| 1 | /******************************************************************************* |
| 2 | * Copyright 2016-2018 Intel Corporation |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | *******************************************************************************/ |
| 16 | |
| 17 | #include <assert.h> |
| 18 | #include "mkldnn.h" |
| 19 | |
| 20 | #include "c_types_map.hpp" |
| 21 | #include "type_helpers.hpp" |
| 22 | #include "utils.hpp" |
| 23 | |
| 24 | using namespace mkldnn::impl; |
| 25 | using namespace mkldnn::impl::utils; |
| 26 | using namespace mkldnn::impl::status; |
| 27 | using namespace mkldnn::impl::prop_kind; |
| 28 | using namespace mkldnn::impl::alg_kind; |
| 29 | using namespace mkldnn::impl::types; |
| 30 | |
| 31 | namespace { |
| 32 | status_t pooling_desc_init(pooling_desc_t *pool_desc, |
| 33 | prop_kind_t prop_kind, alg_kind_t alg_kind, |
| 34 | const memory_desc_t *src_desc, const memory_desc_t *dst_desc, |
| 35 | const dims_t strides, const dims_t kernel, const dims_t padding_l, |
| 36 | const dims_t padding_r, padding_kind_t padding_kind) { |
| 37 | bool args_ok = true |
| 38 | && !any_null(pool_desc, src_desc, dst_desc, strides, kernel, padding_l) |
| 39 | && one_of(alg_kind, pooling_max, |
| 40 | pooling_avg_include_padding, |
| 41 | pooling_avg_exclude_padding) |
| 42 | && one_of(padding_kind, padding_kind::padding_zero); |
| 43 | if (!args_ok) return invalid_arguments; |
| 44 | |
| 45 | if (padding_r == nullptr) padding_r = padding_l; |
| 46 | |
| 47 | auto pd = pooling_desc_t(); |
| 48 | pd.primitive_kind = primitive_kind::pooling; |
| 49 | pd.prop_kind = prop_kind; |
| 50 | pd.alg_kind = alg_kind; |
| 51 | pd.src_desc.ndims = src_desc->ndims; |
| 52 | |
| 53 | const bool is_fwd = one_of(prop_kind, forward_training, forward_inference); |
| 54 | |
| 55 | pd.diff_src_desc = pd.src_desc = zero_md(); |
| 56 | pd.diff_dst_desc = pd.dst_desc = zero_md(); |
| 57 | |
| 58 | (is_fwd ? pd.src_desc : pd.diff_src_desc) = *src_desc; |
| 59 | (is_fwd ? pd.dst_desc : pd.diff_dst_desc) = *dst_desc; |
| 60 | |
| 61 | int sp_dims = src_desc->ndims - 2; |
| 62 | utils::array_copy(pd.strides, strides, sp_dims); |
| 63 | utils::array_copy(pd.kernel, kernel, sp_dims); |
| 64 | utils::array_copy(pd.padding[0], padding_l, sp_dims); |
| 65 | utils::array_copy(pd.padding[1], padding_r, sp_dims); |
| 66 | |
| 67 | pd.padding_kind = padding_kind; |
| 68 | if (one_of(alg_kind, pooling_max, pooling_avg_include_padding, |
| 69 | pooling_avg_exclude_padding)) { |
| 70 | pd.accum_data_type = types::default_accum_data_type( |
| 71 | src_desc->data_type, dst_desc->data_type); |
| 72 | } else { |
| 73 | pd.accum_data_type = dst_desc->data_type; |
| 74 | } |
| 75 | |
| 76 | bool consistency = true |
| 77 | && utils::one_of(src_desc->ndims, 4, 5) |
| 78 | && utils::one_of(dst_desc->ndims, 4, 5) |
| 79 | && src_desc->dims[0] == dst_desc->dims[0] |
| 80 | && src_desc->dims[1] == dst_desc->dims[1]; |
| 81 | for (int i = 2; i < src_desc->ndims; ++i) |
| 82 | consistency = consistency && ( |
| 83 | (src_desc->dims[i] - kernel[i - 2] + padding_l[i - 2] |
| 84 | + padding_r[i - 2]) / strides[i - 2] + 1 |
| 85 | == dst_desc->dims[i]); |
| 86 | if (!consistency) return invalid_arguments; |
| 87 | |
| 88 | *pool_desc = pd; |
| 89 | return success; |
| 90 | } |
| 91 | } |
| 92 | |
| 93 | status_t mkldnn_pooling_forward_desc_init(pooling_desc_t *pool_desc, |
| 94 | prop_kind_t prop_kind, alg_kind_t alg_kind, |
| 95 | const memory_desc_t *src_desc, const memory_desc_t *dst_desc, |
| 96 | const dims_t strides, const dims_t kernel, const dims_t padding_l, |
| 97 | const dims_t padding_r, padding_kind_t padding_kind) { |
| 98 | if (!one_of(prop_kind, forward_training, forward_inference)) |
| 99 | return invalid_arguments; |
| 100 | return pooling_desc_init(pool_desc, prop_kind, alg_kind, src_desc, |
| 101 | dst_desc, strides, kernel, padding_l, padding_r, padding_kind); |
| 102 | } |
| 103 | |
| 104 | status_t mkldnn_pooling_backward_desc_init(pooling_desc_t *pool_desc, |
| 105 | alg_kind_t alg_kind, const memory_desc_t *diff_src_desc, |
| 106 | const memory_desc_t *diff_dst_desc, const dims_t strides, |
| 107 | const dims_t kernel, const dims_t padding_l, const dims_t padding_r, |
| 108 | padding_kind_t padding_kind) { |
| 109 | return pooling_desc_init(pool_desc, prop_kind::backward_data, alg_kind, |
| 110 | diff_src_desc, diff_dst_desc, strides, kernel, padding_l, |
| 111 | padding_r, padding_kind); |
| 112 | } |
| 113 | |
| 114 | // vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s |
| 115 | |