| 1 | // Copyright (c) 2015, the Dart project authors. Please see the AUTHORS file |
| 2 | // for details. All rights reserved. Use of this source code is governed by a |
| 3 | // BSD-style license that can be found in the LICENSE file. |
| 4 | |
| 5 | #include "vm/program_visitor.h" |
| 6 | |
| 7 | #include "vm/code_patcher.h" |
| 8 | #include "vm/deopt_instructions.h" |
| 9 | #include "vm/hash_map.h" |
| 10 | #include "vm/object.h" |
| 11 | #include "vm/object_store.h" |
| 12 | #include "vm/symbols.h" |
| 13 | |
| 14 | namespace dart { |
| 15 | |
| 16 | class WorklistElement : public ZoneAllocated { |
| 17 | public: |
| 18 | WorklistElement(Zone* zone, const Object& object) |
| 19 | : object_(Object::Handle(zone, object.raw())), next_(nullptr) {} |
| 20 | |
| 21 | ObjectPtr value() const { return object_.raw(); } |
| 22 | |
| 23 | void set_next(WorklistElement* elem) { next_ = elem; } |
| 24 | WorklistElement* next() const { return next_; } |
| 25 | |
| 26 | private: |
| 27 | const Object& object_; |
| 28 | WorklistElement* next_; |
| 29 | |
| 30 | DISALLOW_COPY_AND_ASSIGN(WorklistElement); |
| 31 | }; |
| 32 | |
| 33 | // Implements a FIFO queue, using IsEmpty, Add, Remove operations. |
| 34 | class Worklist : public ValueObject { |
| 35 | public: |
| 36 | explicit Worklist(Zone* zone) |
| 37 | : zone_(zone), first_(nullptr), last_(nullptr) {} |
| 38 | |
| 39 | bool IsEmpty() const { return first_ == nullptr; } |
| 40 | |
| 41 | void Add(const Object& value) { |
| 42 | auto element = new (zone_) WorklistElement(zone_, value); |
| 43 | if (first_ == nullptr) { |
| 44 | first_ = element; |
| 45 | ASSERT(last_ == nullptr); |
| 46 | } else { |
| 47 | ASSERT(last_ != nullptr); |
| 48 | last_->set_next(element); |
| 49 | } |
| 50 | last_ = element; |
| 51 | ASSERT(first_ != nullptr && last_ != nullptr); |
| 52 | } |
| 53 | |
| 54 | ObjectPtr Remove() { |
| 55 | ASSERT(first_ != nullptr); |
| 56 | WorklistElement* result = first_; |
| 57 | first_ = first_->next(); |
| 58 | if (first_ == nullptr) { |
| 59 | last_ = nullptr; |
| 60 | } |
| 61 | return result->value(); |
| 62 | } |
| 63 | |
| 64 | private: |
| 65 | Zone* const zone_; |
| 66 | WorklistElement* first_; |
| 67 | WorklistElement* last_; |
| 68 | |
| 69 | DISALLOW_COPY_AND_ASSIGN(Worklist); |
| 70 | }; |
| 71 | |
| 72 | // Walks through the classes, functions, and code for the current program. |
| 73 | // |
| 74 | // Uses the heap object ID table to determine whether or not a given object |
| 75 | // has been visited already. |
| 76 | class ProgramWalker : public ValueObject { |
| 77 | public: |
| 78 | ProgramWalker(Zone* zone, Heap* heap, ClassVisitor* visitor) |
| 79 | : heap_(heap), |
| 80 | visitor_(visitor), |
| 81 | worklist_(zone), |
| 82 | class_object_(Object::Handle(zone)), |
| 83 | class_fields_(Array::Handle(zone)), |
| 84 | class_field_(Field::Handle(zone)), |
| 85 | class_functions_(Array::Handle(zone)), |
| 86 | class_function_(Function::Handle(zone)), |
| 87 | class_code_(Code::Handle(zone)), |
| 88 | function_code_(Code::Handle(zone)), |
| 89 | static_calls_array_(Array::Handle(zone)), |
| 90 | static_calls_table_entry_(Object::Handle(zone)), |
| 91 | worklist_entry_(Object::Handle(zone)) {} |
| 92 | |
| 93 | ~ProgramWalker() { heap_->ResetObjectIdTable(); } |
| 94 | |
| 95 | // Adds the given object to the worklist if it's an object type that the |
| 96 | // visitor can visit. |
| 97 | void AddToWorklist(const Object& object) { |
| 98 | // We don't visit null, non-heap objects, or objects in the VM heap. |
| 99 | if (object.IsNull() || object.IsSmi() || object.InVMIsolateHeap()) return; |
| 100 | // Check and set visited, even if we don't end up adding this to the list. |
| 101 | if (heap_->GetObjectId(object.raw()) != 0) return; |
| 102 | heap_->SetObjectId(object.raw(), 1); |
| 103 | if (object.IsClass() || |
| 104 | (object.IsFunction() && visitor_->IsFunctionVisitor()) || |
| 105 | (object.IsCode() && visitor_->IsCodeVisitor())) { |
| 106 | worklist_.Add(object); |
| 107 | } |
| 108 | } |
| 109 | |
| 110 | void VisitWorklist() { |
| 111 | while (!worklist_.IsEmpty()) { |
| 112 | worklist_entry_ = worklist_.Remove(); |
| 113 | if (worklist_entry_.IsClass()) { |
| 114 | VisitClass(Class::Cast(worklist_entry_)); |
| 115 | } else if (worklist_entry_.IsFunction()) { |
| 116 | VisitFunction(Function::Cast(worklist_entry_)); |
| 117 | } else if (worklist_entry_.IsCode()) { |
| 118 | VisitCode(Code::Cast(worklist_entry_)); |
| 119 | } else { |
| 120 | FATAL1("Got unexpected object %s" , worklist_entry_.ToCString()); |
| 121 | } |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | private: |
| 126 | void VisitClass(const Class& cls) { |
| 127 | visitor_->VisitClass(cls); |
| 128 | |
| 129 | if (!visitor_->IsFunctionVisitor()) return; |
| 130 | |
| 131 | class_functions_ = cls.functions(); |
| 132 | for (intptr_t j = 0; j < class_functions_.Length(); j++) { |
| 133 | class_function_ ^= class_functions_.At(j); |
| 134 | AddToWorklist(class_function_); |
| 135 | if (class_function_.HasImplicitClosureFunction()) { |
| 136 | class_function_ = class_function_.ImplicitClosureFunction(); |
| 137 | AddToWorklist(class_function_); |
| 138 | } |
| 139 | } |
| 140 | |
| 141 | class_functions_ = cls.invocation_dispatcher_cache(); |
| 142 | for (intptr_t j = 0; j < class_functions_.Length(); j++) { |
| 143 | class_object_ = class_functions_.At(j); |
| 144 | if (class_object_.IsFunction()) { |
| 145 | class_function_ ^= class_functions_.At(j); |
| 146 | AddToWorklist(class_function_); |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | class_fields_ = cls.fields(); |
| 151 | for (intptr_t j = 0; j < class_fields_.Length(); j++) { |
| 152 | class_field_ ^= class_fields_.At(j); |
| 153 | if (class_field_.HasInitializerFunction()) { |
| 154 | class_function_ = class_field_.InitializerFunction(); |
| 155 | AddToWorklist(class_function_); |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | if (!visitor_->IsCodeVisitor()) return; |
| 160 | |
| 161 | class_code_ = cls.allocation_stub(); |
| 162 | if (!class_code_.IsNull()) AddToWorklist(class_code_); |
| 163 | } |
| 164 | |
| 165 | void VisitFunction(const Function& function) { |
| 166 | ASSERT(visitor_->IsFunctionVisitor()); |
| 167 | visitor_->AsFunctionVisitor()->VisitFunction(function); |
| 168 | if (!visitor_->IsCodeVisitor() || !function.HasCode()) return; |
| 169 | function_code_ = function.CurrentCode(); |
| 170 | AddToWorklist(function_code_); |
| 171 | } |
| 172 | |
| 173 | void VisitCode(const Code& code) { |
| 174 | ASSERT(visitor_->IsCodeVisitor()); |
| 175 | visitor_->AsCodeVisitor()->VisitCode(code); |
| 176 | |
| 177 | // In the precompiler, some entries in the static calls table may need |
| 178 | // to be visited as they may not be reachable from other sources. |
| 179 | // |
| 180 | // TODO(dartbug.com/41636): Figure out why walking the static calls table |
| 181 | // in JIT mode with the DedupInstructions visitor fails, so we can remove |
| 182 | // the check for AOT mode. |
| 183 | static_calls_array_ = code.static_calls_target_table(); |
| 184 | if (FLAG_precompiled_mode && !static_calls_array_.IsNull()) { |
| 185 | StaticCallsTable static_calls(static_calls_array_); |
| 186 | for (auto& view : static_calls) { |
| 187 | static_calls_table_entry_ = |
| 188 | view.Get<Code::kSCallTableCodeOrTypeTarget>(); |
| 189 | if (static_calls_table_entry_.IsCode()) { |
| 190 | AddToWorklist(Code::Cast(static_calls_table_entry_)); |
| 191 | } |
| 192 | } |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | Heap* const heap_; |
| 197 | ClassVisitor* const visitor_; |
| 198 | Worklist worklist_; |
| 199 | Object& class_object_; |
| 200 | Array& class_fields_; |
| 201 | Field& class_field_; |
| 202 | Array& class_functions_; |
| 203 | Function& class_function_; |
| 204 | Code& class_code_; |
| 205 | Code& function_code_; |
| 206 | Array& static_calls_array_; |
| 207 | Object& static_calls_table_entry_; |
| 208 | Object& worklist_entry_; |
| 209 | }; |
| 210 | |
| 211 | void ProgramVisitor::WalkProgram(Zone* zone, |
| 212 | Isolate* isolate, |
| 213 | ClassVisitor* visitor) { |
| 214 | auto const object_store = isolate->object_store(); |
| 215 | auto const heap = isolate->heap(); |
| 216 | ProgramWalker walker(zone, heap, visitor); |
| 217 | |
| 218 | // Walk through the libraries and patches, looking for visitable objects. |
| 219 | const auto& libraries = |
| 220 | GrowableObjectArray::Handle(zone, object_store->libraries()); |
| 221 | auto& lib = Library::Handle(zone); |
| 222 | auto& cls = Class::Handle(zone); |
| 223 | auto& entry = Object::Handle(zone); |
| 224 | auto& patches = GrowableObjectArray::Handle(zone); |
| 225 | |
| 226 | for (intptr_t i = 0; i < libraries.Length(); i++) { |
| 227 | lib ^= libraries.At(i); |
| 228 | ClassDictionaryIterator it(lib, ClassDictionaryIterator::kIteratePrivate); |
| 229 | while (it.HasNext()) { |
| 230 | cls = it.GetNextClass(); |
| 231 | walker.AddToWorklist(cls); |
| 232 | } |
| 233 | patches = lib.used_scripts(); |
| 234 | for (intptr_t j = 0; j < patches.Length(); j++) { |
| 235 | entry = patches.At(j); |
| 236 | walker.AddToWorklist(entry); |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | // If there's a global object pool, add any visitable objects. |
| 241 | const auto& global_object_pool = |
| 242 | ObjectPool::Handle(zone, object_store->global_object_pool()); |
| 243 | if (!global_object_pool.IsNull()) { |
| 244 | auto& object = Object::Handle(zone); |
| 245 | for (intptr_t i = 0; i < global_object_pool.Length(); i++) { |
| 246 | auto const type = global_object_pool.TypeAt(i); |
| 247 | if (type != ObjectPool::EntryType::kTaggedObject) continue; |
| 248 | object = global_object_pool.ObjectAt(i); |
| 249 | walker.AddToWorklist(object); |
| 250 | } |
| 251 | } |
| 252 | |
| 253 | if (visitor->IsFunctionVisitor()) { |
| 254 | // Function objects not necessarily reachable from classes. |
| 255 | auto& function = Function::Handle(zone); |
| 256 | const auto& closures = |
| 257 | GrowableObjectArray::Handle(zone, object_store->closure_functions()); |
| 258 | ASSERT(!closures.IsNull()); |
| 259 | for (intptr_t i = 0; i < closures.Length(); i++) { |
| 260 | function ^= closures.At(i); |
| 261 | walker.AddToWorklist(function); |
| 262 | ASSERT(!function.HasImplicitClosureFunction()); |
| 263 | } |
| 264 | } |
| 265 | |
| 266 | if (visitor->IsCodeVisitor()) { |
| 267 | // Code objects not necessarily reachable from functions. |
| 268 | auto& code = Code::Handle(zone); |
| 269 | const auto& dispatch_table_entries = |
| 270 | Array::Handle(zone, object_store->dispatch_table_code_entries()); |
| 271 | if (!dispatch_table_entries.IsNull()) { |
| 272 | for (intptr_t i = 0; i < dispatch_table_entries.Length(); i++) { |
| 273 | code ^= dispatch_table_entries.At(i); |
| 274 | walker.AddToWorklist(code); |
| 275 | } |
| 276 | } |
| 277 | } |
| 278 | |
| 279 | // Walk the program starting from any roots we added to the worklist. |
| 280 | walker.VisitWorklist(); |
| 281 | } |
| 282 | |
| 283 | #if !defined(DART_PRECOMPILED_RUNTIME) |
| 284 | // A base class for deduplication of objects. T is the type of canonical objects |
| 285 | // being stored, whereas S is a trait appropriate for a DirectChainedHashMap |
| 286 | // based set containing those canonical objects. |
| 287 | template <typename T, typename S> |
| 288 | class Dedupper : public ValueObject { |
| 289 | public: |
| 290 | explicit Dedupper(Zone* zone) : zone_(zone), canonical_objects_(zone) {} |
| 291 | virtual ~Dedupper() {} |
| 292 | |
| 293 | protected: |
| 294 | // Predicate for objects of type T. Must be overridden for class hierarchies |
| 295 | // like Instance and AbstractType, as it defaults to class ID comparison. |
| 296 | virtual bool IsCorrectType(const Object& obj) const { |
| 297 | return obj.GetClassId() == T::kClassId; |
| 298 | } |
| 299 | |
| 300 | // Predicate for choosing Ts to canonicalize. |
| 301 | virtual bool CanCanonicalize(const T& t) const { return true; } |
| 302 | |
| 303 | // Predicate for objects that are okay to add to the canonical hash set. |
| 304 | // Override IsCorrectType and/or CanCanonicalize to change the behavior. |
| 305 | bool ShouldAdd(const Object& obj) const { |
| 306 | return !obj.IsNull() && IsCorrectType(obj) && CanCanonicalize(T::Cast(obj)); |
| 307 | } |
| 308 | |
| 309 | void AddCanonical(const T& obj) { |
| 310 | if (!ShouldAdd(obj)) return; |
| 311 | ASSERT(!canonical_objects_.HasKey(&obj)); |
| 312 | canonical_objects_.Insert(&T::ZoneHandle(zone_, obj.raw())); |
| 313 | } |
| 314 | |
| 315 | void AddVMBaseObjects() { |
| 316 | const auto& object_table = Object::vm_isolate_snapshot_object_table(); |
| 317 | auto& obj = Object::Handle(zone_); |
| 318 | for (intptr_t i = 0; i < object_table.Length(); i++) { |
| 319 | obj = object_table.At(i); |
| 320 | if (!ShouldAdd(obj)) continue; |
| 321 | AddCanonical(T::Cast(obj)); |
| 322 | } |
| 323 | } |
| 324 | |
| 325 | typename T::ObjectPtrType Dedup(const T& obj) { |
| 326 | if (ShouldAdd(obj)) { |
| 327 | if (auto const canonical = canonical_objects_.LookupValue(&obj)) { |
| 328 | return canonical->raw(); |
| 329 | } |
| 330 | AddCanonical(obj); |
| 331 | } |
| 332 | return obj.raw(); |
| 333 | } |
| 334 | |
| 335 | Zone* const zone_; |
| 336 | DirectChainedHashMap<S> canonical_objects_; |
| 337 | }; |
| 338 | |
| 339 | void ProgramVisitor::BindStaticCalls(Zone* zone, Isolate* isolate) { |
| 340 | class BindStaticCallsVisitor : public CodeVisitor { |
| 341 | public: |
| 342 | explicit BindStaticCallsVisitor(Zone* zone) |
| 343 | : table_(Array::Handle(zone)), |
| 344 | kind_and_offset_(Smi::Handle(zone)), |
| 345 | target_(Object::Handle(zone)), |
| 346 | target_code_(Code::Handle(zone)) {} |
| 347 | |
| 348 | void VisitCode(const Code& code) { |
| 349 | table_ = code.static_calls_target_table(); |
| 350 | if (table_.IsNull()) return; |
| 351 | |
| 352 | StaticCallsTable static_calls(table_); |
| 353 | // We can only remove the target table in precompiled mode, since more |
| 354 | // calls may be added later otherwise. |
| 355 | bool only_call_via_code = FLAG_precompiled_mode; |
| 356 | for (const auto& view : static_calls) { |
| 357 | kind_and_offset_ = view.Get<Code::kSCallTableKindAndOffset>(); |
| 358 | auto const kind = Code::KindField::decode(kind_and_offset_.Value()); |
| 359 | if (kind != Code::kCallViaCode) { |
| 360 | ASSERT(kind == Code::kPcRelativeCall || |
| 361 | kind == Code::kPcRelativeTailCall || |
| 362 | kind == Code::kPcRelativeTTSCall); |
| 363 | only_call_via_code = false; |
| 364 | continue; |
| 365 | } |
| 366 | |
| 367 | target_ = view.Get<Code::kSCallTableFunctionTarget>(); |
| 368 | if (target_.IsNull()) { |
| 369 | target_ = |
| 370 | Code::RawCast(view.Get<Code::kSCallTableCodeOrTypeTarget>()); |
| 371 | ASSERT(!Code::Cast(target_).IsFunctionCode()); |
| 372 | // Allocation stub or AllocateContext or AllocateArray or ... |
| 373 | continue; |
| 374 | } |
| 375 | |
| 376 | auto const pc_offset = |
| 377 | Code::OffsetField::decode(kind_and_offset_.Value()); |
| 378 | const uword pc = pc_offset + code.PayloadStart(); |
| 379 | |
| 380 | // In JIT mode, static calls initially call the CallStaticFunction stub |
| 381 | // because their target might not be compiled yet. If the target has |
| 382 | // been compiled by this point, we patch the call to call the target |
| 383 | // directly. |
| 384 | // |
| 385 | // In precompiled mode, the binder runs after tree shaking, during which |
| 386 | // all targets have been compiled, and so the binder replace all static |
| 387 | // calls with direct calls to the target. |
| 388 | // |
| 389 | // Cf. runtime entry PatchStaticCall called from CallStaticFunction |
| 390 | // stub. |
| 391 | const auto& fun = Function::Cast(target_); |
| 392 | ASSERT(!FLAG_precompiled_mode || fun.HasCode()); |
| 393 | target_code_ = fun.HasCode() ? fun.CurrentCode() |
| 394 | : StubCode::CallStaticFunction().raw(); |
| 395 | CodePatcher::PatchStaticCallAt(pc, code, target_code_); |
| 396 | } |
| 397 | |
| 398 | if (only_call_via_code) { |
| 399 | ASSERT(FLAG_precompiled_mode); |
| 400 | // In precompiled mode, the Dart runtime won't patch static calls |
| 401 | // anymore, so drop the static call table to save space. |
| 402 | code.set_static_calls_target_table(Object::empty_array()); |
| 403 | } |
| 404 | } |
| 405 | |
| 406 | private: |
| 407 | Array& table_; |
| 408 | Smi& kind_and_offset_; |
| 409 | Object& target_; |
| 410 | Code& target_code_; |
| 411 | }; |
| 412 | |
| 413 | BindStaticCallsVisitor visitor(zone); |
| 414 | WalkProgram(zone, isolate, &visitor); |
| 415 | } |
| 416 | |
| 417 | DECLARE_FLAG(charp, trace_precompiler_to); |
| 418 | DECLARE_FLAG(charp, write_v8_snapshot_profile_to); |
| 419 | |
| 420 | void ProgramVisitor::ShareMegamorphicBuckets(Zone* zone, Isolate* isolate) { |
| 421 | const GrowableObjectArray& table = GrowableObjectArray::Handle( |
| 422 | zone, isolate->object_store()->megamorphic_cache_table()); |
| 423 | if (table.IsNull()) return; |
| 424 | MegamorphicCache& cache = MegamorphicCache::Handle(zone); |
| 425 | |
| 426 | const intptr_t capacity = 1; |
| 427 | const Array& buckets = Array::Handle( |
| 428 | zone, Array::New(MegamorphicCache::kEntryLength * capacity, Heap::kOld)); |
| 429 | const Function& handler = Function::Handle(zone); |
| 430 | MegamorphicCache::SetEntry(buckets, 0, Object::smi_illegal_cid(), handler); |
| 431 | |
| 432 | for (intptr_t i = 0; i < table.Length(); i++) { |
| 433 | cache ^= table.At(i); |
| 434 | cache.set_buckets(buckets); |
| 435 | cache.set_mask(capacity - 1); |
| 436 | cache.set_filled_entry_count(0); |
| 437 | } |
| 438 | } |
| 439 | |
| 440 | class StackMapEntry : public ZoneAllocated { |
| 441 | public: |
| 442 | StackMapEntry(Zone* zone, const CompressedStackMapsIterator& it) |
| 443 | : maps_(CompressedStackMaps::Handle(zone, it.maps_.raw())), |
| 444 | bits_container_( |
| 445 | CompressedStackMaps::Handle(zone, it.bits_container_.raw())), |
| 446 | spill_slot_bit_count_(it.current_spill_slot_bit_count_), |
| 447 | non_spill_slot_bit_count_(it.current_non_spill_slot_bit_count_), |
| 448 | bits_offset_(it.current_bits_offset_) { |
| 449 | ASSERT(!maps_.IsNull() && !maps_.IsGlobalTable()); |
| 450 | ASSERT(!bits_container_.IsNull()); |
| 451 | ASSERT(!maps_.UsesGlobalTable() || bits_container_.IsGlobalTable()); |
| 452 | // Check that the iterator was fully loaded when we ran the initializing |
| 453 | // expressions above. By this point we enter the body of the constructor, |
| 454 | // it's too late to run EnsureFullyLoadedEntry(). |
| 455 | ASSERT(it.HasLoadedEntry()); |
| 456 | ASSERT(it.current_spill_slot_bit_count_ >= 0); |
| 457 | } |
| 458 | |
| 459 | static const intptr_t kHashBits = 30; |
| 460 | |
| 461 | intptr_t Hashcode() { |
| 462 | if (hash_ != 0) return hash_; |
| 463 | uint32_t hash = 0; |
| 464 | hash = CombineHashes(hash, spill_slot_bit_count_); |
| 465 | hash = CombineHashes(hash, non_spill_slot_bit_count_); |
| 466 | for (intptr_t i = 0; i < PayloadLength(); i++) { |
| 467 | hash = CombineHashes(hash, PayloadByte(i)); |
| 468 | } |
| 469 | hash_ = FinalizeHash(hash, kHashBits); |
| 470 | return hash_; |
| 471 | } |
| 472 | |
| 473 | bool Equals(const StackMapEntry* other) const { |
| 474 | if (spill_slot_bit_count_ != other->spill_slot_bit_count_ || |
| 475 | non_spill_slot_bit_count_ != other->non_spill_slot_bit_count_) { |
| 476 | return false; |
| 477 | } |
| 478 | // Since we ensure that bits in the payload that are not part of the |
| 479 | // actual stackmap data are cleared, we can just compare payloads by byte |
| 480 | // instead of calling IsObject for each bit. |
| 481 | for (intptr_t i = 0; i < PayloadLength(); i++) { |
| 482 | if (PayloadByte(i) != other->PayloadByte(i)) return false; |
| 483 | } |
| 484 | return true; |
| 485 | } |
| 486 | |
| 487 | // Encodes this StackMapEntry to the given array of bytes and returns the |
| 488 | // initial offset of the entry in the array. |
| 489 | intptr_t EncodeTo(GrowableArray<uint8_t>* array) { |
| 490 | auto const current_offset = array->length(); |
| 491 | CompressedStackMapsBuilder::EncodeLEB128(array, spill_slot_bit_count_); |
| 492 | CompressedStackMapsBuilder::EncodeLEB128(array, non_spill_slot_bit_count_); |
| 493 | for (intptr_t i = 0; i < PayloadLength(); i++) { |
| 494 | array->Add(PayloadByte(i)); |
| 495 | } |
| 496 | return current_offset; |
| 497 | } |
| 498 | |
| 499 | intptr_t UsageCount() const { return uses_; } |
| 500 | void IncrementUsageCount() { uses_ += 1; } |
| 501 | |
| 502 | private: |
| 503 | intptr_t Length() const { |
| 504 | return spill_slot_bit_count_ + non_spill_slot_bit_count_; |
| 505 | } |
| 506 | intptr_t PayloadLength() const { |
| 507 | return Utils::RoundUp(Length(), kBitsPerByte) >> kBitsPerByteLog2; |
| 508 | } |
| 509 | intptr_t PayloadByte(intptr_t offset) const { |
| 510 | return bits_container_.PayloadByte(bits_offset_ + offset); |
| 511 | } |
| 512 | |
| 513 | const CompressedStackMaps& maps_; |
| 514 | const CompressedStackMaps& bits_container_; |
| 515 | const intptr_t spill_slot_bit_count_; |
| 516 | const intptr_t non_spill_slot_bit_count_; |
| 517 | const intptr_t bits_offset_; |
| 518 | |
| 519 | intptr_t uses_ = 1; |
| 520 | intptr_t hash_ = 0; |
| 521 | }; |
| 522 | |
| 523 | // Used for maps of indices and offsets. These are non-negative, and so the |
| 524 | // value for entries may be 0. Since 0 is kNoValue for |
| 525 | // RawPointerKeyValueTrait<const StackMapEntry, intptr_t>, we can't just use it. |
| 526 | class StackMapEntryKeyIntValueTrait { |
| 527 | public: |
| 528 | typedef StackMapEntry* Key; |
| 529 | typedef intptr_t Value; |
| 530 | |
| 531 | struct Pair { |
| 532 | Key key; |
| 533 | Value value; |
| 534 | Pair() : key(nullptr), value(-1) {} |
| 535 | Pair(const Key key, const Value& value) |
| 536 | : key(ASSERT_NOTNULL(key)), value(value) {} |
| 537 | Pair(const Pair& other) : key(other.key), value(other.value) {} |
| 538 | Pair& operator=(const Pair&) = default; |
| 539 | }; |
| 540 | |
| 541 | static Key KeyOf(Pair kv) { return kv.key; } |
| 542 | static Value ValueOf(Pair kv) { return kv.value; } |
| 543 | static intptr_t Hashcode(Key key) { return key->Hashcode(); } |
| 544 | static bool IsKeyEqual(Pair kv, Key key) { return key->Equals(kv.key); } |
| 545 | }; |
| 546 | |
| 547 | typedef DirectChainedHashMap<StackMapEntryKeyIntValueTrait> StackMapEntryIntMap; |
| 548 | |
| 549 | void ProgramVisitor::NormalizeAndDedupCompressedStackMaps(Zone* zone, |
| 550 | Isolate* isolate) { |
| 551 | // Walks all the CSMs in Code objects and collects their entry information |
| 552 | // for consolidation. |
| 553 | class CollectStackMapEntriesVisitor : public CodeVisitor { |
| 554 | public: |
| 555 | CollectStackMapEntriesVisitor(Zone* zone, |
| 556 | const CompressedStackMaps& global_table) |
| 557 | : zone_(zone), |
| 558 | old_global_table_(global_table), |
| 559 | compressed_stackmaps_(CompressedStackMaps::Handle(zone)), |
| 560 | collected_entries_(zone, 2), |
| 561 | entry_indices_(zone), |
| 562 | entry_offset_(zone) { |
| 563 | ASSERT(old_global_table_.IsNull() || old_global_table_.IsGlobalTable()); |
| 564 | } |
| 565 | |
| 566 | void VisitCode(const Code& code) { |
| 567 | compressed_stackmaps_ = code.compressed_stackmaps(); |
| 568 | CompressedStackMapsIterator it(compressed_stackmaps_, old_global_table_); |
| 569 | while (it.MoveNext()) { |
| 570 | it.EnsureFullyLoadedEntry(); |
| 571 | auto const entry = new (zone_) StackMapEntry(zone_, it); |
| 572 | auto const index = entry_indices_.LookupValue(entry); |
| 573 | if (index < 0) { |
| 574 | auto new_index = collected_entries_.length(); |
| 575 | collected_entries_.Add(entry); |
| 576 | entry_indices_.Insert({entry, new_index}); |
| 577 | } else { |
| 578 | collected_entries_.At(index)->IncrementUsageCount(); |
| 579 | } |
| 580 | } |
| 581 | } |
| 582 | |
| 583 | // Creates a new global table of stack map information. Also adds the |
| 584 | // offsets of encoded StackMapEntry objects to entry_offsets for use |
| 585 | // when normalizing CompressedStackMaps. |
| 586 | CompressedStackMapsPtr CreateGlobalTable( |
| 587 | StackMapEntryIntMap* entry_offsets) { |
| 588 | ASSERT(entry_offsets->IsEmpty()); |
| 589 | if (collected_entries_.length() == 0) return CompressedStackMaps::null(); |
| 590 | // First, sort the entries from most used to least used. This way, |
| 591 | // the most often used CSMs will have the lowest offsets, which means |
| 592 | // they will be smaller when LEB128 encoded. |
| 593 | collected_entries_.Sort( |
| 594 | [](StackMapEntry* const* e1, StackMapEntry* const* e2) { |
| 595 | return static_cast<int>((*e2)->UsageCount() - (*e1)->UsageCount()); |
| 596 | }); |
| 597 | GrowableArray<uint8_t> bytes; |
| 598 | // Encode the entries and record their offset in the payload. Sorting the |
| 599 | // entries may have changed their indices, so update those as well. |
| 600 | for (intptr_t i = 0, n = collected_entries_.length(); i < n; i++) { |
| 601 | auto const entry = collected_entries_.At(i); |
| 602 | entry_indices_.Update({entry, i}); |
| 603 | entry_offsets->Insert({entry, entry->EncodeTo(&bytes)}); |
| 604 | } |
| 605 | const auto& data = CompressedStackMaps::Handle( |
| 606 | zone_, CompressedStackMaps::NewGlobalTable(bytes)); |
| 607 | return data.raw(); |
| 608 | } |
| 609 | |
| 610 | private: |
| 611 | Zone* const zone_; |
| 612 | const CompressedStackMaps& old_global_table_; |
| 613 | |
| 614 | CompressedStackMaps& compressed_stackmaps_; |
| 615 | GrowableArray<StackMapEntry*> collected_entries_; |
| 616 | StackMapEntryIntMap entry_indices_; |
| 617 | StackMapEntryIntMap entry_offset_; |
| 618 | }; |
| 619 | |
| 620 | // Walks all the CSMs in Code objects, normalizes them, and then dedups them. |
| 621 | // |
| 622 | // We use normalized to refer to CSMs whose entries are references to the |
| 623 | // new global table created during stack map collection, and non-normalized |
| 624 | // for CSMs that either have inlined entry information or whose entries are |
| 625 | // references to the _old_ global table in the object store, if any. |
| 626 | class NormalizeAndDedupCompressedStackMapsVisitor |
| 627 | : public CodeVisitor, |
| 628 | public Dedupper<CompressedStackMaps, |
| 629 | PointerKeyValueTrait<const CompressedStackMaps>> { |
| 630 | public: |
| 631 | NormalizeAndDedupCompressedStackMapsVisitor(Zone* zone, Isolate* isolate) |
| 632 | : Dedupper(zone), |
| 633 | old_global_table_(CompressedStackMaps::Handle( |
| 634 | zone, |
| 635 | isolate->object_store()->canonicalized_stack_map_entries())), |
| 636 | entry_offsets_(zone), |
| 637 | maps_(CompressedStackMaps::Handle(zone)) { |
| 638 | ASSERT(old_global_table_.IsNull() || old_global_table_.IsGlobalTable()); |
| 639 | // The stack map normalization and deduplication happens in two phases: |
| 640 | // |
| 641 | // 1) Visit all CompressedStackMaps (CSM) objects and collect individual |
| 642 | // entry info as canonicalized StackMapEntries (SMEs). Also record the |
| 643 | // frequency the same entry info was seen across all CSMs in each SME. |
| 644 | |
| 645 | CollectStackMapEntriesVisitor collect_visitor(zone, old_global_table_); |
| 646 | WalkProgram(zone, isolate, &collect_visitor); |
| 647 | |
| 648 | // The results of phase 1 are used to create a new global table with |
| 649 | // entries sorted by decreasing frequency, so that entries that appear |
| 650 | // more often in CSMs have smaller payload offsets (less bytes used in |
| 651 | // the LEB128 encoding). The new global table is put into place |
| 652 | // immediately, as we already have a handle on the old table. |
| 653 | |
| 654 | const auto& new_global_table = CompressedStackMaps::Handle( |
| 655 | zone, collect_visitor.CreateGlobalTable(&entry_offsets_)); |
| 656 | isolate->object_store()->set_canonicalized_stack_map_entries( |
| 657 | new_global_table); |
| 658 | |
| 659 | // 2) Visit all CSMs and replace each with a canonicalized normalized |
| 660 | // version that uses the new global table for non-PC offset entry |
| 661 | // information. This part is done in VisitCode. |
| 662 | } |
| 663 | |
| 664 | void VisitCode(const Code& code) { |
| 665 | maps_ = code.compressed_stackmaps(); |
| 666 | if (maps_.IsNull()) return; |
| 667 | // First check is to make sure [maps] hasn't already been normalized, |
| 668 | // since any normalized map already has a canonical entry in the set. |
| 669 | if (auto const canonical = canonical_objects_.LookupValue(&maps_)) { |
| 670 | maps_ = canonical->raw(); |
| 671 | } else { |
| 672 | maps_ = NormalizeEntries(maps_); |
| 673 | maps_ = Dedup(maps_); |
| 674 | } |
| 675 | code.set_compressed_stackmaps(maps_); |
| 676 | } |
| 677 | |
| 678 | private: |
| 679 | // Creates a normalized CSM from the given non-normalized CSM. |
| 680 | CompressedStackMapsPtr NormalizeEntries(const CompressedStackMaps& maps) { |
| 681 | GrowableArray<uint8_t> new_payload; |
| 682 | CompressedStackMapsIterator it(maps, old_global_table_); |
| 683 | intptr_t last_offset = 0; |
| 684 | while (it.MoveNext()) { |
| 685 | it.EnsureFullyLoadedEntry(); |
| 686 | StackMapEntry entry(zone_, it); |
| 687 | auto const entry_offset = entry_offsets_.LookupValue(&entry); |
| 688 | auto const pc_delta = it.pc_offset() - last_offset; |
| 689 | CompressedStackMapsBuilder::EncodeLEB128(&new_payload, pc_delta); |
| 690 | CompressedStackMapsBuilder::EncodeLEB128(&new_payload, entry_offset); |
| 691 | last_offset = it.pc_offset(); |
| 692 | } |
| 693 | return CompressedStackMaps::NewUsingTable(new_payload); |
| 694 | } |
| 695 | |
| 696 | const CompressedStackMaps& old_global_table_; |
| 697 | StackMapEntryIntMap entry_offsets_; |
| 698 | CompressedStackMaps& maps_; |
| 699 | }; |
| 700 | |
| 701 | NormalizeAndDedupCompressedStackMapsVisitor dedup_visitor(zone, isolate); |
| 702 | WalkProgram(zone, isolate, &dedup_visitor); |
| 703 | } |
| 704 | |
| 705 | class PcDescriptorsKeyValueTrait { |
| 706 | public: |
| 707 | // Typedefs needed for the DirectChainedHashMap template. |
| 708 | typedef const PcDescriptors* Key; |
| 709 | typedef const PcDescriptors* Value; |
| 710 | typedef const PcDescriptors* Pair; |
| 711 | |
| 712 | static Key KeyOf(Pair kv) { return kv; } |
| 713 | |
| 714 | static Value ValueOf(Pair kv) { return kv; } |
| 715 | |
| 716 | static inline intptr_t Hashcode(Key key) { return key->Length(); } |
| 717 | |
| 718 | static inline bool IsKeyEqual(Pair pair, Key key) { |
| 719 | return pair->Equals(*key); |
| 720 | } |
| 721 | }; |
| 722 | |
| 723 | void ProgramVisitor::DedupPcDescriptors(Zone* zone, Isolate* isolate) { |
| 724 | class DedupPcDescriptorsVisitor |
| 725 | : public CodeVisitor, |
| 726 | public Dedupper<PcDescriptors, PcDescriptorsKeyValueTrait> { |
| 727 | public: |
| 728 | explicit DedupPcDescriptorsVisitor(Zone* zone) |
| 729 | : Dedupper(zone), |
| 730 | bytecode_(Bytecode::Handle(zone)), |
| 731 | pc_descriptor_(PcDescriptors::Handle(zone)) { |
| 732 | if (Snapshot::IncludesCode(Dart::vm_snapshot_kind())) { |
| 733 | // Prefer existing objects in the VM isolate. |
| 734 | AddVMBaseObjects(); |
| 735 | } |
| 736 | } |
| 737 | |
| 738 | void VisitCode(const Code& code) { |
| 739 | pc_descriptor_ = code.pc_descriptors(); |
| 740 | pc_descriptor_ = Dedup(pc_descriptor_); |
| 741 | code.set_pc_descriptors(pc_descriptor_); |
| 742 | } |
| 743 | |
| 744 | void VisitFunction(const Function& function) { |
| 745 | bytecode_ = function.bytecode(); |
| 746 | if (bytecode_.IsNull()) return; |
| 747 | if (bytecode_.InVMIsolateHeap()) return; |
| 748 | pc_descriptor_ = bytecode_.pc_descriptors(); |
| 749 | pc_descriptor_ = Dedup(pc_descriptor_); |
| 750 | bytecode_.set_pc_descriptors(pc_descriptor_); |
| 751 | } |
| 752 | |
| 753 | private: |
| 754 | Bytecode& bytecode_; |
| 755 | PcDescriptors& pc_descriptor_; |
| 756 | }; |
| 757 | |
| 758 | DedupPcDescriptorsVisitor visitor(zone); |
| 759 | WalkProgram(zone, isolate, &visitor); |
| 760 | } |
| 761 | |
| 762 | class TypedDataKeyValueTrait { |
| 763 | public: |
| 764 | // Typedefs needed for the DirectChainedHashMap template. |
| 765 | typedef const TypedData* Key; |
| 766 | typedef const TypedData* Value; |
| 767 | typedef const TypedData* Pair; |
| 768 | |
| 769 | static Key KeyOf(Pair kv) { return kv; } |
| 770 | |
| 771 | static Value ValueOf(Pair kv) { return kv; } |
| 772 | |
| 773 | static inline intptr_t Hashcode(Key key) { return key->CanonicalizeHash(); } |
| 774 | |
| 775 | static inline bool IsKeyEqual(Pair pair, Key key) { |
| 776 | return pair->CanonicalizeEquals(*key); |
| 777 | } |
| 778 | }; |
| 779 | |
| 780 | class TypedDataDedupper : public Dedupper<TypedData, TypedDataKeyValueTrait> { |
| 781 | public: |
| 782 | explicit TypedDataDedupper(Zone* zone) : Dedupper(zone) {} |
| 783 | |
| 784 | private: |
| 785 | bool IsCorrectType(const Object& obj) const { return obj.IsTypedData(); } |
| 786 | }; |
| 787 | |
| 788 | void ProgramVisitor::DedupDeoptEntries(Zone* zone, Isolate* isolate) { |
| 789 | class DedupDeoptEntriesVisitor : public CodeVisitor, |
| 790 | public TypedDataDedupper { |
| 791 | public: |
| 792 | explicit DedupDeoptEntriesVisitor(Zone* zone) |
| 793 | : TypedDataDedupper(zone), |
| 794 | deopt_table_(Array::Handle(zone)), |
| 795 | deopt_entry_(TypedData::Handle(zone)), |
| 796 | offset_(Smi::Handle(zone)), |
| 797 | reason_and_flags_(Smi::Handle(zone)) {} |
| 798 | |
| 799 | void VisitCode(const Code& code) { |
| 800 | deopt_table_ = code.deopt_info_array(); |
| 801 | if (deopt_table_.IsNull()) return; |
| 802 | intptr_t length = DeoptTable::GetLength(deopt_table_); |
| 803 | for (intptr_t i = 0; i < length; i++) { |
| 804 | DeoptTable::GetEntry(deopt_table_, i, &offset_, &deopt_entry_, |
| 805 | &reason_and_flags_); |
| 806 | ASSERT(!deopt_entry_.IsNull()); |
| 807 | deopt_entry_ = Dedup(deopt_entry_); |
| 808 | ASSERT(!deopt_entry_.IsNull()); |
| 809 | DeoptTable::SetEntry(deopt_table_, i, offset_, deopt_entry_, |
| 810 | reason_and_flags_); |
| 811 | } |
| 812 | } |
| 813 | |
| 814 | private: |
| 815 | Array& deopt_table_; |
| 816 | TypedData& deopt_entry_; |
| 817 | Smi& offset_; |
| 818 | Smi& reason_and_flags_; |
| 819 | }; |
| 820 | |
| 821 | if (FLAG_precompiled_mode) return; |
| 822 | DedupDeoptEntriesVisitor visitor(zone); |
| 823 | WalkProgram(zone, isolate, &visitor); |
| 824 | } |
| 825 | |
| 826 | #if defined(DART_PRECOMPILER) |
| 827 | void ProgramVisitor::DedupCatchEntryMovesMaps(Zone* zone, Isolate* isolate) { |
| 828 | class DedupCatchEntryMovesMapsVisitor : public CodeVisitor, |
| 829 | public TypedDataDedupper { |
| 830 | public: |
| 831 | explicit DedupCatchEntryMovesMapsVisitor(Zone* zone) |
| 832 | : TypedDataDedupper(zone), |
| 833 | catch_entry_moves_maps_(TypedData::Handle(zone)) {} |
| 834 | |
| 835 | void VisitCode(const Code& code) { |
| 836 | catch_entry_moves_maps_ = code.catch_entry_moves_maps(); |
| 837 | catch_entry_moves_maps_ = Dedup(catch_entry_moves_maps_); |
| 838 | code.set_catch_entry_moves_maps(catch_entry_moves_maps_); |
| 839 | } |
| 840 | |
| 841 | private: |
| 842 | TypedData& catch_entry_moves_maps_; |
| 843 | }; |
| 844 | |
| 845 | if (!FLAG_precompiled_mode) return; |
| 846 | DedupCatchEntryMovesMapsVisitor visitor(zone); |
| 847 | WalkProgram(zone, isolate, &visitor); |
| 848 | } |
| 849 | |
| 850 | class UnlinkedCallKeyValueTrait { |
| 851 | public: |
| 852 | // Typedefs needed for the DirectChainedHashMap template. |
| 853 | typedef const UnlinkedCall* Key; |
| 854 | typedef const UnlinkedCall* Value; |
| 855 | typedef const UnlinkedCall* Pair; |
| 856 | |
| 857 | static Key KeyOf(Pair kv) { return kv; } |
| 858 | |
| 859 | static Value ValueOf(Pair kv) { return kv; } |
| 860 | |
| 861 | static inline intptr_t Hashcode(Key key) { return key->Hashcode(); } |
| 862 | |
| 863 | static inline bool IsKeyEqual(Pair pair, Key key) { |
| 864 | return pair->Equals(*key); |
| 865 | } |
| 866 | }; |
| 867 | |
| 868 | void ProgramVisitor::DedupUnlinkedCalls(Zone* zone, Isolate* isolate) { |
| 869 | class DedupUnlinkedCallsVisitor |
| 870 | : public CodeVisitor, |
| 871 | public Dedupper<UnlinkedCall, UnlinkedCallKeyValueTrait> { |
| 872 | public: |
| 873 | explicit DedupUnlinkedCallsVisitor(Zone* zone, Isolate* isolate) |
| 874 | : Dedupper(zone), |
| 875 | entry_(Object::Handle(zone)), |
| 876 | pool_(ObjectPool::Handle(zone)) { |
| 877 | auto& gop = ObjectPool::Handle( |
| 878 | zone, isolate->object_store()->global_object_pool()); |
| 879 | ASSERT_EQUAL(!gop.IsNull(), FLAG_use_bare_instructions); |
| 880 | DedupPool(gop); |
| 881 | } |
| 882 | |
| 883 | void DedupPool(const ObjectPool& pool) { |
| 884 | if (pool.IsNull()) return; |
| 885 | for (intptr_t i = 0; i < pool.Length(); i++) { |
| 886 | if (pool.TypeAt(i) != ObjectPool::EntryType::kTaggedObject) { |
| 887 | continue; |
| 888 | } |
| 889 | entry_ = pool.ObjectAt(i); |
| 890 | if (!entry_.IsUnlinkedCall()) continue; |
| 891 | entry_ = Dedup(UnlinkedCall::Cast(entry_)); |
| 892 | pool.SetObjectAt(i, entry_); |
| 893 | } |
| 894 | } |
| 895 | |
| 896 | void VisitCode(const Code& code) { |
| 897 | pool_ = code.object_pool(); |
| 898 | DedupPool(pool_); |
| 899 | } |
| 900 | |
| 901 | private: |
| 902 | Object& entry_; |
| 903 | ObjectPool& pool_; |
| 904 | }; |
| 905 | |
| 906 | if (!FLAG_precompiled_mode) return; |
| 907 | |
| 908 | DedupUnlinkedCallsVisitor deduper(zone, isolate); |
| 909 | |
| 910 | // Note: in bare instructions mode we can still have object pools attached |
| 911 | // to code objects and these pools need to be deduplicated. |
| 912 | // We use these pools to carry information about references between code |
| 913 | // objects and other objects in the snapshots (these references are otherwise |
| 914 | // implicit and go through global object pool). This information is needed |
| 915 | // to produce more informative snapshot profile. |
| 916 | if (!FLAG_use_bare_instructions || |
| 917 | FLAG_write_v8_snapshot_profile_to != nullptr || |
| 918 | FLAG_trace_precompiler_to != nullptr) { |
| 919 | WalkProgram(zone, isolate, &deduper); |
| 920 | } |
| 921 | } |
| 922 | #endif // defined(DART_PRECOMPILER) |
| 923 | |
| 924 | class CodeSourceMapKeyValueTrait { |
| 925 | public: |
| 926 | // Typedefs needed for the DirectChainedHashMap template. |
| 927 | typedef const CodeSourceMap* Key; |
| 928 | typedef const CodeSourceMap* Value; |
| 929 | typedef const CodeSourceMap* Pair; |
| 930 | |
| 931 | static Key KeyOf(Pair kv) { return kv; } |
| 932 | |
| 933 | static Value ValueOf(Pair kv) { return kv; } |
| 934 | |
| 935 | static inline intptr_t Hashcode(Key key) { |
| 936 | ASSERT(!key->IsNull()); |
| 937 | return key->Length(); |
| 938 | } |
| 939 | |
| 940 | static inline bool IsKeyEqual(Pair pair, Key key) { |
| 941 | ASSERT(!pair->IsNull() && !key->IsNull()); |
| 942 | return pair->Equals(*key); |
| 943 | } |
| 944 | }; |
| 945 | |
| 946 | void ProgramVisitor::DedupCodeSourceMaps(Zone* zone, Isolate* isolate) { |
| 947 | class DedupCodeSourceMapsVisitor |
| 948 | : public CodeVisitor, |
| 949 | public Dedupper<CodeSourceMap, CodeSourceMapKeyValueTrait> { |
| 950 | public: |
| 951 | explicit DedupCodeSourceMapsVisitor(Zone* zone) |
| 952 | : Dedupper(zone), code_source_map_(CodeSourceMap::Handle(zone)) { |
| 953 | if (Snapshot::IncludesCode(Dart::vm_snapshot_kind())) { |
| 954 | // Prefer existing objects in the VM isolate. |
| 955 | AddVMBaseObjects(); |
| 956 | } |
| 957 | } |
| 958 | |
| 959 | void VisitCode(const Code& code) { |
| 960 | code_source_map_ = code.code_source_map(); |
| 961 | code_source_map_ = Dedup(code_source_map_); |
| 962 | code.set_code_source_map(code_source_map_); |
| 963 | } |
| 964 | |
| 965 | private: |
| 966 | CodeSourceMap& code_source_map_; |
| 967 | }; |
| 968 | |
| 969 | DedupCodeSourceMapsVisitor visitor(zone); |
| 970 | WalkProgram(zone, isolate, &visitor); |
| 971 | } |
| 972 | |
| 973 | class ArrayKeyValueTrait { |
| 974 | public: |
| 975 | // Typedefs needed for the DirectChainedHashMap template. |
| 976 | typedef const Array* Key; |
| 977 | typedef const Array* Value; |
| 978 | typedef const Array* Pair; |
| 979 | |
| 980 | static Key KeyOf(Pair kv) { return kv; } |
| 981 | |
| 982 | static Value ValueOf(Pair kv) { return kv; } |
| 983 | |
| 984 | static inline intptr_t Hashcode(Key key) { |
| 985 | ASSERT(!key->IsNull()); |
| 986 | return key->Length(); |
| 987 | } |
| 988 | |
| 989 | static inline bool IsKeyEqual(Pair pair, Key key) { |
| 990 | ASSERT(!pair->IsNull() && !key->IsNull()); |
| 991 | if (pair->Length() != key->Length()) return false; |
| 992 | for (intptr_t i = 0; i < pair->Length(); i++) { |
| 993 | if (pair->At(i) != key->At(i)) return false; |
| 994 | } |
| 995 | return true; |
| 996 | } |
| 997 | }; |
| 998 | |
| 999 | void ProgramVisitor::DedupLists(Zone* zone, Isolate* isolate) { |
| 1000 | class DedupListsVisitor : public CodeVisitor, |
| 1001 | public Dedupper<Array, ArrayKeyValueTrait> { |
| 1002 | public: |
| 1003 | explicit DedupListsVisitor(Zone* zone) |
| 1004 | : Dedupper(zone), |
| 1005 | list_(Array::Handle(zone)), |
| 1006 | function_(Function::Handle(zone)) {} |
| 1007 | |
| 1008 | void VisitCode(const Code& code) { |
| 1009 | if (!code.IsFunctionCode()) return; |
| 1010 | |
| 1011 | list_ = code.inlined_id_to_function(); |
| 1012 | list_ = Dedup(list_); |
| 1013 | code.set_inlined_id_to_function(list_); |
| 1014 | |
| 1015 | list_ = code.deopt_info_array(); |
| 1016 | list_ = Dedup(list_); |
| 1017 | code.set_deopt_info_array(list_); |
| 1018 | |
| 1019 | list_ = code.static_calls_target_table(); |
| 1020 | list_ = Dedup(list_); |
| 1021 | code.set_static_calls_target_table(list_); |
| 1022 | } |
| 1023 | |
| 1024 | void VisitFunction(const Function& function) { |
| 1025 | list_ = PrepareParameterTypes(function); |
| 1026 | list_ = Dedup(list_); |
| 1027 | function.set_parameter_types(list_); |
| 1028 | |
| 1029 | list_ = PrepareParameterNames(function); |
| 1030 | list_ = Dedup(list_); |
| 1031 | function.set_parameter_names(list_); |
| 1032 | } |
| 1033 | |
| 1034 | private: |
| 1035 | bool IsCorrectType(const Object& obj) const { return obj.IsArray(); } |
| 1036 | |
| 1037 | ArrayPtr PrepareParameterTypes(const Function& function) { |
| 1038 | list_ = function.parameter_types(); |
| 1039 | // Preserve parameter types in the JIT. Needed in case of recompilation |
| 1040 | // in checked mode, or if available to mirrors, or for copied types to |
| 1041 | // lazily generated tear offs. Also avoid attempting to change read-only |
| 1042 | // VM objects for de-duplication. |
| 1043 | if (FLAG_precompiled_mode && !list_.IsNull() && |
| 1044 | !list_.InVMIsolateHeap() && !function.IsSignatureFunction() && |
| 1045 | !function.IsClosureFunction() && !function.IsFfiTrampoline() && |
| 1046 | function.name() != Symbols::Call().raw()) { |
| 1047 | // Parameter types not needed for function type tests. |
| 1048 | for (intptr_t i = 0; i < list_.Length(); i++) { |
| 1049 | list_.SetAt(i, Object::dynamic_type()); |
| 1050 | } |
| 1051 | } |
| 1052 | return list_.raw(); |
| 1053 | } |
| 1054 | |
| 1055 | ArrayPtr PrepareParameterNames(const Function& function) { |
| 1056 | list_ = function.parameter_names(); |
| 1057 | // Preserve parameter names in case of recompilation for the JIT. Also |
| 1058 | // avoid attempting to change read-only VM objects for de-duplication. |
| 1059 | if (FLAG_precompiled_mode && !list_.IsNull() && |
| 1060 | !list_.InVMIsolateHeap() && !function.HasOptionalNamedParameters()) { |
| 1061 | // Parameter names not needed for resolution. |
| 1062 | ASSERT(list_.Length() == function.NumParameters()); |
| 1063 | for (intptr_t i = 0; i < list_.Length(); i++) { |
| 1064 | list_.SetAt(i, Symbols::OptimizedOut()); |
| 1065 | } |
| 1066 | } |
| 1067 | return list_.raw(); |
| 1068 | } |
| 1069 | |
| 1070 | Array& list_; |
| 1071 | Function& function_; |
| 1072 | }; |
| 1073 | |
| 1074 | DedupListsVisitor visitor(zone); |
| 1075 | WalkProgram(zone, isolate, &visitor); |
| 1076 | } |
| 1077 | |
| 1078 | // Traits for comparing two [Instructions] objects for equality, which is |
| 1079 | // implemented as bit-wise equality. |
| 1080 | // |
| 1081 | // This considers two instruction objects to be equal even if they have |
| 1082 | // different static call targets. Since the static call targets are called via |
| 1083 | // the object pool this is ok. |
| 1084 | class InstructionsKeyValueTrait { |
| 1085 | public: |
| 1086 | // Typedefs needed for the DirectChainedHashMap template. |
| 1087 | typedef const Instructions* Key; |
| 1088 | typedef const Instructions* Value; |
| 1089 | typedef const Instructions* Pair; |
| 1090 | |
| 1091 | static Key KeyOf(Pair kv) { return kv; } |
| 1092 | |
| 1093 | static Value ValueOf(Pair kv) { return kv; } |
| 1094 | |
| 1095 | static inline intptr_t Hashcode(Key key) { return key->Hash(); } |
| 1096 | |
| 1097 | static inline bool IsKeyEqual(Pair pair, Key key) { |
| 1098 | return pair->Equals(*key); |
| 1099 | } |
| 1100 | }; |
| 1101 | |
| 1102 | // Traits for comparing two [Code] objects for equality. |
| 1103 | // |
| 1104 | // The instruction deduplication naturally causes us to have a one-to-many |
| 1105 | // relationship between Instructions and Code objects. |
| 1106 | // |
| 1107 | // In AOT bare instructions mode frames only have PCs. However, the runtime |
| 1108 | // needs e.g. stack maps from the [Code] to scan such a frame. So we ensure that |
| 1109 | // instructions of code objects are only deduplicated if the metadata in the |
| 1110 | // code is the same. The runtime can then pick any code object corresponding to |
| 1111 | // the PC in the frame and use the metadata. |
| 1112 | // |
| 1113 | // In AOT non-bare instructions mode frames are expanded, like in JIT, and |
| 1114 | // contain the unique code object. |
| 1115 | #if defined(DART_PRECOMPILER) |
| 1116 | class CodeKeyValueTrait { |
| 1117 | public: |
| 1118 | // Typedefs needed for the DirectChainedHashMap template. |
| 1119 | typedef const Code* Key; |
| 1120 | typedef const Code* Value; |
| 1121 | typedef const Code* Pair; |
| 1122 | |
| 1123 | static Key KeyOf(Pair kv) { return kv; } |
| 1124 | |
| 1125 | static Value ValueOf(Pair kv) { return kv; } |
| 1126 | |
| 1127 | static inline intptr_t Hashcode(Key key) { return key->Size(); } |
| 1128 | |
| 1129 | static inline bool IsKeyEqual(Pair pair, Key key) { |
| 1130 | // In AOT, disabled code objects should not be considered for deduplication. |
| 1131 | ASSERT(!pair->IsDisabled() && !key->IsDisabled()); |
| 1132 | |
| 1133 | if (pair->raw() == key->raw()) return true; |
| 1134 | |
| 1135 | // Notice we assume that these entries have already been de-duped, so we |
| 1136 | // can use pointer equality. |
| 1137 | if (pair->static_calls_target_table() != key->static_calls_target_table()) { |
| 1138 | return false; |
| 1139 | } |
| 1140 | if (pair->pc_descriptors() != key->pc_descriptors()) { |
| 1141 | return false; |
| 1142 | } |
| 1143 | if (pair->compressed_stackmaps() != key->compressed_stackmaps()) { |
| 1144 | return false; |
| 1145 | } |
| 1146 | if (pair->catch_entry_moves_maps() != key->catch_entry_moves_maps()) { |
| 1147 | return false; |
| 1148 | } |
| 1149 | if (pair->exception_handlers() != key->exception_handlers()) { |
| 1150 | return false; |
| 1151 | } |
| 1152 | if (pair->UncheckedEntryPointOffset() != key->UncheckedEntryPointOffset()) { |
| 1153 | return false; |
| 1154 | } |
| 1155 | return Instructions::Equals(pair->instructions(), key->instructions()); |
| 1156 | } |
| 1157 | }; |
| 1158 | #endif |
| 1159 | |
| 1160 | void ProgramVisitor::DedupInstructions(Zone* zone, Isolate* isolate) { |
| 1161 | class DedupInstructionsVisitor |
| 1162 | : public CodeVisitor, |
| 1163 | public Dedupper<Instructions, InstructionsKeyValueTrait>, |
| 1164 | public ObjectVisitor { |
| 1165 | public: |
| 1166 | explicit DedupInstructionsVisitor(Zone* zone) |
| 1167 | : Dedupper(zone), |
| 1168 | code_(Code::Handle(zone)), |
| 1169 | instructions_(Instructions::Handle(zone)) { |
| 1170 | if (Snapshot::IncludesCode(Dart::vm_snapshot_kind())) { |
| 1171 | // Prefer existing objects in the VM isolate. |
| 1172 | Dart::vm_isolate()->heap()->VisitObjectsImagePages(this); |
| 1173 | } |
| 1174 | } |
| 1175 | |
| 1176 | void VisitObject(ObjectPtr obj) { |
| 1177 | if (!obj->IsInstructions()) return; |
| 1178 | instructions_ = Instructions::RawCast(obj); |
| 1179 | AddCanonical(instructions_); |
| 1180 | } |
| 1181 | |
| 1182 | void VisitFunction(const Function& function) { |
| 1183 | if (!function.HasCode()) return; |
| 1184 | code_ = function.CurrentCode(); |
| 1185 | // This causes the code to be visited once here and once directly in the |
| 1186 | // ProgramWalker, but as long as the deduplication process is idempotent, |
| 1187 | // the cached entry points won't change during the second visit. |
| 1188 | VisitCode(code_); |
| 1189 | function.SetInstructions(code_); // Update cached entry point. |
| 1190 | } |
| 1191 | |
| 1192 | void VisitCode(const Code& code) { |
| 1193 | instructions_ = code.instructions(); |
| 1194 | instructions_ = Dedup(instructions_); |
| 1195 | code.set_instructions(instructions_); |
| 1196 | if (code.IsDisabled()) { |
| 1197 | instructions_ = code.active_instructions(); |
| 1198 | instructions_ = Dedup(instructions_); |
| 1199 | } |
| 1200 | code.SetActiveInstructions(instructions_, |
| 1201 | code.UncheckedEntryPointOffset()); |
| 1202 | } |
| 1203 | |
| 1204 | private: |
| 1205 | Code& code_; |
| 1206 | Instructions& instructions_; |
| 1207 | }; |
| 1208 | |
| 1209 | #if defined(DART_PRECOMPILER) |
| 1210 | class DedupInstructionsWithSameMetadataVisitor |
| 1211 | : public CodeVisitor, |
| 1212 | public Dedupper<Code, CodeKeyValueTrait> { |
| 1213 | public: |
| 1214 | explicit DedupInstructionsWithSameMetadataVisitor(Zone* zone) |
| 1215 | : Dedupper(zone), |
| 1216 | canonical_(Code::Handle(zone)), |
| 1217 | code_(Code::Handle(zone)), |
| 1218 | instructions_(Instructions::Handle(zone)) {} |
| 1219 | |
| 1220 | void VisitFunction(const Function& function) { |
| 1221 | if (!function.HasCode()) return; |
| 1222 | code_ = function.CurrentCode(); |
| 1223 | // This causes the code to be visited once here and once directly in the |
| 1224 | // ProgramWalker, but as long as the deduplication process is idempotent, |
| 1225 | // the cached entry points won't change during the second visit. |
| 1226 | VisitCode(code_); |
| 1227 | function.SetInstructions(code_); // Update cached entry point. |
| 1228 | } |
| 1229 | |
| 1230 | void VisitCode(const Code& code) { |
| 1231 | if (code.IsDisabled()) return; |
| 1232 | canonical_ = Dedup(code); |
| 1233 | instructions_ = canonical_.instructions(); |
| 1234 | code.SetActiveInstructions(instructions_, |
| 1235 | code.UncheckedEntryPointOffset()); |
| 1236 | code.set_instructions(instructions_); |
| 1237 | } |
| 1238 | |
| 1239 | private: |
| 1240 | bool CanCanonicalize(const Code& code) const { return !code.IsDisabled(); } |
| 1241 | |
| 1242 | Code& canonical_; |
| 1243 | Code& code_; |
| 1244 | Instructions& instructions_; |
| 1245 | }; |
| 1246 | |
| 1247 | if (FLAG_precompiled_mode && FLAG_use_bare_instructions) { |
| 1248 | DedupInstructionsWithSameMetadataVisitor visitor(zone); |
| 1249 | return WalkProgram(zone, isolate, &visitor); |
| 1250 | } |
| 1251 | #endif // defined(DART_PRECOMPILER) |
| 1252 | |
| 1253 | DedupInstructionsVisitor visitor(zone); |
| 1254 | WalkProgram(zone, isolate, &visitor); |
| 1255 | } |
| 1256 | #endif // !defined(DART_PRECOMPILED_RUNTIME) |
| 1257 | |
| 1258 | void ProgramVisitor::Dedup(Thread* thread) { |
| 1259 | #if !defined(DART_PRECOMPILED_RUNTIME) |
| 1260 | auto const isolate = thread->isolate(); |
| 1261 | StackZone stack_zone(thread); |
| 1262 | HANDLESCOPE(thread); |
| 1263 | auto const zone = thread->zone(); |
| 1264 | |
| 1265 | BindStaticCalls(zone, isolate); |
| 1266 | ShareMegamorphicBuckets(zone, isolate); |
| 1267 | NormalizeAndDedupCompressedStackMaps(zone, isolate); |
| 1268 | DedupPcDescriptors(zone, isolate); |
| 1269 | DedupDeoptEntries(zone, isolate); |
| 1270 | #if defined(DART_PRECOMPILER) |
| 1271 | DedupCatchEntryMovesMaps(zone, isolate); |
| 1272 | DedupUnlinkedCalls(zone, isolate); |
| 1273 | #endif |
| 1274 | DedupCodeSourceMaps(zone, isolate); |
| 1275 | DedupLists(zone, isolate); |
| 1276 | |
| 1277 | // Reduces binary size but obfuscates profiler results. |
| 1278 | if (FLAG_dedup_instructions) { |
| 1279 | // In non-bare mode (unused atm) dedupping instructions would cause us to |
| 1280 | // loose the ability to uniquely map a PC to a given UnlinkedCall object, |
| 1281 | // since two code objects might point to the same deduped instructions |
| 1282 | // object but might have two different UnlinkedCall objects in their pool. |
| 1283 | // |
| 1284 | // In bare mode this cannot happen because different UnlinkedCall objects |
| 1285 | // would get different indices into the (global) object pool, therefore |
| 1286 | // making the instructions different. |
| 1287 | // |
| 1288 | // (When transitioning the switchable call site we loose track of the args |
| 1289 | // descriptor. Since we need it for further transitions we currently save it |
| 1290 | // via a PC -> UnlinkedCall mapping). |
| 1291 | // |
| 1292 | // We therfore disable the instruction deduplication in product-non-bare |
| 1293 | // mode (which is unused atm). |
| 1294 | #if defined(PRODUCT) |
| 1295 | if (FLAG_precompiled_mode && !FLAG_use_bare_instructions) return; |
| 1296 | #endif |
| 1297 | |
| 1298 | DedupInstructions(zone, isolate); |
| 1299 | } |
| 1300 | #endif // !defined(DART_PRECOMPILED_RUNTIME) |
| 1301 | } |
| 1302 | |
| 1303 | #if defined(DART_PRECOMPILER) |
| 1304 | class AssignLoadingUnitsCodeVisitor : public CodeVisitor { |
| 1305 | public: |
| 1306 | explicit AssignLoadingUnitsCodeVisitor(Zone* zone) |
| 1307 | : heap_(Thread::Current()->heap()), |
| 1308 | func_(Function::Handle(zone)), |
| 1309 | cls_(Class::Handle(zone)), |
| 1310 | lib_(Library::Handle(zone)), |
| 1311 | unit_(LoadingUnit::Handle(zone)), |
| 1312 | obj_(Object::Handle(zone)) {} |
| 1313 | |
| 1314 | void VisitCode(const Code& code) { |
| 1315 | intptr_t id; |
| 1316 | if (code.IsFunctionCode()) { |
| 1317 | func_ ^= code.owner(); |
| 1318 | cls_ = func_.Owner(); |
| 1319 | lib_ = cls_.library(); |
| 1320 | unit_ = lib_.loading_unit(); |
| 1321 | id = unit_.id(); |
| 1322 | } else if (code.IsAllocationStubCode()) { |
| 1323 | cls_ ^= code.owner(); |
| 1324 | lib_ = cls_.library(); |
| 1325 | unit_ = lib_.loading_unit(); |
| 1326 | id = unit_.id(); |
| 1327 | } else if (code.IsStubCode()) { |
| 1328 | id = LoadingUnit::kRootId; |
| 1329 | } else { |
| 1330 | UNREACHABLE(); |
| 1331 | } |
| 1332 | |
| 1333 | ASSERT(heap_->GetLoadingUnit(code.raw()) == WeakTable::kNoValue); |
| 1334 | heap_->SetLoadingUnit(code.raw(), id); |
| 1335 | |
| 1336 | obj_ = code.code_source_map(); |
| 1337 | MergeAssignment(obj_, id); |
| 1338 | obj_ = code.compressed_stackmaps(); |
| 1339 | MergeAssignment(obj_, id); |
| 1340 | } |
| 1341 | |
| 1342 | void MergeAssignment(const Object& obj, intptr_t id) { |
| 1343 | intptr_t old_id = heap_->GetLoadingUnit(obj_.raw()); |
| 1344 | if (old_id == WeakTable::kNoValue) { |
| 1345 | heap_->SetLoadingUnit(obj_.raw(), id); |
| 1346 | } else if (old_id == id) { |
| 1347 | // Shared with another code in the same loading unit. |
| 1348 | } else { |
| 1349 | // Shared with another code in a different loading unit. |
| 1350 | // Could assign to dominating loading unit. |
| 1351 | heap_->SetLoadingUnit(obj_.raw(), LoadingUnit::kRootId); |
| 1352 | } |
| 1353 | } |
| 1354 | |
| 1355 | private: |
| 1356 | Heap* heap_; |
| 1357 | Function& func_; |
| 1358 | Class& cls_; |
| 1359 | Library& lib_; |
| 1360 | LoadingUnit& unit_; |
| 1361 | Object& obj_; |
| 1362 | }; |
| 1363 | |
| 1364 | void ProgramVisitor::AssignUnits(Thread* thread) { |
| 1365 | StackZone stack_zone(thread); |
| 1366 | HANDLESCOPE(thread); |
| 1367 | Zone* zone = thread->zone(); |
| 1368 | |
| 1369 | // VM stubs. |
| 1370 | Instructions& inst = Instructions::Handle(zone); |
| 1371 | Code& code = Code::Handle(zone); |
| 1372 | for (intptr_t i = 0; i < StubCode::NumEntries(); i++) { |
| 1373 | inst = StubCode::EntryAt(i).instructions(); |
| 1374 | thread->heap()->SetLoadingUnit(inst.raw(), LoadingUnit::kRootId); |
| 1375 | } |
| 1376 | |
| 1377 | // Isolate stubs. |
| 1378 | ObjectStore* object_store = thread->isolate()->object_store(); |
| 1379 | ObjectPtr* from = object_store->from(); |
| 1380 | ObjectPtr* to = object_store->to_snapshot(Snapshot::kFullAOT); |
| 1381 | for (ObjectPtr* p = from; p <= to; p++) { |
| 1382 | if ((*p)->IsCode()) { |
| 1383 | code ^= *p; |
| 1384 | inst = code.instructions(); |
| 1385 | thread->heap()->SetLoadingUnit(inst.raw(), LoadingUnit::kRootId); |
| 1386 | } |
| 1387 | } |
| 1388 | |
| 1389 | // Function code / allocation stubs. |
| 1390 | AssignLoadingUnitsCodeVisitor visitor(zone); |
| 1391 | WalkProgram(zone, thread->isolate(), &visitor); |
| 1392 | } |
| 1393 | |
| 1394 | class ProgramHashVisitor : public CodeVisitor { |
| 1395 | public: |
| 1396 | explicit ProgramHashVisitor(Zone* zone) |
| 1397 | : str_(String::Handle(zone)), |
| 1398 | pool_(ObjectPool::Handle(zone)), |
| 1399 | obj_(Object::Handle(zone)), |
| 1400 | instr_(Instructions::Handle(zone)), |
| 1401 | hash_(0) {} |
| 1402 | |
| 1403 | void VisitClass(const Class& cls) { |
| 1404 | str_ = cls.Name(); |
| 1405 | VisitInstance(str_); |
| 1406 | } |
| 1407 | |
| 1408 | void VisitFunction(const Function& function) { |
| 1409 | str_ = function.name(); |
| 1410 | VisitInstance(str_); |
| 1411 | } |
| 1412 | |
| 1413 | void VisitCode(const Code& code) { |
| 1414 | pool_ = code.object_pool(); |
| 1415 | VisitPool(pool_); |
| 1416 | |
| 1417 | instr_ = code.instructions(); |
| 1418 | hash_ = CombineHashes(hash_, instr_.Hash()); |
| 1419 | } |
| 1420 | |
| 1421 | void VisitPool(const ObjectPool& pool) { |
| 1422 | if (pool.IsNull()) return; |
| 1423 | |
| 1424 | for (intptr_t i = 0; i < pool.Length(); i++) { |
| 1425 | if (pool.TypeAt(i) == ObjectPool::EntryType::kTaggedObject) { |
| 1426 | obj_ = pool.ObjectAt(i); |
| 1427 | if (obj_.IsInstance()) { |
| 1428 | VisitInstance(Instance::Cast(obj_)); |
| 1429 | } |
| 1430 | } |
| 1431 | } |
| 1432 | } |
| 1433 | |
| 1434 | void VisitInstance(const Instance& instance) { |
| 1435 | hash_ = CombineHashes(hash_, instance.CanonicalizeHash()); |
| 1436 | } |
| 1437 | |
| 1438 | uint32_t hash() const { return FinalizeHash(hash_, String::kHashBits); } |
| 1439 | |
| 1440 | private: |
| 1441 | String& str_; |
| 1442 | ObjectPool& pool_; |
| 1443 | Object& obj_; |
| 1444 | Instructions& instr_; |
| 1445 | uint32_t hash_; |
| 1446 | }; |
| 1447 | |
| 1448 | uint32_t ProgramVisitor::Hash(Thread* thread) { |
| 1449 | StackZone stack_zone(thread); |
| 1450 | HANDLESCOPE(thread); |
| 1451 | Zone* zone = thread->zone(); |
| 1452 | |
| 1453 | ProgramHashVisitor visitor(zone); |
| 1454 | WalkProgram(zone, thread->isolate(), &visitor); |
| 1455 | visitor.VisitPool(ObjectPool::Handle( |
| 1456 | zone, thread->isolate()->object_store()->global_object_pool())); |
| 1457 | return visitor.hash(); |
| 1458 | } |
| 1459 | |
| 1460 | #endif // defined(DART_PRECOMPILED_RUNTIME) |
| 1461 | |
| 1462 | } // namespace dart |
| 1463 | |