| 1 | /******************************************************************************* |
| 2 | * Copyright 2018 Intel Corporation |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | *******************************************************************************/ |
| 16 | |
| 17 | #ifndef CPU_RNN_REORDERS_HPP |
| 18 | #define CPU_RNN_REORDERS_HPP |
| 19 | |
| 20 | #include <assert.h> |
| 21 | |
| 22 | #include "type_helpers.hpp" |
| 23 | #include "mkldnn_thread.hpp" |
| 24 | #include "utils.hpp" |
| 25 | #include "simple_q10n.hpp" |
| 26 | #include "cpu_reorder_pd.hpp" |
| 27 | #include "../gemm/os_blas.hpp" |
| 28 | |
| 29 | namespace mkldnn { |
| 30 | namespace impl { |
| 31 | namespace cpu { |
| 32 | |
| 33 | template <data_type_t type_i, data_type_t type_o> |
| 34 | struct rnn_data_reorder_t : public cpu_primitive_t { |
| 35 | struct pd_t : public cpu_reorder_pd_t { |
| 36 | using cpu_reorder_pd_t::cpu_reorder_pd_t; |
| 37 | |
| 38 | DECLARE_COMMON_PD_T("rnn_data_reorder" , rnn_data_reorder_t); |
| 39 | |
| 40 | static status_t create(reorder_pd_t **reorder_pd, |
| 41 | engine_t *engine, const primitive_attr_t *attr, |
| 42 | engine_t *src_engine, const memory_desc_t *src_md, |
| 43 | engine_t *dst_engine, const memory_desc_t *dst_md) { |
| 44 | const memory_desc_wrapper id(src_md), od(dst_md); |
| 45 | bool args_ok = true |
| 46 | && id.data_type() == type_i |
| 47 | && od.data_type() == type_o |
| 48 | && id.matches_one_of_tag(format_tag::tnc, format_tag::ldsnc) |
| 49 | && od == id; |
| 50 | if (!args_ok) return status::invalid_arguments; |
| 51 | |
| 52 | auto _pd = new pd_t(engine, attr, src_engine, src_md, dst_engine, |
| 53 | dst_md); |
| 54 | if (_pd == nullptr) return out_of_memory; |
| 55 | if (_pd->init() != success) { delete _pd; return unimplemented; } |
| 56 | return safe_ptr_assign<reorder_pd_t>(*reorder_pd, _pd); |
| 57 | } |
| 58 | }; |
| 59 | |
| 60 | private: |
| 61 | typedef typename prec_traits<type_i>::type in_data_t; |
| 62 | typedef typename prec_traits<type_o>::type out_data_t; |
| 63 | |
| 64 | rnn_data_reorder_t(const pd_t *apd): cpu_primitive_t(apd) {} |
| 65 | |
| 66 | virtual status_t execute(const exec_ctx_t &ctx) const override { |
| 67 | auto input = CTX_IN_MEM(const in_data_t *, MKLDNN_ARG_FROM); |
| 68 | auto output = CTX_OUT_MEM(out_data_t *, MKLDNN_ARG_TO); |
| 69 | const memory_desc_wrapper &input_d = pd()->src_md(); |
| 70 | const memory_desc_wrapper &output_d = pd()->dst_md(); |
| 71 | const size_t nelems = input_d.nelems(); |
| 72 | const float scale = pd()->attr()->rnn_data_qparams_.scale_; |
| 73 | const float shift = pd()->attr()->rnn_data_qparams_.shift_; |
| 74 | |
| 75 | parallel_nd(nelems, [&](size_t i) { |
| 76 | float in = (float)input[input_d.off_l(i)] * scale + shift; |
| 77 | output[output_d.off_l(i)] = qz_a1b0<float, out_data_t>()(in); |
| 78 | }); |
| 79 | |
| 80 | return status::success; |
| 81 | } |
| 82 | |
| 83 | const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); } |
| 84 | }; |
| 85 | |
| 86 | template <data_type_t type_i, data_type_t type_o> |
| 87 | struct rnn_weights_reorder_t : public cpu_primitive_t { |
| 88 | struct pd_t : public cpu_reorder_pd_t { |
| 89 | using cpu_reorder_pd_t::cpu_reorder_pd_t; |
| 90 | |
| 91 | DECLARE_COMMON_PD_T("rnn_weights_reorder" , rnn_weights_reorder_t); |
| 92 | |
| 93 | static status_t create(reorder_pd_t **reorder_pd, |
| 94 | engine_t *engine, const primitive_attr_t *attr, |
| 95 | engine_t *src_engine, const memory_desc_t *src_md, |
| 96 | engine_t *dst_engine, const memory_desc_t *dst_md) { |
| 97 | #if !USE_MKL_PACKED_GEMM |
| 98 | return status::unimplemented; |
| 99 | #endif |
| 100 | const memory_desc_wrapper id(src_md), od(dst_md); |
| 101 | bool args_ok = true |
| 102 | && id.data_type() == type_i |
| 103 | && od.data_type() == type_o |
| 104 | && od.format_kind() == format_kind::rnn_packed |
| 105 | && od.rnn_packed_desc().format == mkldnn_ldigo_p |
| 106 | && od.rnn_packed_desc().n_parts == 1 |
| 107 | && attr != nullptr; |
| 108 | if (!args_ok) return status::invalid_arguments; |
| 109 | |
| 110 | format_tag_t itag = id.matches_one_of_tag( |
| 111 | format_tag::ldigo, format_tag::ldgoi); |
| 112 | if (itag == format_tag::undef) return status::invalid_arguments; |
| 113 | |
| 114 | const int mask = attr->rnn_weights_qparams_.mask_; |
| 115 | if (!utils::one_of(mask, 0, 3)) return status::unimplemented; |
| 116 | |
| 117 | auto _pd = new pd_t(engine, attr, src_engine, src_md, dst_engine, |
| 118 | dst_md); |
| 119 | if (_pd == nullptr) return out_of_memory; |
| 120 | _pd->itag_ = itag; |
| 121 | if (_pd->init() != success) { delete _pd; return unimplemented; } |
| 122 | return safe_ptr_assign<reorder_pd_t>(*reorder_pd, _pd); |
| 123 | } |
| 124 | |
| 125 | status_t init() { |
| 126 | status_t status = cpu_reorder_pd_t::init(); |
| 127 | if (status != status::success) return status; |
| 128 | |
| 129 | init_scratchpad(); |
| 130 | |
| 131 | return status::success; |
| 132 | } |
| 133 | |
| 134 | format_tag_t itag_ = mkldnn_format_tag_undef; |
| 135 | |
| 136 | private: |
| 137 | void init_scratchpad() { |
| 138 | const memory_desc_wrapper id(src_md()); |
| 139 | const size_t nelems = id.nelems(); |
| 140 | const auto &dims = id.dims(); |
| 141 | |
| 142 | using namespace memory_tracking::names; |
| 143 | auto scratchpad = scratchpad_registry().registrar(); |
| 144 | size_t quantization_size = sizeof(int8_t) * nelems; |
| 145 | size_t reduction_size = itag_ == ldigo |
| 146 | ? sizeof(int32_t) * mkldnn_get_max_threads() * dims[0] |
| 147 | * dims[1] * dims[3] * dims[4] |
| 148 | : 0; |
| 149 | scratchpad.book( |
| 150 | key_reorder_rnn_weights_quantization, quantization_size); |
| 151 | scratchpad.book(key_reorder_rnn_weights_reduction, reduction_size); |
| 152 | } |
| 153 | }; |
| 154 | |
| 155 | private: |
| 156 | typedef typename prec_traits<type_i>::type in_data_t; |
| 157 | typedef typename prec_traits<type_o>::type out_data_t; |
| 158 | |
| 159 | rnn_weights_reorder_t(const pd_t *apd): cpu_primitive_t(apd) {} |
| 160 | |
| 161 | virtual status_t execute(const exec_ctx_t &ctx) const override { |
| 162 | #if USE_MKL_PACKED_GEMM |
| 163 | auto input = CTX_IN_MEM(const in_data_t *, MKLDNN_ARG_FROM); |
| 164 | auto output = CTX_OUT_MEM(char *, MKLDNN_ARG_TO); |
| 165 | const memory_desc_wrapper &input_d = pd()->src_md(); |
| 166 | const memory_desc_wrapper &output_d = pd()->dst_md(); |
| 167 | const auto &dims = input_d.dims(); |
| 168 | |
| 169 | const int L = dims[0]; |
| 170 | const int D = dims[1]; |
| 171 | const int I = dims[2]; |
| 172 | const int G = dims[3]; |
| 173 | const int O = dims[4]; |
| 174 | |
| 175 | const bool is_igo = pd()->itag_ == format_tag::ldigo; |
| 176 | |
| 177 | /* Quantize input & compute compensation */ |
| 178 | auto quantized = (int8_t * __restrict)scratchpad(ctx).template get<void>( |
| 179 | memory_tracking::names::key_reorder_rnn_weights_quantization); |
| 180 | auto reduction = (int32_t * __restrict)scratchpad(ctx).template get<void>( |
| 181 | memory_tracking::names::key_reorder_rnn_weights_reduction); |
| 182 | float *comp = reinterpret_cast<float *>( |
| 183 | output + output_d.rnn_packed_desc().offset_compensation); |
| 184 | const float *scales = pd()->attr()->rnn_weights_qparams_.scales_; |
| 185 | const int mask = pd()->attr()->rnn_weights_qparams_.mask_; |
| 186 | |
| 187 | if (is_igo) { |
| 188 | int nthr = mkldnn_get_max_threads(); |
| 189 | int LD_nthr = nstl::min(L * D, nthr); |
| 190 | int I_nthr = nstl::min(I, nthr / LD_nthr); |
| 191 | parallel(nthr, [&](const int ithr, const int nthr) { |
| 192 | int LD_ithr = -1, LD_s = -1, LD_e = -1; |
| 193 | int I_ithr = -1, I_s = -1, I_e = -1; |
| 194 | if (ithr < LD_nthr * I_nthr) { |
| 195 | LD_ithr = ithr % LD_nthr; |
| 196 | I_ithr = ithr / LD_nthr; |
| 197 | balance211(L * D, LD_nthr, LD_ithr, LD_s, LD_e); |
| 198 | balance211(I, I_nthr, I_ithr, I_s, I_e); |
| 199 | } |
| 200 | int32_t *comp_ithr = reduction + I_ithr * L * D * G * O; |
| 201 | for (int ld = LD_s; ld < LD_e; ld++) { |
| 202 | for (int go = 0; go < G * O; go++) |
| 203 | comp_ithr[ld * G * O + go] = 0; |
| 204 | for (int i = I_s; i < I_e; i++) { |
| 205 | PRAGMA_OMP_SIMD() |
| 206 | for (int go = 0; go < G * O; go++) { |
| 207 | const float s = scales[(mask == 0) ? 0 : go]; |
| 208 | int8_t q = qz_b0<in_data_t, out_data_t>()( |
| 209 | input[ld * I * G * O + i * G * O + go], s); |
| 210 | quantized[ld * I * G * O + i * G * O + go] |
| 211 | = (int32_t)q; |
| 212 | comp_ithr[ld * G * O + go] += (int32_t)q; |
| 213 | } |
| 214 | } |
| 215 | } |
| 216 | }); |
| 217 | parallel_nd(L * D * G * O, |
| 218 | [&](int s) { comp[s] = saturate<float>(reduction[s]); }); |
| 219 | for (int i = 1; i < I_nthr; i++) { |
| 220 | parallel_nd(L * D * G * O, [&](int s) { |
| 221 | comp[s] += saturate<float>( |
| 222 | reduction[i * L * D * G * O + s]); |
| 223 | }); |
| 224 | } |
| 225 | } else { |
| 226 | parallel_nd(L * D, G * O, [&](int ld, int go) { |
| 227 | int32_t compensation = 0; |
| 228 | const float s = scales[(mask == 0) ? 0 : go]; |
| 229 | PRAGMA_OMP_SIMD() |
| 230 | for (int i = 0; i < I; i++) { |
| 231 | int8_t q = qz_b0<in_data_t, out_data_t>()( |
| 232 | input[ld * G * O * I + go * I + i], s); |
| 233 | compensation += (int32_t)q; |
| 234 | quantized[ld * G * O * I + go * I + i] = q; |
| 235 | } |
| 236 | comp[ld * G * O + go] = saturate<float>(compensation); |
| 237 | }); |
| 238 | } |
| 239 | |
| 240 | /* Pack */ |
| 241 | auto off_igo = [&](int l, int d, int i, int g, int o) { |
| 242 | return l * D * I * G * O + d * I * G * O + i * G * O + g * O + o; |
| 243 | }; |
| 244 | auto off_goi = [&](int l, int d, int i, int g, int o) { |
| 245 | return l * D * G * O * I + d * G * O * I + g * O * I + o * I + i; |
| 246 | }; |
| 247 | int n_parts = output_d.rnn_packed_desc().n_parts; |
| 248 | const size_t *size_packed_cell |
| 249 | = output_d.rnn_packed_desc().part_pack_size; |
| 250 | const int *parts = output_d.rnn_packed_desc().parts; |
| 251 | const int n = output_d.rnn_packed_desc().n; |
| 252 | char *to_pack = output; |
| 253 | for (int l = 0; l < L; l++) { |
| 254 | for (int d = 0; d < D; d++) { |
| 255 | for (int p = 0; p < n_parts; p++) { |
| 256 | int g = (p > 0) ? parts[p - 1] : 0; |
| 257 | int m_p = parts[p] * O; |
| 258 | int k_p = I; |
| 259 | cblas_gemm_s8u8s32_pack(CblasColMajor, CblasAMatrix, |
| 260 | is_igo ? CblasNoTrans : CblasTrans, m_p, n, k_p, |
| 261 | &quantized[is_igo ? off_igo(l, d, 0, g, 0) : |
| 262 | off_goi(l, d, g, 0, 0)], |
| 263 | is_igo ? G * O : I, to_pack); |
| 264 | to_pack += size_packed_cell[p]; |
| 265 | } |
| 266 | } |
| 267 | } |
| 268 | #endif |
| 269 | return status::success; |
| 270 | } |
| 271 | |
| 272 | const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); } |
| 273 | }; |
| 274 | |
| 275 | template <> |
| 276 | struct rnn_weights_reorder_t<data_type::f32, data_type::f32> |
| 277 | : public cpu_primitive_t { |
| 278 | struct pd_t : public cpu_reorder_pd_t { |
| 279 | using cpu_reorder_pd_t::cpu_reorder_pd_t; |
| 280 | |
| 281 | DECLARE_COMMON_PD_T("rnn_weights_reorder" , rnn_weights_reorder_t); |
| 282 | |
| 283 | static status_t create(reorder_pd_t **reorder_pd, |
| 284 | engine_t *engine, const primitive_attr_t *attr, |
| 285 | engine_t *src_engine, const memory_desc_t *src_md, |
| 286 | engine_t *dst_engine, const memory_desc_t *dst_md) { |
| 287 | #if !USE_MKL_PACKED_GEMM |
| 288 | return status::unimplemented; |
| 289 | #endif |
| 290 | const memory_desc_wrapper id(src_md), od(dst_md); |
| 291 | bool args_ok = true |
| 292 | && id.data_type() == data_type::f32 |
| 293 | && od.data_type() == data_type::f32 |
| 294 | && od.format_kind() == format_kind::rnn_packed |
| 295 | && utils::one_of(od.rnn_packed_desc().format, |
| 296 | mkldnn_ldigo_p, mkldnn_ldgoi_p) |
| 297 | && attr->has_default_values(); |
| 298 | if (!args_ok) return status::invalid_arguments; |
| 299 | |
| 300 | format_tag_t itag = id.matches_one_of_tag( |
| 301 | format_tag::ldigo, format_tag::ldgoi); |
| 302 | if (itag == format_tag::undef) return status::invalid_arguments; |
| 303 | |
| 304 | const int mask = attr->rnn_weights_qparams_.mask_; |
| 305 | if (!utils::one_of(mask, 0, 3)) return status::unimplemented; |
| 306 | |
| 307 | auto _pd = new pd_t(engine, attr, src_engine, src_md, dst_engine, |
| 308 | dst_md); |
| 309 | if (_pd == nullptr) return out_of_memory; |
| 310 | if (_pd->init() != success) { delete _pd; return unimplemented; } |
| 311 | _pd->itag_ = itag; |
| 312 | return safe_ptr_assign<reorder_pd_t>(*reorder_pd, _pd); |
| 313 | } |
| 314 | |
| 315 | format_tag_t itag_; |
| 316 | }; |
| 317 | |
| 318 | private: |
| 319 | rnn_weights_reorder_t(const pd_t *apd): cpu_primitive_t(apd) {} |
| 320 | |
| 321 | virtual status_t execute(const exec_ctx_t &ctx) const override { |
| 322 | #if USE_MKL_PACKED_GEMM |
| 323 | auto input = CTX_IN_MEM(const float *, MKLDNN_ARG_FROM); |
| 324 | auto output = CTX_OUT_MEM(float *, MKLDNN_ARG_TO); |
| 325 | const memory_desc_wrapper &input_d = pd()->src_md(); |
| 326 | const memory_desc_wrapper &output_d = pd()->dst_md(); |
| 327 | const auto &dims = input_d.dims(); |
| 328 | const rnn_packed_desc_t &rnn_pdata = output_d.rnn_packed_desc(); |
| 329 | const int L = dims[0]; |
| 330 | const int D = dims[1]; |
| 331 | const int I = dims[2]; |
| 332 | const int G = dims[3]; |
| 333 | const int O = dims[4]; |
| 334 | |
| 335 | /* Pack */ |
| 336 | bool cross_case = false |
| 337 | || (pd()->itag_ == format_tag::ldigo |
| 338 | && rnn_pdata.format == mkldnn_ldgoi_p) |
| 339 | || (pd()->itag_ == format_tag::ldgoi |
| 340 | && rnn_pdata.format == mkldnn_ldigo_p); |
| 341 | auto trans = cross_case ? CblasTrans : CblasNoTrans; |
| 342 | int n_parts = rnn_pdata.n_parts; |
| 343 | const size_t *size_packed_cell = rnn_pdata.part_pack_size; |
| 344 | const int *parts = rnn_pdata.parts; |
| 345 | const int n = rnn_pdata.n; |
| 346 | |
| 347 | const bool is_igo = pd()->itag_ == format_tag::ldigo; |
| 348 | auto off_igo = [&](int l, int d, int i, int g, int o) { |
| 349 | return l * D * I * G * O + d * I * G * O + i * G * O + g * O + o; |
| 350 | }; |
| 351 | auto off_goi = [&](int l, int d, int i, int g, int o) { |
| 352 | return l * D * G * O * I + d * G * O * I + g * O * I + o * I + i; |
| 353 | }; |
| 354 | for (int l = 0; l < L; l++) { |
| 355 | for (int d = 0; d < D; d++) { |
| 356 | for (int p = 0; p < n_parts; p++) { |
| 357 | int g = (p > 0) ? parts[p - 1] : 0; |
| 358 | int m_p = is_igo ? parts[p] * O : I; |
| 359 | int k_p = is_igo ? I : parts[p] * O; |
| 360 | int ld = is_igo ? G * O : I; |
| 361 | cblas_sgemm_pack(CblasColMajor, CblasAMatrix, trans, m_p, n, |
| 362 | k_p, 1.0f, &input[is_igo ? off_igo(l, d, 0, g, 0) : |
| 363 | off_goi(l, d, 0, g, 0)], |
| 364 | ld, output); |
| 365 | output += size_packed_cell[p] / sizeof(float); |
| 366 | } |
| 367 | } |
| 368 | } |
| 369 | #endif |
| 370 | return status::success; |
| 371 | } |
| 372 | |
| 373 | const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); } |
| 374 | }; |
| 375 | |
| 376 | } // namespace cpu |
| 377 | } // namespace impl |
| 378 | } // namespace mkldnn |
| 379 | |
| 380 | #endif |
| 381 | |