| 1 | /* |
| 2 | * Copyright (c) 2020 - 2023 the ThorVG project. All rights reserved. |
| 3 | |
| 4 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
| 5 | * of this software and associated documentation files (the "Software"), to deal |
| 6 | * in the Software without restriction, including without limitation the rights |
| 7 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 8 | * copies of the Software, and to permit persons to whom the Software is |
| 9 | * furnished to do so, subject to the following conditions: |
| 10 | |
| 11 | * The above copyright notice and this permission notice shall be included in all |
| 12 | * copies or substantial portions of the Software. |
| 13 | |
| 14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 15 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 16 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 17 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 18 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 19 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 20 | * SOFTWARE. |
| 21 | */ |
| 22 | |
| 23 | #include <string.h> |
| 24 | #include <math.h> |
| 25 | #include "tvgSwCommon.h" |
| 26 | |
| 27 | /************************************************************************/ |
| 28 | /* Internal Class Implementation */ |
| 29 | /************************************************************************/ |
| 30 | |
| 31 | static constexpr auto SW_STROKE_TAG_POINT = 1; |
| 32 | static constexpr auto SW_STROKE_TAG_CUBIC = 2; |
| 33 | static constexpr auto SW_STROKE_TAG_BEGIN = 4; |
| 34 | static constexpr auto SW_STROKE_TAG_END = 8; |
| 35 | |
| 36 | static inline SwFixed SIDE_TO_ROTATE(const int32_t s) |
| 37 | { |
| 38 | return (SW_ANGLE_PI2 - static_cast<SwFixed>(s) * SW_ANGLE_PI); |
| 39 | } |
| 40 | |
| 41 | |
| 42 | static inline void SCALE(const SwStroke& stroke, SwPoint& pt) |
| 43 | { |
| 44 | pt.x = static_cast<SwCoord>(pt.x * stroke.sx); |
| 45 | pt.y = static_cast<SwCoord>(pt.y * stroke.sy); |
| 46 | } |
| 47 | |
| 48 | |
| 49 | static void _growBorder(SwStrokeBorder* border, uint32_t newPts) |
| 50 | { |
| 51 | auto maxOld = border->maxPts; |
| 52 | auto maxNew = border->ptsCnt + newPts; |
| 53 | |
| 54 | if (maxNew <= maxOld) return; |
| 55 | |
| 56 | auto maxCur = maxOld; |
| 57 | |
| 58 | while (maxCur < maxNew) |
| 59 | maxCur += (maxCur >> 1) + 16; |
| 60 | //OPTIMIZE: use mempool! |
| 61 | border->pts = static_cast<SwPoint*>(realloc(border->pts, maxCur * sizeof(SwPoint))); |
| 62 | border->tags = static_cast<uint8_t*>(realloc(border->tags, maxCur * sizeof(uint8_t))); |
| 63 | border->maxPts = maxCur; |
| 64 | } |
| 65 | |
| 66 | |
| 67 | static void _borderClose(SwStrokeBorder* border, bool reverse) |
| 68 | { |
| 69 | auto start = border->start; |
| 70 | auto count = border->ptsCnt; |
| 71 | |
| 72 | //Don't record empty paths! |
| 73 | if (count <= start + 1U) { |
| 74 | border->ptsCnt = start; |
| 75 | } else { |
| 76 | /* Copy the last point to the start of this sub-path, |
| 77 | since it contains the adjusted starting coordinates */ |
| 78 | border->ptsCnt = --count; |
| 79 | border->pts[start] = border->pts[count]; |
| 80 | |
| 81 | if (reverse) { |
| 82 | //reverse the points |
| 83 | auto pt1 = border->pts + start + 1; |
| 84 | auto pt2 = border->pts + count - 1; |
| 85 | |
| 86 | while (pt1 < pt2) { |
| 87 | auto tmp = *pt1; |
| 88 | *pt1 = *pt2; |
| 89 | *pt2 = tmp; |
| 90 | ++pt1; |
| 91 | --pt2; |
| 92 | } |
| 93 | |
| 94 | //reverse the tags |
| 95 | auto tag1 = border->tags + start + 1; |
| 96 | auto tag2 = border->tags + count - 1; |
| 97 | |
| 98 | while (tag1 < tag2) { |
| 99 | auto tmp = *tag1; |
| 100 | *tag1 = *tag2; |
| 101 | *tag2 = tmp; |
| 102 | ++tag1; |
| 103 | --tag2; |
| 104 | } |
| 105 | } |
| 106 | |
| 107 | border->tags[start] |= SW_STROKE_TAG_BEGIN; |
| 108 | border->tags[count - 1] |= SW_STROKE_TAG_END; |
| 109 | } |
| 110 | |
| 111 | border->start = -1; |
| 112 | border->movable = false; |
| 113 | } |
| 114 | |
| 115 | |
| 116 | static void _borderCubicTo(SwStrokeBorder* border, const SwPoint& ctrl1, const SwPoint& ctrl2, const SwPoint& to) |
| 117 | { |
| 118 | _growBorder(border, 3); |
| 119 | |
| 120 | auto pt = border->pts + border->ptsCnt; |
| 121 | auto tag = border->tags + border->ptsCnt; |
| 122 | |
| 123 | pt[0] = ctrl1; |
| 124 | pt[1] = ctrl2; |
| 125 | pt[2] = to; |
| 126 | |
| 127 | tag[0] = SW_STROKE_TAG_CUBIC; |
| 128 | tag[1] = SW_STROKE_TAG_CUBIC; |
| 129 | tag[2] = SW_STROKE_TAG_POINT; |
| 130 | |
| 131 | border->ptsCnt += 3; |
| 132 | border->movable = false; |
| 133 | } |
| 134 | |
| 135 | |
| 136 | static void _borderArcTo(SwStrokeBorder* border, const SwPoint& center, SwFixed radius, SwFixed angleStart, SwFixed angleDiff, SwStroke& stroke) |
| 137 | { |
| 138 | constexpr SwFixed ARC_CUBIC_ANGLE = SW_ANGLE_PI / 2; |
| 139 | SwPoint a = {static_cast<SwCoord>(radius), 0}; |
| 140 | mathRotate(a, angleStart); |
| 141 | SCALE(stroke, a); |
| 142 | a += center; |
| 143 | |
| 144 | auto total = angleDiff; |
| 145 | auto angle = angleStart; |
| 146 | auto rotate = (angleDiff >= 0) ? SW_ANGLE_PI2 : -SW_ANGLE_PI2; |
| 147 | |
| 148 | while (total != 0) { |
| 149 | auto step = total; |
| 150 | if (step > ARC_CUBIC_ANGLE) step = ARC_CUBIC_ANGLE; |
| 151 | else if (step < -ARC_CUBIC_ANGLE) step = -ARC_CUBIC_ANGLE; |
| 152 | |
| 153 | auto next = angle + step; |
| 154 | auto theta = step; |
| 155 | if (theta < 0) theta = -theta; |
| 156 | |
| 157 | theta >>= 1; |
| 158 | |
| 159 | //compute end point |
| 160 | SwPoint b = {static_cast<SwCoord>(radius), 0}; |
| 161 | mathRotate(b, next); |
| 162 | SCALE(stroke, b); |
| 163 | b += center; |
| 164 | |
| 165 | //compute first and second control points |
| 166 | auto length = mathMulDiv(radius, mathSin(theta) * 4, (0x10000L + mathCos(theta)) * 3); |
| 167 | |
| 168 | SwPoint a2 = {static_cast<SwCoord>(length), 0}; |
| 169 | mathRotate(a2, angle + rotate); |
| 170 | SCALE(stroke, a2); |
| 171 | a2 += a; |
| 172 | |
| 173 | SwPoint b2 = {static_cast<SwCoord>(length), 0}; |
| 174 | mathRotate(b2, next - rotate); |
| 175 | SCALE(stroke, b2); |
| 176 | b2 += b; |
| 177 | |
| 178 | //add cubic arc |
| 179 | _borderCubicTo(border, a2, b2, b); |
| 180 | |
| 181 | //process the rest of the arc? |
| 182 | a = b; |
| 183 | total -= step; |
| 184 | angle = next; |
| 185 | } |
| 186 | } |
| 187 | |
| 188 | |
| 189 | static void _borderLineTo(SwStrokeBorder* border, const SwPoint& to, bool movable) |
| 190 | { |
| 191 | if (border->movable) { |
| 192 | //move last point |
| 193 | border->pts[border->ptsCnt - 1] = to; |
| 194 | } else { |
| 195 | //don't add zero-length line_to |
| 196 | if (border->ptsCnt > 0 && (border->pts[border->ptsCnt - 1] - to).small()) return; |
| 197 | |
| 198 | _growBorder(border, 1); |
| 199 | border->pts[border->ptsCnt] = to; |
| 200 | border->tags[border->ptsCnt] = SW_STROKE_TAG_POINT; |
| 201 | border->ptsCnt += 1; |
| 202 | } |
| 203 | |
| 204 | border->movable = movable; |
| 205 | } |
| 206 | |
| 207 | |
| 208 | static void _borderMoveTo(SwStrokeBorder* border, SwPoint& to) |
| 209 | { |
| 210 | //close current open path if any? |
| 211 | if (border->start >= 0) _borderClose(border, false); |
| 212 | |
| 213 | border->start = border->ptsCnt; |
| 214 | border->movable = false; |
| 215 | |
| 216 | _borderLineTo(border, to, false); |
| 217 | } |
| 218 | |
| 219 | |
| 220 | static void _arcTo(SwStroke& stroke, int32_t side) |
| 221 | { |
| 222 | auto border = stroke.borders + side; |
| 223 | auto rotate = SIDE_TO_ROTATE(side); |
| 224 | auto total = mathDiff(stroke.angleIn, stroke.angleOut); |
| 225 | if (total == SW_ANGLE_PI) total = -rotate * 2; |
| 226 | |
| 227 | _borderArcTo(border, stroke.center, stroke.width, stroke.angleIn + rotate, total, stroke); |
| 228 | border->movable = false; |
| 229 | } |
| 230 | |
| 231 | |
| 232 | static void _outside(SwStroke& stroke, int32_t side, SwFixed lineLength) |
| 233 | { |
| 234 | auto border = stroke.borders + side; |
| 235 | |
| 236 | if (stroke.join == StrokeJoin::Round) { |
| 237 | _arcTo(stroke, side); |
| 238 | } else { |
| 239 | //this is a mitered (pointed) or beveled (truncated) corner |
| 240 | auto rotate = SIDE_TO_ROTATE(side); |
| 241 | auto bevel = (stroke.join == StrokeJoin::Bevel) ? true : false; |
| 242 | SwFixed phi = 0; |
| 243 | SwFixed thcos = 0; |
| 244 | |
| 245 | if (!bevel) { |
| 246 | auto theta = mathDiff(stroke.angleIn, stroke.angleOut); |
| 247 | if (theta == SW_ANGLE_PI) { |
| 248 | theta = rotate; |
| 249 | phi = stroke.angleIn; |
| 250 | } else { |
| 251 | theta /= 2; |
| 252 | phi = stroke.angleIn + theta + rotate; |
| 253 | } |
| 254 | |
| 255 | thcos = mathCos(theta); |
| 256 | auto sigma = mathMultiply(stroke.miterlimit, thcos); |
| 257 | |
| 258 | //is miter limit exceeded? |
| 259 | if (sigma < 0x10000L) bevel = true; |
| 260 | } |
| 261 | |
| 262 | //this is a bevel (broken angle) |
| 263 | if (bevel) { |
| 264 | SwPoint delta = {static_cast<SwCoord>(stroke.width), 0}; |
| 265 | mathRotate(delta, stroke.angleOut + rotate); |
| 266 | SCALE(stroke, delta); |
| 267 | delta += stroke.center; |
| 268 | border->movable = false; |
| 269 | _borderLineTo(border, delta, false); |
| 270 | //this is a miter (intersection) |
| 271 | } else { |
| 272 | auto length = mathDivide(stroke.width, thcos); |
| 273 | SwPoint delta = {static_cast<SwCoord>(length), 0}; |
| 274 | mathRotate(delta, phi); |
| 275 | SCALE(stroke, delta); |
| 276 | delta += stroke.center; |
| 277 | _borderLineTo(border, delta, false); |
| 278 | |
| 279 | /* Now add and end point |
| 280 | Only needed if not lineto (lineLength is zero for curves) */ |
| 281 | if (lineLength == 0) { |
| 282 | delta = {static_cast<SwCoord>(stroke.width), 0}; |
| 283 | mathRotate(delta, stroke.angleOut + rotate); |
| 284 | SCALE(stroke, delta); |
| 285 | delta += stroke.center; |
| 286 | _borderLineTo(border, delta, false); |
| 287 | } |
| 288 | } |
| 289 | } |
| 290 | } |
| 291 | |
| 292 | |
| 293 | static void _inside(SwStroke& stroke, int32_t side, SwFixed lineLength) |
| 294 | { |
| 295 | auto border = stroke.borders + side; |
| 296 | auto theta = mathDiff(stroke.angleIn, stroke.angleOut) / 2; |
| 297 | SwPoint delta; |
| 298 | bool intersect = false; |
| 299 | |
| 300 | /* Only intersect borders if between two line_to's and both |
| 301 | lines are long enough (line length is zero for curves). */ |
| 302 | if (border->movable && lineLength > 0) { |
| 303 | //compute minimum required length of lines |
| 304 | SwFixed minLength = abs(mathMultiply(stroke.width, mathTan(theta))); |
| 305 | if (stroke.lineLength >= minLength && lineLength >= minLength) intersect = true; |
| 306 | } |
| 307 | |
| 308 | auto rotate = SIDE_TO_ROTATE(side); |
| 309 | |
| 310 | if (!intersect) { |
| 311 | delta = {static_cast<SwCoord>(stroke.width), 0}; |
| 312 | mathRotate(delta, stroke.angleOut + rotate); |
| 313 | SCALE(stroke, delta); |
| 314 | delta += stroke.center; |
| 315 | border->movable = false; |
| 316 | } else { |
| 317 | //compute median angle |
| 318 | auto phi = stroke.angleIn + theta; |
| 319 | auto thcos = mathCos(theta); |
| 320 | delta = {static_cast<SwCoord>(mathDivide(stroke.width, thcos)), 0}; |
| 321 | mathRotate(delta, phi + rotate); |
| 322 | SCALE(stroke, delta); |
| 323 | delta += stroke.center; |
| 324 | } |
| 325 | |
| 326 | _borderLineTo(border, delta, false); |
| 327 | } |
| 328 | |
| 329 | |
| 330 | void _processCorner(SwStroke& stroke, SwFixed lineLength) |
| 331 | { |
| 332 | auto turn = mathDiff(stroke.angleIn, stroke.angleOut); |
| 333 | |
| 334 | //no specific corner processing is required if the turn is 0 |
| 335 | if (turn == 0) return; |
| 336 | |
| 337 | //when we turn to the right, the inside side is 0 |
| 338 | int32_t inside = 0; |
| 339 | |
| 340 | //otherwise, the inside is 1 |
| 341 | if (turn < 0) inside = 1; |
| 342 | |
| 343 | //process the inside |
| 344 | _inside(stroke, inside, lineLength); |
| 345 | |
| 346 | //process the outside |
| 347 | _outside(stroke, 1 - inside, lineLength); |
| 348 | } |
| 349 | |
| 350 | |
| 351 | void _firstSubPath(SwStroke& stroke, SwFixed startAngle, SwFixed lineLength) |
| 352 | { |
| 353 | SwPoint delta = {static_cast<SwCoord>(stroke.width), 0}; |
| 354 | mathRotate(delta, startAngle + SW_ANGLE_PI2); |
| 355 | SCALE(stroke, delta); |
| 356 | |
| 357 | auto pt = stroke.center + delta; |
| 358 | auto border = stroke.borders; |
| 359 | _borderMoveTo(border, pt); |
| 360 | |
| 361 | pt = stroke.center - delta; |
| 362 | ++border; |
| 363 | _borderMoveTo(border, pt); |
| 364 | |
| 365 | /* Save angle, position and line length for last join |
| 366 | lineLength is zero for curves */ |
| 367 | stroke.subPathAngle = startAngle; |
| 368 | stroke.firstPt = false; |
| 369 | stroke.subPathLineLength = lineLength; |
| 370 | } |
| 371 | |
| 372 | |
| 373 | static void _lineTo(SwStroke& stroke, const SwPoint& to) |
| 374 | { |
| 375 | auto delta = to - stroke.center; |
| 376 | |
| 377 | //a zero-length lineto is a no-op; avoid creating a spurious corner |
| 378 | if (delta.zero()) return; |
| 379 | |
| 380 | //compute length of line |
| 381 | auto angle = mathAtan(delta); |
| 382 | |
| 383 | /* The lineLength is used to determine the intersection of strokes outlines. |
| 384 | The scale needs to be reverted since the stroke width has not been scaled. |
| 385 | An alternative option is to scale the width of the stroke properly by |
| 386 | calculating the mixture of the sx/sy rating on the stroke direction. */ |
| 387 | delta.x = static_cast<SwCoord>(delta.x / stroke.sx); |
| 388 | delta.y = static_cast<SwCoord>(delta.y / stroke.sy); |
| 389 | auto lineLength = mathLength(delta); |
| 390 | |
| 391 | delta = {static_cast<SwCoord>(stroke.width), 0}; |
| 392 | mathRotate(delta, angle + SW_ANGLE_PI2); |
| 393 | SCALE(stroke, delta); |
| 394 | |
| 395 | //process corner if necessary |
| 396 | if (stroke.firstPt) { |
| 397 | /* This is the first segment of a subpath. We need to add a point to each border |
| 398 | at their respective starting point locations. */ |
| 399 | _firstSubPath(stroke, angle, lineLength); |
| 400 | } else { |
| 401 | //process the current corner |
| 402 | stroke.angleOut = angle; |
| 403 | _processCorner(stroke, lineLength); |
| 404 | } |
| 405 | |
| 406 | //now add a line segment to both the inside and outside paths |
| 407 | auto border = stroke.borders; |
| 408 | auto side = 1; |
| 409 | |
| 410 | while (side >= 0) { |
| 411 | auto pt = to + delta; |
| 412 | |
| 413 | //the ends of lineto borders are movable |
| 414 | _borderLineTo(border, pt, true); |
| 415 | |
| 416 | delta.x = -delta.x; |
| 417 | delta.y = -delta.y; |
| 418 | |
| 419 | --side; |
| 420 | ++border; |
| 421 | } |
| 422 | |
| 423 | stroke.angleIn = angle; |
| 424 | stroke.center = to; |
| 425 | stroke.lineLength = lineLength; |
| 426 | } |
| 427 | |
| 428 | |
| 429 | static void _cubicTo(SwStroke& stroke, const SwPoint& ctrl1, const SwPoint& ctrl2, const SwPoint& to) |
| 430 | { |
| 431 | //if all control points are coincident, this is a no-op; avoid creating a spurious corner |
| 432 | if ((stroke.center - ctrl1).small() && (ctrl1 - ctrl2).small() && (ctrl2 - to).small()) { |
| 433 | stroke.center = to; |
| 434 | return; |
| 435 | } |
| 436 | |
| 437 | SwPoint bezStack[37]; //TODO: static? |
| 438 | auto limit = bezStack + 32; |
| 439 | auto arc = bezStack; |
| 440 | auto firstArc = true; |
| 441 | arc[0] = to; |
| 442 | arc[1] = ctrl2; |
| 443 | arc[2] = ctrl1; |
| 444 | arc[3] = stroke.center; |
| 445 | |
| 446 | while (arc >= bezStack) { |
| 447 | SwFixed angleIn, angleOut, angleMid; |
| 448 | |
| 449 | //initialize with current direction |
| 450 | angleIn = angleOut = angleMid = stroke.angleIn; |
| 451 | |
| 452 | if (arc < limit && !mathSmallCubic(arc, angleIn, angleMid, angleOut)) { |
| 453 | if (stroke.firstPt) stroke.angleIn = angleIn; |
| 454 | mathSplitCubic(arc); |
| 455 | arc += 3; |
| 456 | continue; |
| 457 | } |
| 458 | |
| 459 | if (firstArc) { |
| 460 | firstArc = false; |
| 461 | //process corner if necessary |
| 462 | if (stroke.firstPt) { |
| 463 | _firstSubPath(stroke, angleIn, 0); |
| 464 | } else { |
| 465 | stroke.angleOut = angleIn; |
| 466 | _processCorner(stroke, 0); |
| 467 | } |
| 468 | } else if (abs(mathDiff(stroke.angleIn, angleIn)) > (SW_ANGLE_PI / 8) / 4) { |
| 469 | //if the deviation from one arc to the next is too great add a round corner |
| 470 | stroke.center = arc[3]; |
| 471 | stroke.angleOut = angleIn; |
| 472 | stroke.join = StrokeJoin::Round; |
| 473 | |
| 474 | _processCorner(stroke, 0); |
| 475 | |
| 476 | //reinstate line join style |
| 477 | stroke.join = stroke.joinSaved; |
| 478 | } |
| 479 | |
| 480 | //the arc's angle is small enough; we can add it directly to each border |
| 481 | auto theta1 = mathDiff(angleIn, angleMid) / 2; |
| 482 | auto theta2 = mathDiff(angleMid, angleOut) / 2; |
| 483 | auto phi1 = mathMean(angleIn, angleMid); |
| 484 | auto phi2 = mathMean(angleMid, angleOut); |
| 485 | auto length1 = mathDivide(stroke.width, mathCos(theta1)); |
| 486 | auto length2 = mathDivide(stroke.width, mathCos(theta2)); |
| 487 | SwFixed alpha0 = 0; |
| 488 | |
| 489 | //compute direction of original arc |
| 490 | if (stroke.handleWideStrokes) { |
| 491 | alpha0 = mathAtan(arc[0] - arc[3]); |
| 492 | } |
| 493 | |
| 494 | auto border = stroke.borders; |
| 495 | int32_t side = 0; |
| 496 | |
| 497 | while (side < 2) { |
| 498 | auto rotate = SIDE_TO_ROTATE(side); |
| 499 | |
| 500 | //compute control points |
| 501 | SwPoint _ctrl1 = {static_cast<SwCoord>(length1), 0}; |
| 502 | mathRotate(_ctrl1, phi1 + rotate); |
| 503 | SCALE(stroke, _ctrl1); |
| 504 | _ctrl1 += arc[2]; |
| 505 | |
| 506 | SwPoint _ctrl2 = {static_cast<SwCoord>(length2), 0}; |
| 507 | mathRotate(_ctrl2, phi2 + rotate); |
| 508 | SCALE(stroke, _ctrl2); |
| 509 | _ctrl2 += arc[1]; |
| 510 | |
| 511 | //compute end point |
| 512 | SwPoint _end = {static_cast<SwCoord>(stroke.width), 0}; |
| 513 | mathRotate(_end, angleOut + rotate); |
| 514 | SCALE(stroke, _end); |
| 515 | _end += arc[0]; |
| 516 | |
| 517 | if (stroke.handleWideStrokes) { |
| 518 | /* determine whether the border radius is greater than the radius of |
| 519 | curvature of the original arc */ |
| 520 | auto _start = border->pts[border->ptsCnt - 1]; |
| 521 | auto alpha1 = mathAtan(_end - _start); |
| 522 | |
| 523 | //is the direction of the border arc opposite to that of the original arc? |
| 524 | if (abs(mathDiff(alpha0, alpha1)) > SW_ANGLE_PI / 2) { |
| 525 | |
| 526 | //use the sine rule to find the intersection point |
| 527 | auto beta = mathAtan(arc[3] - _start); |
| 528 | auto gamma = mathAtan(arc[0] - _end); |
| 529 | auto bvec = _end - _start; |
| 530 | auto blen = mathLength(bvec); |
| 531 | auto sinA = abs(mathSin(alpha1 - gamma)); |
| 532 | auto sinB = abs(mathSin(beta - gamma)); |
| 533 | auto alen = mathMulDiv(blen, sinA, sinB); |
| 534 | |
| 535 | SwPoint delta = {static_cast<SwCoord>(alen), 0}; |
| 536 | mathRotate(delta, beta); |
| 537 | delta += _start; |
| 538 | |
| 539 | //circumnavigate the negative sector backwards |
| 540 | border->movable = false; |
| 541 | _borderLineTo(border, delta, false); |
| 542 | _borderLineTo(border, _end, false); |
| 543 | _borderCubicTo(border, _ctrl2, _ctrl1, _start); |
| 544 | |
| 545 | //and then move to the endpoint |
| 546 | _borderLineTo(border, _end, false); |
| 547 | |
| 548 | ++side; |
| 549 | ++border; |
| 550 | continue; |
| 551 | } |
| 552 | } |
| 553 | _borderCubicTo(border, _ctrl1, _ctrl2, _end); |
| 554 | ++side; |
| 555 | ++border; |
| 556 | } |
| 557 | arc -= 3; |
| 558 | stroke.angleIn = angleOut; |
| 559 | } |
| 560 | stroke.center = to; |
| 561 | } |
| 562 | |
| 563 | |
| 564 | static void _addCap(SwStroke& stroke, SwFixed angle, int32_t side) |
| 565 | { |
| 566 | if (stroke.cap == StrokeCap::Square) { |
| 567 | auto rotate = SIDE_TO_ROTATE(side); |
| 568 | auto border = stroke.borders + side; |
| 569 | |
| 570 | SwPoint delta = {static_cast<SwCoord>(stroke.width), 0}; |
| 571 | mathRotate(delta, angle); |
| 572 | SCALE(stroke, delta); |
| 573 | |
| 574 | SwPoint delta2 = {static_cast<SwCoord>(stroke.width), 0}; |
| 575 | mathRotate(delta2, angle + rotate); |
| 576 | SCALE(stroke, delta2); |
| 577 | delta += stroke.center + delta2; |
| 578 | |
| 579 | _borderLineTo(border, delta, false); |
| 580 | |
| 581 | delta = {static_cast<SwCoord>(stroke.width), 0}; |
| 582 | mathRotate(delta, angle); |
| 583 | SCALE(stroke, delta); |
| 584 | |
| 585 | delta2 = {static_cast<SwCoord>(stroke.width), 0}; |
| 586 | mathRotate(delta2, angle - rotate); |
| 587 | SCALE(stroke, delta2); |
| 588 | delta += delta2 + stroke.center; |
| 589 | |
| 590 | _borderLineTo(border, delta, false); |
| 591 | |
| 592 | } else if (stroke.cap == StrokeCap::Round) { |
| 593 | |
| 594 | stroke.angleIn = angle; |
| 595 | stroke.angleOut = angle + SW_ANGLE_PI; |
| 596 | _arcTo(stroke, side); |
| 597 | return; |
| 598 | |
| 599 | } else { //Butt |
| 600 | auto rotate = SIDE_TO_ROTATE(side); |
| 601 | auto border = stroke.borders + side; |
| 602 | |
| 603 | SwPoint delta = {static_cast<SwCoord>(stroke.width), 0}; |
| 604 | mathRotate(delta, angle + rotate); |
| 605 | SCALE(stroke, delta); |
| 606 | delta += stroke.center; |
| 607 | |
| 608 | _borderLineTo(border, delta, false); |
| 609 | |
| 610 | delta = {static_cast<SwCoord>(stroke.width), 0}; |
| 611 | mathRotate(delta, angle - rotate); |
| 612 | SCALE(stroke, delta); |
| 613 | delta += stroke.center; |
| 614 | |
| 615 | _borderLineTo(border, delta, false); |
| 616 | } |
| 617 | } |
| 618 | |
| 619 | |
| 620 | static void _addReverseLeft(SwStroke& stroke, bool opened) |
| 621 | { |
| 622 | auto right = stroke.borders + 0; |
| 623 | auto left = stroke.borders + 1; |
| 624 | auto newPts = left->ptsCnt - left->start; |
| 625 | |
| 626 | if (newPts <= 0) return; |
| 627 | |
| 628 | _growBorder(right, newPts); |
| 629 | |
| 630 | auto dstPt = right->pts + right->ptsCnt; |
| 631 | auto dstTag = right->tags + right->ptsCnt; |
| 632 | auto srcPt = left->pts + left->ptsCnt - 1; |
| 633 | auto srcTag = left->tags + left->ptsCnt - 1; |
| 634 | |
| 635 | while (srcPt >= left->pts + left->start) { |
| 636 | *dstPt = *srcPt; |
| 637 | *dstTag = *srcTag; |
| 638 | |
| 639 | if (opened) { |
| 640 | dstTag[0] &= ~(SW_STROKE_TAG_BEGIN | SW_STROKE_TAG_END); |
| 641 | } else { |
| 642 | //switch begin/end tags if necessary |
| 643 | auto ttag = dstTag[0] & (SW_STROKE_TAG_BEGIN | SW_STROKE_TAG_END); |
| 644 | if (ttag == SW_STROKE_TAG_BEGIN || ttag == SW_STROKE_TAG_END) |
| 645 | dstTag[0] ^= (SW_STROKE_TAG_BEGIN | SW_STROKE_TAG_END); |
| 646 | } |
| 647 | --srcPt; |
| 648 | --srcTag; |
| 649 | ++dstPt; |
| 650 | ++dstTag; |
| 651 | } |
| 652 | |
| 653 | left->ptsCnt = left->start; |
| 654 | right->ptsCnt += newPts; |
| 655 | right->movable = false; |
| 656 | left->movable = false; |
| 657 | } |
| 658 | |
| 659 | |
| 660 | static void _beginSubPath(SwStroke& stroke, const SwPoint& to, bool closed) |
| 661 | { |
| 662 | /* We cannot process the first point because there is not enough |
| 663 | information regarding its corner/cap. Later, it will be processed |
| 664 | in the _endSubPath() */ |
| 665 | |
| 666 | stroke.firstPt = true; |
| 667 | stroke.center = to; |
| 668 | stroke.closedSubPath = closed; |
| 669 | |
| 670 | /* Determine if we need to check whether the border radius is greater |
| 671 | than the radius of curvature of a curve, to handle this case specially. |
| 672 | This is only required if bevel joins or butt caps may be created because |
| 673 | round & miter joins and round & square caps cover the nagative sector |
| 674 | created with wide strokes. */ |
| 675 | if ((stroke.join != StrokeJoin::Round) || (!stroke.closedSubPath && stroke.cap == StrokeCap::Butt)) |
| 676 | stroke.handleWideStrokes = true; |
| 677 | else |
| 678 | stroke.handleWideStrokes = false; |
| 679 | |
| 680 | stroke.ptStartSubPath = to; |
| 681 | stroke.angleIn = 0; |
| 682 | } |
| 683 | |
| 684 | |
| 685 | static void _endSubPath(SwStroke& stroke) |
| 686 | { |
| 687 | if (stroke.closedSubPath) { |
| 688 | //close the path if needed |
| 689 | if (stroke.center != stroke.ptStartSubPath) |
| 690 | _lineTo(stroke, stroke.ptStartSubPath); |
| 691 | |
| 692 | //process the corner |
| 693 | stroke.angleOut = stroke.subPathAngle; |
| 694 | auto turn = mathDiff(stroke.angleIn, stroke.angleOut); |
| 695 | |
| 696 | //No specific corner processing is required if the turn is 0 |
| 697 | if (turn != 0) { |
| 698 | |
| 699 | //when we turn to the right, the inside is 0 |
| 700 | int32_t inside = 0; |
| 701 | |
| 702 | //otherwise, the inside is 1 |
| 703 | if (turn < 0) inside = 1; |
| 704 | |
| 705 | _inside(stroke, inside, stroke.subPathLineLength); //inside |
| 706 | _outside(stroke, 1 - inside, stroke.subPathLineLength); //outside |
| 707 | } |
| 708 | |
| 709 | _borderClose(stroke.borders + 0, false); |
| 710 | _borderClose(stroke.borders + 1, true); |
| 711 | } else { |
| 712 | auto right = stroke.borders; |
| 713 | |
| 714 | /* all right, this is an opened path, we need to add a cap between |
| 715 | right & left, add the reverse of left, then add a final cap |
| 716 | between left & right */ |
| 717 | _addCap(stroke, stroke.angleIn, 0); |
| 718 | |
| 719 | //add reversed points from 'left' to 'right' |
| 720 | _addReverseLeft(stroke, true); |
| 721 | |
| 722 | //now add the final cap |
| 723 | stroke.center = stroke.ptStartSubPath; |
| 724 | _addCap(stroke, stroke.subPathAngle + SW_ANGLE_PI, 0); |
| 725 | |
| 726 | /* now end the right subpath accordingly. The left one is rewind |
| 727 | and deosn't need further processing */ |
| 728 | _borderClose(right, false); |
| 729 | } |
| 730 | } |
| 731 | |
| 732 | |
| 733 | static void _getCounts(SwStrokeBorder* border, uint32_t& ptsCnt, uint32_t& cntrsCnt) |
| 734 | { |
| 735 | auto count = border->ptsCnt; |
| 736 | auto tags = border->tags; |
| 737 | uint32_t _ptsCnt = 0; |
| 738 | uint32_t _cntrsCnt = 0; |
| 739 | bool inCntr = false; |
| 740 | |
| 741 | while (count > 0) { |
| 742 | if (tags[0] & SW_STROKE_TAG_BEGIN) { |
| 743 | if (inCntr) goto fail; |
| 744 | inCntr = true; |
| 745 | } else if (!inCntr) goto fail; |
| 746 | |
| 747 | if (tags[0] & SW_STROKE_TAG_END) { |
| 748 | inCntr = false; |
| 749 | ++_cntrsCnt; |
| 750 | } |
| 751 | --count; |
| 752 | ++_ptsCnt; |
| 753 | ++tags; |
| 754 | } |
| 755 | |
| 756 | if (inCntr) goto fail; |
| 757 | |
| 758 | ptsCnt = _ptsCnt; |
| 759 | cntrsCnt = _cntrsCnt; |
| 760 | |
| 761 | return; |
| 762 | |
| 763 | fail: |
| 764 | ptsCnt = 0; |
| 765 | cntrsCnt = 0; |
| 766 | } |
| 767 | |
| 768 | |
| 769 | static void _exportBorderOutline(const SwStroke& stroke, SwOutline* outline, uint32_t side) |
| 770 | { |
| 771 | auto border = stroke.borders + side; |
| 772 | if (border->ptsCnt == 0) return; |
| 773 | |
| 774 | memcpy(outline->pts.data + outline->pts.count, border->pts, border->ptsCnt * sizeof(SwPoint)); |
| 775 | |
| 776 | auto cnt = border->ptsCnt; |
| 777 | auto src = border->tags; |
| 778 | auto tags = outline->types.data + outline->types.count; |
| 779 | auto idx = outline->pts.count; |
| 780 | |
| 781 | while (cnt > 0) { |
| 782 | if (*src & SW_STROKE_TAG_POINT) *tags = SW_CURVE_TYPE_POINT; |
| 783 | else if (*src & SW_STROKE_TAG_CUBIC) *tags = SW_CURVE_TYPE_CUBIC; |
| 784 | else TVGERR("SW_ENGINE" , "Invalid stroke tag was given! = %d" , *src); |
| 785 | if (*src & SW_STROKE_TAG_END) outline->cntrs.push(idx); |
| 786 | ++src; |
| 787 | ++tags; |
| 788 | ++idx; |
| 789 | --cnt; |
| 790 | } |
| 791 | outline->pts.count += border->ptsCnt; |
| 792 | outline->types.count += border->ptsCnt; |
| 793 | } |
| 794 | |
| 795 | |
| 796 | /************************************************************************/ |
| 797 | /* External Class Implementation */ |
| 798 | /************************************************************************/ |
| 799 | |
| 800 | void strokeFree(SwStroke* stroke) |
| 801 | { |
| 802 | if (!stroke) return; |
| 803 | |
| 804 | //free borders |
| 805 | if (stroke->borders[0].pts) free(stroke->borders[0].pts); |
| 806 | if (stroke->borders[0].tags) free(stroke->borders[0].tags); |
| 807 | if (stroke->borders[1].pts) free(stroke->borders[1].pts); |
| 808 | if (stroke->borders[1].tags) free(stroke->borders[1].tags); |
| 809 | |
| 810 | fillFree(stroke->fill); |
| 811 | stroke->fill = nullptr; |
| 812 | |
| 813 | free(stroke); |
| 814 | } |
| 815 | |
| 816 | |
| 817 | void strokeReset(SwStroke* stroke, const RenderShape* rshape, const Matrix* transform) |
| 818 | { |
| 819 | if (transform) { |
| 820 | stroke->sx = sqrtf(powf(transform->e11, 2.0f) + powf(transform->e21, 2.0f)); |
| 821 | stroke->sy = sqrtf(powf(transform->e12, 2.0f) + powf(transform->e22, 2.0f)); |
| 822 | } else { |
| 823 | stroke->sx = stroke->sy = 1.0f; |
| 824 | } |
| 825 | |
| 826 | stroke->width = HALF_STROKE(rshape->strokeWidth()); |
| 827 | stroke->cap = rshape->strokeCap(); |
| 828 | stroke->miterlimit = static_cast<SwFixed>(rshape->strokeMiterlimit()) << 16; |
| 829 | |
| 830 | //Save line join: it can be temporarily changed when stroking curves... |
| 831 | stroke->joinSaved = stroke->join = rshape->strokeJoin(); |
| 832 | |
| 833 | stroke->borders[0].ptsCnt = 0; |
| 834 | stroke->borders[0].start = -1; |
| 835 | stroke->borders[1].ptsCnt = 0; |
| 836 | stroke->borders[1].start = -1; |
| 837 | } |
| 838 | |
| 839 | |
| 840 | bool strokeParseOutline(SwStroke* stroke, const SwOutline& outline) |
| 841 | { |
| 842 | uint32_t first = 0; |
| 843 | uint32_t i = 0; |
| 844 | |
| 845 | for (auto cntr = outline.cntrs.data; cntr < outline.cntrs.end(); ++cntr, ++i) { |
| 846 | auto last = *cntr; //index of last point in contour |
| 847 | auto limit = outline.pts.data + last; |
| 848 | |
| 849 | //Skip empty points |
| 850 | if (last <= first) { |
| 851 | first = last + 1; |
| 852 | continue; |
| 853 | } |
| 854 | |
| 855 | auto start = outline.pts.data[first]; |
| 856 | auto pt = outline.pts.data + first; |
| 857 | auto types = outline.types.data + first; |
| 858 | auto type = types[0]; |
| 859 | |
| 860 | //A contour cannot start with a cubic control point |
| 861 | if (type == SW_CURVE_TYPE_CUBIC) return false; |
| 862 | |
| 863 | auto closed = outline.closed.data ? outline.closed.data[i]: false; |
| 864 | |
| 865 | _beginSubPath(*stroke, start, closed); |
| 866 | |
| 867 | while (pt < limit) { |
| 868 | ++pt; |
| 869 | ++types; |
| 870 | |
| 871 | //emit a signel line_to |
| 872 | if (types[0] == SW_CURVE_TYPE_POINT) { |
| 873 | _lineTo(*stroke, *pt); |
| 874 | //types cubic |
| 875 | } else { |
| 876 | if (pt + 1 > limit || types[1] != SW_CURVE_TYPE_CUBIC) return false; |
| 877 | |
| 878 | pt += 2; |
| 879 | types += 2; |
| 880 | |
| 881 | if (pt <= limit) { |
| 882 | _cubicTo(*stroke, pt[-2], pt[-1], pt[0]); |
| 883 | continue; |
| 884 | } |
| 885 | _cubicTo(*stroke, pt[-2], pt[-1], start); |
| 886 | goto close; |
| 887 | } |
| 888 | } |
| 889 | close: |
| 890 | if (!stroke->firstPt) _endSubPath(*stroke); |
| 891 | first = last + 1; |
| 892 | } |
| 893 | return true; |
| 894 | } |
| 895 | |
| 896 | |
| 897 | SwOutline* strokeExportOutline(SwStroke* stroke, SwMpool* mpool, unsigned tid) |
| 898 | { |
| 899 | uint32_t count1, count2, count3, count4; |
| 900 | |
| 901 | _getCounts(stroke->borders + 0, count1, count2); |
| 902 | _getCounts(stroke->borders + 1, count3, count4); |
| 903 | |
| 904 | auto ptsCnt = count1 + count3; |
| 905 | auto cntrsCnt = count2 + count4; |
| 906 | |
| 907 | auto outline = mpoolReqStrokeOutline(mpool, tid); |
| 908 | outline->pts.reserve(ptsCnt); |
| 909 | outline->types.reserve(ptsCnt); |
| 910 | outline->cntrs.reserve(cntrsCnt); |
| 911 | |
| 912 | _exportBorderOutline(*stroke, outline, 0); //left |
| 913 | _exportBorderOutline(*stroke, outline, 1); //right |
| 914 | |
| 915 | return outline; |
| 916 | } |
| 917 | |