| 1 | /******************************************************************************* |
| 2 | * Copyright 2016-2018 Intel Corporation |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | *******************************************************************************/ |
| 16 | |
| 17 | #include <assert.h> |
| 18 | #include "mkldnn.h" |
| 19 | |
| 20 | #include "c_types_map.hpp" |
| 21 | #include "type_helpers.hpp" |
| 22 | #include "utils.hpp" |
| 23 | |
| 24 | using namespace mkldnn::impl; |
| 25 | using namespace mkldnn::impl::utils; |
| 26 | using namespace mkldnn::impl::status; |
| 27 | using namespace mkldnn::impl::prop_kind; |
| 28 | using namespace mkldnn::impl::alg_kind; |
| 29 | using namespace mkldnn::impl::types; |
| 30 | |
| 31 | namespace { |
| 32 | status_t bnrm_desc_init(batch_normalization_desc_t *bnrm_desc, |
| 33 | prop_kind_t prop_kind, const memory_desc_t *data_desc, |
| 34 | const memory_desc_t *diff_data_desc, float epsilon, unsigned flags) { |
| 35 | bool args_ok = true |
| 36 | && !any_null(bnrm_desc, data_desc) |
| 37 | && one_of(prop_kind, forward_training, forward_inference, |
| 38 | backward_data, backward) |
| 39 | && IMPLICATION(prop_kind & backward, diff_data_desc != nullptr); |
| 40 | if (!args_ok) return invalid_arguments; |
| 41 | |
| 42 | auto bd = batch_normalization_desc_t(); |
| 43 | bd.primitive_kind = primitive_kind::batch_normalization; |
| 44 | bd.prop_kind = prop_kind; |
| 45 | |
| 46 | bd.data_desc = *data_desc; |
| 47 | bd.diff_data_desc = zero_md(); |
| 48 | if ( one_of(bd.prop_kind,backward_data, backward) ) |
| 49 | bd.diff_data_desc = *diff_data_desc; |
| 50 | |
| 51 | dims_t scaleshift_dims = { 2, data_desc->dims[1] }; |
| 52 | mkldnn_memory_desc_init_by_tag(&bd.data_scaleshift_desc, 2, |
| 53 | scaleshift_dims, data_type::f32, mkldnn_nc); |
| 54 | bd.diff_data_scaleshift_desc = zero_md(); |
| 55 | if (bd.prop_kind == backward) { |
| 56 | bd.diff_data_scaleshift_desc = bd.data_scaleshift_desc; |
| 57 | } |
| 58 | |
| 59 | dims_t stats_dims = { data_desc->dims[1] }; |
| 60 | mkldnn_memory_desc_init_by_tag(&bd.mean_desc, 1, stats_dims, |
| 61 | data_type::f32, mkldnn_x); |
| 62 | bd.variance_desc = bd.mean_desc; |
| 63 | bd.batch_norm_epsilon = epsilon; |
| 64 | |
| 65 | unsigned bnorm_flags = |
| 66 | mkldnn_use_global_stats | mkldnn_use_scaleshift | mkldnn_fuse_bn_relu; |
| 67 | if ((~bnorm_flags & flags) != 0) return invalid_arguments; |
| 68 | |
| 69 | bd.flags = flags; |
| 70 | |
| 71 | bool consistency = true |
| 72 | && utils::one_of(bd.data_desc.ndims, 2, 4, 5); |
| 73 | if (bd.prop_kind == backward_data) |
| 74 | consistency = consistency |
| 75 | && utils::one_of(bd.diff_data_desc.ndims, 2, 4, 5) |
| 76 | && array_cmp(bd.diff_data_desc.dims, bd.data_desc.dims, |
| 77 | bd.diff_data_desc.ndims); |
| 78 | if (!consistency) return invalid_arguments; |
| 79 | |
| 80 | *bnrm_desc = bd; |
| 81 | return success; |
| 82 | } |
| 83 | } |
| 84 | |
| 85 | status_t mkldnn_batch_normalization_forward_desc_init( |
| 86 | batch_normalization_desc_t *bnrm_desc, prop_kind_t prop_kind, |
| 87 | const memory_desc_t *data_desc, float epsilon, unsigned flags) { |
| 88 | if (!one_of(prop_kind, forward_training, forward_inference)) |
| 89 | return invalid_arguments; |
| 90 | return bnrm_desc_init(bnrm_desc, prop_kind, data_desc, nullptr, |
| 91 | epsilon, flags); |
| 92 | } |
| 93 | |
| 94 | status_t mkldnn_batch_normalization_backward_desc_init( |
| 95 | batch_normalization_desc_t *bnrm_desc, prop_kind_t prop_kind, |
| 96 | const memory_desc_t *diff_data_desc, const memory_desc_t *data_desc, |
| 97 | float epsilon, unsigned flags) { |
| 98 | if (!one_of(prop_kind, backward, backward_data)) |
| 99 | return invalid_arguments; |
| 100 | return bnrm_desc_init(bnrm_desc, prop_kind, data_desc, diff_data_desc, |
| 101 | epsilon, flags); |
| 102 | } |
| 103 | |
| 104 | // vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s |
| 105 | |