| 1 | /**************************************************************************/ |
| 2 | /* transform_2d.cpp */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #include "transform_2d.h" |
| 32 | |
| 33 | #include "core/string/ustring.h" |
| 34 | |
| 35 | void Transform2D::invert() { |
| 36 | // FIXME: this function assumes the basis is a rotation matrix, with no scaling. |
| 37 | // Transform2D::affine_inverse can handle matrices with scaling, so GDScript should eventually use that. |
| 38 | SWAP(columns[0][1], columns[1][0]); |
| 39 | columns[2] = basis_xform(-columns[2]); |
| 40 | } |
| 41 | |
| 42 | Transform2D Transform2D::inverse() const { |
| 43 | Transform2D inv = *this; |
| 44 | inv.invert(); |
| 45 | return inv; |
| 46 | } |
| 47 | |
| 48 | void Transform2D::affine_invert() { |
| 49 | real_t det = determinant(); |
| 50 | #ifdef MATH_CHECKS |
| 51 | ERR_FAIL_COND(det == 0); |
| 52 | #endif |
| 53 | real_t idet = 1.0f / det; |
| 54 | |
| 55 | SWAP(columns[0][0], columns[1][1]); |
| 56 | columns[0] *= Vector2(idet, -idet); |
| 57 | columns[1] *= Vector2(-idet, idet); |
| 58 | |
| 59 | columns[2] = basis_xform(-columns[2]); |
| 60 | } |
| 61 | |
| 62 | Transform2D Transform2D::affine_inverse() const { |
| 63 | Transform2D inv = *this; |
| 64 | inv.affine_invert(); |
| 65 | return inv; |
| 66 | } |
| 67 | |
| 68 | void Transform2D::rotate(const real_t p_angle) { |
| 69 | *this = Transform2D(p_angle, Vector2()) * (*this); |
| 70 | } |
| 71 | |
| 72 | real_t Transform2D::get_skew() const { |
| 73 | real_t det = determinant(); |
| 74 | return Math::acos(columns[0].normalized().dot(SIGN(det) * columns[1].normalized())) - (real_t)Math_PI * 0.5f; |
| 75 | } |
| 76 | |
| 77 | void Transform2D::set_skew(const real_t p_angle) { |
| 78 | real_t det = determinant(); |
| 79 | columns[1] = SIGN(det) * columns[0].rotated(((real_t)Math_PI * 0.5f + p_angle)).normalized() * columns[1].length(); |
| 80 | } |
| 81 | |
| 82 | real_t Transform2D::get_rotation() const { |
| 83 | return Math::atan2(columns[0].y, columns[0].x); |
| 84 | } |
| 85 | |
| 86 | void Transform2D::set_rotation(const real_t p_rot) { |
| 87 | Size2 scale = get_scale(); |
| 88 | real_t cr = Math::cos(p_rot); |
| 89 | real_t sr = Math::sin(p_rot); |
| 90 | columns[0][0] = cr; |
| 91 | columns[0][1] = sr; |
| 92 | columns[1][0] = -sr; |
| 93 | columns[1][1] = cr; |
| 94 | set_scale(scale); |
| 95 | } |
| 96 | |
| 97 | Transform2D::Transform2D(const real_t p_rot, const Vector2 &p_pos) { |
| 98 | real_t cr = Math::cos(p_rot); |
| 99 | real_t sr = Math::sin(p_rot); |
| 100 | columns[0][0] = cr; |
| 101 | columns[0][1] = sr; |
| 102 | columns[1][0] = -sr; |
| 103 | columns[1][1] = cr; |
| 104 | columns[2] = p_pos; |
| 105 | } |
| 106 | |
| 107 | Transform2D::Transform2D(const real_t p_rot, const Size2 &p_scale, const real_t p_skew, const Vector2 &p_pos) { |
| 108 | columns[0][0] = Math::cos(p_rot) * p_scale.x; |
| 109 | columns[1][1] = Math::cos(p_rot + p_skew) * p_scale.y; |
| 110 | columns[1][0] = -Math::sin(p_rot + p_skew) * p_scale.y; |
| 111 | columns[0][1] = Math::sin(p_rot) * p_scale.x; |
| 112 | columns[2] = p_pos; |
| 113 | } |
| 114 | |
| 115 | Size2 Transform2D::get_scale() const { |
| 116 | real_t det_sign = SIGN(determinant()); |
| 117 | return Size2(columns[0].length(), det_sign * columns[1].length()); |
| 118 | } |
| 119 | |
| 120 | void Transform2D::set_scale(const Size2 &p_scale) { |
| 121 | columns[0].normalize(); |
| 122 | columns[1].normalize(); |
| 123 | columns[0] *= p_scale.x; |
| 124 | columns[1] *= p_scale.y; |
| 125 | } |
| 126 | |
| 127 | void Transform2D::scale(const Size2 &p_scale) { |
| 128 | scale_basis(p_scale); |
| 129 | columns[2] *= p_scale; |
| 130 | } |
| 131 | |
| 132 | void Transform2D::scale_basis(const Size2 &p_scale) { |
| 133 | columns[0][0] *= p_scale.x; |
| 134 | columns[0][1] *= p_scale.y; |
| 135 | columns[1][0] *= p_scale.x; |
| 136 | columns[1][1] *= p_scale.y; |
| 137 | } |
| 138 | |
| 139 | void Transform2D::translate_local(const real_t p_tx, const real_t p_ty) { |
| 140 | translate_local(Vector2(p_tx, p_ty)); |
| 141 | } |
| 142 | |
| 143 | void Transform2D::translate_local(const Vector2 &p_translation) { |
| 144 | columns[2] += basis_xform(p_translation); |
| 145 | } |
| 146 | |
| 147 | void Transform2D::orthonormalize() { |
| 148 | // Gram-Schmidt Process |
| 149 | |
| 150 | Vector2 x = columns[0]; |
| 151 | Vector2 y = columns[1]; |
| 152 | |
| 153 | x.normalize(); |
| 154 | y = y - x * x.dot(y); |
| 155 | y.normalize(); |
| 156 | |
| 157 | columns[0] = x; |
| 158 | columns[1] = y; |
| 159 | } |
| 160 | |
| 161 | Transform2D Transform2D::orthonormalized() const { |
| 162 | Transform2D ortho = *this; |
| 163 | ortho.orthonormalize(); |
| 164 | return ortho; |
| 165 | } |
| 166 | |
| 167 | bool Transform2D::is_equal_approx(const Transform2D &p_transform) const { |
| 168 | return columns[0].is_equal_approx(p_transform.columns[0]) && columns[1].is_equal_approx(p_transform.columns[1]) && columns[2].is_equal_approx(p_transform.columns[2]); |
| 169 | } |
| 170 | |
| 171 | bool Transform2D::is_finite() const { |
| 172 | return columns[0].is_finite() && columns[1].is_finite() && columns[2].is_finite(); |
| 173 | } |
| 174 | |
| 175 | Transform2D Transform2D::looking_at(const Vector2 &p_target) const { |
| 176 | Transform2D return_trans = Transform2D(get_rotation(), get_origin()); |
| 177 | Vector2 target_position = affine_inverse().xform(p_target); |
| 178 | return_trans.set_rotation(return_trans.get_rotation() + (target_position * get_scale()).angle()); |
| 179 | return return_trans; |
| 180 | } |
| 181 | |
| 182 | bool Transform2D::operator==(const Transform2D &p_transform) const { |
| 183 | for (int i = 0; i < 3; i++) { |
| 184 | if (columns[i] != p_transform.columns[i]) { |
| 185 | return false; |
| 186 | } |
| 187 | } |
| 188 | |
| 189 | return true; |
| 190 | } |
| 191 | |
| 192 | bool Transform2D::operator!=(const Transform2D &p_transform) const { |
| 193 | for (int i = 0; i < 3; i++) { |
| 194 | if (columns[i] != p_transform.columns[i]) { |
| 195 | return true; |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | return false; |
| 200 | } |
| 201 | |
| 202 | void Transform2D::operator*=(const Transform2D &p_transform) { |
| 203 | columns[2] = xform(p_transform.columns[2]); |
| 204 | |
| 205 | real_t x0, x1, y0, y1; |
| 206 | |
| 207 | x0 = tdotx(p_transform.columns[0]); |
| 208 | x1 = tdoty(p_transform.columns[0]); |
| 209 | y0 = tdotx(p_transform.columns[1]); |
| 210 | y1 = tdoty(p_transform.columns[1]); |
| 211 | |
| 212 | columns[0][0] = x0; |
| 213 | columns[0][1] = x1; |
| 214 | columns[1][0] = y0; |
| 215 | columns[1][1] = y1; |
| 216 | } |
| 217 | |
| 218 | Transform2D Transform2D::operator*(const Transform2D &p_transform) const { |
| 219 | Transform2D t = *this; |
| 220 | t *= p_transform; |
| 221 | return t; |
| 222 | } |
| 223 | |
| 224 | Transform2D Transform2D::scaled(const Size2 &p_scale) const { |
| 225 | // Equivalent to left multiplication |
| 226 | Transform2D copy = *this; |
| 227 | copy.scale(p_scale); |
| 228 | return copy; |
| 229 | } |
| 230 | |
| 231 | Transform2D Transform2D::scaled_local(const Size2 &p_scale) const { |
| 232 | // Equivalent to right multiplication |
| 233 | return Transform2D(columns[0] * p_scale.x, columns[1] * p_scale.y, columns[2]); |
| 234 | } |
| 235 | |
| 236 | Transform2D Transform2D::untranslated() const { |
| 237 | Transform2D copy = *this; |
| 238 | copy.columns[2] = Vector2(); |
| 239 | return copy; |
| 240 | } |
| 241 | |
| 242 | Transform2D Transform2D::translated(const Vector2 &p_offset) const { |
| 243 | // Equivalent to left multiplication |
| 244 | return Transform2D(columns[0], columns[1], columns[2] + p_offset); |
| 245 | } |
| 246 | |
| 247 | Transform2D Transform2D::translated_local(const Vector2 &p_offset) const { |
| 248 | // Equivalent to right multiplication |
| 249 | return Transform2D(columns[0], columns[1], columns[2] + basis_xform(p_offset)); |
| 250 | } |
| 251 | |
| 252 | Transform2D Transform2D::rotated(const real_t p_angle) const { |
| 253 | // Equivalent to left multiplication |
| 254 | return Transform2D(p_angle, Vector2()) * (*this); |
| 255 | } |
| 256 | |
| 257 | Transform2D Transform2D::rotated_local(const real_t p_angle) const { |
| 258 | // Equivalent to right multiplication |
| 259 | return (*this) * Transform2D(p_angle, Vector2()); // Could be optimized, because origin transform can be skipped. |
| 260 | } |
| 261 | |
| 262 | real_t Transform2D::determinant() const { |
| 263 | return columns[0].x * columns[1].y - columns[0].y * columns[1].x; |
| 264 | } |
| 265 | |
| 266 | Transform2D Transform2D::interpolate_with(const Transform2D &p_transform, const real_t p_weight) const { |
| 267 | return Transform2D( |
| 268 | Math::lerp_angle(get_rotation(), p_transform.get_rotation(), p_weight), |
| 269 | get_scale().lerp(p_transform.get_scale(), p_weight), |
| 270 | Math::lerp_angle(get_skew(), p_transform.get_skew(), p_weight), |
| 271 | get_origin().lerp(p_transform.get_origin(), p_weight)); |
| 272 | } |
| 273 | |
| 274 | void Transform2D::operator*=(const real_t p_val) { |
| 275 | columns[0] *= p_val; |
| 276 | columns[1] *= p_val; |
| 277 | columns[2] *= p_val; |
| 278 | } |
| 279 | |
| 280 | Transform2D Transform2D::operator*(const real_t p_val) const { |
| 281 | Transform2D ret(*this); |
| 282 | ret *= p_val; |
| 283 | return ret; |
| 284 | } |
| 285 | |
| 286 | Transform2D::operator String() const { |
| 287 | return "[X: " + columns[0].operator String() + |
| 288 | ", Y: " + columns[1].operator String() + |
| 289 | ", O: " + columns[2].operator String() + "]" ; |
| 290 | } |
| 291 | |