| 1 | /**************************************************************************/ |
| 2 | /* audio_effect_pitch_shift.cpp */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #include "audio_effect_pitch_shift.h" |
| 32 | |
| 33 | #include "core/math/math_funcs.h" |
| 34 | #include "servers/audio_server.h" |
| 35 | |
| 36 | /* Thirdparty code, so disable clang-format with Godot style */ |
| 37 | /* clang-format off */ |
| 38 | |
| 39 | /**************************************************************************** |
| 40 | * |
| 41 | * NAME: smbPitchShift.cpp |
| 42 | * VERSION: 1.2 |
| 43 | * HOME URL: https://blogs.zynaptiq.com/bernsee |
| 44 | * KNOWN BUGS: none |
| 45 | * |
| 46 | * SYNOPSIS: Routine for doing pitch shifting while maintaining |
| 47 | * duration using the Short Time Fourier Transform. |
| 48 | * |
| 49 | * DESCRIPTION: The routine takes a pitchShift factor value which is between 0.5 |
| 50 | * (one octave down) and 2. (one octave up). A value of exactly 1 does not change |
| 51 | * the pitch. numSampsToProcess tells the routine how many samples in indata[0... |
| 52 | * numSampsToProcess-1] should be pitch shifted and moved to outdata[0 ... |
| 53 | * numSampsToProcess-1]. The two buffers can be identical (ie. it can process the |
| 54 | * data in-place). fftFrameSize defines the FFT frame size used for the |
| 55 | * processing. Typical values are 1024, 2048 and 4096. It may be any value <= |
| 56 | * MAX_FRAME_LENGTH but it MUST be a power of 2. osamp is the STFT |
| 57 | * oversampling factor which also determines the overlap between adjacent STFT |
| 58 | * frames. It should at least be 4 for moderate scaling ratios. A value of 32 is |
| 59 | * recommended for best quality. sampleRate takes the sample rate for the signal |
| 60 | * in unit Hz, ie. 44100 for 44.1 kHz audio. The data passed to the routine in |
| 61 | * indata[] should be in the range [-1.0, 1.0), which is also the output range |
| 62 | * for the data, make sure you scale the data accordingly (for 16bit signed integers |
| 63 | * you would have to divide (and multiply) by 32768). |
| 64 | * |
| 65 | * COPYRIGHT 1999-2015 Stephan M. Bernsee <s.bernsee [AT] zynaptiq [DOT] com> |
| 66 | * |
| 67 | * The Wide Open License (WOL) |
| 68 | * |
| 69 | * Permission to use, copy, modify, distribute and sell this software and its |
| 70 | * documentation for any purpose is hereby granted without fee, provided that |
| 71 | * the above copyright notice and this license appear in all source copies. |
| 72 | * THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF |
| 73 | * ANY KIND. See https://dspguru.com/wide-open-license/ for more information. |
| 74 | * |
| 75 | *****************************************************************************/ |
| 76 | |
| 77 | void SMBPitchShift::PitchShift(float pitchShift, long numSampsToProcess, long fftFrameSize, long osamp, float sampleRate, float *indata, float *outdata,int stride) { |
| 78 | |
| 79 | |
| 80 | /* |
| 81 | Routine smbPitchShift(). See top of file for explanation |
| 82 | Purpose: doing pitch shifting while maintaining duration using the Short |
| 83 | Time Fourier Transform. |
| 84 | Author: (c)1999-2015 Stephan M. Bernsee <s.bernsee [AT] zynaptiq [DOT] com> |
| 85 | */ |
| 86 | |
| 87 | double magn, phase, tmp, window, real, imag; |
| 88 | double freqPerBin, expct; |
| 89 | long i,k, qpd, index, inFifoLatency, stepSize, fftFrameSize2; |
| 90 | |
| 91 | /* set up some handy variables */ |
| 92 | fftFrameSize2 = fftFrameSize/2; |
| 93 | stepSize = fftFrameSize/osamp; |
| 94 | freqPerBin = sampleRate/(double)fftFrameSize; |
| 95 | expct = 2.*Math_PI*(double)stepSize/(double)fftFrameSize; |
| 96 | inFifoLatency = fftFrameSize-stepSize; |
| 97 | if (gRover == 0) { gRover = inFifoLatency; |
| 98 | } |
| 99 | |
| 100 | /* initialize our static arrays */ |
| 101 | |
| 102 | /* main processing loop */ |
| 103 | for (i = 0; i < numSampsToProcess; i++){ |
| 104 | /* As long as we have not yet collected enough data just read in */ |
| 105 | gInFIFO[gRover] = indata[i*stride]; |
| 106 | outdata[i*stride] = gOutFIFO[gRover-inFifoLatency]; |
| 107 | gRover++; |
| 108 | |
| 109 | /* now we have enough data for processing */ |
| 110 | if (gRover >= fftFrameSize) { |
| 111 | gRover = inFifoLatency; |
| 112 | |
| 113 | /* do windowing and re,im interleave */ |
| 114 | for (k = 0; k < fftFrameSize;k++) { |
| 115 | window = -.5*cos(2.*Math_PI*(double)k/(double)fftFrameSize)+.5; |
| 116 | gFFTworksp[2*k] = gInFIFO[k] * window; |
| 117 | gFFTworksp[2*k+1] = 0.; |
| 118 | } |
| 119 | |
| 120 | |
| 121 | /* ***************** ANALYSIS ******************* */ |
| 122 | /* do transform */ |
| 123 | smbFft(gFFTworksp, fftFrameSize, -1); |
| 124 | |
| 125 | /* this is the analysis step */ |
| 126 | for (k = 0; k <= fftFrameSize2; k++) { |
| 127 | /* de-interlace FFT buffer */ |
| 128 | real = gFFTworksp[2*k]; |
| 129 | imag = gFFTworksp[2*k+1]; |
| 130 | |
| 131 | /* compute magnitude and phase */ |
| 132 | magn = 2.*sqrt(real*real + imag*imag); |
| 133 | phase = atan2(imag,real); |
| 134 | |
| 135 | /* compute phase difference */ |
| 136 | tmp = phase - gLastPhase[k]; |
| 137 | gLastPhase[k] = phase; |
| 138 | |
| 139 | /* subtract expected phase difference */ |
| 140 | tmp -= (double)k*expct; |
| 141 | |
| 142 | /* map delta phase into +/- Pi interval */ |
| 143 | qpd = tmp/Math_PI; |
| 144 | if (qpd >= 0) { qpd += qpd&1; |
| 145 | } else { qpd -= qpd&1; |
| 146 | } |
| 147 | tmp -= Math_PI*(double)qpd; |
| 148 | |
| 149 | /* get deviation from bin frequency from the +/- Pi interval */ |
| 150 | tmp = osamp*tmp/(2.*Math_PI); |
| 151 | |
| 152 | /* compute the k-th partials' true frequency */ |
| 153 | tmp = (double)k*freqPerBin + tmp*freqPerBin; |
| 154 | |
| 155 | /* store magnitude and true frequency in analysis arrays */ |
| 156 | gAnaMagn[k] = magn; |
| 157 | gAnaFreq[k] = tmp; |
| 158 | |
| 159 | } |
| 160 | |
| 161 | /* ***************** PROCESSING ******************* */ |
| 162 | /* this does the actual pitch shifting */ |
| 163 | memset(gSynMagn, 0, fftFrameSize*sizeof(float)); |
| 164 | memset(gSynFreq, 0, fftFrameSize*sizeof(float)); |
| 165 | for (k = 0; k <= fftFrameSize2; k++) { |
| 166 | index = k*pitchShift; |
| 167 | if (index <= fftFrameSize2) { |
| 168 | gSynMagn[index] += gAnaMagn[k]; |
| 169 | gSynFreq[index] = gAnaFreq[k] * pitchShift; |
| 170 | } |
| 171 | } |
| 172 | |
| 173 | /* ***************** SYNTHESIS ******************* */ |
| 174 | /* this is the synthesis step */ |
| 175 | for (k = 0; k <= fftFrameSize2; k++) { |
| 176 | /* get magnitude and true frequency from synthesis arrays */ |
| 177 | magn = gSynMagn[k]; |
| 178 | tmp = gSynFreq[k]; |
| 179 | |
| 180 | /* subtract bin mid frequency */ |
| 181 | tmp -= (double)k*freqPerBin; |
| 182 | |
| 183 | /* get bin deviation from freq deviation */ |
| 184 | tmp /= freqPerBin; |
| 185 | |
| 186 | /* take osamp into account */ |
| 187 | tmp = 2.*Math_PI*tmp/osamp; |
| 188 | |
| 189 | /* add the overlap phase advance back in */ |
| 190 | tmp += (double)k*expct; |
| 191 | |
| 192 | /* accumulate delta phase to get bin phase */ |
| 193 | gSumPhase[k] += tmp; |
| 194 | phase = gSumPhase[k]; |
| 195 | |
| 196 | /* get real and imag part and re-interleave */ |
| 197 | gFFTworksp[2*k] = magn*cos(phase); |
| 198 | gFFTworksp[2*k+1] = magn*sin(phase); |
| 199 | } |
| 200 | |
| 201 | /* zero negative frequencies */ |
| 202 | for (k = fftFrameSize+2; k < 2*fftFrameSize; k++) { gFFTworksp[k] = 0.; |
| 203 | } |
| 204 | |
| 205 | /* do inverse transform */ |
| 206 | smbFft(gFFTworksp, fftFrameSize, 1); |
| 207 | |
| 208 | /* do windowing and add to output accumulator */ |
| 209 | for(k=0; k < fftFrameSize; k++) { |
| 210 | window = -.5*cos(2.*Math_PI*(double)k/(double)fftFrameSize)+.5; |
| 211 | gOutputAccum[k] += 2.*window*gFFTworksp[2*k]/(fftFrameSize2*osamp); |
| 212 | } |
| 213 | for (k = 0; k < stepSize; k++) { gOutFIFO[k] = gOutputAccum[k]; |
| 214 | } |
| 215 | |
| 216 | /* shift accumulator */ |
| 217 | memmove(gOutputAccum, gOutputAccum+stepSize, fftFrameSize*sizeof(float)); |
| 218 | |
| 219 | /* move input FIFO */ |
| 220 | for (k = 0; k < inFifoLatency; k++) { gInFIFO[k] = gInFIFO[k+stepSize]; |
| 221 | } |
| 222 | } |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | |
| 227 | |
| 228 | void SMBPitchShift::smbFft(float *fftBuffer, long fftFrameSize, long sign) |
| 229 | /* |
| 230 | FFT routine, (C)1996 S.M.Bernsee. Sign = -1 is FFT, 1 is iFFT (inverse) |
| 231 | Fills fftBuffer[0...2*fftFrameSize-1] with the Fourier transform of the |
| 232 | time domain data in fftBuffer[0...2*fftFrameSize-1]. The FFT array takes |
| 233 | and returns the cosine and sine parts in an interleaved manner, ie. |
| 234 | fftBuffer[0] = cosPart[0], fftBuffer[1] = sinPart[0], asf. fftFrameSize |
| 235 | must be a power of 2. It expects a complex input signal (see footnote 2), |
| 236 | ie. when working with 'common' audio signals our input signal has to be |
| 237 | passed as {in[0],0.,in[1],0.,in[2],0.,...} asf. In that case, the transform |
| 238 | of the frequencies of interest is in fftBuffer[0...fftFrameSize]. |
| 239 | */ |
| 240 | { |
| 241 | float wr, wi, arg, *p1, *p2, temp; |
| 242 | float tr, ti, ur, ui, *p1r, *p1i, *p2r, *p2i; |
| 243 | long i, bitm, j, le, le2, k; |
| 244 | |
| 245 | for (i = 2; i < 2*fftFrameSize-2; i += 2) { |
| 246 | for (bitm = 2, j = 0; bitm < 2*fftFrameSize; bitm <<= 1) { |
| 247 | if (i & bitm) { j++; |
| 248 | } |
| 249 | j <<= 1; |
| 250 | } |
| 251 | if (i < j) { |
| 252 | p1 = fftBuffer+i; p2 = fftBuffer+j; |
| 253 | temp = *p1; *(p1++) = *p2; |
| 254 | *(p2++) = temp; temp = *p1; |
| 255 | *p1 = *p2; *p2 = temp; |
| 256 | } |
| 257 | } |
| 258 | for (k = 0, le = 2; k < (long)(log((double)fftFrameSize)/log(2.)+.5); k++) { |
| 259 | le <<= 1; |
| 260 | le2 = le>>1; |
| 261 | ur = 1.0; |
| 262 | ui = 0.0; |
| 263 | arg = Math_PI / (le2>>1); |
| 264 | wr = cos(arg); |
| 265 | wi = sign*sin(arg); |
| 266 | for (j = 0; j < le2; j += 2) { |
| 267 | p1r = fftBuffer+j; p1i = p1r+1; |
| 268 | p2r = p1r+le2; p2i = p2r+1; |
| 269 | for (i = j; i < 2*fftFrameSize; i += le) { |
| 270 | tr = *p2r * ur - *p2i * ui; |
| 271 | ti = *p2r * ui + *p2i * ur; |
| 272 | *p2r = *p1r - tr; *p2i = *p1i - ti; |
| 273 | *p1r += tr; *p1i += ti; |
| 274 | p1r += le; p1i += le; |
| 275 | p2r += le; p2i += le; |
| 276 | } |
| 277 | tr = ur*wr - ui*wi; |
| 278 | ui = ur*wi + ui*wr; |
| 279 | ur = tr; |
| 280 | } |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | |
| 285 | /* Godot code again */ |
| 286 | /* clang-format on */ |
| 287 | |
| 288 | void AudioEffectPitchShiftInstance::process(const AudioFrame *p_src_frames, AudioFrame *p_dst_frames, int p_frame_count) { |
| 289 | float sample_rate = AudioServer::get_singleton()->get_mix_rate(); |
| 290 | |
| 291 | float *in_l = (float *)p_src_frames; |
| 292 | float *in_r = in_l + 1; |
| 293 | |
| 294 | float *out_l = (float *)p_dst_frames; |
| 295 | float *out_r = out_l + 1; |
| 296 | |
| 297 | shift_l.PitchShift(base->pitch_scale, p_frame_count, fft_size, base->oversampling, sample_rate, in_l, out_l, 2); |
| 298 | shift_r.PitchShift(base->pitch_scale, p_frame_count, fft_size, base->oversampling, sample_rate, in_r, out_r, 2); |
| 299 | } |
| 300 | |
| 301 | Ref<AudioEffectInstance> AudioEffectPitchShift::instantiate() { |
| 302 | Ref<AudioEffectPitchShiftInstance> ins; |
| 303 | ins.instantiate(); |
| 304 | ins->base = Ref<AudioEffectPitchShift>(this); |
| 305 | static const int fft_sizes[FFT_SIZE_MAX] = { 256, 512, 1024, 2048, 4096 }; |
| 306 | ins->fft_size = fft_sizes[fft_size]; |
| 307 | |
| 308 | return ins; |
| 309 | } |
| 310 | |
| 311 | void AudioEffectPitchShift::set_pitch_scale(float p_pitch_scale) { |
| 312 | ERR_FAIL_COND(!(p_pitch_scale > 0.0)); |
| 313 | pitch_scale = p_pitch_scale; |
| 314 | } |
| 315 | |
| 316 | float AudioEffectPitchShift::get_pitch_scale() const { |
| 317 | return pitch_scale; |
| 318 | } |
| 319 | |
| 320 | void AudioEffectPitchShift::set_oversampling(int p_oversampling) { |
| 321 | ERR_FAIL_COND(p_oversampling < 4); |
| 322 | oversampling = p_oversampling; |
| 323 | } |
| 324 | |
| 325 | int AudioEffectPitchShift::get_oversampling() const { |
| 326 | return oversampling; |
| 327 | } |
| 328 | |
| 329 | void AudioEffectPitchShift::set_fft_size(FFTSize p_fft_size) { |
| 330 | ERR_FAIL_INDEX(p_fft_size, FFT_SIZE_MAX); |
| 331 | fft_size = p_fft_size; |
| 332 | } |
| 333 | |
| 334 | AudioEffectPitchShift::FFTSize AudioEffectPitchShift::get_fft_size() const { |
| 335 | return fft_size; |
| 336 | } |
| 337 | |
| 338 | void AudioEffectPitchShift::_bind_methods() { |
| 339 | ClassDB::bind_method(D_METHOD("set_pitch_scale" , "rate" ), &AudioEffectPitchShift::set_pitch_scale); |
| 340 | ClassDB::bind_method(D_METHOD("get_pitch_scale" ), &AudioEffectPitchShift::get_pitch_scale); |
| 341 | |
| 342 | ClassDB::bind_method(D_METHOD("set_oversampling" , "amount" ), &AudioEffectPitchShift::set_oversampling); |
| 343 | ClassDB::bind_method(D_METHOD("get_oversampling" ), &AudioEffectPitchShift::get_oversampling); |
| 344 | |
| 345 | ClassDB::bind_method(D_METHOD("set_fft_size" , "size" ), &AudioEffectPitchShift::set_fft_size); |
| 346 | ClassDB::bind_method(D_METHOD("get_fft_size" ), &AudioEffectPitchShift::get_fft_size); |
| 347 | |
| 348 | ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "pitch_scale" , PROPERTY_HINT_RANGE, "0.01,16,0.01" ), "set_pitch_scale" , "get_pitch_scale" ); |
| 349 | ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "oversampling" , PROPERTY_HINT_RANGE, "4,32,1" ), "set_oversampling" , "get_oversampling" ); |
| 350 | ADD_PROPERTY(PropertyInfo(Variant::INT, "fft_size" , PROPERTY_HINT_ENUM, "256,512,1024,2048,4096" ), "set_fft_size" , "get_fft_size" ); |
| 351 | |
| 352 | BIND_ENUM_CONSTANT(FFT_SIZE_256); |
| 353 | BIND_ENUM_CONSTANT(FFT_SIZE_512); |
| 354 | BIND_ENUM_CONSTANT(FFT_SIZE_1024); |
| 355 | BIND_ENUM_CONSTANT(FFT_SIZE_2048); |
| 356 | BIND_ENUM_CONSTANT(FFT_SIZE_4096); |
| 357 | BIND_ENUM_CONSTANT(FFT_SIZE_MAX); |
| 358 | } |
| 359 | |
| 360 | AudioEffectPitchShift::AudioEffectPitchShift() { |
| 361 | pitch_scale = 1.0; |
| 362 | oversampling = 4; |
| 363 | fft_size = FFT_SIZE_2048; |
| 364 | wet = 0.0; |
| 365 | dry = 0.0; |
| 366 | filter = false; |
| 367 | } |
| 368 | |