| 440 | { |
| 441 | int i; |
| 442 | Agedge_t *e; |
| 443 | Agnode_t *w; |
| 444 | ND_rank(v) = ND_rank(v) + delta; |
| 445 | for (i = 0; (e = ND_tree_in(v).list[i]); i++) { |
| 446 | w = agtail(e); |
| 447 | if (w != from) |
| 448 | tree_adjust(w, v, delta); |
| 449 | } |
| 450 | for (i = 0; (e = ND_tree_out(v).list[i]); i++) { |
| 451 | w = aghead(e); |
| 452 | if (w != from) |
| 453 | tree_adjust(w, v, delta); |
| 454 | } |
| 455 | } |
| 456 | |
| 457 | static |
| 458 | subtree_t *merge_trees(Agedge_t *e) /* entering tree edge */ |
| 459 | { |
| 460 | int delta; |
| 461 | subtree_t *t0, *t1, *rv; |
| 462 | |
| 463 | assert(!TREE_EDGE(e)); |
| 464 | |
| 465 | t0 = STsetFind(agtail(e)); |
| 466 | t1 = STsetFind(aghead(e)); |
| 467 | |
| 468 | //fprintf(stderr,"merge trees of %d %d of %d, delta %d\n",t0->size,t1->size,N_nodes,delta); |
| 469 | |
| 470 | if (t0->heap_index == -1) { // move t0 |
| 471 | delta = SLACK(e); |
| 472 | tree_adjust(t0->rep,(Agnode_t*)0,delta); |
| 473 | } |
| 474 | else { // move t1 |
| 475 | delta = -SLACK(e); |
| 476 | tree_adjust(t1->rep,0,delta); |
| 477 | } |
| 478 | add_tree_edge(e); |
| 479 | rv = STsetUnion(t0,t1); |
| 480 | |
| 481 | return rv; |
| 482 | } |
| 483 | |
| 484 | /* Construct initial tight tree. Graph must be connected, feasible. |
| 485 | * Adjust ND_rank(v) as needed. add_tree_edge() on tight tree edges. |
| 486 | * trees are basically lists of nodes stored in nodequeues. |
| 487 | * Return 1 if input graph is not connected; 0 on success. |
| 488 | */ |
| 489 | static |
| 490 | int feasible_tree(void) |
| 491 | { |
| 492 | Agnode_t *n; |
| 493 | Agedge_t *ee; |
| 494 | subtree_t **tree, *tree0, *tree1; |
| 495 | int i, subtree_count = 0; |
| 496 | STheap_t *heap; |
| 497 | int error = 0; |
| 498 | |
| 499 | /* initialization */ |
| 500 | for (n = GD_nlist(G); n; n = ND_next(n)) { |
| 501 | ND_subtree_set(n,0); |
| 502 | } |
| 503 | |
| 504 | tree = N_NEW(N_nodes,subtree_t*); |
| 505 | /* given init_rank, find all tight subtrees */ |
| 506 | for (n = GD_nlist(G); n; n = ND_next(n)) { |
| 507 | if (ND_subtree(n) == 0) { |
| 508 | tree[subtree_count] = find_tight_subtree(n); |
| 509 | subtree_count++; |
| 510 | } |
| 511 | } |
| 512 | |
| 513 | /* incrementally merge subtrees */ |
| 514 | heap = STbuildheap(tree,subtree_count); |
| 515 | while (STheapsize(heap) > 1) { |
| 516 | tree0 = STextractmin(heap); |
| 517 | if (!(ee = inter_tree_edge(tree0))) { |
| 518 | error = 1; |
| 519 | break; |
| 520 | } |
| 521 | tree1 = merge_trees(ee); |
| 522 | STheapify(heap,tree1->heap_index); |
| 523 | } |
| 524 | |
| 525 | free(heap); |
| 526 | for (i = 0; i < subtree_count; i++) free(tree[i]); |
| 527 | free(tree); |
| 528 | if (error) return 1; |
| 529 | assert(Tree_edge.size == N_nodes - 1); |
| 530 | init_cutvalues(); |
| 531 | return 0; |
| 532 | } |
| 533 | |
| 534 | /* utility functions for debugging */ |
| 535 | static subtree_t *nd_subtree(Agnode_t *n) {return ND_subtree(n);} |
| 536 | static int nd_priority(Agnode_t *n) {return ND_priority(n);} |
| 537 | static int nd_rank(Agnode_t *n) {return ND_rank(n);} |
| 538 | static int ed_minlen(Agedge_t *e) {return ED_minlen(e);} |
| 539 | |
| 540 | /* walk up from v to LCA(v,w), setting new cutvalues. */ |
| 541 | static Agnode_t *treeupdate(Agnode_t * v, Agnode_t * w, int cutvalue, int dir) |
| 542 | { |
| 543 | edge_t *e; |
| 544 | int d; |
| 545 | |
| 546 | while (!SEQ(ND_low(v), ND_lim(w), ND_lim(v))) { |
| 547 | e = ND_par(v); |
| 548 | if (v == agtail(e)) |
| 549 | d = dir; |
| 550 | else |
| 551 | d = NOT(dir); |
| 552 | if (d) |
| 553 | ED_cutvalue(e) += cutvalue; |
| 554 | else |
| 555 | ED_cutvalue(e) -= cutvalue; |
| 556 | if (ND_lim(agtail(e)) > ND_lim(aghead(e))) |
| 557 | v = agtail(e); |
| 558 | else |
| 559 | v = aghead(e); |
| 560 | } |
| 561 | return v; |
| 562 | } |
| 563 | |
| 564 | static void rerank(Agnode_t * v, int delta) |
| 565 | { |
| 566 | int i; |
| 567 | edge_t *e; |
| 568 | |
| 569 | ND_rank(v) -= delta; |
| 570 | for (i = 0; (e = ND_tree_out(v).list[i]); i++) |
| 571 | if (e != ND_par(v)) |
| 572 | rerank(aghead(e), delta); |
| 573 | for (i = 0; (e = ND_tree_in(v).list[i]); i++) |
| 574 | if (e != ND_par(v)) |
| 575 | rerank(agtail(e), delta); |
| 576 | } |
| 577 | |
| 578 | /* e is the tree edge that is leaving and f is the nontree edge that |
| 579 | * is entering. compute new cut values, ranks, and exchange e and f. |
| 580 | */ |
| 581 | static void |
| 582 | update(edge_t * e, edge_t * f) |
| 583 | { |
| 584 | int cutvalue, delta; |
| 585 | Agnode_t *lca; |
| 586 | |
| 587 | delta = SLACK(f); |
| 588 | /* "for (v = in nodes in tail side of e) do ND_rank(v) -= delta;" */ |
| 589 | if (delta > 0) { |
| 590 | int s; |
| 591 | s = ND_tree_in(agtail(e)).size + ND_tree_out(agtail(e)).size; |
| 592 | if (s == 1) |
| 593 | rerank(agtail(e), delta); |
| 594 | else { |
| 595 | s = ND_tree_in(aghead(e)).size + ND_tree_out(aghead(e)).size; |
| 596 | if (s == 1) |
| 597 | rerank(aghead(e), -delta); |
| 598 | else { |
| 599 | if (ND_lim(agtail(e)) < ND_lim(aghead(e))) |
| 600 | rerank(agtail(e), delta); |
| 601 | else |
| 602 | rerank(aghead(e), -delta); |
| 603 | } |
| 604 | } |
| 605 | } |
| 606 | |
| 607 | cutvalue = ED_cutvalue(e); |
| 608 | lca = treeupdate(agtail(f), aghead(f), cutvalue, 1); |
| 609 | if (treeupdate(aghead(f), agtail(f), cutvalue, 0) != lca) { |
| 610 | agerr(AGERR, "update: mismatched lca in treeupdates\n" ); |
| 611 | longjmp (jbuf, 1); |
| 612 | } |
| 613 | ED_cutvalue(f) = -cutvalue; |
| 614 | ED_cutvalue(e) = 0; |
| 615 | exchange_tree_edges(e, f); |
| 616 | dfs_range(lca, ND_par(lca), ND_low(lca)); |
| 617 | } |
| 618 | |
| 619 | static void scan_and_normalize(void) |
| 620 | { |
| 621 | node_t *n; |
| 622 | |
| 623 | Minrank = INT_MAX; |
| 624 | Maxrank = -INT_MAX; |
| 625 | for (n = GD_nlist(G); n; n = ND_next(n)) { |
| 626 | if (ND_node_type(n) == NORMAL) { |
| 627 | Minrank = MIN(Minrank, ND_rank(n)); |
| 628 | Maxrank = MAX(Maxrank, ND_rank(n)); |
| 629 | } |
| 630 | } |
| 631 | if (Minrank != 0) { |
| 632 | for (n = GD_nlist(G); n; n = ND_next(n)) |
| 633 | ND_rank(n) -= Minrank; |
| 634 | Maxrank -= Minrank; |
| 635 | Minrank = 0; |
| 636 | } |
| 637 | } |
| 638 | |
| 639 | static void |
| 640 | freeTreeList (graph_t* g) |
| 641 | { |
| 642 | node_t *n; |
| 643 | for (n = GD_nlist(G); n; n = ND_next(n)) { |
| 644 | free_list(ND_tree_in(n)); |
| 645 | free_list(ND_tree_out(n)); |
| 646 | ND_mark(n) = FALSE; |
| 647 | } |
| 648 | } |
| 649 | |
| 650 | static void LR_balance(void) |
| 651 | { |
| 652 | int i, delta; |
| 653 | edge_t *e, *f; |
| 654 | |
| 655 | for (i = 0; i < Tree_edge.size; i++) { |
| 656 | e = Tree_edge.list[i]; |
| 657 | if (ED_cutvalue(e) == 0) { |
| 658 | f = enter_edge(e); |
| 659 | if (f == NULL) |
| 660 | continue; |
| 661 | delta = SLACK(f); |
| 662 | if (delta <= 1) |
| 663 | continue; |
| 664 | if (ND_lim(agtail(e)) < ND_lim(aghead(e))) |
| 665 | rerank(agtail(e), delta / 2); |
| 666 | else |
| 667 | rerank(aghead(e), -delta / 2); |
| 668 | } |
| 669 | } |
| 670 | freeTreeList (G); |
| 671 | } |
| 672 | |
| 673 | static int decreasingrankcmpf(node_t **n0, node_t **n1) { |
| 674 | return ND_rank(*n1) - ND_rank(*n0); |
| 675 | } |
| 676 | |
| 677 | static int increasingrankcmpf(node_t **n0, node_t **n1) { |
| 678 | return ND_rank(*n0) - ND_rank(*n1); |
| 679 | } |
| 680 | |
| 681 | static void TB_balance(void) |
| 682 | { |
| 683 | node_t *n; |
| 684 | edge_t *e; |
| 685 | int i, ii, low, high, choice, *nrank; |
| 686 | int inweight, outweight; |
| 687 | int adj = 0; |
| 688 | char *s; |
| 689 | |
| 690 | scan_and_normalize(); |
| 691 | |
| 692 | /* find nodes that are not tight and move to less populated ranks */ |
| 693 | nrank = N_NEW(Maxrank + 1, int); |
| 694 | for (i = 0; i <= Maxrank; i++) |
| 695 | nrank[i] = 0; |
| 696 | if ( (s = agget(G,"TBbalance" )) ) { |
| 697 | if (streq(s,"min" )) adj = 1; |
| 698 | else if (streq(s,"max" )) adj = 2; |
| 699 | if (adj) for (n = GD_nlist(G); n; n = ND_next(n)) |
| 700 | if (ND_node_type(n) == NORMAL) |
| 701 | if (ND_out(n).size == 0) |
| 702 | ND_rank(n) = ((adj == 1)? Minrank : Maxrank); |
| 703 | } |
| 704 | for (ii = 0, n = GD_nlist(G); n; ii++, n = ND_next(n)) { |
| 705 | Tree_node.list[ii] = n; |
| 706 | } |
| 707 | Tree_node.size = ii; |
| 708 | qsort(Tree_node.list, Tree_node.size, sizeof(Tree_node.list[0]), |
| 709 | adj > 1? decreasingrankcmpf : increasingrankcmpf); |
| 710 | for (i = 0; i < Tree_node.size; i++) { |
| 711 | n = Tree_node.list[i]; |
| 712 | if (ND_node_type(n) == NORMAL) |
| 713 | nrank[ND_rank(n)]++; |
| 714 | } |
| 715 | for (ii = 0; ii < Tree_node.size; ii++) { |
| 716 | n = Tree_node.list[ii]; |
| 717 | if (ND_node_type(n) != NORMAL) |
| 718 | continue; |
| 719 | inweight = outweight = 0; |
| 720 | low = 0; |
| 721 | high = Maxrank; |
| 722 | for (i = 0; (e = ND_in(n).list[i]); i++) { |
| 723 | inweight += ED_weight(e); |
| 724 | low = MAX(low, ND_rank(agtail(e)) + ED_minlen(e)); |
| 725 | } |
| 726 | for (i = 0; (e = ND_out(n).list[i]); i++) { |
| 727 | outweight += ED_weight(e); |
| 728 | high = MIN(high, ND_rank(aghead(e)) - ED_minlen(e)); |
| 729 | } |
| 730 | if (low < 0) |
| 731 | low = 0; /* vnodes can have ranks < 0 */ |
| 732 | if (adj) { |
| 733 | if (inweight == outweight) |
| 734 | ND_rank(n) = (adj == 1? low : high); |
| 735 | } |
| 736 | else { |
| 737 | if (inweight == outweight) { |
| 738 | choice = low; |
| 739 | for (i = low + 1; i <= high; i++) |
| 740 | if (nrank[i] < nrank[choice]) |
| 741 | choice = i; |
| 742 | nrank[ND_rank(n)]--; |
| 743 | nrank[choice]++; |
| 744 | ND_rank(n) = choice; |
| 745 | } |
| 746 | } |
| 747 | free_list(ND_tree_in(n)); |
| 748 | free_list(ND_tree_out(n)); |
| 749 | ND_mark(n) = FALSE; |
| 750 | } |
| 751 | free(nrank); |
| 752 | } |
| 753 | |
| 754 | static int init_graph(graph_t * g) |
| 755 | { |
| 756 | int i, feasible; |
| 757 | node_t *n; |
| 758 | edge_t *e; |
| 759 | |
| 760 | G = g; |
| 761 | N_nodes = N_edges = S_i = 0; |
| 762 | for (n = GD_nlist(g); n; n = ND_next(n)) { |
| 763 | ND_mark(n) = FALSE; |
| 764 | N_nodes++; |
| 765 | for (i = 0; (e = ND_out(n).list[i]); i++) |
| 766 | N_edges++; |
| 767 | } |
| 768 | |
| 769 | Tree_node.list = ALLOC(N_nodes, Tree_node.list, node_t *); |
| 770 | Tree_node.size = 0; |
| 771 | Tree_edge.list = ALLOC(N_nodes, Tree_edge.list, edge_t *); |
| 772 | Tree_edge.size = 0; |
| 773 | |
| 774 | feasible = TRUE; |
| 775 | for (n = GD_nlist(g); n; n = ND_next(n)) { |
| 776 | ND_priority(n) = 0; |
| 777 | for (i = 0; (e = ND_in(n).list[i]); i++) { |
| 778 | ND_priority(n)++; |
| 779 | ED_cutvalue(e) = 0; |
| 780 | ED_tree_index(e) = -1; |
| 781 | if (feasible |
| 782 | && (ND_rank(aghead(e)) - ND_rank(agtail(e)) < ED_minlen(e))) |
| 783 | feasible = FALSE; |
| 784 | } |
| 785 | ND_tree_in(n).list = N_NEW(i + 1, edge_t *); |
| 786 | ND_tree_in(n).size = 0; |
| 787 | for (i = 0; (e = ND_out(n).list[i]); i++); |
| 788 | ND_tree_out(n).list = N_NEW(i + 1, edge_t *); |
| 789 | ND_tree_out(n).size = 0; |
| 790 | } |
| 791 | return feasible; |
| 792 | } |
| 793 | |
| 794 | /* graphSize: |
| 795 | * Compute no. of nodes and edges in the graph |
| 796 | */ |
| 797 | static void |
| 798 | graphSize (graph_t * g, int* nn, int* ne) |
| 799 | { |
| 800 | int i, nnodes, nedges; |
| 801 | node_t *n; |
| 802 | edge_t *e; |
| 803 | |
| 804 | nnodes = nedges = 0; |
| 805 | for (n = GD_nlist(g); n; n = ND_next(n)) { |
| 806 | nnodes++; |
| 807 | for (i = 0; (e = ND_out(n).list[i]); i++) { |
| 808 | nedges++; |
| 809 | } |
| 810 | } |
| 811 | *nn = nnodes; |
| 812 | *ne = nedges; |
| 813 | } |
| 814 | |
| 815 | /* rank: |
| 816 | * Apply network simplex to rank the nodes in a graph. |
| 817 | * Uses ED_minlen as the internode constraint: if a->b with minlen=ml, |
| 818 | * rank b - rank a >= ml. |
| 819 | * Assumes the graph has the following additional structure: |
| 820 | * A list of all nodes, starting at GD_nlist, and linked using ND_next. |
| 821 | * Out and in edges lists stored in ND_out and ND_in, even if the node |
| 822 | * doesn't have any out or in edges. |
| 823 | * The node rank values are stored in ND_rank. |
| 824 | * Returns 0 if successful; returns 1 if the graph was not connected; |
| 825 | * returns 2 if something seriously wrong; |
| 826 | */ |
| 827 | int rank2(graph_t * g, int balance, int maxiter, int search_size) |
| 828 | { |
| 829 | int iter = 0, feasible; |
| 830 | char *ns = "network simplex: " ; |
| 831 | edge_t *e, *f; |
| 832 | |
| 833 | #ifdef DEBUG |
| 834 | check_cycles(g); |
| 835 | #endif |
| 836 | if (Verbose) { |
| 837 | int nn, ne; |
| 838 | graphSize (g, &nn, &ne); |
| 839 | fprintf(stderr, "%s %d nodes %d edges maxiter=%d balance=%d\n" , ns, |
| 840 | nn, ne, maxiter, balance); |
| 841 | start_timer(); |
| 842 | } |
| 843 | feasible = init_graph(g); |
| 844 | if (!feasible) |
| 845 | init_rank(); |
| 846 | if (maxiter <= 0) { |
| 847 | freeTreeList (g); |
| 848 | return 0; |
| 849 | } |
| 850 | |
| 851 | if (search_size >= 0) |
| 852 | Search_size = search_size; |
| 853 | else |
| 854 | Search_size = SEARCHSIZE; |
| 855 | |
| 856 | if (setjmp (jbuf)) { |
| 857 | return 2; |
| 858 | } |
| 859 | |
| 860 | if (feasible_tree()) { |
| 861 | freeTreeList (g); |
| 862 | return 1; |
| 863 | } |
| 864 | while ((e = leave_edge())) { |
| 865 | f = enter_edge(e); |
| 866 | update(e, f); |
| 867 | iter++; |
| 868 | if (Verbose && (iter % 100 == 0)) { |
| 869 | if (iter % 1000 == 100) |
| 870 | fputs(ns, stderr); |
| 871 | fprintf(stderr, "%d " , iter); |
| 872 | if (iter % 1000 == 0) |
| 873 | fputc('\n', stderr); |
| 874 | } |
| 875 | if (iter >= maxiter) |
| 876 | break; |
| 877 | } |
| 878 | switch (balance) { |
| 879 | case 1: |
| 880 | TB_balance(); |
| 881 | break; |
| 882 | case 2: |
| 883 | LR_balance(); |
| 884 | break; |
| 885 | default: |
| 886 | scan_and_normalize(); |
| 887 | freeTreeList (G); |
| 888 | break; |
| 889 | } |
| 890 | if (Verbose) { |
| 891 | if (iter >= 100) |
| 892 | fputc('\n', stderr); |
| 893 | fprintf(stderr, "%s%d nodes %d edges %d iter %.2f sec\n" , |
| 894 | ns, N_nodes, N_edges, iter, elapsed_sec()); |
| 895 | } |
| 896 | return 0; |
| 897 | } |
| 898 | |
| 899 | int rank(graph_t * g, int balance, int maxiter) |
| 900 | { |
| 901 | char *s; |
| 902 | int search_size; |
| 903 | |
| 904 | if ((s = agget(g, "searchsize" ))) |
| 905 | search_size = atoi(s); |
| 906 | else |
| 907 | search_size = SEARCHSIZE; |
| 908 | |
| 909 | return rank2 (g, balance, maxiter, search_size); |
| 910 | } |
| 911 | |
| 912 | /* set cut value of f, assuming values of edges on one side were already set */ |
| 913 | static void x_cutval(edge_t * f) |
| 914 | { |
| 915 | node_t *v; |
| 916 | edge_t *e; |
| 917 | int i, sum, dir; |
| 918 | |
| 919 | /* set v to the node on the side of the edge already searched */ |
| 920 | if (ND_par(agtail(f)) == f) { |
| 921 | v = agtail(f); |
| 922 | dir = 1; |
| 923 | } else { |
| 924 | v = aghead(f); |
| 925 | dir = -1; |
| 926 | } |
| 927 | |
| 928 | sum = 0; |
| 929 | for (i = 0; (e = ND_out(v).list[i]); i++) |
| 930 | sum += x_val(e, v, dir); |
| 931 | for (i = 0; (e = ND_in(v).list[i]); i++) |
| 932 | sum += x_val(e, v, dir); |
| 933 | ED_cutvalue(f) = sum; |
| 934 | } |
| 935 | |
| 936 | static int x_val(edge_t * e, node_t * v, int dir) |
| 937 | { |
| 938 | node_t *other; |
| 939 | int d, rv, f; |
| 940 | |
| 941 | if (agtail(e) == v) |
| 942 | other = aghead(e); |
| 943 | else |
| 944 | other = agtail(e); |
| 945 | if (!(SEQ(ND_low(v), ND_lim(other), ND_lim(v)))) { |
| 946 | f = 1; |
| 947 | rv = ED_weight(e); |
| 948 | } else { |
| 949 | f = 0; |
| 950 | if (TREE_EDGE(e)) |
| 951 | rv = ED_cutvalue(e); |
| 952 | else |
| 953 | rv = 0; |
| 954 | rv -= ED_weight(e); |
| 955 | } |
| 956 | if (dir > 0) { |
| 957 | if (aghead(e) == v) |
| 958 | d = 1; |
| 959 | else |
| 960 | d = -1; |
| 961 | } else { |
| 962 | if (agtail(e) == v) |
| 963 | d = 1; |
| 964 | else |
| 965 | d = -1; |
| 966 | } |
| 967 | if (f) |
| 968 | d = -d; |
| 969 | if (d < 0) |
| 970 | rv = -rv; |
| 971 | return rv; |
| 972 | } |
| 973 | |
| 974 | static void dfs_cutval(node_t * v, edge_t * par) |
| 975 | { |
| 976 | int i; |
| 977 | edge_t *e; |
| 978 | |
| 979 | for (i = 0; (e = ND_tree_out(v).list[i]); i++) |
| 980 | if (e != par) |
| 981 | dfs_cutval(aghead(e), e); |
| 982 | for (i = 0; (e = ND_tree_in(v).list[i]); i++) |
| 983 | if (e != par) |
| 984 | dfs_cutval(agtail(e), e); |
| 985 | if (par) |
| 986 | x_cutval(par); |
| 987 | } |
| 988 | |
| 989 | static int dfs_range(node_t * v, edge_t * par, int low) |
| 990 | { |
| 991 | edge_t *e; |
| 992 | int i, lim; |
| 993 | |
| 994 | lim = low; |
| 995 | ND_par(v) = par; |
| 996 | ND_low(v) = low; |
| 997 | for (i = 0; (e = ND_tree_out(v).list[i]); i++) |
| 998 | if (e != par) |
| 999 | lim = dfs_range(aghead(e), e, lim); |
| 1000 | for (i = 0; (e = ND_tree_in(v).list[i]); i++) |
| 1001 | if (e != par) |
| 1002 | lim = dfs_range(agtail(e), e, lim); |
| 1003 | ND_lim(v) = lim; |
| 1004 | return lim + 1; |
| 1005 | } |
| 1006 | |
| 1007 | #ifdef DEBUG |
| 1008 | void tchk(void) |
| 1009 | { |
| 1010 | int i, n_cnt, e_cnt; |
| 1011 | node_t *n; |
| 1012 | edge_t *e; |
| 1013 | |
| 1014 | n_cnt = 0; |
| 1015 | e_cnt = 0; |
| 1016 | for (n = agfstnode(G); n; n = agnxtnode(G, n)) { |
| 1017 | n_cnt++; |
| 1018 | for (i = 0; (e = ND_tree_out(n).list[i]); i++) { |
| 1019 | e_cnt++; |
| 1020 | if (SLACK(e) > 0) |
| 1021 | fprintf(stderr, "not a tight tree %p" , e); |
| 1022 | } |
| 1023 | } |
| 1024 | if ((n_cnt != Tree_node.size) || (e_cnt != Tree_edge.size)) |
| 1025 | fprintf(stderr, "something missing\n" ); |
| 1026 | } |
| 1027 | |
| 1028 | void check_cutvalues(void) |
| 1029 | { |
| 1030 | node_t *v; |
| 1031 | edge_t *e; |
| 1032 | int i, save; |
| 1033 | |
| 1034 | for (v = agfstnode(G); v; v = agnxtnode(G, v)) { |
| 1035 | for (i = 0; (e = ND_tree_out(v).list[i]); i++) { |
| 1036 | save = ED_cutvalue(e); |
| 1037 | x_cutval(e); |
| 1038 | if (save != ED_cutvalue(e)) |
| 1039 | abort(); |
| 1040 | } |
| 1041 | } |
| 1042 | } |
| 1043 | |
| 1044 | int check_ranks(void) |
| 1045 | { |
| 1046 | int cost = 0; |
| 1047 | node_t *n; |
| 1048 | edge_t *e; |
| 1049 | |
| 1050 | for (n = agfstnode(G); n; n = agnxtnode(G, n)) { |
| 1051 | for (e = agfstout(G, n); e; e = agnxtout(G, e)) { |
| 1052 | cost += (ED_weight(e)) * abs(LENGTH(e)); |
| 1053 | if (ND_rank(aghead(e)) - ND_rank(agtail(e)) - ED_minlen(e) < 0) |
| 1054 | abort(); |
| 1055 | } |
| 1056 | } |
| 1057 | fprintf(stderr, "rank cost %d\n" , cost); |
| 1058 | return cost; |
| 1059 | } |
| 1060 | |
| 1061 | void checktree(void) |
| 1062 | { |
| 1063 | int i, n = 0, m = 0; |
| 1064 | node_t *v; |
| 1065 | edge_t *e; |
| 1066 | |
| 1067 | for (v = agfstnode(G); v; v = agnxtnode(G, v)) { |
| 1068 | for (i = 0; (e = ND_tree_out(v).list[i]); i++) |
| 1069 | n++; |
| 1070 | if (i != ND_tree_out(v).size) |
| 1071 | abort(); |
| 1072 | for (i = 0; (e = ND_tree_in(v).list[i]); i++) |
| 1073 | m++; |
| 1074 | if (i != ND_tree_in(v).size) |
| 1075 | abort(); |
| 1076 | } |
| 1077 | fprintf(stderr, "%d %d %d\n" , Tree_edge.size, n, m); |
| 1078 | } |
| 1079 | |
| 1080 | void check_fast_node(node_t * n) |
| 1081 | { |
| 1082 | node_t *nptr; |
| 1083 | nptr = GD_nlist(agraphof(n)); |
| 1084 | while (nptr && nptr != n) |
| 1085 | nptr = ND_next(nptr); |
| 1086 | assert(nptr != NULL); |
| 1087 | } |
| 1088 | |
| 1089 | static char* dump_node (node_t* n) |
| 1090 | { |
| 1091 | static char buf[50]; |
| 1092 | |
| 1093 | if (ND_node_type(n)) { |
| 1094 | sprintf(buf, "%p" , n); |
| 1095 | return buf; |
| 1096 | } |
| 1097 | else |
| 1098 | return agnameof(n); |
| 1099 | } |
| 1100 | |
| 1101 | static void dump_graph (graph_t* g) |
| 1102 | { |
| 1103 | int i; |
| 1104 | edge_t *e; |
| 1105 | node_t *n,*w; |
| 1106 | FILE* fp = fopen ("ns.gv" , "w" ); |
| 1107 | fprintf (fp, "digraph \"%s\" {\n" , agnameof(g)); |
| 1108 | for (n = GD_nlist(g); n; n = ND_next(n)) { |
| 1109 | fprintf (fp, " \"%s\"\n" , dump_node(n)); |
| 1110 | } |
| 1111 | for (n = GD_nlist(g); n; n = ND_next(n)) { |
| 1112 | for (i = 0; (e = ND_out(n).list[i]); i++) { |
| 1113 | fprintf (fp, " \"%s\"" , dump_node(n)); |
| 1114 | w = aghead(e); |
| 1115 | fprintf (fp, " -> \"%s\"\n" , dump_node(w)); |
| 1116 | } |
| 1117 | } |
| 1118 | |
| 1119 | fprintf (fp, "}\n" ); |
| 1120 | fclose (fp); |
| 1121 | } |
| 1122 | |
| 1123 | static node_t *checkdfs(graph_t* g, node_t * n) |
| 1124 | { |
| 1125 | edge_t *e; |
| 1126 | node_t *w,*x; |
| 1127 | int i; |
| 1128 | |
| 1129 | if (ND_mark(n)) |
| 1130 | return 0; |
| 1131 | ND_mark(n) = TRUE; |
| 1132 | ND_onstack(n) = TRUE; |
| 1133 | for (i = 0; (e = ND_out(n).list[i]); i++) { |
| 1134 | w = aghead(e); |
| 1135 | if (ND_onstack(w)) { |
| 1136 | dump_graph (g); |
| 1137 | fprintf(stderr, "cycle: last edge %lx %s(%lx) %s(%lx)\n" , |
| 1138 | (uint64_t)e, |
| 1139 | agnameof(n), (uint64_t)n, |
| 1140 | agnameof(w), (uint64_t)w); |
| 1141 | return w; |
| 1142 | } |
| 1143 | else { |
| 1144 | if (ND_mark(w) == FALSE) { |
| 1145 | x = checkdfs(g, w); |
| 1146 | if (x) { |
| 1147 | fprintf(stderr,"unwind %lx %s(%lx)\n" , |
| 1148 | (uint64_t)e, |
| 1149 | agnameof(n), (uint64_t)n); |
| 1150 | if (x != n) return x; |
| 1151 | fprintf(stderr,"unwound to root\n" ); |
| 1152 | fflush(stderr); |
| 1153 | abort(); |
| 1154 | return 0; |
| 1155 | } |
| 1156 | } |
| 1157 | } |
| 1158 | } |
| 1159 | ND_onstack(n) = FALSE; |
| 1160 | return 0; |
| 1161 | } |
| 1162 | |
| 1163 | void check_cycles(graph_t * g) |
| 1164 | { |
| 1165 | node_t *n; |
| 1166 | for (n = GD_nlist(g); n; n = ND_next(n)) |
| 1167 | ND_mark(n) = ND_onstack(n) = FALSE; |
| 1168 | for (n = GD_nlist(g); n; n = ND_next(n)) |
| 1169 | checkdfs(g, n); |
| 1170 | } |
| 1171 | #endif /* DEBUG */ |
| 1172 | |