| 1 | /**************************************************************************/ |
| 2 | /* godot_generic_6dof_joint_3d.cpp */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | /* |
| 32 | Adapted to Godot from the Bullet library. |
| 33 | */ |
| 34 | |
| 35 | /* |
| 36 | Bullet Continuous Collision Detection and Physics Library |
| 37 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
| 38 | |
| 39 | This software is provided 'as-is', without any express or implied warranty. |
| 40 | In no event will the authors be held liable for any damages arising from the use of this software. |
| 41 | Permission is granted to anyone to use this software for any purpose, |
| 42 | including commercial applications, and to alter it and redistribute it freely, |
| 43 | subject to the following restrictions: |
| 44 | |
| 45 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
| 46 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
| 47 | 3. This notice may not be removed or altered from any source distribution. |
| 48 | */ |
| 49 | |
| 50 | /* |
| 51 | 2007-09-09 |
| 52 | GodotGeneric6DOFJoint3D Refactored by Francisco Le?n |
| 53 | email: projectileman@yahoo.com |
| 54 | http://gimpact.sf.net |
| 55 | */ |
| 56 | |
| 57 | #include "godot_generic_6dof_joint_3d.h" |
| 58 | |
| 59 | #define GENERIC_D6_DISABLE_WARMSTARTING 1 |
| 60 | |
| 61 | //////////////////////////// GodotG6DOFRotationalLimitMotor3D //////////////////////////////////// |
| 62 | |
| 63 | int GodotG6DOFRotationalLimitMotor3D::testLimitValue(real_t test_value) { |
| 64 | if (m_loLimit > m_hiLimit) { |
| 65 | m_currentLimit = 0; //Free from violation |
| 66 | return 0; |
| 67 | } |
| 68 | |
| 69 | if (test_value < m_loLimit) { |
| 70 | m_currentLimit = 1; //low limit violation |
| 71 | m_currentLimitError = test_value - m_loLimit; |
| 72 | return 1; |
| 73 | } else if (test_value > m_hiLimit) { |
| 74 | m_currentLimit = 2; //High limit violation |
| 75 | m_currentLimitError = test_value - m_hiLimit; |
| 76 | return 2; |
| 77 | }; |
| 78 | |
| 79 | m_currentLimit = 0; //Free from violation |
| 80 | return 0; |
| 81 | } |
| 82 | |
| 83 | real_t GodotG6DOFRotationalLimitMotor3D::solveAngularLimits( |
| 84 | real_t timeStep, Vector3 &axis, real_t jacDiagABInv, |
| 85 | GodotBody3D *body0, GodotBody3D *body1, bool p_body0_dynamic, bool p_body1_dynamic) { |
| 86 | if (!needApplyTorques()) { |
| 87 | return 0.0f; |
| 88 | } |
| 89 | |
| 90 | real_t target_velocity = m_targetVelocity; |
| 91 | real_t maxMotorForce = m_maxMotorForce; |
| 92 | |
| 93 | //current error correction |
| 94 | if (m_currentLimit != 0) { |
| 95 | target_velocity = -m_ERP * m_currentLimitError / (timeStep); |
| 96 | maxMotorForce = m_maxLimitForce; |
| 97 | } |
| 98 | |
| 99 | maxMotorForce *= timeStep; |
| 100 | |
| 101 | // current velocity difference |
| 102 | Vector3 vel_diff = body0->get_angular_velocity(); |
| 103 | if (body1) { |
| 104 | vel_diff -= body1->get_angular_velocity(); |
| 105 | } |
| 106 | |
| 107 | real_t rel_vel = axis.dot(vel_diff); |
| 108 | |
| 109 | // correction velocity |
| 110 | real_t motor_relvel = m_limitSoftness * (target_velocity - m_damping * rel_vel); |
| 111 | |
| 112 | if (Math::is_zero_approx(motor_relvel)) { |
| 113 | return 0.0f; //no need for applying force |
| 114 | } |
| 115 | |
| 116 | // correction impulse |
| 117 | real_t unclippedMotorImpulse = (1 + m_bounce) * motor_relvel * jacDiagABInv; |
| 118 | |
| 119 | // clip correction impulse |
| 120 | real_t clippedMotorImpulse; |
| 121 | |
| 122 | ///@todo: should clip against accumulated impulse |
| 123 | if (unclippedMotorImpulse > 0.0f) { |
| 124 | clippedMotorImpulse = unclippedMotorImpulse > maxMotorForce ? maxMotorForce : unclippedMotorImpulse; |
| 125 | } else { |
| 126 | clippedMotorImpulse = unclippedMotorImpulse < -maxMotorForce ? -maxMotorForce : unclippedMotorImpulse; |
| 127 | } |
| 128 | |
| 129 | // sort with accumulated impulses |
| 130 | real_t lo = real_t(-1e30); |
| 131 | real_t hi = real_t(1e30); |
| 132 | |
| 133 | real_t oldaccumImpulse = m_accumulatedImpulse; |
| 134 | real_t sum = oldaccumImpulse + clippedMotorImpulse; |
| 135 | m_accumulatedImpulse = sum > hi ? real_t(0.) : (sum < lo ? real_t(0.) : sum); |
| 136 | |
| 137 | clippedMotorImpulse = m_accumulatedImpulse - oldaccumImpulse; |
| 138 | |
| 139 | Vector3 motorImp = clippedMotorImpulse * axis; |
| 140 | |
| 141 | if (p_body0_dynamic) { |
| 142 | body0->apply_torque_impulse(motorImp); |
| 143 | } |
| 144 | if (body1 && p_body1_dynamic) { |
| 145 | body1->apply_torque_impulse(-motorImp); |
| 146 | } |
| 147 | |
| 148 | return clippedMotorImpulse; |
| 149 | } |
| 150 | |
| 151 | //////////////////////////// GodotG6DOFTranslationalLimitMotor3D //////////////////////////////////// |
| 152 | |
| 153 | real_t GodotG6DOFTranslationalLimitMotor3D::solveLinearAxis( |
| 154 | real_t timeStep, |
| 155 | real_t jacDiagABInv, |
| 156 | GodotBody3D *body1, const Vector3 &pointInA, |
| 157 | GodotBody3D *body2, const Vector3 &pointInB, |
| 158 | bool p_body1_dynamic, bool p_body2_dynamic, |
| 159 | int limit_index, |
| 160 | const Vector3 &axis_normal_on_a, |
| 161 | const Vector3 &anchorPos) { |
| 162 | ///find relative velocity |
| 163 | // Vector3 rel_pos1 = pointInA - body1->get_transform().origin; |
| 164 | // Vector3 rel_pos2 = pointInB - body2->get_transform().origin; |
| 165 | Vector3 rel_pos1 = anchorPos - body1->get_transform().origin; |
| 166 | Vector3 rel_pos2 = anchorPos - body2->get_transform().origin; |
| 167 | |
| 168 | Vector3 vel1 = body1->get_velocity_in_local_point(rel_pos1); |
| 169 | Vector3 vel2 = body2->get_velocity_in_local_point(rel_pos2); |
| 170 | Vector3 vel = vel1 - vel2; |
| 171 | |
| 172 | real_t rel_vel = axis_normal_on_a.dot(vel); |
| 173 | |
| 174 | /// apply displacement correction |
| 175 | |
| 176 | //positional error (zeroth order error) |
| 177 | real_t depth = -(pointInA - pointInB).dot(axis_normal_on_a); |
| 178 | real_t lo = real_t(-1e30); |
| 179 | real_t hi = real_t(1e30); |
| 180 | |
| 181 | real_t minLimit = m_lowerLimit[limit_index]; |
| 182 | real_t maxLimit = m_upperLimit[limit_index]; |
| 183 | |
| 184 | //handle the limits |
| 185 | if (minLimit < maxLimit) { |
| 186 | { |
| 187 | if (depth > maxLimit) { |
| 188 | depth -= maxLimit; |
| 189 | lo = real_t(0.); |
| 190 | |
| 191 | } else { |
| 192 | if (depth < minLimit) { |
| 193 | depth -= minLimit; |
| 194 | hi = real_t(0.); |
| 195 | } else { |
| 196 | return 0.0f; |
| 197 | } |
| 198 | } |
| 199 | } |
| 200 | } |
| 201 | |
| 202 | real_t normalImpulse = m_limitSoftness[limit_index] * (m_restitution[limit_index] * depth / timeStep - m_damping[limit_index] * rel_vel) * jacDiagABInv; |
| 203 | |
| 204 | real_t oldNormalImpulse = m_accumulatedImpulse[limit_index]; |
| 205 | real_t sum = oldNormalImpulse + normalImpulse; |
| 206 | m_accumulatedImpulse[limit_index] = sum > hi ? real_t(0.) : (sum < lo ? real_t(0.) : sum); |
| 207 | normalImpulse = m_accumulatedImpulse[limit_index] - oldNormalImpulse; |
| 208 | |
| 209 | Vector3 impulse_vector = axis_normal_on_a * normalImpulse; |
| 210 | if (p_body1_dynamic) { |
| 211 | body1->apply_impulse(impulse_vector, rel_pos1); |
| 212 | } |
| 213 | if (p_body2_dynamic) { |
| 214 | body2->apply_impulse(-impulse_vector, rel_pos2); |
| 215 | } |
| 216 | return normalImpulse; |
| 217 | } |
| 218 | |
| 219 | //////////////////////////// GodotGeneric6DOFJoint3D //////////////////////////////////// |
| 220 | |
| 221 | GodotGeneric6DOFJoint3D::GodotGeneric6DOFJoint3D(GodotBody3D *rbA, GodotBody3D *rbB, const Transform3D &frameInA, const Transform3D &frameInB, bool useLinearReferenceFrameA) : |
| 222 | GodotJoint3D(_arr, 2), |
| 223 | m_frameInA(frameInA), |
| 224 | m_frameInB(frameInB), |
| 225 | m_useLinearReferenceFrameA(useLinearReferenceFrameA) { |
| 226 | A = rbA; |
| 227 | B = rbB; |
| 228 | A->add_constraint(this, 0); |
| 229 | B->add_constraint(this, 1); |
| 230 | } |
| 231 | |
| 232 | void GodotGeneric6DOFJoint3D::calculateAngleInfo() { |
| 233 | Basis relative_frame = m_calculatedTransformB.basis.inverse() * m_calculatedTransformA.basis; |
| 234 | |
| 235 | m_calculatedAxisAngleDiff = relative_frame.get_euler(EulerOrder::XYZ); |
| 236 | |
| 237 | // in euler angle mode we do not actually constrain the angular velocity |
| 238 | // along the axes axis[0] and axis[2] (although we do use axis[1]) : |
| 239 | // |
| 240 | // to get constrain w2-w1 along ...not |
| 241 | // ------ --------------------- ------ |
| 242 | // d(angle[0])/dt = 0 ax[1] x ax[2] ax[0] |
| 243 | // d(angle[1])/dt = 0 ax[1] |
| 244 | // d(angle[2])/dt = 0 ax[0] x ax[1] ax[2] |
| 245 | // |
| 246 | // constraining w2-w1 along an axis 'a' means that a'*(w2-w1)=0. |
| 247 | // to prove the result for angle[0], write the expression for angle[0] from |
| 248 | // GetInfo1 then take the derivative. to prove this for angle[2] it is |
| 249 | // easier to take the euler rate expression for d(angle[2])/dt with respect |
| 250 | // to the components of w and set that to 0. |
| 251 | |
| 252 | Vector3 axis0 = m_calculatedTransformB.basis.get_column(0); |
| 253 | Vector3 axis2 = m_calculatedTransformA.basis.get_column(2); |
| 254 | |
| 255 | m_calculatedAxis[1] = axis2.cross(axis0); |
| 256 | m_calculatedAxis[0] = m_calculatedAxis[1].cross(axis2); |
| 257 | m_calculatedAxis[2] = axis0.cross(m_calculatedAxis[1]); |
| 258 | |
| 259 | /* |
| 260 | if(m_debugDrawer) |
| 261 | { |
| 262 | char buff[300]; |
| 263 | sprintf(buff,"\n X: %.2f ; Y: %.2f ; Z: %.2f ", |
| 264 | m_calculatedAxisAngleDiff[0], |
| 265 | m_calculatedAxisAngleDiff[1], |
| 266 | m_calculatedAxisAngleDiff[2]); |
| 267 | m_debugDrawer->reportErrorWarning(buff); |
| 268 | } |
| 269 | */ |
| 270 | } |
| 271 | |
| 272 | void GodotGeneric6DOFJoint3D::calculateTransforms() { |
| 273 | m_calculatedTransformA = A->get_transform() * m_frameInA; |
| 274 | m_calculatedTransformB = B->get_transform() * m_frameInB; |
| 275 | |
| 276 | calculateAngleInfo(); |
| 277 | } |
| 278 | |
| 279 | void GodotGeneric6DOFJoint3D::buildLinearJacobian( |
| 280 | GodotJacobianEntry3D &jacLinear, const Vector3 &normalWorld, |
| 281 | const Vector3 &pivotAInW, const Vector3 &pivotBInW) { |
| 282 | memnew_placement( |
| 283 | &jacLinear, |
| 284 | GodotJacobianEntry3D( |
| 285 | A->get_principal_inertia_axes().transposed(), |
| 286 | B->get_principal_inertia_axes().transposed(), |
| 287 | pivotAInW - A->get_transform().origin - A->get_center_of_mass(), |
| 288 | pivotBInW - B->get_transform().origin - B->get_center_of_mass(), |
| 289 | normalWorld, |
| 290 | A->get_inv_inertia(), |
| 291 | A->get_inv_mass(), |
| 292 | B->get_inv_inertia(), |
| 293 | B->get_inv_mass())); |
| 294 | } |
| 295 | |
| 296 | void GodotGeneric6DOFJoint3D::buildAngularJacobian( |
| 297 | GodotJacobianEntry3D &jacAngular, const Vector3 &jointAxisW) { |
| 298 | memnew_placement( |
| 299 | &jacAngular, |
| 300 | GodotJacobianEntry3D( |
| 301 | jointAxisW, |
| 302 | A->get_principal_inertia_axes().transposed(), |
| 303 | B->get_principal_inertia_axes().transposed(), |
| 304 | A->get_inv_inertia(), |
| 305 | B->get_inv_inertia())); |
| 306 | } |
| 307 | |
| 308 | bool GodotGeneric6DOFJoint3D::testAngularLimitMotor(int axis_index) { |
| 309 | real_t angle = m_calculatedAxisAngleDiff[axis_index]; |
| 310 | |
| 311 | //test limits |
| 312 | m_angularLimits[axis_index].testLimitValue(angle); |
| 313 | return m_angularLimits[axis_index].needApplyTorques(); |
| 314 | } |
| 315 | |
| 316 | bool GodotGeneric6DOFJoint3D::setup(real_t p_timestep) { |
| 317 | dynamic_A = (A->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC); |
| 318 | dynamic_B = (B->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC); |
| 319 | |
| 320 | if (!dynamic_A && !dynamic_B) { |
| 321 | return false; |
| 322 | } |
| 323 | |
| 324 | // Clear accumulated impulses for the next simulation step |
| 325 | m_linearLimits.m_accumulatedImpulse = Vector3(real_t(0.), real_t(0.), real_t(0.)); |
| 326 | int i; |
| 327 | for (i = 0; i < 3; i++) { |
| 328 | m_angularLimits[i].m_accumulatedImpulse = real_t(0.); |
| 329 | } |
| 330 | //calculates transform |
| 331 | calculateTransforms(); |
| 332 | |
| 333 | // const Vector3& pivotAInW = m_calculatedTransformA.origin; |
| 334 | // const Vector3& pivotBInW = m_calculatedTransformB.origin; |
| 335 | calcAnchorPos(); |
| 336 | Vector3 pivotAInW = m_AnchorPos; |
| 337 | Vector3 pivotBInW = m_AnchorPos; |
| 338 | |
| 339 | // not used here |
| 340 | // Vector3 rel_pos1 = pivotAInW - A->get_transform().origin; |
| 341 | // Vector3 rel_pos2 = pivotBInW - B->get_transform().origin; |
| 342 | |
| 343 | Vector3 normalWorld; |
| 344 | //linear part |
| 345 | for (i = 0; i < 3; i++) { |
| 346 | if (m_linearLimits.enable_limit[i] && m_linearLimits.isLimited(i)) { |
| 347 | if (m_useLinearReferenceFrameA) { |
| 348 | normalWorld = m_calculatedTransformA.basis.get_column(i); |
| 349 | } else { |
| 350 | normalWorld = m_calculatedTransformB.basis.get_column(i); |
| 351 | } |
| 352 | |
| 353 | buildLinearJacobian( |
| 354 | m_jacLinear[i], normalWorld, |
| 355 | pivotAInW, pivotBInW); |
| 356 | } |
| 357 | } |
| 358 | |
| 359 | // angular part |
| 360 | for (i = 0; i < 3; i++) { |
| 361 | //calculates error angle |
| 362 | if (m_angularLimits[i].m_enableLimit && testAngularLimitMotor(i)) { |
| 363 | normalWorld = this->getAxis(i); |
| 364 | // Create angular atom |
| 365 | buildAngularJacobian(m_jacAng[i], normalWorld); |
| 366 | } |
| 367 | } |
| 368 | |
| 369 | return true; |
| 370 | } |
| 371 | |
| 372 | void GodotGeneric6DOFJoint3D::solve(real_t p_timestep) { |
| 373 | m_timeStep = p_timestep; |
| 374 | |
| 375 | //calculateTransforms(); |
| 376 | |
| 377 | int i; |
| 378 | |
| 379 | // linear |
| 380 | |
| 381 | Vector3 pointInA = m_calculatedTransformA.origin; |
| 382 | Vector3 pointInB = m_calculatedTransformB.origin; |
| 383 | |
| 384 | real_t jacDiagABInv; |
| 385 | Vector3 linear_axis; |
| 386 | for (i = 0; i < 3; i++) { |
| 387 | if (m_linearLimits.enable_limit[i] && m_linearLimits.isLimited(i)) { |
| 388 | jacDiagABInv = real_t(1.) / m_jacLinear[i].getDiagonal(); |
| 389 | |
| 390 | if (m_useLinearReferenceFrameA) { |
| 391 | linear_axis = m_calculatedTransformA.basis.get_column(i); |
| 392 | } else { |
| 393 | linear_axis = m_calculatedTransformB.basis.get_column(i); |
| 394 | } |
| 395 | |
| 396 | m_linearLimits.solveLinearAxis( |
| 397 | m_timeStep, |
| 398 | jacDiagABInv, |
| 399 | A, pointInA, |
| 400 | B, pointInB, |
| 401 | dynamic_A, dynamic_B, |
| 402 | i, linear_axis, m_AnchorPos); |
| 403 | } |
| 404 | } |
| 405 | |
| 406 | // angular |
| 407 | Vector3 angular_axis; |
| 408 | real_t angularJacDiagABInv; |
| 409 | for (i = 0; i < 3; i++) { |
| 410 | if (m_angularLimits[i].m_enableLimit && m_angularLimits[i].needApplyTorques()) { |
| 411 | // get axis |
| 412 | angular_axis = getAxis(i); |
| 413 | |
| 414 | angularJacDiagABInv = real_t(1.) / m_jacAng[i].getDiagonal(); |
| 415 | |
| 416 | m_angularLimits[i].solveAngularLimits(m_timeStep, angular_axis, angularJacDiagABInv, A, B, dynamic_A, dynamic_B); |
| 417 | } |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | void GodotGeneric6DOFJoint3D::updateRHS(real_t timeStep) { |
| 422 | (void)timeStep; |
| 423 | } |
| 424 | |
| 425 | Vector3 GodotGeneric6DOFJoint3D::getAxis(int axis_index) const { |
| 426 | return m_calculatedAxis[axis_index]; |
| 427 | } |
| 428 | |
| 429 | real_t GodotGeneric6DOFJoint3D::getAngle(int axis_index) const { |
| 430 | return m_calculatedAxisAngleDiff[axis_index]; |
| 431 | } |
| 432 | |
| 433 | void GodotGeneric6DOFJoint3D::calcAnchorPos() { |
| 434 | real_t imA = A->get_inv_mass(); |
| 435 | real_t imB = B->get_inv_mass(); |
| 436 | real_t weight; |
| 437 | if (imB == real_t(0.0)) { |
| 438 | weight = real_t(1.0); |
| 439 | } else { |
| 440 | weight = imA / (imA + imB); |
| 441 | } |
| 442 | const Vector3 &pA = m_calculatedTransformA.origin; |
| 443 | const Vector3 &pB = m_calculatedTransformB.origin; |
| 444 | m_AnchorPos = pA * weight + pB * (real_t(1.0) - weight); |
| 445 | } |
| 446 | |
| 447 | void GodotGeneric6DOFJoint3D::set_param(Vector3::Axis p_axis, PhysicsServer3D::G6DOFJointAxisParam p_param, real_t p_value) { |
| 448 | ERR_FAIL_INDEX(p_axis, 3); |
| 449 | switch (p_param) { |
| 450 | case PhysicsServer3D::G6DOF_JOINT_LINEAR_LOWER_LIMIT: { |
| 451 | m_linearLimits.m_lowerLimit[p_axis] = p_value; |
| 452 | } break; |
| 453 | case PhysicsServer3D::G6DOF_JOINT_LINEAR_UPPER_LIMIT: { |
| 454 | m_linearLimits.m_upperLimit[p_axis] = p_value; |
| 455 | |
| 456 | } break; |
| 457 | case PhysicsServer3D::G6DOF_JOINT_LINEAR_LIMIT_SOFTNESS: { |
| 458 | m_linearLimits.m_limitSoftness[p_axis] = p_value; |
| 459 | |
| 460 | } break; |
| 461 | case PhysicsServer3D::G6DOF_JOINT_LINEAR_RESTITUTION: { |
| 462 | m_linearLimits.m_restitution[p_axis] = p_value; |
| 463 | |
| 464 | } break; |
| 465 | case PhysicsServer3D::G6DOF_JOINT_LINEAR_DAMPING: { |
| 466 | m_linearLimits.m_damping[p_axis] = p_value; |
| 467 | |
| 468 | } break; |
| 469 | case PhysicsServer3D::G6DOF_JOINT_ANGULAR_LOWER_LIMIT: { |
| 470 | m_angularLimits[p_axis].m_loLimit = p_value; |
| 471 | |
| 472 | } break; |
| 473 | case PhysicsServer3D::G6DOF_JOINT_ANGULAR_UPPER_LIMIT: { |
| 474 | m_angularLimits[p_axis].m_hiLimit = p_value; |
| 475 | |
| 476 | } break; |
| 477 | case PhysicsServer3D::G6DOF_JOINT_ANGULAR_LIMIT_SOFTNESS: { |
| 478 | m_angularLimits[p_axis].m_limitSoftness = p_value; |
| 479 | |
| 480 | } break; |
| 481 | case PhysicsServer3D::G6DOF_JOINT_ANGULAR_DAMPING: { |
| 482 | m_angularLimits[p_axis].m_damping = p_value; |
| 483 | |
| 484 | } break; |
| 485 | case PhysicsServer3D::G6DOF_JOINT_ANGULAR_RESTITUTION: { |
| 486 | m_angularLimits[p_axis].m_bounce = p_value; |
| 487 | |
| 488 | } break; |
| 489 | case PhysicsServer3D::G6DOF_JOINT_ANGULAR_FORCE_LIMIT: { |
| 490 | m_angularLimits[p_axis].m_maxLimitForce = p_value; |
| 491 | |
| 492 | } break; |
| 493 | case PhysicsServer3D::G6DOF_JOINT_ANGULAR_ERP: { |
| 494 | m_angularLimits[p_axis].m_ERP = p_value; |
| 495 | |
| 496 | } break; |
| 497 | case PhysicsServer3D::G6DOF_JOINT_ANGULAR_MOTOR_TARGET_VELOCITY: { |
| 498 | m_angularLimits[p_axis].m_targetVelocity = p_value; |
| 499 | |
| 500 | } break; |
| 501 | case PhysicsServer3D::G6DOF_JOINT_ANGULAR_MOTOR_FORCE_LIMIT: { |
| 502 | m_angularLimits[p_axis].m_maxLimitForce = p_value; |
| 503 | |
| 504 | } break; |
| 505 | case PhysicsServer3D::G6DOF_JOINT_LINEAR_MOTOR_TARGET_VELOCITY: { |
| 506 | // Not implemented in GodotPhysics3D backend |
| 507 | } break; |
| 508 | case PhysicsServer3D::G6DOF_JOINT_LINEAR_MOTOR_FORCE_LIMIT: { |
| 509 | // Not implemented in GodotPhysics3D backend |
| 510 | } break; |
| 511 | case PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_STIFFNESS: { |
| 512 | // Not implemented in GodotPhysics3D backend |
| 513 | } break; |
| 514 | case PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_DAMPING: { |
| 515 | // Not implemented in GodotPhysics3D backend |
| 516 | } break; |
| 517 | case PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_EQUILIBRIUM_POINT: { |
| 518 | // Not implemented in GodotPhysics3D backend |
| 519 | } break; |
| 520 | case PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_STIFFNESS: { |
| 521 | // Not implemented in GodotPhysics3D backend |
| 522 | } break; |
| 523 | case PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_DAMPING: { |
| 524 | // Not implemented in GodotPhysics3D backend |
| 525 | } break; |
| 526 | case PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_EQUILIBRIUM_POINT: { |
| 527 | // Not implemented in GodotPhysics3D backend |
| 528 | } break; |
| 529 | case PhysicsServer3D::G6DOF_JOINT_MAX: |
| 530 | break; // Can't happen, but silences warning |
| 531 | } |
| 532 | } |
| 533 | |
| 534 | real_t GodotGeneric6DOFJoint3D::get_param(Vector3::Axis p_axis, PhysicsServer3D::G6DOFJointAxisParam p_param) const { |
| 535 | ERR_FAIL_INDEX_V(p_axis, 3, 0); |
| 536 | switch (p_param) { |
| 537 | case PhysicsServer3D::G6DOF_JOINT_LINEAR_LOWER_LIMIT: { |
| 538 | return m_linearLimits.m_lowerLimit[p_axis]; |
| 539 | } break; |
| 540 | case PhysicsServer3D::G6DOF_JOINT_LINEAR_UPPER_LIMIT: { |
| 541 | return m_linearLimits.m_upperLimit[p_axis]; |
| 542 | |
| 543 | } break; |
| 544 | case PhysicsServer3D::G6DOF_JOINT_LINEAR_LIMIT_SOFTNESS: { |
| 545 | return m_linearLimits.m_limitSoftness[p_axis]; |
| 546 | |
| 547 | } break; |
| 548 | case PhysicsServer3D::G6DOF_JOINT_LINEAR_RESTITUTION: { |
| 549 | return m_linearLimits.m_restitution[p_axis]; |
| 550 | |
| 551 | } break; |
| 552 | case PhysicsServer3D::G6DOF_JOINT_LINEAR_DAMPING: { |
| 553 | return m_linearLimits.m_damping[p_axis]; |
| 554 | |
| 555 | } break; |
| 556 | case PhysicsServer3D::G6DOF_JOINT_ANGULAR_LOWER_LIMIT: { |
| 557 | return m_angularLimits[p_axis].m_loLimit; |
| 558 | |
| 559 | } break; |
| 560 | case PhysicsServer3D::G6DOF_JOINT_ANGULAR_UPPER_LIMIT: { |
| 561 | return m_angularLimits[p_axis].m_hiLimit; |
| 562 | |
| 563 | } break; |
| 564 | case PhysicsServer3D::G6DOF_JOINT_ANGULAR_LIMIT_SOFTNESS: { |
| 565 | return m_angularLimits[p_axis].m_limitSoftness; |
| 566 | |
| 567 | } break; |
| 568 | case PhysicsServer3D::G6DOF_JOINT_ANGULAR_DAMPING: { |
| 569 | return m_angularLimits[p_axis].m_damping; |
| 570 | |
| 571 | } break; |
| 572 | case PhysicsServer3D::G6DOF_JOINT_ANGULAR_RESTITUTION: { |
| 573 | return m_angularLimits[p_axis].m_bounce; |
| 574 | |
| 575 | } break; |
| 576 | case PhysicsServer3D::G6DOF_JOINT_ANGULAR_FORCE_LIMIT: { |
| 577 | return m_angularLimits[p_axis].m_maxLimitForce; |
| 578 | |
| 579 | } break; |
| 580 | case PhysicsServer3D::G6DOF_JOINT_ANGULAR_ERP: { |
| 581 | return m_angularLimits[p_axis].m_ERP; |
| 582 | |
| 583 | } break; |
| 584 | case PhysicsServer3D::G6DOF_JOINT_ANGULAR_MOTOR_TARGET_VELOCITY: { |
| 585 | return m_angularLimits[p_axis].m_targetVelocity; |
| 586 | |
| 587 | } break; |
| 588 | case PhysicsServer3D::G6DOF_JOINT_ANGULAR_MOTOR_FORCE_LIMIT: { |
| 589 | return m_angularLimits[p_axis].m_maxMotorForce; |
| 590 | |
| 591 | } break; |
| 592 | case PhysicsServer3D::G6DOF_JOINT_LINEAR_MOTOR_TARGET_VELOCITY: { |
| 593 | // Not implemented in GodotPhysics3D backend |
| 594 | } break; |
| 595 | case PhysicsServer3D::G6DOF_JOINT_LINEAR_MOTOR_FORCE_LIMIT: { |
| 596 | // Not implemented in GodotPhysics3D backend |
| 597 | } break; |
| 598 | case PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_STIFFNESS: { |
| 599 | // Not implemented in GodotPhysics3D backend |
| 600 | } break; |
| 601 | case PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_DAMPING: { |
| 602 | // Not implemented in GodotPhysics3D backend |
| 603 | } break; |
| 604 | case PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_EQUILIBRIUM_POINT: { |
| 605 | // Not implemented in GodotPhysics3D backend |
| 606 | } break; |
| 607 | case PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_STIFFNESS: { |
| 608 | // Not implemented in GodotPhysics3D backend |
| 609 | } break; |
| 610 | case PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_DAMPING: { |
| 611 | // Not implemented in GodotPhysics3D backend |
| 612 | } break; |
| 613 | case PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_EQUILIBRIUM_POINT: { |
| 614 | // Not implemented in GodotPhysics3D backend |
| 615 | } break; |
| 616 | case PhysicsServer3D::G6DOF_JOINT_MAX: |
| 617 | break; // Can't happen, but silences warning |
| 618 | } |
| 619 | return 0; |
| 620 | } |
| 621 | |
| 622 | void GodotGeneric6DOFJoint3D::set_flag(Vector3::Axis p_axis, PhysicsServer3D::G6DOFJointAxisFlag p_flag, bool p_value) { |
| 623 | ERR_FAIL_INDEX(p_axis, 3); |
| 624 | |
| 625 | switch (p_flag) { |
| 626 | case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_LIMIT: { |
| 627 | m_linearLimits.enable_limit[p_axis] = p_value; |
| 628 | } break; |
| 629 | case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_LIMIT: { |
| 630 | m_angularLimits[p_axis].m_enableLimit = p_value; |
| 631 | } break; |
| 632 | case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_MOTOR: { |
| 633 | m_angularLimits[p_axis].m_enableMotor = p_value; |
| 634 | } break; |
| 635 | case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_MOTOR: { |
| 636 | // Not implemented in GodotPhysics3D backend |
| 637 | } break; |
| 638 | case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_SPRING: { |
| 639 | // Not implemented in GodotPhysics3D backend |
| 640 | } break; |
| 641 | case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_SPRING: { |
| 642 | // Not implemented in GodotPhysics3D backend |
| 643 | } break; |
| 644 | case PhysicsServer3D::G6DOF_JOINT_FLAG_MAX: |
| 645 | break; // Can't happen, but silences warning |
| 646 | } |
| 647 | } |
| 648 | |
| 649 | bool GodotGeneric6DOFJoint3D::get_flag(Vector3::Axis p_axis, PhysicsServer3D::G6DOFJointAxisFlag p_flag) const { |
| 650 | ERR_FAIL_INDEX_V(p_axis, 3, 0); |
| 651 | switch (p_flag) { |
| 652 | case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_LIMIT: { |
| 653 | return m_linearLimits.enable_limit[p_axis]; |
| 654 | } break; |
| 655 | case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_LIMIT: { |
| 656 | return m_angularLimits[p_axis].m_enableLimit; |
| 657 | } break; |
| 658 | case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_MOTOR: { |
| 659 | return m_angularLimits[p_axis].m_enableMotor; |
| 660 | } break; |
| 661 | case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_MOTOR: { |
| 662 | // Not implemented in GodotPhysics3D backend |
| 663 | } break; |
| 664 | case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_SPRING: { |
| 665 | // Not implemented in GodotPhysics3D backend |
| 666 | } break; |
| 667 | case PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_SPRING: { |
| 668 | // Not implemented in GodotPhysics3D backend |
| 669 | } break; |
| 670 | case PhysicsServer3D::G6DOF_JOINT_FLAG_MAX: |
| 671 | break; // Can't happen, but silences warning |
| 672 | } |
| 673 | |
| 674 | return false; |
| 675 | } |
| 676 | |