| 1 | /**************************************************************************/ |
| 2 | /* audio_effect_spectrum_analyzer.cpp */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #include "audio_effect_spectrum_analyzer.h" |
| 32 | #include "servers/audio_server.h" |
| 33 | |
| 34 | static void smbFft(float *fftBuffer, long fftFrameSize, long sign) |
| 35 | /* |
| 36 | FFT routine, (C)1996 S.M.Bernsee. Sign = -1 is FFT, 1 is iFFT (inverse) |
| 37 | Fills fftBuffer[0...2*fftFrameSize-1] with the Fourier transform of the |
| 38 | time domain data in fftBuffer[0...2*fftFrameSize-1]. The FFT array takes |
| 39 | and returns the cosine and sine parts in an interleaved manner, ie. |
| 40 | fftBuffer[0] = cosPart[0], fftBuffer[1] = sinPart[0], asf. fftFrameSize |
| 41 | must be a power of 2. It expects a complex input signal (see footnote 2), |
| 42 | ie. when working with 'common' audio signals our input signal has to be |
| 43 | passed as {in[0],0.,in[1],0.,in[2],0.,...} asf. In that case, the transform |
| 44 | of the frequencies of interest is in fftBuffer[0...fftFrameSize]. |
| 45 | */ |
| 46 | { |
| 47 | float wr, wi, arg, *p1, *p2, temp; |
| 48 | float tr, ti, ur, ui, *p1r, *p1i, *p2r, *p2i; |
| 49 | long i, bitm, j, le, le2, k; |
| 50 | |
| 51 | for (i = 2; i < 2 * fftFrameSize - 2; i += 2) { |
| 52 | for (bitm = 2, j = 0; bitm < 2 * fftFrameSize; bitm <<= 1) { |
| 53 | if (i & bitm) { |
| 54 | j++; |
| 55 | } |
| 56 | j <<= 1; |
| 57 | } |
| 58 | if (i < j) { |
| 59 | p1 = fftBuffer + i; |
| 60 | p2 = fftBuffer + j; |
| 61 | temp = *p1; |
| 62 | *(p1++) = *p2; |
| 63 | *(p2++) = temp; |
| 64 | temp = *p1; |
| 65 | *p1 = *p2; |
| 66 | *p2 = temp; |
| 67 | } |
| 68 | } |
| 69 | for (k = 0, le = 2; k < (long)(log((double)fftFrameSize) / log(2.) + .5); k++) { |
| 70 | le <<= 1; |
| 71 | le2 = le >> 1; |
| 72 | ur = 1.0; |
| 73 | ui = 0.0; |
| 74 | arg = Math_PI / (le2 >> 1); |
| 75 | wr = cos(arg); |
| 76 | wi = sign * sin(arg); |
| 77 | for (j = 0; j < le2; j += 2) { |
| 78 | p1r = fftBuffer + j; |
| 79 | p1i = p1r + 1; |
| 80 | p2r = p1r + le2; |
| 81 | p2i = p2r + 1; |
| 82 | for (i = j; i < 2 * fftFrameSize; i += le) { |
| 83 | tr = *p2r * ur - *p2i * ui; |
| 84 | ti = *p2r * ui + *p2i * ur; |
| 85 | *p2r = *p1r - tr; |
| 86 | *p2i = *p1i - ti; |
| 87 | *p1r += tr; |
| 88 | *p1i += ti; |
| 89 | p1r += le; |
| 90 | p1i += le; |
| 91 | p2r += le; |
| 92 | p2i += le; |
| 93 | } |
| 94 | tr = ur * wr - ui * wi; |
| 95 | ui = ur * wi + ui * wr; |
| 96 | ur = tr; |
| 97 | } |
| 98 | } |
| 99 | } |
| 100 | |
| 101 | void AudioEffectSpectrumAnalyzerInstance::process(const AudioFrame *p_src_frames, AudioFrame *p_dst_frames, int p_frame_count) { |
| 102 | uint64_t time = OS::get_singleton()->get_ticks_usec(); |
| 103 | |
| 104 | //copy everything over first, since this only really does capture |
| 105 | for (int i = 0; i < p_frame_count; i++) { |
| 106 | p_dst_frames[i] = p_src_frames[i]; |
| 107 | } |
| 108 | |
| 109 | //capture spectrum |
| 110 | while (p_frame_count) { |
| 111 | int to_fill = fft_size * 2 - temporal_fft_pos; |
| 112 | to_fill = MIN(to_fill, p_frame_count); |
| 113 | const double to_fill_step = Math_TAU / (double)fft_size; |
| 114 | |
| 115 | float *fftw = temporal_fft.ptrw(); |
| 116 | for (int i = 0; i < to_fill; i++) { //left and right buffers |
| 117 | float window = -0.5 * Math::cos(to_fill_step * (double)temporal_fft_pos) + 0.5; |
| 118 | fftw[temporal_fft_pos * 2] = window * p_src_frames->l; |
| 119 | fftw[temporal_fft_pos * 2 + 1] = 0; |
| 120 | fftw[(temporal_fft_pos + fft_size * 2) * 2] = window * p_src_frames->r; |
| 121 | fftw[(temporal_fft_pos + fft_size * 2) * 2 + 1] = 0; |
| 122 | ++p_src_frames; |
| 123 | ++temporal_fft_pos; |
| 124 | } |
| 125 | |
| 126 | p_frame_count -= to_fill; |
| 127 | |
| 128 | if (temporal_fft_pos == fft_size * 2) { |
| 129 | //time to do a FFT |
| 130 | smbFft(fftw, fft_size * 2, -1); |
| 131 | smbFft(fftw + fft_size * 4, fft_size * 2, -1); |
| 132 | int next = (fft_pos + 1) % fft_count; |
| 133 | |
| 134 | AudioFrame *hw = (AudioFrame *)fft_history[next].ptr(); //do not use write, avoid cow |
| 135 | |
| 136 | for (int i = 0; i < fft_size; i++) { |
| 137 | //abs(vec)/fft_size normalizes each frequency |
| 138 | hw[i].l = Vector2(fftw[i * 2], fftw[i * 2 + 1]).length() / float(fft_size); |
| 139 | hw[i].r = Vector2(fftw[fft_size * 4 + i * 2], fftw[fft_size * 4 + i * 2 + 1]).length() / float(fft_size); |
| 140 | } |
| 141 | |
| 142 | fft_pos = next; //swap |
| 143 | temporal_fft_pos = 0; |
| 144 | } |
| 145 | } |
| 146 | |
| 147 | //determine time of capture |
| 148 | double remainer_sec = (temporal_fft_pos / mix_rate); //subtract remainder from mix time |
| 149 | last_fft_time = time - uint64_t(remainer_sec * 1000000.0); |
| 150 | } |
| 151 | |
| 152 | void AudioEffectSpectrumAnalyzerInstance::_bind_methods() { |
| 153 | ClassDB::bind_method(D_METHOD("get_magnitude_for_frequency_range" , "from_hz" , "to_hz" , "mode" ), &AudioEffectSpectrumAnalyzerInstance::get_magnitude_for_frequency_range, DEFVAL(MAGNITUDE_MAX)); |
| 154 | BIND_ENUM_CONSTANT(MAGNITUDE_AVERAGE); |
| 155 | BIND_ENUM_CONSTANT(MAGNITUDE_MAX); |
| 156 | } |
| 157 | |
| 158 | Vector2 AudioEffectSpectrumAnalyzerInstance::get_magnitude_for_frequency_range(float p_begin, float p_end, MagnitudeMode p_mode) const { |
| 159 | if (last_fft_time == 0) { |
| 160 | return Vector2(); |
| 161 | } |
| 162 | uint64_t time = OS::get_singleton()->get_ticks_usec(); |
| 163 | float diff = double(time - last_fft_time) / 1000000.0 + base->get_tap_back_pos(); |
| 164 | diff -= AudioServer::get_singleton()->get_output_latency(); |
| 165 | float fft_time_size = float(fft_size) / mix_rate; |
| 166 | |
| 167 | int fft_index = fft_pos; |
| 168 | |
| 169 | while (diff > fft_time_size) { |
| 170 | diff -= fft_time_size; |
| 171 | fft_index -= 1; |
| 172 | if (fft_index < 0) { |
| 173 | fft_index = fft_count - 1; |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | int begin_pos = p_begin * fft_size / (mix_rate * 0.5); |
| 178 | int end_pos = p_end * fft_size / (mix_rate * 0.5); |
| 179 | |
| 180 | begin_pos = CLAMP(begin_pos, 0, fft_size - 1); |
| 181 | end_pos = CLAMP(end_pos, 0, fft_size - 1); |
| 182 | |
| 183 | if (begin_pos > end_pos) { |
| 184 | SWAP(begin_pos, end_pos); |
| 185 | } |
| 186 | const AudioFrame *r = fft_history[fft_index].ptr(); |
| 187 | |
| 188 | if (p_mode == MAGNITUDE_AVERAGE) { |
| 189 | Vector2 avg; |
| 190 | |
| 191 | for (int i = begin_pos; i <= end_pos; i++) { |
| 192 | avg += Vector2(r[i]); |
| 193 | } |
| 194 | |
| 195 | avg /= float(end_pos - begin_pos + 1); |
| 196 | |
| 197 | return avg; |
| 198 | } else { |
| 199 | Vector2 max; |
| 200 | |
| 201 | for (int i = begin_pos; i <= end_pos; i++) { |
| 202 | max.x = MAX(max.x, r[i].l); |
| 203 | max.y = MAX(max.y, r[i].r); |
| 204 | } |
| 205 | |
| 206 | return max; |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | Ref<AudioEffectInstance> AudioEffectSpectrumAnalyzer::instantiate() { |
| 211 | Ref<AudioEffectSpectrumAnalyzerInstance> ins; |
| 212 | ins.instantiate(); |
| 213 | ins->base = Ref<AudioEffectSpectrumAnalyzer>(this); |
| 214 | static const int fft_sizes[FFT_SIZE_MAX] = { 256, 512, 1024, 2048, 4096 }; |
| 215 | ins->fft_size = fft_sizes[fft_size]; |
| 216 | ins->mix_rate = AudioServer::get_singleton()->get_mix_rate(); |
| 217 | ins->fft_count = (buffer_length / (float(ins->fft_size) / ins->mix_rate)) + 1; |
| 218 | ins->fft_pos = 0; |
| 219 | ins->last_fft_time = 0; |
| 220 | ins->fft_history.resize(ins->fft_count); |
| 221 | ins->temporal_fft.resize(ins->fft_size * 8); //x2 stereo, x2 amount of samples for freqs, x2 for input |
| 222 | ins->temporal_fft_pos = 0; |
| 223 | for (int i = 0; i < ins->fft_count; i++) { |
| 224 | ins->fft_history.write[i].resize(ins->fft_size); //only magnitude matters |
| 225 | for (int j = 0; j < ins->fft_size; j++) { |
| 226 | ins->fft_history.write[i].write[j] = AudioFrame(0, 0); |
| 227 | } |
| 228 | } |
| 229 | return ins; |
| 230 | } |
| 231 | |
| 232 | void AudioEffectSpectrumAnalyzer::set_buffer_length(float p_seconds) { |
| 233 | buffer_length = p_seconds; |
| 234 | } |
| 235 | |
| 236 | float AudioEffectSpectrumAnalyzer::get_buffer_length() const { |
| 237 | return buffer_length; |
| 238 | } |
| 239 | |
| 240 | void AudioEffectSpectrumAnalyzer::set_tap_back_pos(float p_seconds) { |
| 241 | tapback_pos = p_seconds; |
| 242 | } |
| 243 | |
| 244 | float AudioEffectSpectrumAnalyzer::get_tap_back_pos() const { |
| 245 | return tapback_pos; |
| 246 | } |
| 247 | |
| 248 | void AudioEffectSpectrumAnalyzer::set_fft_size(FFTSize p_fft_size) { |
| 249 | ERR_FAIL_INDEX(p_fft_size, FFT_SIZE_MAX); |
| 250 | fft_size = p_fft_size; |
| 251 | } |
| 252 | |
| 253 | AudioEffectSpectrumAnalyzer::FFTSize AudioEffectSpectrumAnalyzer::get_fft_size() const { |
| 254 | return fft_size; |
| 255 | } |
| 256 | |
| 257 | void AudioEffectSpectrumAnalyzer::_bind_methods() { |
| 258 | ClassDB::bind_method(D_METHOD("set_buffer_length" , "seconds" ), &AudioEffectSpectrumAnalyzer::set_buffer_length); |
| 259 | ClassDB::bind_method(D_METHOD("get_buffer_length" ), &AudioEffectSpectrumAnalyzer::get_buffer_length); |
| 260 | |
| 261 | ClassDB::bind_method(D_METHOD("set_tap_back_pos" , "seconds" ), &AudioEffectSpectrumAnalyzer::set_tap_back_pos); |
| 262 | ClassDB::bind_method(D_METHOD("get_tap_back_pos" ), &AudioEffectSpectrumAnalyzer::get_tap_back_pos); |
| 263 | |
| 264 | ClassDB::bind_method(D_METHOD("set_fft_size" , "size" ), &AudioEffectSpectrumAnalyzer::set_fft_size); |
| 265 | ClassDB::bind_method(D_METHOD("get_fft_size" ), &AudioEffectSpectrumAnalyzer::get_fft_size); |
| 266 | |
| 267 | ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "buffer_length" , PROPERTY_HINT_RANGE, "0.1,4,0.1,suffix:s" ), "set_buffer_length" , "get_buffer_length" ); |
| 268 | ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "tap_back_pos" , PROPERTY_HINT_RANGE, "0.1,4,0.1" ), "set_tap_back_pos" , "get_tap_back_pos" ); |
| 269 | ADD_PROPERTY(PropertyInfo(Variant::INT, "fft_size" , PROPERTY_HINT_ENUM, "256,512,1024,2048,4096" ), "set_fft_size" , "get_fft_size" ); |
| 270 | |
| 271 | BIND_ENUM_CONSTANT(FFT_SIZE_256); |
| 272 | BIND_ENUM_CONSTANT(FFT_SIZE_512); |
| 273 | BIND_ENUM_CONSTANT(FFT_SIZE_1024); |
| 274 | BIND_ENUM_CONSTANT(FFT_SIZE_2048); |
| 275 | BIND_ENUM_CONSTANT(FFT_SIZE_4096); |
| 276 | BIND_ENUM_CONSTANT(FFT_SIZE_MAX); |
| 277 | } |
| 278 | |
| 279 | AudioEffectSpectrumAnalyzer::AudioEffectSpectrumAnalyzer() { |
| 280 | buffer_length = 2; |
| 281 | tapback_pos = 0.01; |
| 282 | fft_size = FFT_SIZE_1024; |
| 283 | } |
| 284 | |