| 1 | /**************************************************************************/ |
| 2 | /* basis.cpp */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #include "basis.h" |
| 32 | |
| 33 | #include "core/math/math_funcs.h" |
| 34 | #include "core/string/ustring.h" |
| 35 | |
| 36 | #define cofac(row1, col1, row2, col2) \ |
| 37 | (rows[row1][col1] * rows[row2][col2] - rows[row1][col2] * rows[row2][col1]) |
| 38 | |
| 39 | void Basis::invert() { |
| 40 | real_t co[3] = { |
| 41 | cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1) |
| 42 | }; |
| 43 | real_t det = rows[0][0] * co[0] + |
| 44 | rows[0][1] * co[1] + |
| 45 | rows[0][2] * co[2]; |
| 46 | #ifdef MATH_CHECKS |
| 47 | ERR_FAIL_COND(det == 0); |
| 48 | #endif |
| 49 | real_t s = 1.0f / det; |
| 50 | |
| 51 | set(co[0] * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s, |
| 52 | co[1] * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s, |
| 53 | co[2] * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s); |
| 54 | } |
| 55 | |
| 56 | void Basis::orthonormalize() { |
| 57 | // Gram-Schmidt Process |
| 58 | |
| 59 | Vector3 x = get_column(0); |
| 60 | Vector3 y = get_column(1); |
| 61 | Vector3 z = get_column(2); |
| 62 | |
| 63 | x.normalize(); |
| 64 | y = (y - x * (x.dot(y))); |
| 65 | y.normalize(); |
| 66 | z = (z - x * (x.dot(z)) - y * (y.dot(z))); |
| 67 | z.normalize(); |
| 68 | |
| 69 | set_column(0, x); |
| 70 | set_column(1, y); |
| 71 | set_column(2, z); |
| 72 | } |
| 73 | |
| 74 | Basis Basis::orthonormalized() const { |
| 75 | Basis c = *this; |
| 76 | c.orthonormalize(); |
| 77 | return c; |
| 78 | } |
| 79 | |
| 80 | void Basis::orthogonalize() { |
| 81 | Vector3 scl = get_scale(); |
| 82 | orthonormalize(); |
| 83 | scale_local(scl); |
| 84 | } |
| 85 | |
| 86 | Basis Basis::orthogonalized() const { |
| 87 | Basis c = *this; |
| 88 | c.orthogonalize(); |
| 89 | return c; |
| 90 | } |
| 91 | |
| 92 | bool Basis::is_orthogonal() const { |
| 93 | Basis identity; |
| 94 | Basis m = (*this) * transposed(); |
| 95 | |
| 96 | return m.is_equal_approx(identity); |
| 97 | } |
| 98 | |
| 99 | bool Basis::is_diagonal() const { |
| 100 | return ( |
| 101 | Math::is_zero_approx(rows[0][1]) && Math::is_zero_approx(rows[0][2]) && |
| 102 | Math::is_zero_approx(rows[1][0]) && Math::is_zero_approx(rows[1][2]) && |
| 103 | Math::is_zero_approx(rows[2][0]) && Math::is_zero_approx(rows[2][1])); |
| 104 | } |
| 105 | |
| 106 | bool Basis::is_rotation() const { |
| 107 | return Math::is_equal_approx(determinant(), 1, (real_t)UNIT_EPSILON) && is_orthogonal(); |
| 108 | } |
| 109 | |
| 110 | #ifdef MATH_CHECKS |
| 111 | // This method is only used once, in diagonalize. If it's desired elsewhere, feel free to remove the #ifdef. |
| 112 | bool Basis::is_symmetric() const { |
| 113 | if (!Math::is_equal_approx(rows[0][1], rows[1][0])) { |
| 114 | return false; |
| 115 | } |
| 116 | if (!Math::is_equal_approx(rows[0][2], rows[2][0])) { |
| 117 | return false; |
| 118 | } |
| 119 | if (!Math::is_equal_approx(rows[1][2], rows[2][1])) { |
| 120 | return false; |
| 121 | } |
| 122 | |
| 123 | return true; |
| 124 | } |
| 125 | #endif |
| 126 | |
| 127 | Basis Basis::diagonalize() { |
| 128 | // NOTE: only implemented for symmetric matrices |
| 129 | // with the Jacobi iterative method |
| 130 | #ifdef MATH_CHECKS |
| 131 | ERR_FAIL_COND_V(!is_symmetric(), Basis()); |
| 132 | #endif |
| 133 | const int ite_max = 1024; |
| 134 | |
| 135 | real_t off_matrix_norm_2 = rows[0][1] * rows[0][1] + rows[0][2] * rows[0][2] + rows[1][2] * rows[1][2]; |
| 136 | |
| 137 | int ite = 0; |
| 138 | Basis acc_rot; |
| 139 | while (off_matrix_norm_2 > (real_t)CMP_EPSILON2 && ite++ < ite_max) { |
| 140 | real_t el01_2 = rows[0][1] * rows[0][1]; |
| 141 | real_t el02_2 = rows[0][2] * rows[0][2]; |
| 142 | real_t el12_2 = rows[1][2] * rows[1][2]; |
| 143 | // Find the pivot element |
| 144 | int i, j; |
| 145 | if (el01_2 > el02_2) { |
| 146 | if (el12_2 > el01_2) { |
| 147 | i = 1; |
| 148 | j = 2; |
| 149 | } else { |
| 150 | i = 0; |
| 151 | j = 1; |
| 152 | } |
| 153 | } else { |
| 154 | if (el12_2 > el02_2) { |
| 155 | i = 1; |
| 156 | j = 2; |
| 157 | } else { |
| 158 | i = 0; |
| 159 | j = 2; |
| 160 | } |
| 161 | } |
| 162 | |
| 163 | // Compute the rotation angle |
| 164 | real_t angle; |
| 165 | if (Math::is_equal_approx(rows[j][j], rows[i][i])) { |
| 166 | angle = Math_PI / 4; |
| 167 | } else { |
| 168 | angle = 0.5f * Math::atan(2 * rows[i][j] / (rows[j][j] - rows[i][i])); |
| 169 | } |
| 170 | |
| 171 | // Compute the rotation matrix |
| 172 | Basis rot; |
| 173 | rot.rows[i][i] = rot.rows[j][j] = Math::cos(angle); |
| 174 | rot.rows[i][j] = -(rot.rows[j][i] = Math::sin(angle)); |
| 175 | |
| 176 | // Update the off matrix norm |
| 177 | off_matrix_norm_2 -= rows[i][j] * rows[i][j]; |
| 178 | |
| 179 | // Apply the rotation |
| 180 | *this = rot * *this * rot.transposed(); |
| 181 | acc_rot = rot * acc_rot; |
| 182 | } |
| 183 | |
| 184 | return acc_rot; |
| 185 | } |
| 186 | |
| 187 | Basis Basis::inverse() const { |
| 188 | Basis inv = *this; |
| 189 | inv.invert(); |
| 190 | return inv; |
| 191 | } |
| 192 | |
| 193 | void Basis::transpose() { |
| 194 | SWAP(rows[0][1], rows[1][0]); |
| 195 | SWAP(rows[0][2], rows[2][0]); |
| 196 | SWAP(rows[1][2], rows[2][1]); |
| 197 | } |
| 198 | |
| 199 | Basis Basis::transposed() const { |
| 200 | Basis tr = *this; |
| 201 | tr.transpose(); |
| 202 | return tr; |
| 203 | } |
| 204 | |
| 205 | Basis Basis::from_scale(const Vector3 &p_scale) { |
| 206 | return Basis(p_scale.x, 0, 0, 0, p_scale.y, 0, 0, 0, p_scale.z); |
| 207 | } |
| 208 | |
| 209 | // Multiplies the matrix from left by the scaling matrix: M -> S.M |
| 210 | // See the comment for Basis::rotated for further explanation. |
| 211 | void Basis::scale(const Vector3 &p_scale) { |
| 212 | rows[0][0] *= p_scale.x; |
| 213 | rows[0][1] *= p_scale.x; |
| 214 | rows[0][2] *= p_scale.x; |
| 215 | rows[1][0] *= p_scale.y; |
| 216 | rows[1][1] *= p_scale.y; |
| 217 | rows[1][2] *= p_scale.y; |
| 218 | rows[2][0] *= p_scale.z; |
| 219 | rows[2][1] *= p_scale.z; |
| 220 | rows[2][2] *= p_scale.z; |
| 221 | } |
| 222 | |
| 223 | Basis Basis::scaled(const Vector3 &p_scale) const { |
| 224 | Basis m = *this; |
| 225 | m.scale(p_scale); |
| 226 | return m; |
| 227 | } |
| 228 | |
| 229 | void Basis::scale_local(const Vector3 &p_scale) { |
| 230 | // performs a scaling in object-local coordinate system: |
| 231 | // M -> (M.S.Minv).M = M.S. |
| 232 | *this = scaled_local(p_scale); |
| 233 | } |
| 234 | |
| 235 | void Basis::scale_orthogonal(const Vector3 &p_scale) { |
| 236 | *this = scaled_orthogonal(p_scale); |
| 237 | } |
| 238 | |
| 239 | Basis Basis::scaled_orthogonal(const Vector3 &p_scale) const { |
| 240 | Basis m = *this; |
| 241 | Vector3 s = Vector3(-1, -1, -1) + p_scale; |
| 242 | bool sign = signbit(s.x + s.y + s.z); |
| 243 | Basis b = m.orthonormalized(); |
| 244 | s = b.xform_inv(s); |
| 245 | Vector3 dots; |
| 246 | for (int i = 0; i < 3; i++) { |
| 247 | for (int j = 0; j < 3; j++) { |
| 248 | dots[j] += s[i] * abs(m.get_column(i).normalized().dot(b.get_column(j))); |
| 249 | } |
| 250 | } |
| 251 | if (sign != signbit(dots.x + dots.y + dots.z)) { |
| 252 | dots = -dots; |
| 253 | } |
| 254 | m.scale_local(Vector3(1, 1, 1) + dots); |
| 255 | return m; |
| 256 | } |
| 257 | |
| 258 | float Basis::get_uniform_scale() const { |
| 259 | return (rows[0].length() + rows[1].length() + rows[2].length()) / 3.0f; |
| 260 | } |
| 261 | |
| 262 | Basis Basis::scaled_local(const Vector3 &p_scale) const { |
| 263 | return (*this) * Basis::from_scale(p_scale); |
| 264 | } |
| 265 | |
| 266 | Vector3 Basis::get_scale_abs() const { |
| 267 | return Vector3( |
| 268 | Vector3(rows[0][0], rows[1][0], rows[2][0]).length(), |
| 269 | Vector3(rows[0][1], rows[1][1], rows[2][1]).length(), |
| 270 | Vector3(rows[0][2], rows[1][2], rows[2][2]).length()); |
| 271 | } |
| 272 | |
| 273 | Vector3 Basis::get_scale_local() const { |
| 274 | real_t det_sign = SIGN(determinant()); |
| 275 | return det_sign * Vector3(rows[0].length(), rows[1].length(), rows[2].length()); |
| 276 | } |
| 277 | |
| 278 | // get_scale works with get_rotation, use get_scale_abs if you need to enforce positive signature. |
| 279 | Vector3 Basis::get_scale() const { |
| 280 | // FIXME: We are assuming M = R.S (R is rotation and S is scaling), and use polar decomposition to extract R and S. |
| 281 | // A polar decomposition is M = O.P, where O is an orthogonal matrix (meaning rotation and reflection) and |
| 282 | // P is a positive semi-definite matrix (meaning it contains absolute values of scaling along its diagonal). |
| 283 | // |
| 284 | // Despite being different from what we want to achieve, we can nevertheless make use of polar decomposition |
| 285 | // here as follows. We can split O into a rotation and a reflection as O = R.Q, and obtain M = R.S where |
| 286 | // we defined S = Q.P. Now, R is a proper rotation matrix and S is a (signed) scaling matrix, |
| 287 | // which can involve negative scalings. However, there is a catch: unlike the polar decomposition of M = O.P, |
| 288 | // the decomposition of O into a rotation and reflection matrix as O = R.Q is not unique. |
| 289 | // Therefore, we are going to do this decomposition by sticking to a particular convention. |
| 290 | // This may lead to confusion for some users though. |
| 291 | // |
| 292 | // The convention we use here is to absorb the sign flip into the scaling matrix. |
| 293 | // The same convention is also used in other similar functions such as get_rotation_axis_angle, get_rotation, ... |
| 294 | // |
| 295 | // A proper way to get rid of this issue would be to store the scaling values (or at least their signs) |
| 296 | // as a part of Basis. However, if we go that path, we need to disable direct (write) access to the |
| 297 | // matrix elements. |
| 298 | // |
| 299 | // The rotation part of this decomposition is returned by get_rotation* functions. |
| 300 | real_t det_sign = SIGN(determinant()); |
| 301 | return det_sign * get_scale_abs(); |
| 302 | } |
| 303 | |
| 304 | // Decomposes a Basis into a rotation-reflection matrix (an element of the group O(3)) and a positive scaling matrix as B = O.S. |
| 305 | // Returns the rotation-reflection matrix via reference argument, and scaling information is returned as a Vector3. |
| 306 | // This (internal) function is too specific and named too ugly to expose to users, and probably there's no need to do so. |
| 307 | Vector3 Basis::rotref_posscale_decomposition(Basis &rotref) const { |
| 308 | #ifdef MATH_CHECKS |
| 309 | ERR_FAIL_COND_V(determinant() == 0, Vector3()); |
| 310 | |
| 311 | Basis m = transposed() * (*this); |
| 312 | ERR_FAIL_COND_V(!m.is_diagonal(), Vector3()); |
| 313 | #endif |
| 314 | Vector3 scale = get_scale(); |
| 315 | Basis inv_scale = Basis().scaled(scale.inverse()); // this will also absorb the sign of scale |
| 316 | rotref = (*this) * inv_scale; |
| 317 | |
| 318 | #ifdef MATH_CHECKS |
| 319 | ERR_FAIL_COND_V(!rotref.is_orthogonal(), Vector3()); |
| 320 | #endif |
| 321 | return scale.abs(); |
| 322 | } |
| 323 | |
| 324 | // Multiplies the matrix from left by the rotation matrix: M -> R.M |
| 325 | // Note that this does *not* rotate the matrix itself. |
| 326 | // |
| 327 | // The main use of Basis is as Transform.basis, which is used by the transformation matrix |
| 328 | // of 3D object. Rotate here refers to rotation of the object (which is R * (*this)), |
| 329 | // not the matrix itself (which is R * (*this) * R.transposed()). |
| 330 | Basis Basis::rotated(const Vector3 &p_axis, real_t p_angle) const { |
| 331 | return Basis(p_axis, p_angle) * (*this); |
| 332 | } |
| 333 | |
| 334 | void Basis::rotate(const Vector3 &p_axis, real_t p_angle) { |
| 335 | *this = rotated(p_axis, p_angle); |
| 336 | } |
| 337 | |
| 338 | void Basis::rotate_local(const Vector3 &p_axis, real_t p_angle) { |
| 339 | // performs a rotation in object-local coordinate system: |
| 340 | // M -> (M.R.Minv).M = M.R. |
| 341 | *this = rotated_local(p_axis, p_angle); |
| 342 | } |
| 343 | |
| 344 | Basis Basis::rotated_local(const Vector3 &p_axis, real_t p_angle) const { |
| 345 | return (*this) * Basis(p_axis, p_angle); |
| 346 | } |
| 347 | |
| 348 | Basis Basis::rotated(const Vector3 &p_euler, EulerOrder p_order) const { |
| 349 | return Basis::from_euler(p_euler, p_order) * (*this); |
| 350 | } |
| 351 | |
| 352 | void Basis::rotate(const Vector3 &p_euler, EulerOrder p_order) { |
| 353 | *this = rotated(p_euler, p_order); |
| 354 | } |
| 355 | |
| 356 | Basis Basis::rotated(const Quaternion &p_quaternion) const { |
| 357 | return Basis(p_quaternion) * (*this); |
| 358 | } |
| 359 | |
| 360 | void Basis::rotate(const Quaternion &p_quaternion) { |
| 361 | *this = rotated(p_quaternion); |
| 362 | } |
| 363 | |
| 364 | Vector3 Basis::get_euler_normalized(EulerOrder p_order) const { |
| 365 | // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, |
| 366 | // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). |
| 367 | // See the comment in get_scale() for further information. |
| 368 | Basis m = orthonormalized(); |
| 369 | real_t det = m.determinant(); |
| 370 | if (det < 0) { |
| 371 | // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. |
| 372 | m.scale(Vector3(-1, -1, -1)); |
| 373 | } |
| 374 | |
| 375 | return m.get_euler(p_order); |
| 376 | } |
| 377 | |
| 378 | Quaternion Basis::get_rotation_quaternion() const { |
| 379 | // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, |
| 380 | // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). |
| 381 | // See the comment in get_scale() for further information. |
| 382 | Basis m = orthonormalized(); |
| 383 | real_t det = m.determinant(); |
| 384 | if (det < 0) { |
| 385 | // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. |
| 386 | m.scale(Vector3(-1, -1, -1)); |
| 387 | } |
| 388 | |
| 389 | return m.get_quaternion(); |
| 390 | } |
| 391 | |
| 392 | void Basis::rotate_to_align(Vector3 p_start_direction, Vector3 p_end_direction) { |
| 393 | // Takes two vectors and rotates the basis from the first vector to the second vector. |
| 394 | // Adopted from: https://gist.github.com/kevinmoran/b45980723e53edeb8a5a43c49f134724 |
| 395 | const Vector3 axis = p_start_direction.cross(p_end_direction).normalized(); |
| 396 | if (axis.length_squared() != 0) { |
| 397 | real_t dot = p_start_direction.dot(p_end_direction); |
| 398 | dot = CLAMP(dot, -1.0f, 1.0f); |
| 399 | const real_t angle_rads = Math::acos(dot); |
| 400 | *this = Basis(axis, angle_rads) * (*this); |
| 401 | } |
| 402 | } |
| 403 | |
| 404 | void Basis::get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const { |
| 405 | // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, |
| 406 | // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). |
| 407 | // See the comment in get_scale() for further information. |
| 408 | Basis m = orthonormalized(); |
| 409 | real_t det = m.determinant(); |
| 410 | if (det < 0) { |
| 411 | // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. |
| 412 | m.scale(Vector3(-1, -1, -1)); |
| 413 | } |
| 414 | |
| 415 | m.get_axis_angle(p_axis, p_angle); |
| 416 | } |
| 417 | |
| 418 | void Basis::get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const { |
| 419 | // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, |
| 420 | // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). |
| 421 | // See the comment in get_scale() for further information. |
| 422 | Basis m = transposed(); |
| 423 | m.orthonormalize(); |
| 424 | real_t det = m.determinant(); |
| 425 | if (det < 0) { |
| 426 | // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. |
| 427 | m.scale(Vector3(-1, -1, -1)); |
| 428 | } |
| 429 | |
| 430 | m.get_axis_angle(p_axis, p_angle); |
| 431 | p_angle = -p_angle; |
| 432 | } |
| 433 | |
| 434 | Vector3 Basis::get_euler(EulerOrder p_order) const { |
| 435 | switch (p_order) { |
| 436 | case EulerOrder::XYZ: { |
| 437 | // Euler angles in XYZ convention. |
| 438 | // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix |
| 439 | // |
| 440 | // rot = cy*cz -cy*sz sy |
| 441 | // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx |
| 442 | // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy |
| 443 | |
| 444 | Vector3 euler; |
| 445 | real_t sy = rows[0][2]; |
| 446 | if (sy < (1.0f - (real_t)CMP_EPSILON)) { |
| 447 | if (sy > -(1.0f - (real_t)CMP_EPSILON)) { |
| 448 | // is this a pure Y rotation? |
| 449 | if (rows[1][0] == 0 && rows[0][1] == 0 && rows[1][2] == 0 && rows[2][1] == 0 && rows[1][1] == 1) { |
| 450 | // return the simplest form (human friendlier in editor and scripts) |
| 451 | euler.x = 0; |
| 452 | euler.y = atan2(rows[0][2], rows[0][0]); |
| 453 | euler.z = 0; |
| 454 | } else { |
| 455 | euler.x = Math::atan2(-rows[1][2], rows[2][2]); |
| 456 | euler.y = Math::asin(sy); |
| 457 | euler.z = Math::atan2(-rows[0][1], rows[0][0]); |
| 458 | } |
| 459 | } else { |
| 460 | euler.x = Math::atan2(rows[2][1], rows[1][1]); |
| 461 | euler.y = -Math_PI / 2.0f; |
| 462 | euler.z = 0.0f; |
| 463 | } |
| 464 | } else { |
| 465 | euler.x = Math::atan2(rows[2][1], rows[1][1]); |
| 466 | euler.y = Math_PI / 2.0f; |
| 467 | euler.z = 0.0f; |
| 468 | } |
| 469 | return euler; |
| 470 | } |
| 471 | case EulerOrder::XZY: { |
| 472 | // Euler angles in XZY convention. |
| 473 | // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix |
| 474 | // |
| 475 | // rot = cz*cy -sz cz*sy |
| 476 | // sx*sy+cx*cy*sz cx*cz cx*sz*sy-cy*sx |
| 477 | // cy*sx*sz cz*sx cx*cy+sx*sz*sy |
| 478 | |
| 479 | Vector3 euler; |
| 480 | real_t sz = rows[0][1]; |
| 481 | if (sz < (1.0f - (real_t)CMP_EPSILON)) { |
| 482 | if (sz > -(1.0f - (real_t)CMP_EPSILON)) { |
| 483 | euler.x = Math::atan2(rows[2][1], rows[1][1]); |
| 484 | euler.y = Math::atan2(rows[0][2], rows[0][0]); |
| 485 | euler.z = Math::asin(-sz); |
| 486 | } else { |
| 487 | // It's -1 |
| 488 | euler.x = -Math::atan2(rows[1][2], rows[2][2]); |
| 489 | euler.y = 0.0f; |
| 490 | euler.z = Math_PI / 2.0f; |
| 491 | } |
| 492 | } else { |
| 493 | // It's 1 |
| 494 | euler.x = -Math::atan2(rows[1][2], rows[2][2]); |
| 495 | euler.y = 0.0f; |
| 496 | euler.z = -Math_PI / 2.0f; |
| 497 | } |
| 498 | return euler; |
| 499 | } |
| 500 | case EulerOrder::YXZ: { |
| 501 | // Euler angles in YXZ convention. |
| 502 | // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix |
| 503 | // |
| 504 | // rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy |
| 505 | // cx*sz cx*cz -sx |
| 506 | // cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx |
| 507 | |
| 508 | Vector3 euler; |
| 509 | |
| 510 | real_t m12 = rows[1][2]; |
| 511 | |
| 512 | if (m12 < (1 - (real_t)CMP_EPSILON)) { |
| 513 | if (m12 > -(1 - (real_t)CMP_EPSILON)) { |
| 514 | // is this a pure X rotation? |
| 515 | if (rows[1][0] == 0 && rows[0][1] == 0 && rows[0][2] == 0 && rows[2][0] == 0 && rows[0][0] == 1) { |
| 516 | // return the simplest form (human friendlier in editor and scripts) |
| 517 | euler.x = atan2(-m12, rows[1][1]); |
| 518 | euler.y = 0; |
| 519 | euler.z = 0; |
| 520 | } else { |
| 521 | euler.x = asin(-m12); |
| 522 | euler.y = atan2(rows[0][2], rows[2][2]); |
| 523 | euler.z = atan2(rows[1][0], rows[1][1]); |
| 524 | } |
| 525 | } else { // m12 == -1 |
| 526 | euler.x = Math_PI * 0.5f; |
| 527 | euler.y = atan2(rows[0][1], rows[0][0]); |
| 528 | euler.z = 0; |
| 529 | } |
| 530 | } else { // m12 == 1 |
| 531 | euler.x = -Math_PI * 0.5f; |
| 532 | euler.y = -atan2(rows[0][1], rows[0][0]); |
| 533 | euler.z = 0; |
| 534 | } |
| 535 | |
| 536 | return euler; |
| 537 | } |
| 538 | case EulerOrder::YZX: { |
| 539 | // Euler angles in YZX convention. |
| 540 | // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix |
| 541 | // |
| 542 | // rot = cy*cz sy*sx-cy*cx*sz cx*sy+cy*sz*sx |
| 543 | // sz cz*cx -cz*sx |
| 544 | // -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx |
| 545 | |
| 546 | Vector3 euler; |
| 547 | real_t sz = rows[1][0]; |
| 548 | if (sz < (1.0f - (real_t)CMP_EPSILON)) { |
| 549 | if (sz > -(1.0f - (real_t)CMP_EPSILON)) { |
| 550 | euler.x = Math::atan2(-rows[1][2], rows[1][1]); |
| 551 | euler.y = Math::atan2(-rows[2][0], rows[0][0]); |
| 552 | euler.z = Math::asin(sz); |
| 553 | } else { |
| 554 | // It's -1 |
| 555 | euler.x = Math::atan2(rows[2][1], rows[2][2]); |
| 556 | euler.y = 0.0f; |
| 557 | euler.z = -Math_PI / 2.0f; |
| 558 | } |
| 559 | } else { |
| 560 | // It's 1 |
| 561 | euler.x = Math::atan2(rows[2][1], rows[2][2]); |
| 562 | euler.y = 0.0f; |
| 563 | euler.z = Math_PI / 2.0f; |
| 564 | } |
| 565 | return euler; |
| 566 | } break; |
| 567 | case EulerOrder::ZXY: { |
| 568 | // Euler angles in ZXY convention. |
| 569 | // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix |
| 570 | // |
| 571 | // rot = cz*cy-sz*sx*sy -cx*sz cz*sy+cy*sz*sx |
| 572 | // cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx |
| 573 | // -cx*sy sx cx*cy |
| 574 | Vector3 euler; |
| 575 | real_t sx = rows[2][1]; |
| 576 | if (sx < (1.0f - (real_t)CMP_EPSILON)) { |
| 577 | if (sx > -(1.0f - (real_t)CMP_EPSILON)) { |
| 578 | euler.x = Math::asin(sx); |
| 579 | euler.y = Math::atan2(-rows[2][0], rows[2][2]); |
| 580 | euler.z = Math::atan2(-rows[0][1], rows[1][1]); |
| 581 | } else { |
| 582 | // It's -1 |
| 583 | euler.x = -Math_PI / 2.0f; |
| 584 | euler.y = Math::atan2(rows[0][2], rows[0][0]); |
| 585 | euler.z = 0; |
| 586 | } |
| 587 | } else { |
| 588 | // It's 1 |
| 589 | euler.x = Math_PI / 2.0f; |
| 590 | euler.y = Math::atan2(rows[0][2], rows[0][0]); |
| 591 | euler.z = 0; |
| 592 | } |
| 593 | return euler; |
| 594 | } break; |
| 595 | case EulerOrder::ZYX: { |
| 596 | // Euler angles in ZYX convention. |
| 597 | // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix |
| 598 | // |
| 599 | // rot = cz*cy cz*sy*sx-cx*sz sz*sx+cz*cx*cy |
| 600 | // cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx |
| 601 | // -sy cy*sx cy*cx |
| 602 | Vector3 euler; |
| 603 | real_t sy = rows[2][0]; |
| 604 | if (sy < (1.0f - (real_t)CMP_EPSILON)) { |
| 605 | if (sy > -(1.0f - (real_t)CMP_EPSILON)) { |
| 606 | euler.x = Math::atan2(rows[2][1], rows[2][2]); |
| 607 | euler.y = Math::asin(-sy); |
| 608 | euler.z = Math::atan2(rows[1][0], rows[0][0]); |
| 609 | } else { |
| 610 | // It's -1 |
| 611 | euler.x = 0; |
| 612 | euler.y = Math_PI / 2.0f; |
| 613 | euler.z = -Math::atan2(rows[0][1], rows[1][1]); |
| 614 | } |
| 615 | } else { |
| 616 | // It's 1 |
| 617 | euler.x = 0; |
| 618 | euler.y = -Math_PI / 2.0f; |
| 619 | euler.z = -Math::atan2(rows[0][1], rows[1][1]); |
| 620 | } |
| 621 | return euler; |
| 622 | } |
| 623 | default: { |
| 624 | ERR_FAIL_V_MSG(Vector3(), "Invalid parameter for get_euler(order)" ); |
| 625 | } |
| 626 | } |
| 627 | return Vector3(); |
| 628 | } |
| 629 | |
| 630 | void Basis::set_euler(const Vector3 &p_euler, EulerOrder p_order) { |
| 631 | real_t c, s; |
| 632 | |
| 633 | c = Math::cos(p_euler.x); |
| 634 | s = Math::sin(p_euler.x); |
| 635 | Basis xmat(1, 0, 0, 0, c, -s, 0, s, c); |
| 636 | |
| 637 | c = Math::cos(p_euler.y); |
| 638 | s = Math::sin(p_euler.y); |
| 639 | Basis ymat(c, 0, s, 0, 1, 0, -s, 0, c); |
| 640 | |
| 641 | c = Math::cos(p_euler.z); |
| 642 | s = Math::sin(p_euler.z); |
| 643 | Basis zmat(c, -s, 0, s, c, 0, 0, 0, 1); |
| 644 | |
| 645 | switch (p_order) { |
| 646 | case EulerOrder::XYZ: { |
| 647 | *this = xmat * (ymat * zmat); |
| 648 | } break; |
| 649 | case EulerOrder::XZY: { |
| 650 | *this = xmat * zmat * ymat; |
| 651 | } break; |
| 652 | case EulerOrder::YXZ: { |
| 653 | *this = ymat * xmat * zmat; |
| 654 | } break; |
| 655 | case EulerOrder::YZX: { |
| 656 | *this = ymat * zmat * xmat; |
| 657 | } break; |
| 658 | case EulerOrder::ZXY: { |
| 659 | *this = zmat * xmat * ymat; |
| 660 | } break; |
| 661 | case EulerOrder::ZYX: { |
| 662 | *this = zmat * ymat * xmat; |
| 663 | } break; |
| 664 | default: { |
| 665 | ERR_FAIL_MSG("Invalid order parameter for set_euler(vec3,order)" ); |
| 666 | } |
| 667 | } |
| 668 | } |
| 669 | |
| 670 | bool Basis::is_equal_approx(const Basis &p_basis) const { |
| 671 | return rows[0].is_equal_approx(p_basis.rows[0]) && rows[1].is_equal_approx(p_basis.rows[1]) && rows[2].is_equal_approx(p_basis.rows[2]); |
| 672 | } |
| 673 | |
| 674 | bool Basis::is_finite() const { |
| 675 | return rows[0].is_finite() && rows[1].is_finite() && rows[2].is_finite(); |
| 676 | } |
| 677 | |
| 678 | bool Basis::operator==(const Basis &p_matrix) const { |
| 679 | for (int i = 0; i < 3; i++) { |
| 680 | for (int j = 0; j < 3; j++) { |
| 681 | if (rows[i][j] != p_matrix.rows[i][j]) { |
| 682 | return false; |
| 683 | } |
| 684 | } |
| 685 | } |
| 686 | |
| 687 | return true; |
| 688 | } |
| 689 | |
| 690 | bool Basis::operator!=(const Basis &p_matrix) const { |
| 691 | return (!(*this == p_matrix)); |
| 692 | } |
| 693 | |
| 694 | Basis::operator String() const { |
| 695 | return "[X: " + get_column(0).operator String() + |
| 696 | ", Y: " + get_column(1).operator String() + |
| 697 | ", Z: " + get_column(2).operator String() + "]" ; |
| 698 | } |
| 699 | |
| 700 | Quaternion Basis::get_quaternion() const { |
| 701 | #ifdef MATH_CHECKS |
| 702 | ERR_FAIL_COND_V_MSG(!is_rotation(), Quaternion(), "Basis must be normalized in order to be casted to a Quaternion. Use get_rotation_quaternion() or call orthonormalized() if the Basis contains linearly independent vectors." ); |
| 703 | #endif |
| 704 | /* Allow getting a quaternion from an unnormalized transform */ |
| 705 | Basis m = *this; |
| 706 | real_t trace = m.rows[0][0] + m.rows[1][1] + m.rows[2][2]; |
| 707 | real_t temp[4]; |
| 708 | |
| 709 | if (trace > 0.0f) { |
| 710 | real_t s = Math::sqrt(trace + 1.0f); |
| 711 | temp[3] = (s * 0.5f); |
| 712 | s = 0.5f / s; |
| 713 | |
| 714 | temp[0] = ((m.rows[2][1] - m.rows[1][2]) * s); |
| 715 | temp[1] = ((m.rows[0][2] - m.rows[2][0]) * s); |
| 716 | temp[2] = ((m.rows[1][0] - m.rows[0][1]) * s); |
| 717 | } else { |
| 718 | int i = m.rows[0][0] < m.rows[1][1] |
| 719 | ? (m.rows[1][1] < m.rows[2][2] ? 2 : 1) |
| 720 | : (m.rows[0][0] < m.rows[2][2] ? 2 : 0); |
| 721 | int j = (i + 1) % 3; |
| 722 | int k = (i + 2) % 3; |
| 723 | |
| 724 | real_t s = Math::sqrt(m.rows[i][i] - m.rows[j][j] - m.rows[k][k] + 1.0f); |
| 725 | temp[i] = s * 0.5f; |
| 726 | s = 0.5f / s; |
| 727 | |
| 728 | temp[3] = (m.rows[k][j] - m.rows[j][k]) * s; |
| 729 | temp[j] = (m.rows[j][i] + m.rows[i][j]) * s; |
| 730 | temp[k] = (m.rows[k][i] + m.rows[i][k]) * s; |
| 731 | } |
| 732 | |
| 733 | return Quaternion(temp[0], temp[1], temp[2], temp[3]); |
| 734 | } |
| 735 | |
| 736 | void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { |
| 737 | /* checking this is a bad idea, because obtaining from scaled transform is a valid use case |
| 738 | #ifdef MATH_CHECKS |
| 739 | ERR_FAIL_COND(!is_rotation()); |
| 740 | #endif |
| 741 | */ |
| 742 | |
| 743 | // https://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm |
| 744 | real_t x, y, z; // Variables for result. |
| 745 | if (Math::is_zero_approx(rows[0][1] - rows[1][0]) && Math::is_zero_approx(rows[0][2] - rows[2][0]) && Math::is_zero_approx(rows[1][2] - rows[2][1])) { |
| 746 | // Singularity found. |
| 747 | // First check for identity matrix which must have +1 for all terms in leading diagonal and zero in other terms. |
| 748 | if (is_diagonal() && (Math::abs(rows[0][0] + rows[1][1] + rows[2][2] - 3) < 3 * CMP_EPSILON)) { |
| 749 | // This singularity is identity matrix so angle = 0. |
| 750 | r_axis = Vector3(0, 1, 0); |
| 751 | r_angle = 0; |
| 752 | return; |
| 753 | } |
| 754 | // Otherwise this singularity is angle = 180. |
| 755 | real_t xx = (rows[0][0] + 1) / 2; |
| 756 | real_t yy = (rows[1][1] + 1) / 2; |
| 757 | real_t zz = (rows[2][2] + 1) / 2; |
| 758 | real_t xy = (rows[0][1] + rows[1][0]) / 4; |
| 759 | real_t xz = (rows[0][2] + rows[2][0]) / 4; |
| 760 | real_t yz = (rows[1][2] + rows[2][1]) / 4; |
| 761 | |
| 762 | if ((xx > yy) && (xx > zz)) { // rows[0][0] is the largest diagonal term. |
| 763 | if (xx < CMP_EPSILON) { |
| 764 | x = 0; |
| 765 | y = Math_SQRT12; |
| 766 | z = Math_SQRT12; |
| 767 | } else { |
| 768 | x = Math::sqrt(xx); |
| 769 | y = xy / x; |
| 770 | z = xz / x; |
| 771 | } |
| 772 | } else if (yy > zz) { // rows[1][1] is the largest diagonal term. |
| 773 | if (yy < CMP_EPSILON) { |
| 774 | x = Math_SQRT12; |
| 775 | y = 0; |
| 776 | z = Math_SQRT12; |
| 777 | } else { |
| 778 | y = Math::sqrt(yy); |
| 779 | x = xy / y; |
| 780 | z = yz / y; |
| 781 | } |
| 782 | } else { // rows[2][2] is the largest diagonal term so base result on this. |
| 783 | if (zz < CMP_EPSILON) { |
| 784 | x = Math_SQRT12; |
| 785 | y = Math_SQRT12; |
| 786 | z = 0; |
| 787 | } else { |
| 788 | z = Math::sqrt(zz); |
| 789 | x = xz / z; |
| 790 | y = yz / z; |
| 791 | } |
| 792 | } |
| 793 | r_axis = Vector3(x, y, z); |
| 794 | r_angle = Math_PI; |
| 795 | return; |
| 796 | } |
| 797 | // As we have reached here there are no singularities so we can handle normally. |
| 798 | double s = Math::sqrt((rows[2][1] - rows[1][2]) * (rows[2][1] - rows[1][2]) + (rows[0][2] - rows[2][0]) * (rows[0][2] - rows[2][0]) + (rows[1][0] - rows[0][1]) * (rows[1][0] - rows[0][1])); // Used to normalize. |
| 799 | |
| 800 | if (Math::abs(s) < CMP_EPSILON) { |
| 801 | // Prevent divide by zero, should not happen if matrix is orthogonal and should be caught by singularity test above. |
| 802 | s = 1; |
| 803 | } |
| 804 | |
| 805 | x = (rows[2][1] - rows[1][2]) / s; |
| 806 | y = (rows[0][2] - rows[2][0]) / s; |
| 807 | z = (rows[1][0] - rows[0][1]) / s; |
| 808 | |
| 809 | r_axis = Vector3(x, y, z); |
| 810 | // acos does clamping. |
| 811 | r_angle = Math::acos((rows[0][0] + rows[1][1] + rows[2][2] - 1) / 2); |
| 812 | } |
| 813 | |
| 814 | void Basis::set_quaternion(const Quaternion &p_quaternion) { |
| 815 | real_t d = p_quaternion.length_squared(); |
| 816 | real_t s = 2.0f / d; |
| 817 | real_t xs = p_quaternion.x * s, ys = p_quaternion.y * s, zs = p_quaternion.z * s; |
| 818 | real_t wx = p_quaternion.w * xs, wy = p_quaternion.w * ys, wz = p_quaternion.w * zs; |
| 819 | real_t xx = p_quaternion.x * xs, xy = p_quaternion.x * ys, xz = p_quaternion.x * zs; |
| 820 | real_t yy = p_quaternion.y * ys, yz = p_quaternion.y * zs, zz = p_quaternion.z * zs; |
| 821 | set(1.0f - (yy + zz), xy - wz, xz + wy, |
| 822 | xy + wz, 1.0f - (xx + zz), yz - wx, |
| 823 | xz - wy, yz + wx, 1.0f - (xx + yy)); |
| 824 | } |
| 825 | |
| 826 | void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_angle) { |
| 827 | // Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_angle |
| 828 | #ifdef MATH_CHECKS |
| 829 | ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized." ); |
| 830 | #endif |
| 831 | Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z); |
| 832 | real_t cosine = Math::cos(p_angle); |
| 833 | rows[0][0] = axis_sq.x + cosine * (1.0f - axis_sq.x); |
| 834 | rows[1][1] = axis_sq.y + cosine * (1.0f - axis_sq.y); |
| 835 | rows[2][2] = axis_sq.z + cosine * (1.0f - axis_sq.z); |
| 836 | |
| 837 | real_t sine = Math::sin(p_angle); |
| 838 | real_t t = 1 - cosine; |
| 839 | |
| 840 | real_t xyzt = p_axis.x * p_axis.y * t; |
| 841 | real_t zyxs = p_axis.z * sine; |
| 842 | rows[0][1] = xyzt - zyxs; |
| 843 | rows[1][0] = xyzt + zyxs; |
| 844 | |
| 845 | xyzt = p_axis.x * p_axis.z * t; |
| 846 | zyxs = p_axis.y * sine; |
| 847 | rows[0][2] = xyzt + zyxs; |
| 848 | rows[2][0] = xyzt - zyxs; |
| 849 | |
| 850 | xyzt = p_axis.y * p_axis.z * t; |
| 851 | zyxs = p_axis.x * sine; |
| 852 | rows[1][2] = xyzt - zyxs; |
| 853 | rows[2][1] = xyzt + zyxs; |
| 854 | } |
| 855 | |
| 856 | void Basis::set_axis_angle_scale(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale) { |
| 857 | _set_diagonal(p_scale); |
| 858 | rotate(p_axis, p_angle); |
| 859 | } |
| 860 | |
| 861 | void Basis::set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale, EulerOrder p_order) { |
| 862 | _set_diagonal(p_scale); |
| 863 | rotate(p_euler, p_order); |
| 864 | } |
| 865 | |
| 866 | void Basis::set_quaternion_scale(const Quaternion &p_quaternion, const Vector3 &p_scale) { |
| 867 | _set_diagonal(p_scale); |
| 868 | rotate(p_quaternion); |
| 869 | } |
| 870 | |
| 871 | // This also sets the non-diagonal elements to 0, which is misleading from the |
| 872 | // name, so we want this method to be private. Use `from_scale` externally. |
| 873 | void Basis::_set_diagonal(const Vector3 &p_diag) { |
| 874 | rows[0][0] = p_diag.x; |
| 875 | rows[0][1] = 0; |
| 876 | rows[0][2] = 0; |
| 877 | |
| 878 | rows[1][0] = 0; |
| 879 | rows[1][1] = p_diag.y; |
| 880 | rows[1][2] = 0; |
| 881 | |
| 882 | rows[2][0] = 0; |
| 883 | rows[2][1] = 0; |
| 884 | rows[2][2] = p_diag.z; |
| 885 | } |
| 886 | |
| 887 | Basis Basis::lerp(const Basis &p_to, const real_t &p_weight) const { |
| 888 | Basis b; |
| 889 | b.rows[0] = rows[0].lerp(p_to.rows[0], p_weight); |
| 890 | b.rows[1] = rows[1].lerp(p_to.rows[1], p_weight); |
| 891 | b.rows[2] = rows[2].lerp(p_to.rows[2], p_weight); |
| 892 | |
| 893 | return b; |
| 894 | } |
| 895 | |
| 896 | Basis Basis::slerp(const Basis &p_to, const real_t &p_weight) const { |
| 897 | //consider scale |
| 898 | Quaternion from(*this); |
| 899 | Quaternion to(p_to); |
| 900 | |
| 901 | Basis b(from.slerp(to, p_weight)); |
| 902 | b.rows[0] *= Math::lerp(rows[0].length(), p_to.rows[0].length(), p_weight); |
| 903 | b.rows[1] *= Math::lerp(rows[1].length(), p_to.rows[1].length(), p_weight); |
| 904 | b.rows[2] *= Math::lerp(rows[2].length(), p_to.rows[2].length(), p_weight); |
| 905 | |
| 906 | return b; |
| 907 | } |
| 908 | |
| 909 | void Basis::rotate_sh(real_t *p_values) { |
| 910 | // code by John Hable |
| 911 | // http://filmicworlds.com/blog/simple-and-fast-spherical-harmonic-rotation/ |
| 912 | // this code is Public Domain |
| 913 | |
| 914 | const static real_t s_c3 = 0.94617469575; // (3*sqrt(5))/(4*sqrt(pi)) |
| 915 | const static real_t s_c4 = -0.31539156525; // (-sqrt(5))/(4*sqrt(pi)) |
| 916 | const static real_t s_c5 = 0.54627421529; // (sqrt(15))/(4*sqrt(pi)) |
| 917 | |
| 918 | const static real_t s_c_scale = 1.0 / 0.91529123286551084; |
| 919 | const static real_t s_c_scale_inv = 0.91529123286551084; |
| 920 | |
| 921 | const static real_t s_rc2 = 1.5853309190550713 * s_c_scale; |
| 922 | const static real_t s_c4_div_c3 = s_c4 / s_c3; |
| 923 | const static real_t s_c4_div_c3_x2 = (s_c4 / s_c3) * 2.0; |
| 924 | |
| 925 | const static real_t s_scale_dst2 = s_c3 * s_c_scale_inv; |
| 926 | const static real_t s_scale_dst4 = s_c5 * s_c_scale_inv; |
| 927 | |
| 928 | const real_t src[9] = { p_values[0], p_values[1], p_values[2], p_values[3], p_values[4], p_values[5], p_values[6], p_values[7], p_values[8] }; |
| 929 | |
| 930 | real_t m00 = rows[0][0]; |
| 931 | real_t m01 = rows[0][1]; |
| 932 | real_t m02 = rows[0][2]; |
| 933 | real_t m10 = rows[1][0]; |
| 934 | real_t m11 = rows[1][1]; |
| 935 | real_t m12 = rows[1][2]; |
| 936 | real_t m20 = rows[2][0]; |
| 937 | real_t m21 = rows[2][1]; |
| 938 | real_t m22 = rows[2][2]; |
| 939 | |
| 940 | p_values[0] = src[0]; |
| 941 | p_values[1] = m11 * src[1] - m12 * src[2] + m10 * src[3]; |
| 942 | p_values[2] = -m21 * src[1] + m22 * src[2] - m20 * src[3]; |
| 943 | p_values[3] = m01 * src[1] - m02 * src[2] + m00 * src[3]; |
| 944 | |
| 945 | real_t sh0 = src[7] + src[8] + src[8] - src[5]; |
| 946 | real_t sh1 = src[4] + s_rc2 * src[6] + src[7] + src[8]; |
| 947 | real_t sh2 = src[4]; |
| 948 | real_t sh3 = -src[7]; |
| 949 | real_t sh4 = -src[5]; |
| 950 | |
| 951 | // Rotations. R0 and R1 just use the raw matrix columns |
| 952 | real_t r2x = m00 + m01; |
| 953 | real_t r2y = m10 + m11; |
| 954 | real_t r2z = m20 + m21; |
| 955 | |
| 956 | real_t r3x = m00 + m02; |
| 957 | real_t r3y = m10 + m12; |
| 958 | real_t r3z = m20 + m22; |
| 959 | |
| 960 | real_t r4x = m01 + m02; |
| 961 | real_t r4y = m11 + m12; |
| 962 | real_t r4z = m21 + m22; |
| 963 | |
| 964 | // dense matrix multiplication one column at a time |
| 965 | |
| 966 | // column 0 |
| 967 | real_t sh0_x = sh0 * m00; |
| 968 | real_t sh0_y = sh0 * m10; |
| 969 | real_t d0 = sh0_x * m10; |
| 970 | real_t d1 = sh0_y * m20; |
| 971 | real_t d2 = sh0 * (m20 * m20 + s_c4_div_c3); |
| 972 | real_t d3 = sh0_x * m20; |
| 973 | real_t d4 = sh0_x * m00 - sh0_y * m10; |
| 974 | |
| 975 | // column 1 |
| 976 | real_t sh1_x = sh1 * m02; |
| 977 | real_t sh1_y = sh1 * m12; |
| 978 | d0 += sh1_x * m12; |
| 979 | d1 += sh1_y * m22; |
| 980 | d2 += sh1 * (m22 * m22 + s_c4_div_c3); |
| 981 | d3 += sh1_x * m22; |
| 982 | d4 += sh1_x * m02 - sh1_y * m12; |
| 983 | |
| 984 | // column 2 |
| 985 | real_t sh2_x = sh2 * r2x; |
| 986 | real_t sh2_y = sh2 * r2y; |
| 987 | d0 += sh2_x * r2y; |
| 988 | d1 += sh2_y * r2z; |
| 989 | d2 += sh2 * (r2z * r2z + s_c4_div_c3_x2); |
| 990 | d3 += sh2_x * r2z; |
| 991 | d4 += sh2_x * r2x - sh2_y * r2y; |
| 992 | |
| 993 | // column 3 |
| 994 | real_t sh3_x = sh3 * r3x; |
| 995 | real_t sh3_y = sh3 * r3y; |
| 996 | d0 += sh3_x * r3y; |
| 997 | d1 += sh3_y * r3z; |
| 998 | d2 += sh3 * (r3z * r3z + s_c4_div_c3_x2); |
| 999 | d3 += sh3_x * r3z; |
| 1000 | d4 += sh3_x * r3x - sh3_y * r3y; |
| 1001 | |
| 1002 | // column 4 |
| 1003 | real_t sh4_x = sh4 * r4x; |
| 1004 | real_t sh4_y = sh4 * r4y; |
| 1005 | d0 += sh4_x * r4y; |
| 1006 | d1 += sh4_y * r4z; |
| 1007 | d2 += sh4 * (r4z * r4z + s_c4_div_c3_x2); |
| 1008 | d3 += sh4_x * r4z; |
| 1009 | d4 += sh4_x * r4x - sh4_y * r4y; |
| 1010 | |
| 1011 | // extra multipliers |
| 1012 | p_values[4] = d0; |
| 1013 | p_values[5] = -d1; |
| 1014 | p_values[6] = d2 * s_scale_dst2; |
| 1015 | p_values[7] = -d3; |
| 1016 | p_values[8] = d4 * s_scale_dst4; |
| 1017 | } |
| 1018 | |
| 1019 | Basis Basis::looking_at(const Vector3 &p_target, const Vector3 &p_up, bool p_use_model_front) { |
| 1020 | #ifdef MATH_CHECKS |
| 1021 | ERR_FAIL_COND_V_MSG(p_target.is_zero_approx(), Basis(), "The target vector can't be zero." ); |
| 1022 | ERR_FAIL_COND_V_MSG(p_up.is_zero_approx(), Basis(), "The up vector can't be zero." ); |
| 1023 | #endif |
| 1024 | Vector3 v_z = p_target.normalized(); |
| 1025 | if (!p_use_model_front) { |
| 1026 | v_z = -v_z; |
| 1027 | } |
| 1028 | Vector3 v_x = p_up.cross(v_z); |
| 1029 | #ifdef MATH_CHECKS |
| 1030 | ERR_FAIL_COND_V_MSG(v_x.is_zero_approx(), Basis(), "The target vector and up vector can't be parallel to each other." ); |
| 1031 | #endif |
| 1032 | v_x.normalize(); |
| 1033 | Vector3 v_y = v_z.cross(v_x); |
| 1034 | |
| 1035 | Basis basis; |
| 1036 | basis.set_columns(v_x, v_y, v_z); |
| 1037 | return basis; |
| 1038 | } |
| 1039 | |