| 1 | // Copyright (c) 2016, the Dart project authors. Please see the AUTHORS file |
| 2 | // for details. All rights reserved. Use of this source code is governed by a |
| 3 | // BSD-style license that can be found in the LICENSE file. |
| 4 | |
| 5 | #include "vm/compiler/backend/redundancy_elimination.h" |
| 6 | |
| 7 | #include "vm/bit_vector.h" |
| 8 | #include "vm/compiler/backend/flow_graph.h" |
| 9 | #include "vm/compiler/backend/il.h" |
| 10 | #include "vm/compiler/backend/il_printer.h" |
| 11 | #include "vm/compiler/backend/loops.h" |
| 12 | #include "vm/hash_map.h" |
| 13 | #include "vm/stack_frame.h" |
| 14 | |
| 15 | namespace dart { |
| 16 | |
| 17 | DEFINE_FLAG(bool, dead_store_elimination, true, "Eliminate dead stores" ); |
| 18 | DEFINE_FLAG(bool, load_cse, true, "Use redundant load elimination." ); |
| 19 | DEFINE_FLAG(bool, |
| 20 | optimize_lazy_initializer_calls, |
| 21 | true, |
| 22 | "Eliminate redundant lazy initializer calls." ); |
| 23 | DEFINE_FLAG(bool, |
| 24 | trace_load_optimization, |
| 25 | false, |
| 26 | "Print live sets for load optimization pass." ); |
| 27 | |
| 28 | // Quick access to the current zone. |
| 29 | #define Z (zone()) |
| 30 | |
| 31 | class CSEInstructionMap : public ValueObject { |
| 32 | public: |
| 33 | CSEInstructionMap() : map_() {} |
| 34 | explicit CSEInstructionMap(const CSEInstructionMap& other) |
| 35 | : ValueObject(), map_(other.map_) {} |
| 36 | |
| 37 | Instruction* Lookup(Instruction* other) const { |
| 38 | ASSERT(other->AllowsCSE()); |
| 39 | return map_.LookupValue(other); |
| 40 | } |
| 41 | |
| 42 | void Insert(Instruction* instr) { |
| 43 | ASSERT(instr->AllowsCSE()); |
| 44 | return map_.Insert(instr); |
| 45 | } |
| 46 | |
| 47 | private: |
| 48 | typedef DirectChainedHashMap<PointerKeyValueTrait<Instruction> > Map; |
| 49 | |
| 50 | Map map_; |
| 51 | }; |
| 52 | |
| 53 | // Place describes an abstract location (e.g. field) that IR can load |
| 54 | // from or store to. |
| 55 | // |
| 56 | // Places are also used to describe wild-card locations also known as aliases, |
| 57 | // that essentially represent sets of places that alias each other. Places A |
| 58 | // and B are said to alias each other if store into A can affect load from B. |
| 59 | // |
| 60 | // We distinguish the following aliases: |
| 61 | // |
| 62 | // - for fields |
| 63 | // - *.f - field inside some object; |
| 64 | // - X.f - field inside an allocated object X; |
| 65 | // - f - static fields |
| 66 | // |
| 67 | // - for indexed accesses |
| 68 | // - *[*] - non-constant index inside some object; |
| 69 | // - *[C] - constant index inside some object; |
| 70 | // - X[*] - non-constant index inside an allocated object X; |
| 71 | // - X[C] - constant index inside an allocated object X. |
| 72 | // |
| 73 | // Constant indexed places are divided into two subcategories: |
| 74 | // |
| 75 | // - Access to homogeneous array-like objects: Array, ImmutableArray, |
| 76 | // OneByteString, TwoByteString. These objects can only be accessed |
| 77 | // on element by element basis with all elements having the same size. |
| 78 | // This means X[C] aliases X[K] if and only if C === K. |
| 79 | // - TypedData accesses. TypedData allow to read one of the primitive |
| 80 | // data types at the given byte offset. When TypedData is accessed through |
| 81 | // index operator on a typed array or a typed array view it is guaranteed |
| 82 | // that the byte offset is always aligned by the element size. We write |
| 83 | // these accesses as X[C|S], where C is constant byte offset and S is size |
| 84 | // of the data type. Obviously X[C|S] and X[K|U] alias if and only if either |
| 85 | // C = RoundDown(K, S) or K = RoundDown(C, U). |
| 86 | // Note that not all accesses to typed data are aligned: e.g. ByteData |
| 87 | // allows unanaligned access through it's get*/set* methods. |
| 88 | // Check in Place::SetIndex ensures that we never create a place X[C|S] |
| 89 | // such that C is not aligned by S. |
| 90 | // |
| 91 | // Separating allocations from other objects improves precision of the |
| 92 | // load forwarding pass because of the following two properties: |
| 93 | // |
| 94 | // - if X can be proven to have no aliases itself (i.e. there is no other SSA |
| 95 | // variable that points to X) then no place inside X can be aliased with any |
| 96 | // wildcard dependent place (*.f, *.@offs, *[*], *[C]); |
| 97 | // - given allocations X and Y no place inside X can be aliased with any place |
| 98 | // inside Y even if any of them or both escape. |
| 99 | // |
| 100 | // It is important to realize that single place can belong to multiple aliases. |
| 101 | // For example place X.f with aliased allocation X belongs both to X.f and *.f |
| 102 | // aliases. Likewise X[C] with non-aliased allocation X belongs to X[C] and X[*] |
| 103 | // aliases. |
| 104 | // |
| 105 | class Place : public ValueObject { |
| 106 | public: |
| 107 | enum Kind { |
| 108 | kNone, |
| 109 | |
| 110 | // Static field location. Is represented as a Field object with a |
| 111 | // nullptr instance. |
| 112 | kStaticField, |
| 113 | |
| 114 | // Instance field location. It is reprensented by a pair of instance |
| 115 | // and a Slot. |
| 116 | kInstanceField, |
| 117 | |
| 118 | // Indexed location with a non-constant index. |
| 119 | kIndexed, |
| 120 | |
| 121 | // Indexed location with a constant index. |
| 122 | kConstantIndexed, |
| 123 | }; |
| 124 | |
| 125 | // Size of the element accessed by constant index. Size is only important |
| 126 | // for TypedData because those accesses can alias even when constant indexes |
| 127 | // are not the same: X[0|4] aliases X[0|2] and X[2|2]. |
| 128 | enum ElementSize { |
| 129 | // If indexed access is not a TypedData access then element size is not |
| 130 | // important because there is only a single possible access size depending |
| 131 | // on the receiver - X[C] aliases X[K] if and only if C == K. |
| 132 | // This is the size set for Array, ImmutableArray, OneByteString and |
| 133 | // TwoByteString accesses. |
| 134 | kNoSize, |
| 135 | |
| 136 | // 1 byte (Int8List, Uint8List, Uint8ClampedList). |
| 137 | kInt8, |
| 138 | |
| 139 | // 2 bytes (Int16List, Uint16List). |
| 140 | kInt16, |
| 141 | |
| 142 | // 4 bytes (Int32List, Uint32List, Float32List). |
| 143 | kInt32, |
| 144 | |
| 145 | // 8 bytes (Int64List, Uint64List, Float64List). |
| 146 | kInt64, |
| 147 | |
| 148 | // 16 bytes (Int32x4List, Float32x4List, Float64x2List). |
| 149 | kInt128, |
| 150 | |
| 151 | kLargestElementSize = kInt128, |
| 152 | }; |
| 153 | |
| 154 | Place(const Place& other) |
| 155 | : ValueObject(), |
| 156 | flags_(other.flags_), |
| 157 | instance_(other.instance_), |
| 158 | raw_selector_(other.raw_selector_), |
| 159 | id_(other.id_) {} |
| 160 | |
| 161 | // Construct a place from instruction if instruction accesses any place. |
| 162 | // Otherwise constructs kNone place. |
| 163 | Place(Instruction* instr, bool* is_load, bool* is_store) |
| 164 | : flags_(0), instance_(nullptr), raw_selector_(0), id_(0) { |
| 165 | switch (instr->tag()) { |
| 166 | case Instruction::kLoadField: { |
| 167 | LoadFieldInstr* load_field = instr->AsLoadField(); |
| 168 | set_representation(load_field->representation()); |
| 169 | instance_ = load_field->instance()->definition()->OriginalDefinition(); |
| 170 | set_kind(kInstanceField); |
| 171 | instance_field_ = &load_field->slot(); |
| 172 | *is_load = true; |
| 173 | break; |
| 174 | } |
| 175 | |
| 176 | case Instruction::kStoreInstanceField: { |
| 177 | StoreInstanceFieldInstr* store = instr->AsStoreInstanceField(); |
| 178 | set_representation(store->RequiredInputRepresentation( |
| 179 | StoreInstanceFieldInstr::kValuePos)); |
| 180 | instance_ = store->instance()->definition()->OriginalDefinition(); |
| 181 | set_kind(kInstanceField); |
| 182 | instance_field_ = &store->slot(); |
| 183 | *is_store = true; |
| 184 | break; |
| 185 | } |
| 186 | |
| 187 | case Instruction::kLoadStaticField: |
| 188 | set_kind(kStaticField); |
| 189 | set_representation(instr->AsLoadStaticField()->representation()); |
| 190 | static_field_ = &instr->AsLoadStaticField()->field(); |
| 191 | *is_load = true; |
| 192 | break; |
| 193 | |
| 194 | case Instruction::kStoreStaticField: |
| 195 | set_kind(kStaticField); |
| 196 | set_representation( |
| 197 | instr->AsStoreStaticField()->RequiredInputRepresentation( |
| 198 | StoreStaticFieldInstr::kValuePos)); |
| 199 | static_field_ = &instr->AsStoreStaticField()->field(); |
| 200 | *is_store = true; |
| 201 | break; |
| 202 | |
| 203 | case Instruction::kLoadIndexed: { |
| 204 | LoadIndexedInstr* load_indexed = instr->AsLoadIndexed(); |
| 205 | set_representation(load_indexed->representation()); |
| 206 | instance_ = load_indexed->array()->definition()->OriginalDefinition(); |
| 207 | SetIndex(load_indexed->index()->definition()->OriginalDefinition(), |
| 208 | load_indexed->index_scale(), load_indexed->class_id()); |
| 209 | *is_load = true; |
| 210 | break; |
| 211 | } |
| 212 | |
| 213 | case Instruction::kStoreIndexed: { |
| 214 | StoreIndexedInstr* store_indexed = instr->AsStoreIndexed(); |
| 215 | set_representation(store_indexed->RequiredInputRepresentation( |
| 216 | StoreIndexedInstr::kValuePos)); |
| 217 | instance_ = store_indexed->array()->definition()->OriginalDefinition(); |
| 218 | SetIndex(store_indexed->index()->definition()->OriginalDefinition(), |
| 219 | store_indexed->index_scale(), store_indexed->class_id()); |
| 220 | *is_store = true; |
| 221 | break; |
| 222 | } |
| 223 | |
| 224 | default: |
| 225 | break; |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | bool IsConstant(Object* value) const { |
| 230 | switch (kind()) { |
| 231 | case kInstanceField: |
| 232 | return (instance() != nullptr) && instance()->IsConstant() && |
| 233 | LoadFieldInstr::TryEvaluateLoad( |
| 234 | instance()->AsConstant()->constant_value(), instance_field(), |
| 235 | value); |
| 236 | default: |
| 237 | return false; |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | // Create object representing *[*] alias. |
| 242 | static Place* CreateAnyInstanceAnyIndexAlias(Zone* zone, intptr_t id) { |
| 243 | return Wrap( |
| 244 | zone, Place(EncodeFlags(kIndexed, kNoRepresentation, kNoSize), NULL, 0), |
| 245 | id); |
| 246 | } |
| 247 | |
| 248 | // Return least generic alias for this place. Given that aliases are |
| 249 | // essentially sets of places we define least generic alias as a smallest |
| 250 | // alias that contains this place. |
| 251 | // |
| 252 | // We obtain such alias by a simple transformation: |
| 253 | // |
| 254 | // - for places that depend on an instance X.f, X.@offs, X[i], X[C] |
| 255 | // we drop X if X is not an allocation because in this case X does not |
| 256 | // possess an identity obtaining aliases *.f, *.@offs, *[i] and *[C] |
| 257 | // respectively; |
| 258 | // - for non-constant indexed places X[i] we drop information about the |
| 259 | // index obtaining alias X[*]. |
| 260 | // - we drop information about representation, but keep element size |
| 261 | // if any. |
| 262 | // |
| 263 | Place ToAlias() const { |
| 264 | return Place( |
| 265 | RepresentationBits::update(kNoRepresentation, flags_), |
| 266 | (DependsOnInstance() && IsAllocation(instance())) ? instance() : NULL, |
| 267 | (kind() == kIndexed) ? 0 : raw_selector_); |
| 268 | } |
| 269 | |
| 270 | bool DependsOnInstance() const { |
| 271 | switch (kind()) { |
| 272 | case kInstanceField: |
| 273 | case kIndexed: |
| 274 | case kConstantIndexed: |
| 275 | return true; |
| 276 | |
| 277 | case kStaticField: |
| 278 | case kNone: |
| 279 | return false; |
| 280 | } |
| 281 | |
| 282 | UNREACHABLE(); |
| 283 | return false; |
| 284 | } |
| 285 | |
| 286 | // Given instance dependent alias X.f, X.@offs, X[C], X[*] return |
| 287 | // wild-card dependent alias *.f, *.@offs, *[C] or *[*] respectively. |
| 288 | Place CopyWithoutInstance() const { |
| 289 | ASSERT(DependsOnInstance()); |
| 290 | return Place(flags_, NULL, raw_selector_); |
| 291 | } |
| 292 | |
| 293 | // Given alias X[C] or *[C] return X[*] and *[*] respectively. |
| 294 | Place CopyWithoutIndex() const { |
| 295 | ASSERT(kind() == kConstantIndexed); |
| 296 | return Place(EncodeFlags(kIndexed, kNoRepresentation, kNoSize), instance_, |
| 297 | 0); |
| 298 | } |
| 299 | |
| 300 | // Given alias X[ByteOffs|S] and a larger element size S', return |
| 301 | // alias X[RoundDown(ByteOffs, S')|S'] - this is the byte offset of a larger |
| 302 | // typed array element that contains this typed array element. |
| 303 | // In other words this method computes the only possible place with the given |
| 304 | // size that can alias this place (due to alignment restrictions). |
| 305 | // For example for X[9|kInt8] and target size kInt32 we would return |
| 306 | // X[8|kInt32]. |
| 307 | Place ToLargerElement(ElementSize to) const { |
| 308 | ASSERT(kind() == kConstantIndexed); |
| 309 | ASSERT(element_size() != kNoSize); |
| 310 | ASSERT(element_size() < to); |
| 311 | return Place(ElementSizeBits::update(to, flags_), instance_, |
| 312 | RoundByteOffset(to, index_constant_)); |
| 313 | } |
| 314 | |
| 315 | // Given alias X[ByteOffs|S], smaller element size S' and index from 0 to |
| 316 | // S/S' - 1 return alias X[ByteOffs + S'*index|S'] - this is the byte offset |
| 317 | // of a smaller typed array element which is contained within this typed |
| 318 | // array element. |
| 319 | // For example X[8|kInt32] contains inside X[8|kInt16] (index is 0) and |
| 320 | // X[10|kInt16] (index is 1). |
| 321 | Place ToSmallerElement(ElementSize to, intptr_t index) const { |
| 322 | ASSERT(kind() == kConstantIndexed); |
| 323 | ASSERT(element_size() != kNoSize); |
| 324 | ASSERT(element_size() > to); |
| 325 | ASSERT(index >= 0); |
| 326 | ASSERT(index < |
| 327 | ElementSizeMultiplier(element_size()) / ElementSizeMultiplier(to)); |
| 328 | return Place(ElementSizeBits::update(to, flags_), instance_, |
| 329 | ByteOffsetToSmallerElement(to, index, index_constant_)); |
| 330 | } |
| 331 | |
| 332 | intptr_t id() const { return id_; } |
| 333 | |
| 334 | Kind kind() const { return KindBits::decode(flags_); } |
| 335 | |
| 336 | Representation representation() const { |
| 337 | return RepresentationBits::decode(flags_); |
| 338 | } |
| 339 | |
| 340 | Definition* instance() const { |
| 341 | ASSERT(DependsOnInstance()); |
| 342 | return instance_; |
| 343 | } |
| 344 | |
| 345 | void set_instance(Definition* def) { |
| 346 | ASSERT(DependsOnInstance()); |
| 347 | instance_ = def->OriginalDefinition(); |
| 348 | } |
| 349 | |
| 350 | const Field& static_field() const { |
| 351 | ASSERT(kind() == kStaticField); |
| 352 | ASSERT(static_field_->is_static()); |
| 353 | return *static_field_; |
| 354 | } |
| 355 | |
| 356 | const Slot& instance_field() const { |
| 357 | ASSERT(kind() == kInstanceField); |
| 358 | return *instance_field_; |
| 359 | } |
| 360 | |
| 361 | Definition* index() const { |
| 362 | ASSERT(kind() == kIndexed); |
| 363 | return index_; |
| 364 | } |
| 365 | |
| 366 | ElementSize element_size() const { return ElementSizeBits::decode(flags_); } |
| 367 | |
| 368 | intptr_t index_constant() const { |
| 369 | ASSERT(kind() == kConstantIndexed); |
| 370 | return index_constant_; |
| 371 | } |
| 372 | |
| 373 | static const char* DefinitionName(Definition* def) { |
| 374 | if (def == NULL) { |
| 375 | return "*" ; |
| 376 | } else { |
| 377 | return Thread::Current()->zone()->PrintToString("v%" Pd, |
| 378 | def->ssa_temp_index()); |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | const char* ToCString() const { |
| 383 | switch (kind()) { |
| 384 | case kNone: |
| 385 | return "<none>" ; |
| 386 | |
| 387 | case kStaticField: { |
| 388 | const char* field_name = |
| 389 | String::Handle(static_field().name()).ToCString(); |
| 390 | return Thread::Current()->zone()->PrintToString("<%s>" , field_name); |
| 391 | } |
| 392 | |
| 393 | case kInstanceField: |
| 394 | return Thread::Current()->zone()->PrintToString( |
| 395 | "<%s.%s[%p]>" , DefinitionName(instance()), instance_field().Name(), |
| 396 | &instance_field()); |
| 397 | |
| 398 | case kIndexed: |
| 399 | return Thread::Current()->zone()->PrintToString( |
| 400 | "<%s[%s]>" , DefinitionName(instance()), DefinitionName(index())); |
| 401 | |
| 402 | case kConstantIndexed: |
| 403 | if (element_size() == kNoSize) { |
| 404 | return Thread::Current()->zone()->PrintToString( |
| 405 | "<%s[%" Pd "]>" , DefinitionName(instance()), index_constant()); |
| 406 | } else { |
| 407 | return Thread::Current()->zone()->PrintToString( |
| 408 | "<%s[%" Pd "|%" Pd "]>" , DefinitionName(instance()), |
| 409 | index_constant(), ElementSizeMultiplier(element_size())); |
| 410 | } |
| 411 | } |
| 412 | UNREACHABLE(); |
| 413 | return "<?>" ; |
| 414 | } |
| 415 | |
| 416 | // Fields that are considered immutable by load optimization. |
| 417 | // Handle static finals as non-final with precompilation because |
| 418 | // they may be reset to uninitialized after compilation. |
| 419 | bool IsImmutableField() const { |
| 420 | switch (kind()) { |
| 421 | case kInstanceField: |
| 422 | return instance_field().is_immutable(); |
| 423 | case kStaticField: |
| 424 | return static_field().is_final() && !FLAG_fields_may_be_reset; |
| 425 | default: |
| 426 | return false; |
| 427 | } |
| 428 | } |
| 429 | |
| 430 | intptr_t Hashcode() const { |
| 431 | return (flags_ * 63 + reinterpret_cast<intptr_t>(instance_)) * 31 + |
| 432 | FieldHashcode(); |
| 433 | } |
| 434 | |
| 435 | bool Equals(const Place* other) const { |
| 436 | return (flags_ == other->flags_) && (instance_ == other->instance_) && |
| 437 | SameField(other); |
| 438 | } |
| 439 | |
| 440 | // Create a zone allocated copy of this place and assign given id to it. |
| 441 | static Place* Wrap(Zone* zone, const Place& place, intptr_t id); |
| 442 | |
| 443 | static bool IsAllocation(Definition* defn) { |
| 444 | return (defn != NULL) && |
| 445 | (defn->IsAllocateObject() || defn->IsCreateArray() || |
| 446 | defn->IsAllocateUninitializedContext() || |
| 447 | (defn->IsStaticCall() && |
| 448 | defn->AsStaticCall()->IsRecognizedFactory())); |
| 449 | } |
| 450 | |
| 451 | private: |
| 452 | Place(uword flags, Definition* instance, intptr_t selector) |
| 453 | : flags_(flags), instance_(instance), raw_selector_(selector), id_(0) {} |
| 454 | |
| 455 | bool SameField(const Place* other) const { |
| 456 | return (kind() == kStaticField) |
| 457 | ? (static_field().Original() == other->static_field().Original()) |
| 458 | : (raw_selector_ == other->raw_selector_); |
| 459 | } |
| 460 | |
| 461 | intptr_t FieldHashcode() const { |
| 462 | return (kind() == kStaticField) |
| 463 | ? String::Handle(Field::Handle(static_field().Original()).name()) |
| 464 | .Hash() |
| 465 | : raw_selector_; |
| 466 | } |
| 467 | |
| 468 | void set_representation(Representation rep) { |
| 469 | flags_ = RepresentationBits::update(rep, flags_); |
| 470 | } |
| 471 | |
| 472 | void set_kind(Kind kind) { flags_ = KindBits::update(kind, flags_); } |
| 473 | |
| 474 | void set_element_size(ElementSize scale) { |
| 475 | flags_ = ElementSizeBits::update(scale, flags_); |
| 476 | } |
| 477 | |
| 478 | void SetIndex(Definition* index, intptr_t scale, intptr_t class_id) { |
| 479 | ConstantInstr* index_constant = index->AsConstant(); |
| 480 | if ((index_constant != NULL) && index_constant->value().IsSmi()) { |
| 481 | const intptr_t index_value = Smi::Cast(index_constant->value()).Value(); |
| 482 | const ElementSize size = ElementSizeFor(class_id); |
| 483 | const bool is_typed_access = (size != kNoSize); |
| 484 | // Indexing into [RawTypedDataView]/[RawExternalTypedData happens via a |
| 485 | // untagged load of the `_data` field (which points to C memory). |
| 486 | // |
| 487 | // Indexing into dart:ffi's [RawPointer] happens via loading of the |
| 488 | // `c_memory_address_`, converting it to an integer, doing some arithmetic |
| 489 | // and finally using IntConverterInstr to convert to a untagged |
| 490 | // representation. |
| 491 | // |
| 492 | // In both cases the array used for load/store has untagged |
| 493 | // representation. |
| 494 | const bool can_be_view = instance_->representation() == kUntagged; |
| 495 | |
| 496 | // If we are writing into the typed data scale the index to |
| 497 | // get byte offset. Otherwise ignore the scale. |
| 498 | if (!is_typed_access) { |
| 499 | scale = 1; |
| 500 | } |
| 501 | |
| 502 | // Guard against potential multiplication overflow and negative indices. |
| 503 | if ((0 <= index_value) && (index_value < (kMaxInt32 / scale))) { |
| 504 | const intptr_t scaled_index = index_value * scale; |
| 505 | |
| 506 | // Guard against unaligned byte offsets and access through raw |
| 507 | // memory pointer (which can be pointing into another typed data). |
| 508 | if (!is_typed_access || |
| 509 | (!can_be_view && |
| 510 | Utils::IsAligned(scaled_index, ElementSizeMultiplier(size)))) { |
| 511 | set_kind(kConstantIndexed); |
| 512 | set_element_size(size); |
| 513 | index_constant_ = scaled_index; |
| 514 | return; |
| 515 | } |
| 516 | } |
| 517 | |
| 518 | // Fallthrough: create generic _[*] place. |
| 519 | } |
| 520 | |
| 521 | set_kind(kIndexed); |
| 522 | index_ = index; |
| 523 | } |
| 524 | |
| 525 | static uword EncodeFlags(Kind kind, Representation rep, ElementSize scale) { |
| 526 | ASSERT((kind == kConstantIndexed) || (scale == kNoSize)); |
| 527 | return KindBits::encode(kind) | RepresentationBits::encode(rep) | |
| 528 | ElementSizeBits::encode(scale); |
| 529 | } |
| 530 | |
| 531 | static ElementSize ElementSizeFor(intptr_t class_id) { |
| 532 | switch (class_id) { |
| 533 | case kArrayCid: |
| 534 | case kImmutableArrayCid: |
| 535 | case kOneByteStringCid: |
| 536 | case kTwoByteStringCid: |
| 537 | case kExternalOneByteStringCid: |
| 538 | case kExternalTwoByteStringCid: |
| 539 | // Object arrays and strings do not allow accessing them through |
| 540 | // different types. No need to attach scale. |
| 541 | return kNoSize; |
| 542 | |
| 543 | case kTypedDataInt8ArrayCid: |
| 544 | case kTypedDataUint8ArrayCid: |
| 545 | case kTypedDataUint8ClampedArrayCid: |
| 546 | case kExternalTypedDataUint8ArrayCid: |
| 547 | case kExternalTypedDataUint8ClampedArrayCid: |
| 548 | return kInt8; |
| 549 | |
| 550 | case kTypedDataInt16ArrayCid: |
| 551 | case kTypedDataUint16ArrayCid: |
| 552 | return kInt16; |
| 553 | |
| 554 | case kTypedDataInt32ArrayCid: |
| 555 | case kTypedDataUint32ArrayCid: |
| 556 | case kTypedDataFloat32ArrayCid: |
| 557 | return kInt32; |
| 558 | |
| 559 | case kTypedDataInt64ArrayCid: |
| 560 | case kTypedDataUint64ArrayCid: |
| 561 | case kTypedDataFloat64ArrayCid: |
| 562 | return kInt64; |
| 563 | |
| 564 | case kTypedDataInt32x4ArrayCid: |
| 565 | case kTypedDataFloat32x4ArrayCid: |
| 566 | case kTypedDataFloat64x2ArrayCid: |
| 567 | return kInt128; |
| 568 | |
| 569 | default: |
| 570 | UNREACHABLE(); |
| 571 | return kNoSize; |
| 572 | } |
| 573 | } |
| 574 | |
| 575 | static intptr_t ElementSizeMultiplier(ElementSize size) { |
| 576 | return 1 << (static_cast<intptr_t>(size) - static_cast<intptr_t>(kInt8)); |
| 577 | } |
| 578 | |
| 579 | static intptr_t RoundByteOffset(ElementSize size, intptr_t offset) { |
| 580 | return offset & ~(ElementSizeMultiplier(size) - 1); |
| 581 | } |
| 582 | |
| 583 | static intptr_t ByteOffsetToSmallerElement(ElementSize size, |
| 584 | intptr_t index, |
| 585 | intptr_t base_offset) { |
| 586 | return base_offset + index * ElementSizeMultiplier(size); |
| 587 | } |
| 588 | |
| 589 | class KindBits : public BitField<uword, Kind, 0, 3> {}; |
| 590 | class RepresentationBits |
| 591 | : public BitField<uword, Representation, KindBits::kNextBit, 11> {}; |
| 592 | class ElementSizeBits |
| 593 | : public BitField<uword, ElementSize, RepresentationBits::kNextBit, 3> {}; |
| 594 | |
| 595 | uword flags_; |
| 596 | Definition* instance_; |
| 597 | union { |
| 598 | intptr_t raw_selector_; |
| 599 | const Field* static_field_; |
| 600 | const Slot* instance_field_; |
| 601 | intptr_t index_constant_; |
| 602 | Definition* index_; |
| 603 | }; |
| 604 | |
| 605 | intptr_t id_; |
| 606 | }; |
| 607 | |
| 608 | class ZonePlace : public ZoneAllocated { |
| 609 | public: |
| 610 | explicit ZonePlace(const Place& place) : place_(place) {} |
| 611 | |
| 612 | Place* place() { return &place_; } |
| 613 | |
| 614 | private: |
| 615 | Place place_; |
| 616 | }; |
| 617 | |
| 618 | Place* Place::Wrap(Zone* zone, const Place& place, intptr_t id) { |
| 619 | Place* wrapped = (new (zone) ZonePlace(place))->place(); |
| 620 | wrapped->id_ = id; |
| 621 | return wrapped; |
| 622 | } |
| 623 | |
| 624 | // Correspondence between places connected through outgoing phi moves on the |
| 625 | // edge that targets join. |
| 626 | class PhiPlaceMoves : public ZoneAllocated { |
| 627 | public: |
| 628 | // Record a move from the place with id |from| to the place with id |to| at |
| 629 | // the given block. |
| 630 | void CreateOutgoingMove(Zone* zone, |
| 631 | BlockEntryInstr* block, |
| 632 | intptr_t from, |
| 633 | intptr_t to) { |
| 634 | const intptr_t block_num = block->preorder_number(); |
| 635 | moves_.EnsureLength(block_num + 1, nullptr); |
| 636 | |
| 637 | if (moves_[block_num] == nullptr) { |
| 638 | moves_[block_num] = new (zone) ZoneGrowableArray<Move>(5); |
| 639 | } |
| 640 | |
| 641 | moves_[block_num]->Add(Move(from, to)); |
| 642 | } |
| 643 | |
| 644 | class Move { |
| 645 | public: |
| 646 | Move(intptr_t from, intptr_t to) : from_(from), to_(to) {} |
| 647 | |
| 648 | intptr_t from() const { return from_; } |
| 649 | intptr_t to() const { return to_; } |
| 650 | |
| 651 | private: |
| 652 | intptr_t from_; |
| 653 | intptr_t to_; |
| 654 | }; |
| 655 | |
| 656 | typedef const ZoneGrowableArray<Move>* MovesList; |
| 657 | |
| 658 | MovesList GetOutgoingMoves(BlockEntryInstr* block) const { |
| 659 | const intptr_t block_num = block->preorder_number(); |
| 660 | return (block_num < moves_.length()) ? moves_[block_num] : NULL; |
| 661 | } |
| 662 | |
| 663 | private: |
| 664 | GrowableArray<ZoneGrowableArray<Move>*> moves_; |
| 665 | }; |
| 666 | |
| 667 | // A map from aliases to a set of places sharing the alias. Additionally |
| 668 | // carries a set of places that can be aliased by side-effects, essentially |
| 669 | // those that are affected by calls. |
| 670 | class AliasedSet : public ZoneAllocated { |
| 671 | public: |
| 672 | AliasedSet(Zone* zone, |
| 673 | DirectChainedHashMap<PointerKeyValueTrait<Place> >* places_map, |
| 674 | ZoneGrowableArray<Place*>* places, |
| 675 | PhiPlaceMoves* phi_moves) |
| 676 | : zone_(zone), |
| 677 | places_map_(places_map), |
| 678 | places_(*places), |
| 679 | phi_moves_(phi_moves), |
| 680 | aliases_(5), |
| 681 | aliases_map_(), |
| 682 | typed_data_access_sizes_(), |
| 683 | representatives_(), |
| 684 | killed_(), |
| 685 | aliased_by_effects_(new (zone) BitVector(zone, places->length())) { |
| 686 | InsertAlias(Place::CreateAnyInstanceAnyIndexAlias( |
| 687 | zone_, kAnyInstanceAnyIndexAlias)); |
| 688 | for (intptr_t i = 0; i < places_.length(); i++) { |
| 689 | AddRepresentative(places_[i]); |
| 690 | } |
| 691 | ComputeKillSets(); |
| 692 | } |
| 693 | |
| 694 | intptr_t LookupAliasId(const Place& alias) { |
| 695 | const Place* result = aliases_map_.LookupValue(&alias); |
| 696 | return (result != NULL) ? result->id() : static_cast<intptr_t>(kNoAlias); |
| 697 | } |
| 698 | |
| 699 | BitVector* GetKilledSet(intptr_t alias) { |
| 700 | return (alias < killed_.length()) ? killed_[alias] : NULL; |
| 701 | } |
| 702 | |
| 703 | intptr_t max_place_id() const { return places().length(); } |
| 704 | bool IsEmpty() const { return max_place_id() == 0; } |
| 705 | |
| 706 | BitVector* aliased_by_effects() const { return aliased_by_effects_; } |
| 707 | |
| 708 | const ZoneGrowableArray<Place*>& places() const { return places_; } |
| 709 | |
| 710 | Place* LookupCanonical(Place* place) const { |
| 711 | return places_map_->LookupValue(place); |
| 712 | } |
| 713 | |
| 714 | void PrintSet(BitVector* set) { |
| 715 | bool comma = false; |
| 716 | for (BitVector::Iterator it(set); !it.Done(); it.Advance()) { |
| 717 | if (comma) { |
| 718 | THR_Print(", " ); |
| 719 | } |
| 720 | THR_Print("%s" , places_[it.Current()]->ToCString()); |
| 721 | comma = true; |
| 722 | } |
| 723 | } |
| 724 | |
| 725 | const PhiPlaceMoves* phi_moves() const { return phi_moves_; } |
| 726 | |
| 727 | void RollbackAliasedIdentites() { |
| 728 | for (intptr_t i = 0; i < identity_rollback_.length(); ++i) { |
| 729 | identity_rollback_[i]->SetIdentity(AliasIdentity::Unknown()); |
| 730 | } |
| 731 | } |
| 732 | |
| 733 | // Returns false if the result of an allocation instruction can't be aliased |
| 734 | // by another SSA variable and true otherwise. |
| 735 | bool CanBeAliased(Definition* alloc) { |
| 736 | if (!Place::IsAllocation(alloc)) { |
| 737 | return true; |
| 738 | } |
| 739 | |
| 740 | if (alloc->Identity().IsUnknown()) { |
| 741 | ComputeAliasing(alloc); |
| 742 | } |
| 743 | |
| 744 | return !alloc->Identity().IsNotAliased(); |
| 745 | } |
| 746 | |
| 747 | enum { kNoAlias = 0 }; |
| 748 | |
| 749 | private: |
| 750 | enum { |
| 751 | // Artificial alias that is used to collect all representatives of the |
| 752 | // *[C], X[C] aliases for arbitrary C. |
| 753 | kAnyConstantIndexedAlias = 1, |
| 754 | |
| 755 | // Artificial alias that is used to collect all representatives of |
| 756 | // *[C] alias for arbitrary C. |
| 757 | kUnknownInstanceConstantIndexedAlias = 2, |
| 758 | |
| 759 | // Artificial alias that is used to collect all representatives of |
| 760 | // X[*] alias for all X. |
| 761 | kAnyAllocationIndexedAlias = 3, |
| 762 | |
| 763 | // *[*] alias. |
| 764 | kAnyInstanceAnyIndexAlias = 4 |
| 765 | }; |
| 766 | |
| 767 | // Compute least generic alias for the place and assign alias id to it. |
| 768 | void AddRepresentative(Place* place) { |
| 769 | if (!place->IsImmutableField()) { |
| 770 | const Place* alias = CanonicalizeAlias(place->ToAlias()); |
| 771 | EnsureSet(&representatives_, alias->id())->Add(place->id()); |
| 772 | |
| 773 | // Update cumulative representative sets that are used during |
| 774 | // killed sets computation. |
| 775 | if (alias->kind() == Place::kConstantIndexed) { |
| 776 | if (CanBeAliased(alias->instance())) { |
| 777 | EnsureSet(&representatives_, kAnyConstantIndexedAlias) |
| 778 | ->Add(place->id()); |
| 779 | } |
| 780 | |
| 781 | if (alias->instance() == NULL) { |
| 782 | EnsureSet(&representatives_, kUnknownInstanceConstantIndexedAlias) |
| 783 | ->Add(place->id()); |
| 784 | } |
| 785 | |
| 786 | // Collect all element sizes used to access TypedData arrays in |
| 787 | // the function. This is used to skip sizes without representatives |
| 788 | // when computing kill sets. |
| 789 | if (alias->element_size() != Place::kNoSize) { |
| 790 | typed_data_access_sizes_.Add(alias->element_size()); |
| 791 | } |
| 792 | } else if ((alias->kind() == Place::kIndexed) && |
| 793 | CanBeAliased(place->instance())) { |
| 794 | EnsureSet(&representatives_, kAnyAllocationIndexedAlias) |
| 795 | ->Add(place->id()); |
| 796 | } |
| 797 | |
| 798 | if (!IsIndependentFromEffects(place)) { |
| 799 | aliased_by_effects_->Add(place->id()); |
| 800 | } |
| 801 | } |
| 802 | } |
| 803 | |
| 804 | void ComputeKillSets() { |
| 805 | for (intptr_t i = 0; i < aliases_.length(); ++i) { |
| 806 | const Place* alias = aliases_[i]; |
| 807 | // Add all representatives to the kill set. |
| 808 | AddAllRepresentatives(alias->id(), alias->id()); |
| 809 | ComputeKillSet(alias); |
| 810 | } |
| 811 | |
| 812 | if (FLAG_trace_load_optimization) { |
| 813 | THR_Print("Aliases KILL sets:\n" ); |
| 814 | for (intptr_t i = 0; i < aliases_.length(); ++i) { |
| 815 | const Place* alias = aliases_[i]; |
| 816 | BitVector* kill = GetKilledSet(alias->id()); |
| 817 | |
| 818 | THR_Print("%s: " , alias->ToCString()); |
| 819 | if (kill != NULL) { |
| 820 | PrintSet(kill); |
| 821 | } |
| 822 | THR_Print("\n" ); |
| 823 | } |
| 824 | } |
| 825 | } |
| 826 | |
| 827 | void InsertAlias(const Place* alias) { |
| 828 | aliases_map_.Insert(alias); |
| 829 | aliases_.Add(alias); |
| 830 | } |
| 831 | |
| 832 | const Place* CanonicalizeAlias(const Place& alias) { |
| 833 | const Place* canonical = aliases_map_.LookupValue(&alias); |
| 834 | if (canonical == NULL) { |
| 835 | canonical = Place::Wrap(zone_, alias, |
| 836 | kAnyInstanceAnyIndexAlias + aliases_.length()); |
| 837 | InsertAlias(canonical); |
| 838 | } |
| 839 | ASSERT(aliases_map_.LookupValue(&alias) == canonical); |
| 840 | return canonical; |
| 841 | } |
| 842 | |
| 843 | BitVector* GetRepresentativesSet(intptr_t alias) { |
| 844 | return (alias < representatives_.length()) ? representatives_[alias] : NULL; |
| 845 | } |
| 846 | |
| 847 | BitVector* EnsureSet(GrowableArray<BitVector*>* sets, intptr_t alias) { |
| 848 | while (sets->length() <= alias) { |
| 849 | sets->Add(NULL); |
| 850 | } |
| 851 | |
| 852 | BitVector* set = (*sets)[alias]; |
| 853 | if (set == NULL) { |
| 854 | (*sets)[alias] = set = new (zone_) BitVector(zone_, max_place_id()); |
| 855 | } |
| 856 | return set; |
| 857 | } |
| 858 | |
| 859 | void AddAllRepresentatives(const Place* to, intptr_t from) { |
| 860 | AddAllRepresentatives(to->id(), from); |
| 861 | } |
| 862 | |
| 863 | void AddAllRepresentatives(intptr_t to, intptr_t from) { |
| 864 | BitVector* from_set = GetRepresentativesSet(from); |
| 865 | if (from_set != NULL) { |
| 866 | EnsureSet(&killed_, to)->AddAll(from_set); |
| 867 | } |
| 868 | } |
| 869 | |
| 870 | void CrossAlias(const Place* to, const Place& from) { |
| 871 | const intptr_t from_id = LookupAliasId(from); |
| 872 | if (from_id == kNoAlias) { |
| 873 | return; |
| 874 | } |
| 875 | CrossAlias(to, from_id); |
| 876 | } |
| 877 | |
| 878 | void CrossAlias(const Place* to, intptr_t from) { |
| 879 | AddAllRepresentatives(to->id(), from); |
| 880 | AddAllRepresentatives(from, to->id()); |
| 881 | } |
| 882 | |
| 883 | // When computing kill sets we let less generic alias insert its |
| 884 | // representatives into more generic alias'es kill set. For example |
| 885 | // when visiting alias X[*] instead of searching for all aliases X[C] |
| 886 | // and inserting their representatives into kill set for X[*] we update |
| 887 | // kill set for X[*] each time we visit new X[C] for some C. |
| 888 | // There is an exception however: if both aliases are parametric like *[C] |
| 889 | // and X[*] which cross alias when X is an aliased allocation then we use |
| 890 | // artificial aliases that contain all possible representatives for the given |
| 891 | // alias for any value of the parameter to compute resulting kill set. |
| 892 | void ComputeKillSet(const Place* alias) { |
| 893 | switch (alias->kind()) { |
| 894 | case Place::kIndexed: // Either *[*] or X[*] alias. |
| 895 | if (alias->instance() == NULL) { |
| 896 | // *[*] aliases with X[*], X[C], *[C]. |
| 897 | AddAllRepresentatives(alias, kAnyConstantIndexedAlias); |
| 898 | AddAllRepresentatives(alias, kAnyAllocationIndexedAlias); |
| 899 | } else if (CanBeAliased(alias->instance())) { |
| 900 | // X[*] aliases with X[C]. |
| 901 | // If X can be aliased then X[*] also aliases with *[C], *[*]. |
| 902 | CrossAlias(alias, kAnyInstanceAnyIndexAlias); |
| 903 | AddAllRepresentatives(alias, kUnknownInstanceConstantIndexedAlias); |
| 904 | } |
| 905 | break; |
| 906 | |
| 907 | case Place::kConstantIndexed: // Either X[C] or *[C] alias. |
| 908 | if (alias->element_size() != Place::kNoSize) { |
| 909 | const bool has_aliased_instance = |
| 910 | (alias->instance() != NULL) && CanBeAliased(alias->instance()); |
| 911 | |
| 912 | // If this is a TypedData access then X[C|S] aliases larger elements |
| 913 | // covering this one X[RoundDown(C, S')|S'] for all S' > S and |
| 914 | // all smaller elements being covered by this one X[C'|S'] for |
| 915 | // some S' < S and all C' such that C = RoundDown(C', S). |
| 916 | // In the loop below it's enough to only propagate aliasing to |
| 917 | // larger aliases because propagation is symmetric: smaller aliases |
| 918 | // (if there are any) would update kill set for this alias when they |
| 919 | // are visited. |
| 920 | for (intptr_t i = static_cast<intptr_t>(alias->element_size()) + 1; |
| 921 | i <= Place::kLargestElementSize; i++) { |
| 922 | // Skip element sizes that a guaranteed to have no representatives. |
| 923 | if (!typed_data_access_sizes_.Contains(alias->element_size())) { |
| 924 | continue; |
| 925 | } |
| 926 | |
| 927 | // X[C|S] aliases with X[RoundDown(C, S')|S'] and likewise |
| 928 | // *[C|S] aliases with *[RoundDown(C, S')|S']. |
| 929 | CrossAlias(alias, alias->ToLargerElement( |
| 930 | static_cast<Place::ElementSize>(i))); |
| 931 | } |
| 932 | |
| 933 | if (has_aliased_instance) { |
| 934 | // If X is an aliased instance then X[C|S] aliases *[C'|S'] for all |
| 935 | // related combinations of C' and S'. |
| 936 | // Caveat: this propagation is not symmetric (we would not know |
| 937 | // to propagate aliasing from *[C'|S'] to X[C|S] when visiting |
| 938 | // *[C'|S']) and thus we need to handle both element sizes smaller |
| 939 | // and larger than S. |
| 940 | const Place no_instance_alias = alias->CopyWithoutInstance(); |
| 941 | for (intptr_t i = Place::kInt8; i <= Place::kLargestElementSize; |
| 942 | i++) { |
| 943 | // Skip element sizes that a guaranteed to have no |
| 944 | // representatives. |
| 945 | if (!typed_data_access_sizes_.Contains(alias->element_size())) { |
| 946 | continue; |
| 947 | } |
| 948 | |
| 949 | const auto other_size = static_cast<Place::ElementSize>(i); |
| 950 | if (other_size > alias->element_size()) { |
| 951 | // X[C|S] aliases all larger elements which cover it: |
| 952 | // *[RoundDown(C, S')|S'] for S' > S. |
| 953 | CrossAlias(alias, |
| 954 | no_instance_alias.ToLargerElement(other_size)); |
| 955 | } else if (other_size < alias->element_size()) { |
| 956 | // X[C|S] aliases all sub-elements of smaller size: |
| 957 | // *[C+j*S'|S'] for S' < S and j from 0 to S/S' - 1. |
| 958 | const auto num_smaller_elements = |
| 959 | 1 << (alias->element_size() - other_size); |
| 960 | for (intptr_t j = 0; j < num_smaller_elements; j++) { |
| 961 | CrossAlias(alias, |
| 962 | no_instance_alias.ToSmallerElement(other_size, j)); |
| 963 | } |
| 964 | } |
| 965 | } |
| 966 | } |
| 967 | } |
| 968 | |
| 969 | if (alias->instance() == NULL) { |
| 970 | // *[C] aliases with X[C], X[*], *[*]. |
| 971 | AddAllRepresentatives(alias, kAnyAllocationIndexedAlias); |
| 972 | CrossAlias(alias, kAnyInstanceAnyIndexAlias); |
| 973 | } else { |
| 974 | // X[C] aliases with X[*]. |
| 975 | // If X can be aliased then X[C] also aliases with *[C], *[*]. |
| 976 | CrossAlias(alias, alias->CopyWithoutIndex()); |
| 977 | if (CanBeAliased(alias->instance())) { |
| 978 | CrossAlias(alias, alias->CopyWithoutInstance()); |
| 979 | CrossAlias(alias, kAnyInstanceAnyIndexAlias); |
| 980 | } |
| 981 | } |
| 982 | break; |
| 983 | |
| 984 | case Place::kStaticField: |
| 985 | // Nothing to do. |
| 986 | break; |
| 987 | |
| 988 | case Place::kInstanceField: |
| 989 | if (CanBeAliased(alias->instance())) { |
| 990 | // X.f alias with *.f. |
| 991 | CrossAlias(alias, alias->CopyWithoutInstance()); |
| 992 | } |
| 993 | break; |
| 994 | |
| 995 | case Place::kNone: |
| 996 | UNREACHABLE(); |
| 997 | } |
| 998 | } |
| 999 | |
| 1000 | // Returns true if the given load is unaffected by external side-effects. |
| 1001 | // This essentially means that no stores to the same location can |
| 1002 | // occur in other functions. |
| 1003 | bool IsIndependentFromEffects(Place* place) { |
| 1004 | if (place->IsImmutableField()) { |
| 1005 | return true; |
| 1006 | } |
| 1007 | |
| 1008 | return (place->kind() == Place::kInstanceField) && |
| 1009 | !CanBeAliased(place->instance()); |
| 1010 | } |
| 1011 | |
| 1012 | // Returns true if there are direct loads from the given place. |
| 1013 | bool HasLoadsFromPlace(Definition* defn, const Place* place) { |
| 1014 | ASSERT(place->kind() == Place::kInstanceField); |
| 1015 | |
| 1016 | for (Value* use = defn->input_use_list(); use != NULL; |
| 1017 | use = use->next_use()) { |
| 1018 | Instruction* instr = use->instruction(); |
| 1019 | if (UseIsARedefinition(use) && |
| 1020 | HasLoadsFromPlace(instr->Cast<Definition>(), place)) { |
| 1021 | return true; |
| 1022 | } |
| 1023 | bool is_load = false, is_store; |
| 1024 | Place load_place(instr, &is_load, &is_store); |
| 1025 | |
| 1026 | if (is_load && load_place.Equals(place)) { |
| 1027 | return true; |
| 1028 | } |
| 1029 | } |
| 1030 | |
| 1031 | return false; |
| 1032 | } |
| 1033 | |
| 1034 | // Returns true if the given [use] is a redefinition (e.g. RedefinitionInstr, |
| 1035 | // CheckNull, CheckArrayBound, etc). |
| 1036 | static bool UseIsARedefinition(Value* use) { |
| 1037 | Instruction* instr = use->instruction(); |
| 1038 | return instr->IsDefinition() && |
| 1039 | (instr->Cast<Definition>()->RedefinedValue() == use); |
| 1040 | } |
| 1041 | |
| 1042 | // Check if any use of the definition can create an alias. |
| 1043 | // Can add more objects into aliasing_worklist_. |
| 1044 | bool AnyUseCreatesAlias(Definition* defn) { |
| 1045 | for (Value* use = defn->input_use_list(); use != NULL; |
| 1046 | use = use->next_use()) { |
| 1047 | Instruction* instr = use->instruction(); |
| 1048 | if (instr->HasUnknownSideEffects() || instr->IsLoadUntagged() || |
| 1049 | (instr->IsStoreIndexed() && |
| 1050 | (use->use_index() == StoreIndexedInstr::kValuePos)) || |
| 1051 | instr->IsStoreStaticField() || instr->IsPhi()) { |
| 1052 | return true; |
| 1053 | } else if (UseIsARedefinition(use) && |
| 1054 | AnyUseCreatesAlias(instr->Cast<Definition>())) { |
| 1055 | return true; |
| 1056 | } else if ((instr->IsStoreInstanceField() && |
| 1057 | (use->use_index() != |
| 1058 | StoreInstanceFieldInstr::kInstancePos))) { |
| 1059 | ASSERT(use->use_index() == StoreInstanceFieldInstr::kValuePos); |
| 1060 | // If we store this value into an object that is not aliased itself |
| 1061 | // and we never load again then the store does not create an alias. |
| 1062 | StoreInstanceFieldInstr* store = instr->AsStoreInstanceField(); |
| 1063 | Definition* instance = |
| 1064 | store->instance()->definition()->OriginalDefinition(); |
| 1065 | if (Place::IsAllocation(instance) && |
| 1066 | !instance->Identity().IsAliased()) { |
| 1067 | bool is_load, is_store; |
| 1068 | Place store_place(instr, &is_load, &is_store); |
| 1069 | |
| 1070 | if (!HasLoadsFromPlace(instance, &store_place)) { |
| 1071 | // No loads found that match this store. If it is yet unknown if |
| 1072 | // the object is not aliased then optimistically assume this but |
| 1073 | // add it to the worklist to check its uses transitively. |
| 1074 | if (instance->Identity().IsUnknown()) { |
| 1075 | instance->SetIdentity(AliasIdentity::NotAliased()); |
| 1076 | aliasing_worklist_.Add(instance); |
| 1077 | } |
| 1078 | continue; |
| 1079 | } |
| 1080 | } |
| 1081 | return true; |
| 1082 | } |
| 1083 | } |
| 1084 | return false; |
| 1085 | } |
| 1086 | |
| 1087 | // Mark any value stored into the given object as potentially aliased. |
| 1088 | void MarkStoredValuesEscaping(Definition* defn) { |
| 1089 | // Find all stores into this object. |
| 1090 | for (Value* use = defn->input_use_list(); use != NULL; |
| 1091 | use = use->next_use()) { |
| 1092 | auto instr = use->instruction(); |
| 1093 | if (UseIsARedefinition(use)) { |
| 1094 | MarkStoredValuesEscaping(instr->AsDefinition()); |
| 1095 | continue; |
| 1096 | } |
| 1097 | if ((use->use_index() == StoreInstanceFieldInstr::kInstancePos) && |
| 1098 | instr->IsStoreInstanceField()) { |
| 1099 | StoreInstanceFieldInstr* store = instr->AsStoreInstanceField(); |
| 1100 | Definition* value = store->value()->definition()->OriginalDefinition(); |
| 1101 | if (value->Identity().IsNotAliased()) { |
| 1102 | value->SetIdentity(AliasIdentity::Aliased()); |
| 1103 | identity_rollback_.Add(value); |
| 1104 | |
| 1105 | // Add to worklist to propagate the mark transitively. |
| 1106 | aliasing_worklist_.Add(value); |
| 1107 | } |
| 1108 | } |
| 1109 | } |
| 1110 | } |
| 1111 | |
| 1112 | // Determine if the given definition can't be aliased. |
| 1113 | void ComputeAliasing(Definition* alloc) { |
| 1114 | ASSERT(Place::IsAllocation(alloc)); |
| 1115 | ASSERT(alloc->Identity().IsUnknown()); |
| 1116 | ASSERT(aliasing_worklist_.is_empty()); |
| 1117 | |
| 1118 | alloc->SetIdentity(AliasIdentity::NotAliased()); |
| 1119 | aliasing_worklist_.Add(alloc); |
| 1120 | |
| 1121 | while (!aliasing_worklist_.is_empty()) { |
| 1122 | Definition* defn = aliasing_worklist_.RemoveLast(); |
| 1123 | ASSERT(Place::IsAllocation(defn)); |
| 1124 | // If the definition in the worklist was optimistically marked as |
| 1125 | // not-aliased check that optimistic assumption still holds: check if |
| 1126 | // any of its uses can create an alias. |
| 1127 | if (!defn->Identity().IsAliased() && AnyUseCreatesAlias(defn)) { |
| 1128 | defn->SetIdentity(AliasIdentity::Aliased()); |
| 1129 | identity_rollback_.Add(defn); |
| 1130 | } |
| 1131 | |
| 1132 | // If the allocation site is marked as aliased conservatively mark |
| 1133 | // any values stored into the object aliased too. |
| 1134 | if (defn->Identity().IsAliased()) { |
| 1135 | MarkStoredValuesEscaping(defn); |
| 1136 | } |
| 1137 | } |
| 1138 | } |
| 1139 | |
| 1140 | Zone* zone_; |
| 1141 | |
| 1142 | DirectChainedHashMap<PointerKeyValueTrait<Place> >* places_map_; |
| 1143 | |
| 1144 | const ZoneGrowableArray<Place*>& places_; |
| 1145 | |
| 1146 | const PhiPlaceMoves* phi_moves_; |
| 1147 | |
| 1148 | // A list of all seen aliases and a map that allows looking up canonical |
| 1149 | // alias object. |
| 1150 | GrowableArray<const Place*> aliases_; |
| 1151 | DirectChainedHashMap<PointerKeyValueTrait<const Place> > aliases_map_; |
| 1152 | |
| 1153 | SmallSet<Place::ElementSize> typed_data_access_sizes_; |
| 1154 | |
| 1155 | // Maps alias id to set of ids of places representing the alias. |
| 1156 | // Place represents an alias if this alias is least generic alias for |
| 1157 | // the place. |
| 1158 | // (see ToAlias for the definition of least generic alias). |
| 1159 | GrowableArray<BitVector*> representatives_; |
| 1160 | |
| 1161 | // Maps alias id to set of ids of places aliased. |
| 1162 | GrowableArray<BitVector*> killed_; |
| 1163 | |
| 1164 | // Set of ids of places that can be affected by side-effects other than |
| 1165 | // explicit stores (i.e. through calls). |
| 1166 | BitVector* aliased_by_effects_; |
| 1167 | |
| 1168 | // Worklist used during alias analysis. |
| 1169 | GrowableArray<Definition*> aliasing_worklist_; |
| 1170 | |
| 1171 | // List of definitions that had their identity set to Aliased. At the end |
| 1172 | // of load optimization their identity will be rolled back to Unknown to |
| 1173 | // avoid treating them as Aliased at later stages without checking first |
| 1174 | // as optimizations can potentially eliminate instructions leading to |
| 1175 | // aliasing. |
| 1176 | GrowableArray<Definition*> identity_rollback_; |
| 1177 | }; |
| 1178 | |
| 1179 | static Definition* GetStoredValue(Instruction* instr) { |
| 1180 | if (instr->IsStoreIndexed()) { |
| 1181 | return instr->AsStoreIndexed()->value()->definition(); |
| 1182 | } |
| 1183 | |
| 1184 | StoreInstanceFieldInstr* store_instance_field = instr->AsStoreInstanceField(); |
| 1185 | if (store_instance_field != NULL) { |
| 1186 | return store_instance_field->value()->definition(); |
| 1187 | } |
| 1188 | |
| 1189 | StoreStaticFieldInstr* store_static_field = instr->AsStoreStaticField(); |
| 1190 | if (store_static_field != NULL) { |
| 1191 | return store_static_field->value()->definition(); |
| 1192 | } |
| 1193 | |
| 1194 | UNREACHABLE(); // Should only be called for supported store instructions. |
| 1195 | return NULL; |
| 1196 | } |
| 1197 | |
| 1198 | static bool IsPhiDependentPlace(Place* place) { |
| 1199 | return (place->kind() == Place::kInstanceField) && |
| 1200 | (place->instance() != NULL) && place->instance()->IsPhi(); |
| 1201 | } |
| 1202 | |
| 1203 | // For each place that depends on a phi ensure that equivalent places |
| 1204 | // corresponding to phi input are numbered and record outgoing phi moves |
| 1205 | // for each block which establish correspondence between phi dependent place |
| 1206 | // and phi input's place that is flowing in. |
| 1207 | static PhiPlaceMoves* ComputePhiMoves( |
| 1208 | DirectChainedHashMap<PointerKeyValueTrait<Place> >* map, |
| 1209 | ZoneGrowableArray<Place*>* places) { |
| 1210 | Thread* thread = Thread::Current(); |
| 1211 | Zone* zone = thread->zone(); |
| 1212 | PhiPlaceMoves* phi_moves = new (zone) PhiPlaceMoves(); |
| 1213 | |
| 1214 | for (intptr_t i = 0; i < places->length(); i++) { |
| 1215 | Place* place = (*places)[i]; |
| 1216 | |
| 1217 | if (IsPhiDependentPlace(place)) { |
| 1218 | PhiInstr* phi = place->instance()->AsPhi(); |
| 1219 | BlockEntryInstr* block = phi->GetBlock(); |
| 1220 | |
| 1221 | if (FLAG_trace_optimization) { |
| 1222 | THR_Print("phi dependent place %s\n" , place->ToCString()); |
| 1223 | } |
| 1224 | |
| 1225 | Place input_place(*place); |
| 1226 | for (intptr_t j = 0; j < phi->InputCount(); j++) { |
| 1227 | input_place.set_instance(phi->InputAt(j)->definition()); |
| 1228 | |
| 1229 | Place* result = map->LookupValue(&input_place); |
| 1230 | if (result == NULL) { |
| 1231 | result = Place::Wrap(zone, input_place, places->length()); |
| 1232 | map->Insert(result); |
| 1233 | places->Add(result); |
| 1234 | if (FLAG_trace_optimization) { |
| 1235 | THR_Print(" adding place %s as %" Pd "\n" , result->ToCString(), |
| 1236 | result->id()); |
| 1237 | } |
| 1238 | } |
| 1239 | phi_moves->CreateOutgoingMove(zone, block->PredecessorAt(j), |
| 1240 | result->id(), place->id()); |
| 1241 | } |
| 1242 | } |
| 1243 | } |
| 1244 | |
| 1245 | return phi_moves; |
| 1246 | } |
| 1247 | |
| 1248 | DART_FORCE_INLINE static void SetPlaceId(Instruction* instr, intptr_t id) { |
| 1249 | instr->SetPassSpecificId(CompilerPass::kCSE, id); |
| 1250 | } |
| 1251 | |
| 1252 | DART_FORCE_INLINE static bool HasPlaceId(const Instruction* instr) { |
| 1253 | return instr->HasPassSpecificId(CompilerPass::kCSE); |
| 1254 | } |
| 1255 | |
| 1256 | DART_FORCE_INLINE static intptr_t GetPlaceId(const Instruction* instr) { |
| 1257 | ASSERT(HasPlaceId(instr)); |
| 1258 | return instr->GetPassSpecificId(CompilerPass::kCSE); |
| 1259 | } |
| 1260 | |
| 1261 | enum CSEMode { kOptimizeLoads, kOptimizeStores }; |
| 1262 | |
| 1263 | static AliasedSet* NumberPlaces( |
| 1264 | FlowGraph* graph, |
| 1265 | DirectChainedHashMap<PointerKeyValueTrait<Place> >* map, |
| 1266 | CSEMode mode) { |
| 1267 | // Loads representing different expression ids will be collected and |
| 1268 | // used to build per offset kill sets. |
| 1269 | Zone* zone = graph->zone(); |
| 1270 | ZoneGrowableArray<Place*>* places = new (zone) ZoneGrowableArray<Place*>(10); |
| 1271 | |
| 1272 | bool has_loads = false; |
| 1273 | bool has_stores = false; |
| 1274 | for (BlockIterator it = graph->reverse_postorder_iterator(); !it.Done(); |
| 1275 | it.Advance()) { |
| 1276 | BlockEntryInstr* block = it.Current(); |
| 1277 | |
| 1278 | for (ForwardInstructionIterator instr_it(block); !instr_it.Done(); |
| 1279 | instr_it.Advance()) { |
| 1280 | Instruction* instr = instr_it.Current(); |
| 1281 | Place place(instr, &has_loads, &has_stores); |
| 1282 | if (place.kind() == Place::kNone) { |
| 1283 | continue; |
| 1284 | } |
| 1285 | |
| 1286 | Place* result = map->LookupValue(&place); |
| 1287 | if (result == NULL) { |
| 1288 | result = Place::Wrap(zone, place, places->length()); |
| 1289 | map->Insert(result); |
| 1290 | places->Add(result); |
| 1291 | |
| 1292 | if (FLAG_trace_optimization) { |
| 1293 | THR_Print("numbering %s as %" Pd "\n" , result->ToCString(), |
| 1294 | result->id()); |
| 1295 | } |
| 1296 | } |
| 1297 | |
| 1298 | SetPlaceId(instr, result->id()); |
| 1299 | } |
| 1300 | } |
| 1301 | |
| 1302 | if ((mode == kOptimizeLoads) && !has_loads) { |
| 1303 | return NULL; |
| 1304 | } |
| 1305 | if ((mode == kOptimizeStores) && !has_stores) { |
| 1306 | return NULL; |
| 1307 | } |
| 1308 | |
| 1309 | PhiPlaceMoves* phi_moves = ComputePhiMoves(map, places); |
| 1310 | |
| 1311 | // Build aliasing sets mapping aliases to loads. |
| 1312 | return new (zone) AliasedSet(zone, map, places, phi_moves); |
| 1313 | } |
| 1314 | |
| 1315 | // Load instructions handled by load elimination. |
| 1316 | static bool IsLoadEliminationCandidate(Instruction* instr) { |
| 1317 | return instr->IsLoadField() || instr->IsLoadIndexed() || |
| 1318 | instr->IsLoadStaticField(); |
| 1319 | } |
| 1320 | |
| 1321 | static bool IsLoopInvariantLoad(ZoneGrowableArray<BitVector*>* sets, |
| 1322 | intptr_t , |
| 1323 | Instruction* instr) { |
| 1324 | return IsLoadEliminationCandidate(instr) && (sets != NULL) && |
| 1325 | HasPlaceId(instr) && |
| 1326 | (*sets)[loop_header_index]->Contains(GetPlaceId(instr)); |
| 1327 | } |
| 1328 | |
| 1329 | LICM::LICM(FlowGraph* flow_graph) : flow_graph_(flow_graph) { |
| 1330 | ASSERT(flow_graph->is_licm_allowed()); |
| 1331 | } |
| 1332 | |
| 1333 | void LICM::Hoist(ForwardInstructionIterator* it, |
| 1334 | BlockEntryInstr* , |
| 1335 | Instruction* current) { |
| 1336 | if (current->IsCheckClass()) { |
| 1337 | current->AsCheckClass()->set_licm_hoisted(true); |
| 1338 | } else if (current->IsCheckSmi()) { |
| 1339 | current->AsCheckSmi()->set_licm_hoisted(true); |
| 1340 | } else if (current->IsCheckEitherNonSmi()) { |
| 1341 | current->AsCheckEitherNonSmi()->set_licm_hoisted(true); |
| 1342 | } else if (current->IsCheckArrayBound()) { |
| 1343 | ASSERT(!CompilerState::Current().is_aot()); // speculative in JIT only |
| 1344 | current->AsCheckArrayBound()->set_licm_hoisted(true); |
| 1345 | } else if (current->IsGenericCheckBound()) { |
| 1346 | ASSERT(CompilerState::Current().is_aot()); // non-speculative in AOT only |
| 1347 | // Does not deopt, so no need for licm_hoisted flag. |
| 1348 | } else if (current->IsTestCids()) { |
| 1349 | current->AsTestCids()->set_licm_hoisted(true); |
| 1350 | } |
| 1351 | if (FLAG_trace_optimization) { |
| 1352 | THR_Print("Hoisting instruction %s:%" Pd " from B%" Pd " to B%" Pd "\n" , |
| 1353 | current->DebugName(), current->GetDeoptId(), |
| 1354 | current->GetBlock()->block_id(), pre_header->block_id()); |
| 1355 | } |
| 1356 | // Move the instruction out of the loop. |
| 1357 | current->RemoveEnvironment(); |
| 1358 | if (it != NULL) { |
| 1359 | it->RemoveCurrentFromGraph(); |
| 1360 | } else { |
| 1361 | current->RemoveFromGraph(); |
| 1362 | } |
| 1363 | GotoInstr* last = pre_header->last_instruction()->AsGoto(); |
| 1364 | // Using kind kEffect will not assign a fresh ssa temporary index. |
| 1365 | flow_graph()->InsertBefore(last, current, last->env(), FlowGraph::kEffect); |
| 1366 | current->CopyDeoptIdFrom(*last); |
| 1367 | } |
| 1368 | |
| 1369 | void LICM::TrySpecializeSmiPhi(PhiInstr* phi, |
| 1370 | BlockEntryInstr* , |
| 1371 | BlockEntryInstr* ) { |
| 1372 | if (phi->Type()->ToCid() == kSmiCid) { |
| 1373 | return; |
| 1374 | } |
| 1375 | |
| 1376 | // Check if there is only a single kDynamicCid input to the phi that |
| 1377 | // comes from the pre-header. |
| 1378 | const intptr_t kNotFound = -1; |
| 1379 | intptr_t non_smi_input = kNotFound; |
| 1380 | for (intptr_t i = 0; i < phi->InputCount(); ++i) { |
| 1381 | Value* input = phi->InputAt(i); |
| 1382 | if (input->Type()->ToCid() != kSmiCid) { |
| 1383 | if ((non_smi_input != kNotFound) || |
| 1384 | (input->Type()->ToCid() != kDynamicCid)) { |
| 1385 | // There are multiple kDynamicCid inputs or there is an input that is |
| 1386 | // known to be non-smi. |
| 1387 | return; |
| 1388 | } else { |
| 1389 | non_smi_input = i; |
| 1390 | } |
| 1391 | } |
| 1392 | } |
| 1393 | |
| 1394 | if ((non_smi_input == kNotFound) || |
| 1395 | (phi->block()->PredecessorAt(non_smi_input) != pre_header)) { |
| 1396 | return; |
| 1397 | } |
| 1398 | |
| 1399 | CheckSmiInstr* check = NULL; |
| 1400 | for (Value* use = phi->input_use_list(); (use != NULL) && (check == NULL); |
| 1401 | use = use->next_use()) { |
| 1402 | check = use->instruction()->AsCheckSmi(); |
| 1403 | } |
| 1404 | |
| 1405 | if (check == NULL) { |
| 1406 | return; |
| 1407 | } |
| 1408 | |
| 1409 | // Host CheckSmi instruction and make this phi smi one. |
| 1410 | Hoist(NULL, pre_header, check); |
| 1411 | |
| 1412 | // Replace value we are checking with phi's input. |
| 1413 | check->value()->BindTo(phi->InputAt(non_smi_input)->definition()); |
| 1414 | check->value()->SetReachingType(phi->InputAt(non_smi_input)->Type()); |
| 1415 | |
| 1416 | phi->UpdateType(CompileType::FromCid(kSmiCid)); |
| 1417 | } |
| 1418 | |
| 1419 | void LICM::OptimisticallySpecializeSmiPhis() { |
| 1420 | if (flow_graph()->function().ProhibitsHoistingCheckClass() || |
| 1421 | CompilerState::Current().is_aot()) { |
| 1422 | // Do not hoist any: Either deoptimized on a hoisted check, |
| 1423 | // or compiling precompiled code where we can't do optimistic |
| 1424 | // hoisting of checks. |
| 1425 | return; |
| 1426 | } |
| 1427 | |
| 1428 | const ZoneGrowableArray<BlockEntryInstr*>& = |
| 1429 | flow_graph()->GetLoopHierarchy().headers(); |
| 1430 | |
| 1431 | for (intptr_t i = 0; i < loop_headers.length(); ++i) { |
| 1432 | JoinEntryInstr* = loop_headers[i]->AsJoinEntry(); |
| 1433 | // Skip loop that don't have a pre-header block. |
| 1434 | BlockEntryInstr* = header->ImmediateDominator(); |
| 1435 | if (pre_header == NULL) continue; |
| 1436 | |
| 1437 | for (PhiIterator it(header); !it.Done(); it.Advance()) { |
| 1438 | TrySpecializeSmiPhi(it.Current(), header, pre_header); |
| 1439 | } |
| 1440 | } |
| 1441 | } |
| 1442 | |
| 1443 | // Returns true if instruction may have a "visible" effect, |
| 1444 | static bool MayHaveVisibleEffect(Instruction* instr) { |
| 1445 | switch (instr->tag()) { |
| 1446 | case Instruction::kStoreInstanceField: |
| 1447 | case Instruction::kStoreStaticField: |
| 1448 | case Instruction::kStoreIndexed: |
| 1449 | case Instruction::kStoreIndexedUnsafe: |
| 1450 | case Instruction::kStoreUntagged: |
| 1451 | return true; |
| 1452 | default: |
| 1453 | return instr->HasUnknownSideEffects() || instr->MayThrow(); |
| 1454 | } |
| 1455 | } |
| 1456 | |
| 1457 | void LICM::Optimize() { |
| 1458 | if (flow_graph()->function().ProhibitsHoistingCheckClass()) { |
| 1459 | // Do not hoist any. |
| 1460 | return; |
| 1461 | } |
| 1462 | |
| 1463 | // Compute loops and induction in flow graph. |
| 1464 | const LoopHierarchy& loop_hierarchy = flow_graph()->GetLoopHierarchy(); |
| 1465 | const ZoneGrowableArray<BlockEntryInstr*>& = |
| 1466 | loop_hierarchy.headers(); |
| 1467 | loop_hierarchy.ComputeInduction(); |
| 1468 | |
| 1469 | ZoneGrowableArray<BitVector*>* loop_invariant_loads = |
| 1470 | flow_graph()->loop_invariant_loads(); |
| 1471 | |
| 1472 | // Iterate over all loops. |
| 1473 | for (intptr_t i = 0; i < loop_headers.length(); ++i) { |
| 1474 | BlockEntryInstr* = loop_headers[i]; |
| 1475 | |
| 1476 | // Skip loops that don't have a pre-header block. |
| 1477 | BlockEntryInstr* = header->ImmediateDominator(); |
| 1478 | if (pre_header == nullptr) { |
| 1479 | continue; |
| 1480 | } |
| 1481 | |
| 1482 | // Flag that remains true as long as the loop has not seen any instruction |
| 1483 | // that may have a "visible" effect (write, throw, or other side-effect). |
| 1484 | bool seen_visible_effect = false; |
| 1485 | |
| 1486 | // Iterate over all blocks in the loop. |
| 1487 | LoopInfo* loop = header->loop_info(); |
| 1488 | for (BitVector::Iterator loop_it(loop->blocks()); !loop_it.Done(); |
| 1489 | loop_it.Advance()) { |
| 1490 | BlockEntryInstr* block = flow_graph()->preorder()[loop_it.Current()]; |
| 1491 | |
| 1492 | // Preserve the "visible" effect flag as long as the preorder traversal |
| 1493 | // sees always-taken blocks. This way, we can only hoist invariant |
| 1494 | // may-throw instructions that are always seen during the first iteration. |
| 1495 | if (!seen_visible_effect && !loop->IsAlwaysTaken(block)) { |
| 1496 | seen_visible_effect = true; |
| 1497 | } |
| 1498 | // Iterate over all instructions in the block. |
| 1499 | for (ForwardInstructionIterator it(block); !it.Done(); it.Advance()) { |
| 1500 | Instruction* current = it.Current(); |
| 1501 | |
| 1502 | // Treat loads of static final fields specially: we can CSE them but |
| 1503 | // we should not move them around unless the field is initialized. |
| 1504 | // Otherwise we might move load past the initialization. |
| 1505 | if (LoadStaticFieldInstr* load = current->AsLoadStaticField()) { |
| 1506 | if (load->AllowsCSE() && !load->IsFieldInitialized()) { |
| 1507 | seen_visible_effect = true; |
| 1508 | continue; |
| 1509 | } |
| 1510 | } |
| 1511 | |
| 1512 | // Determine if we can hoist loop invariant code. Even may-throw |
| 1513 | // instructions can be hoisted as long as its exception is still |
| 1514 | // the very first "visible" effect of the loop. |
| 1515 | bool is_loop_invariant = false; |
| 1516 | if ((current->AllowsCSE() || |
| 1517 | IsLoopInvariantLoad(loop_invariant_loads, i, current)) && |
| 1518 | (!seen_visible_effect || !current->MayThrow())) { |
| 1519 | is_loop_invariant = true; |
| 1520 | for (intptr_t i = 0; i < current->InputCount(); ++i) { |
| 1521 | Definition* input_def = current->InputAt(i)->definition(); |
| 1522 | if (!input_def->GetBlock()->Dominates(pre_header)) { |
| 1523 | is_loop_invariant = false; |
| 1524 | break; |
| 1525 | } |
| 1526 | } |
| 1527 | } |
| 1528 | |
| 1529 | // Hoist if all inputs are loop invariant. If not hoisted, any |
| 1530 | // instruction that writes, may throw, or has an unknown side |
| 1531 | // effect invalidates the first "visible" effect flag. |
| 1532 | if (is_loop_invariant) { |
| 1533 | Hoist(&it, pre_header, current); |
| 1534 | } else if (!seen_visible_effect && MayHaveVisibleEffect(current)) { |
| 1535 | seen_visible_effect = true; |
| 1536 | } |
| 1537 | } |
| 1538 | } |
| 1539 | } |
| 1540 | } |
| 1541 | |
| 1542 | void DelayAllocations::Optimize(FlowGraph* graph) { |
| 1543 | // Go through all AllocateObject instructions and move them down to their |
| 1544 | // dominant use when doing so is sound. |
| 1545 | DirectChainedHashMap<IdentitySetKeyValueTrait<Instruction*>> moved; |
| 1546 | for (BlockIterator block_it = graph->reverse_postorder_iterator(); |
| 1547 | !block_it.Done(); block_it.Advance()) { |
| 1548 | BlockEntryInstr* block = block_it.Current(); |
| 1549 | |
| 1550 | for (ForwardInstructionIterator instr_it(block); !instr_it.Done(); |
| 1551 | instr_it.Advance()) { |
| 1552 | Definition* def = instr_it.Current()->AsDefinition(); |
| 1553 | if (def != nullptr && (def->IsAllocateObject() || def->IsCreateArray()) && |
| 1554 | def->env() == nullptr && !moved.HasKey(def)) { |
| 1555 | Instruction* use = DominantUse(def); |
| 1556 | if (use != nullptr && !use->IsPhi() && IsOneTimeUse(use, def)) { |
| 1557 | instr_it.RemoveCurrentFromGraph(); |
| 1558 | def->InsertBefore(use); |
| 1559 | moved.Insert(def); |
| 1560 | } |
| 1561 | } |
| 1562 | } |
| 1563 | } |
| 1564 | } |
| 1565 | |
| 1566 | Instruction* DelayAllocations::DominantUse(Definition* def) { |
| 1567 | // Find the use that dominates all other uses. |
| 1568 | |
| 1569 | // Collect all uses. |
| 1570 | DirectChainedHashMap<IdentitySetKeyValueTrait<Instruction*>> uses; |
| 1571 | for (Value::Iterator it(def->input_use_list()); !it.Done(); it.Advance()) { |
| 1572 | Instruction* use = it.Current()->instruction(); |
| 1573 | uses.Insert(use); |
| 1574 | } |
| 1575 | for (Value::Iterator it(def->env_use_list()); !it.Done(); it.Advance()) { |
| 1576 | Instruction* use = it.Current()->instruction(); |
| 1577 | uses.Insert(use); |
| 1578 | } |
| 1579 | |
| 1580 | // Find the dominant use. |
| 1581 | Instruction* dominant_use = nullptr; |
| 1582 | auto use_it = uses.GetIterator(); |
| 1583 | while (auto use = use_it.Next()) { |
| 1584 | // Start with the instruction before the use, then walk backwards through |
| 1585 | // blocks in the dominator chain until we hit the definition or another use. |
| 1586 | Instruction* instr = nullptr; |
| 1587 | if (auto phi = (*use)->AsPhi()) { |
| 1588 | // For phi uses, the dominant use only has to dominate the |
| 1589 | // predecessor block corresponding to the phi input. |
| 1590 | ASSERT(phi->InputCount() == phi->block()->PredecessorCount()); |
| 1591 | for (intptr_t i = 0; i < phi->InputCount(); i++) { |
| 1592 | if (phi->InputAt(i)->definition() == def) { |
| 1593 | instr = phi->block()->PredecessorAt(i)->last_instruction(); |
| 1594 | break; |
| 1595 | } |
| 1596 | } |
| 1597 | ASSERT(instr != nullptr); |
| 1598 | } else { |
| 1599 | instr = (*use)->previous(); |
| 1600 | } |
| 1601 | |
| 1602 | bool dominated = false; |
| 1603 | while (instr != def) { |
| 1604 | if (uses.HasKey(instr)) { |
| 1605 | // We hit another use. |
| 1606 | dominated = true; |
| 1607 | break; |
| 1608 | } |
| 1609 | if (auto block = instr->AsBlockEntry()) { |
| 1610 | instr = block->dominator()->last_instruction(); |
| 1611 | } else { |
| 1612 | instr = instr->previous(); |
| 1613 | } |
| 1614 | } |
| 1615 | if (!dominated) { |
| 1616 | if (dominant_use != nullptr) { |
| 1617 | // More than one use reached the definition, which means no use |
| 1618 | // dominates all other uses. |
| 1619 | return nullptr; |
| 1620 | } |
| 1621 | dominant_use = *use; |
| 1622 | } |
| 1623 | } |
| 1624 | |
| 1625 | return dominant_use; |
| 1626 | } |
| 1627 | |
| 1628 | bool DelayAllocations::IsOneTimeUse(Instruction* use, Definition* def) { |
| 1629 | // Check that this use is always executed at most once for each execution of |
| 1630 | // the definition, i.e. that there is no path from the use to itself that |
| 1631 | // doesn't pass through the definition. |
| 1632 | BlockEntryInstr* use_block = use->GetBlock(); |
| 1633 | BlockEntryInstr* def_block = def->GetBlock(); |
| 1634 | if (use_block == def_block) return true; |
| 1635 | |
| 1636 | DirectChainedHashMap<IdentitySetKeyValueTrait<BlockEntryInstr*>> seen; |
| 1637 | GrowableArray<BlockEntryInstr*> worklist; |
| 1638 | worklist.Add(use_block); |
| 1639 | |
| 1640 | while (!worklist.is_empty()) { |
| 1641 | BlockEntryInstr* block = worklist.RemoveLast(); |
| 1642 | for (intptr_t i = 0; i < block->PredecessorCount(); i++) { |
| 1643 | BlockEntryInstr* pred = block->PredecessorAt(i); |
| 1644 | if (pred == use_block) return false; |
| 1645 | if (pred == def_block) continue; |
| 1646 | if (seen.HasKey(pred)) continue; |
| 1647 | seen.Insert(pred); |
| 1648 | worklist.Add(pred); |
| 1649 | } |
| 1650 | } |
| 1651 | return true; |
| 1652 | } |
| 1653 | |
| 1654 | class LoadOptimizer : public ValueObject { |
| 1655 | public: |
| 1656 | LoadOptimizer(FlowGraph* graph, AliasedSet* aliased_set) |
| 1657 | : graph_(graph), |
| 1658 | aliased_set_(aliased_set), |
| 1659 | in_(graph_->preorder().length()), |
| 1660 | out_(graph_->preorder().length()), |
| 1661 | gen_(graph_->preorder().length()), |
| 1662 | kill_(graph_->preorder().length()), |
| 1663 | exposed_values_(graph_->preorder().length()), |
| 1664 | out_values_(graph_->preorder().length()), |
| 1665 | phis_(5), |
| 1666 | worklist_(5), |
| 1667 | congruency_worklist_(6), |
| 1668 | in_worklist_(NULL), |
| 1669 | forwarded_(false) { |
| 1670 | const intptr_t num_blocks = graph_->preorder().length(); |
| 1671 | for (intptr_t i = 0; i < num_blocks; i++) { |
| 1672 | out_.Add(NULL); |
| 1673 | gen_.Add(new (Z) BitVector(Z, aliased_set_->max_place_id())); |
| 1674 | kill_.Add(new (Z) BitVector(Z, aliased_set_->max_place_id())); |
| 1675 | in_.Add(new (Z) BitVector(Z, aliased_set_->max_place_id())); |
| 1676 | |
| 1677 | exposed_values_.Add(NULL); |
| 1678 | out_values_.Add(NULL); |
| 1679 | } |
| 1680 | } |
| 1681 | |
| 1682 | ~LoadOptimizer() { aliased_set_->RollbackAliasedIdentites(); } |
| 1683 | |
| 1684 | Isolate* isolate() const { return graph_->isolate(); } |
| 1685 | Zone* zone() const { return graph_->zone(); } |
| 1686 | |
| 1687 | static bool OptimizeGraph(FlowGraph* graph) { |
| 1688 | ASSERT(FLAG_load_cse); |
| 1689 | |
| 1690 | // For now, bail out for large functions to avoid OOM situations. |
| 1691 | // TODO(fschneider): Fix the memory consumption issue. |
| 1692 | intptr_t function_length = graph->function().end_token_pos().Pos() - |
| 1693 | graph->function().token_pos().Pos(); |
| 1694 | if (function_length >= FLAG_huge_method_cutoff_in_tokens) { |
| 1695 | return false; |
| 1696 | } |
| 1697 | |
| 1698 | DirectChainedHashMap<PointerKeyValueTrait<Place> > map; |
| 1699 | AliasedSet* aliased_set = NumberPlaces(graph, &map, kOptimizeLoads); |
| 1700 | if ((aliased_set != NULL) && !aliased_set->IsEmpty()) { |
| 1701 | // If any loads were forwarded return true from Optimize to run load |
| 1702 | // forwarding again. This will allow to forward chains of loads. |
| 1703 | // This is especially important for context variables as they are built |
| 1704 | // as loads from loaded context. |
| 1705 | // TODO(vegorov): renumber newly discovered congruences during the |
| 1706 | // forwarding to forward chains without running whole pass twice. |
| 1707 | LoadOptimizer load_optimizer(graph, aliased_set); |
| 1708 | return load_optimizer.Optimize(); |
| 1709 | } |
| 1710 | return false; |
| 1711 | } |
| 1712 | |
| 1713 | private: |
| 1714 | bool Optimize() { |
| 1715 | // Initializer calls should be eliminated before ComputeInitialSets() |
| 1716 | // in order to calculate kill sets more precisely. |
| 1717 | OptimizeLazyInitialization(); |
| 1718 | |
| 1719 | ComputeInitialSets(); |
| 1720 | ComputeOutSets(); |
| 1721 | ComputeOutValues(); |
| 1722 | if (graph_->is_licm_allowed()) { |
| 1723 | MarkLoopInvariantLoads(); |
| 1724 | } |
| 1725 | ForwardLoads(); |
| 1726 | EmitPhis(); |
| 1727 | return forwarded_; |
| 1728 | } |
| 1729 | |
| 1730 | bool CallsInitializer(Instruction* instr) { |
| 1731 | if (auto* load_field = instr->AsLoadField()) { |
| 1732 | return load_field->calls_initializer(); |
| 1733 | } else if (auto* load_static = instr->AsLoadStaticField()) { |
| 1734 | return load_static->calls_initializer(); |
| 1735 | } |
| 1736 | return false; |
| 1737 | } |
| 1738 | |
| 1739 | void ClearCallsInitializer(Instruction* instr) { |
| 1740 | if (auto* load_field = instr->AsLoadField()) { |
| 1741 | load_field->set_calls_initializer(false); |
| 1742 | } else if (auto* load_static = instr->AsLoadStaticField()) { |
| 1743 | load_static->set_calls_initializer(false); |
| 1744 | } else { |
| 1745 | UNREACHABLE(); |
| 1746 | } |
| 1747 | } |
| 1748 | |
| 1749 | // Returns true if given instruction stores the sentinel value. |
| 1750 | // Such a store doesn't initialize corresponding field. |
| 1751 | bool IsSentinelStore(Instruction* instr) { |
| 1752 | Value* value = nullptr; |
| 1753 | if (auto* store_field = instr->AsStoreInstanceField()) { |
| 1754 | value = store_field->value(); |
| 1755 | } else if (auto* store_static = instr->AsStoreStaticField()) { |
| 1756 | value = store_static->value(); |
| 1757 | } |
| 1758 | return value != nullptr && value->BindsToConstant() && |
| 1759 | (value->BoundConstant().raw() == Object::sentinel().raw()); |
| 1760 | } |
| 1761 | |
| 1762 | // This optimization pass tries to get rid of lazy initializer calls in |
| 1763 | // LoadField and LoadStaticField instructions. The "initialized" state of |
| 1764 | // places is propagated through the flow graph. |
| 1765 | void OptimizeLazyInitialization() { |
| 1766 | if (!FLAG_optimize_lazy_initializer_calls) { |
| 1767 | return; |
| 1768 | } |
| 1769 | |
| 1770 | // 1) Populate 'gen' sets with places which are initialized at each basic |
| 1771 | // block. Optimize lazy initializer calls within basic block and |
| 1772 | // figure out if there are lazy intializer calls left to optimize. |
| 1773 | bool has_lazy_initializer_calls = false; |
| 1774 | for (BlockIterator block_it = graph_->reverse_postorder_iterator(); |
| 1775 | !block_it.Done(); block_it.Advance()) { |
| 1776 | BlockEntryInstr* block = block_it.Current(); |
| 1777 | BitVector* gen = gen_[block->preorder_number()]; |
| 1778 | |
| 1779 | for (ForwardInstructionIterator instr_it(block); !instr_it.Done(); |
| 1780 | instr_it.Advance()) { |
| 1781 | Instruction* instr = instr_it.Current(); |
| 1782 | |
| 1783 | bool is_load = false, is_store = false; |
| 1784 | Place place(instr, &is_load, &is_store); |
| 1785 | |
| 1786 | if (is_store && !IsSentinelStore(instr)) { |
| 1787 | gen->Add(GetPlaceId(instr)); |
| 1788 | } else if (is_load) { |
| 1789 | const auto place_id = GetPlaceId(instr); |
| 1790 | if (CallsInitializer(instr)) { |
| 1791 | if (gen->Contains(place_id)) { |
| 1792 | ClearCallsInitializer(instr); |
| 1793 | } else { |
| 1794 | has_lazy_initializer_calls = true; |
| 1795 | } |
| 1796 | } |
| 1797 | gen->Add(place_id); |
| 1798 | } |
| 1799 | } |
| 1800 | |
| 1801 | // Spread initialized state through outgoing phis. |
| 1802 | PhiPlaceMoves::MovesList phi_moves = |
| 1803 | aliased_set_->phi_moves()->GetOutgoingMoves(block); |
| 1804 | if (phi_moves != nullptr) { |
| 1805 | for (intptr_t i = 0, n = phi_moves->length(); i < n; ++i) { |
| 1806 | const intptr_t from = (*phi_moves)[i].from(); |
| 1807 | const intptr_t to = (*phi_moves)[i].to(); |
| 1808 | if ((from != to) && gen->Contains(from)) { |
| 1809 | gen->Add(to); |
| 1810 | } |
| 1811 | } |
| 1812 | } |
| 1813 | } |
| 1814 | |
| 1815 | if (has_lazy_initializer_calls) { |
| 1816 | // 2) Propagate initialized state between blocks, calculating |
| 1817 | // incoming initialized state. Iterate until reaching fixed point. |
| 1818 | BitVector* temp = new (Z) BitVector(Z, aliased_set_->max_place_id()); |
| 1819 | bool changed = true; |
| 1820 | while (changed) { |
| 1821 | changed = false; |
| 1822 | |
| 1823 | for (BlockIterator block_it = graph_->reverse_postorder_iterator(); |
| 1824 | !block_it.Done(); block_it.Advance()) { |
| 1825 | BlockEntryInstr* block = block_it.Current(); |
| 1826 | BitVector* block_in = in_[block->preorder_number()]; |
| 1827 | BitVector* gen = gen_[block->preorder_number()]; |
| 1828 | |
| 1829 | // Incoming initialized state is the intersection of all |
| 1830 | // outgoing initialized states of predecessors. |
| 1831 | if (block->IsGraphEntry()) { |
| 1832 | temp->Clear(); |
| 1833 | } else { |
| 1834 | temp->SetAll(); |
| 1835 | ASSERT(block->PredecessorCount() > 0); |
| 1836 | for (intptr_t i = 0, pred_count = block->PredecessorCount(); |
| 1837 | i < pred_count; ++i) { |
| 1838 | BlockEntryInstr* pred = block->PredecessorAt(i); |
| 1839 | BitVector* pred_out = gen_[pred->preorder_number()]; |
| 1840 | temp->Intersect(pred_out); |
| 1841 | } |
| 1842 | } |
| 1843 | |
| 1844 | if (!temp->Equals(*block_in)) { |
| 1845 | ASSERT(block_in->SubsetOf(*temp)); |
| 1846 | block_in->AddAll(temp); |
| 1847 | gen->AddAll(temp); |
| 1848 | changed = true; |
| 1849 | } |
| 1850 | } |
| 1851 | } |
| 1852 | |
| 1853 | // 3) Single pass through basic blocks to optimize lazy |
| 1854 | // initializer calls using calculated incoming inter-block |
| 1855 | // initialized state. |
| 1856 | for (BlockIterator block_it = graph_->reverse_postorder_iterator(); |
| 1857 | !block_it.Done(); block_it.Advance()) { |
| 1858 | BlockEntryInstr* block = block_it.Current(); |
| 1859 | BitVector* block_in = in_[block->preorder_number()]; |
| 1860 | |
| 1861 | for (ForwardInstructionIterator instr_it(block); !instr_it.Done(); |
| 1862 | instr_it.Advance()) { |
| 1863 | Instruction* instr = instr_it.Current(); |
| 1864 | if (CallsInitializer(instr) && |
| 1865 | block_in->Contains(GetPlaceId(instr))) { |
| 1866 | ClearCallsInitializer(instr); |
| 1867 | } |
| 1868 | } |
| 1869 | } |
| 1870 | } |
| 1871 | |
| 1872 | // Clear sets which are also used in the main part of load forwarding. |
| 1873 | for (intptr_t i = 0, n = graph_->preorder().length(); i < n; ++i) { |
| 1874 | gen_[i]->Clear(); |
| 1875 | in_[i]->Clear(); |
| 1876 | } |
| 1877 | } |
| 1878 | |
| 1879 | // Only forward stores to normal arrays, float64, and simd arrays |
| 1880 | // to loads because other array stores (intXX/uintXX/float32) |
| 1881 | // may implicitly convert the value stored. |
| 1882 | bool CanForwardStore(StoreIndexedInstr* array_store) { |
| 1883 | return ((array_store == nullptr) || |
| 1884 | (array_store->class_id() == kArrayCid) || |
| 1885 | (array_store->class_id() == kTypedDataFloat64ArrayCid) || |
| 1886 | (array_store->class_id() == kTypedDataFloat32ArrayCid) || |
| 1887 | (array_store->class_id() == kTypedDataFloat32x4ArrayCid)); |
| 1888 | } |
| 1889 | |
| 1890 | // Compute sets of loads generated and killed by each block. |
| 1891 | // Additionally compute upwards exposed and generated loads for each block. |
| 1892 | // Exposed loads are those that can be replaced if a corresponding |
| 1893 | // reaching load will be found. |
| 1894 | // Loads that are locally redundant will be replaced as we go through |
| 1895 | // instructions. |
| 1896 | void ComputeInitialSets() { |
| 1897 | for (BlockIterator block_it = graph_->reverse_postorder_iterator(); |
| 1898 | !block_it.Done(); block_it.Advance()) { |
| 1899 | BlockEntryInstr* block = block_it.Current(); |
| 1900 | const intptr_t preorder_number = block->preorder_number(); |
| 1901 | |
| 1902 | BitVector* kill = kill_[preorder_number]; |
| 1903 | BitVector* gen = gen_[preorder_number]; |
| 1904 | |
| 1905 | ZoneGrowableArray<Definition*>* exposed_values = NULL; |
| 1906 | ZoneGrowableArray<Definition*>* out_values = NULL; |
| 1907 | |
| 1908 | for (ForwardInstructionIterator instr_it(block); !instr_it.Done(); |
| 1909 | instr_it.Advance()) { |
| 1910 | Instruction* instr = instr_it.Current(); |
| 1911 | |
| 1912 | bool is_load = false, is_store = false; |
| 1913 | Place place(instr, &is_load, &is_store); |
| 1914 | |
| 1915 | BitVector* killed = NULL; |
| 1916 | if (is_store) { |
| 1917 | const intptr_t alias_id = |
| 1918 | aliased_set_->LookupAliasId(place.ToAlias()); |
| 1919 | if (alias_id != AliasedSet::kNoAlias) { |
| 1920 | killed = aliased_set_->GetKilledSet(alias_id); |
| 1921 | } else if (!place.IsImmutableField()) { |
| 1922 | // We encountered unknown alias: this means intrablock load |
| 1923 | // forwarding refined parameter of this store, for example |
| 1924 | // |
| 1925 | // o <- alloc() |
| 1926 | // a.f <- o |
| 1927 | // u <- a.f |
| 1928 | // u.x <- null ;; this store alias is *.x |
| 1929 | // |
| 1930 | // after intrablock load forwarding |
| 1931 | // |
| 1932 | // o <- alloc() |
| 1933 | // a.f <- o |
| 1934 | // o.x <- null ;; this store alias is o.x |
| 1935 | // |
| 1936 | // In this case we fallback to using place id recorded in the |
| 1937 | // instruction that still points to the old place with a more |
| 1938 | // generic alias. |
| 1939 | const intptr_t old_alias_id = aliased_set_->LookupAliasId( |
| 1940 | aliased_set_->places()[GetPlaceId(instr)]->ToAlias()); |
| 1941 | killed = aliased_set_->GetKilledSet(old_alias_id); |
| 1942 | } |
| 1943 | |
| 1944 | // Find canonical place of store. |
| 1945 | Place* canonical_place = nullptr; |
| 1946 | if (CanForwardStore(instr->AsStoreIndexed())) { |
| 1947 | canonical_place = aliased_set_->LookupCanonical(&place); |
| 1948 | if (canonical_place != nullptr) { |
| 1949 | // Is this a redundant store (stored value already resides |
| 1950 | // in this field)? |
| 1951 | const intptr_t place_id = canonical_place->id(); |
| 1952 | if (gen->Contains(place_id)) { |
| 1953 | ASSERT((out_values != nullptr) && |
| 1954 | ((*out_values)[place_id] != nullptr)); |
| 1955 | if ((*out_values)[place_id] == GetStoredValue(instr)) { |
| 1956 | if (FLAG_trace_optimization) { |
| 1957 | THR_Print("Removing redundant store to place %" Pd |
| 1958 | " in block B%" Pd "\n" , |
| 1959 | GetPlaceId(instr), block->block_id()); |
| 1960 | } |
| 1961 | instr_it.RemoveCurrentFromGraph(); |
| 1962 | continue; |
| 1963 | } |
| 1964 | } |
| 1965 | } |
| 1966 | } |
| 1967 | |
| 1968 | // Update kill/gen/out_values (after inspection of incoming values). |
| 1969 | if (killed != nullptr) { |
| 1970 | kill->AddAll(killed); |
| 1971 | // There is no need to clear out_values when clearing GEN set |
| 1972 | // because only those values that are in the GEN set |
| 1973 | // will ever be used. |
| 1974 | gen->RemoveAll(killed); |
| 1975 | } |
| 1976 | if (canonical_place != nullptr) { |
| 1977 | // Store has a corresponding numbered place that might have a |
| 1978 | // load. Try forwarding stored value to it. |
| 1979 | gen->Add(canonical_place->id()); |
| 1980 | if (out_values == nullptr) out_values = CreateBlockOutValues(); |
| 1981 | (*out_values)[canonical_place->id()] = GetStoredValue(instr); |
| 1982 | } |
| 1983 | |
| 1984 | ASSERT(!instr->IsDefinition() || |
| 1985 | !IsLoadEliminationCandidate(instr->AsDefinition())); |
| 1986 | continue; |
| 1987 | } else if (is_load) { |
| 1988 | // Check if this load needs renumbering because of the intrablock |
| 1989 | // load forwarding. |
| 1990 | const Place* canonical = aliased_set_->LookupCanonical(&place); |
| 1991 | if ((canonical != NULL) && |
| 1992 | (canonical->id() != GetPlaceId(instr->AsDefinition()))) { |
| 1993 | SetPlaceId(instr->AsDefinition(), canonical->id()); |
| 1994 | } |
| 1995 | } |
| 1996 | |
| 1997 | // If instruction has effects then kill all loads affected. |
| 1998 | if (instr->HasUnknownSideEffects()) { |
| 1999 | kill->AddAll(aliased_set_->aliased_by_effects()); |
| 2000 | // There is no need to clear out_values when removing values from GEN |
| 2001 | // set because only those values that are in the GEN set |
| 2002 | // will ever be used. |
| 2003 | gen->RemoveAll(aliased_set_->aliased_by_effects()); |
| 2004 | } |
| 2005 | |
| 2006 | Definition* defn = instr->AsDefinition(); |
| 2007 | if (defn == NULL) { |
| 2008 | continue; |
| 2009 | } |
| 2010 | |
| 2011 | // For object allocation forward initial values of the fields to |
| 2012 | // subsequent loads (and potential dead stores) except for final |
| 2013 | // fields of escaping objects. Final fields are initialized in |
| 2014 | // constructor which potentially was not inlined into the function |
| 2015 | // that we are currently optimizing. However at the same time we |
| 2016 | // assume that values of the final fields can be forwarded across |
| 2017 | // side-effects. If we add 'null' as known values for these fields |
| 2018 | // here we will incorrectly propagate this null across constructor |
| 2019 | // invocation. |
| 2020 | if (auto alloc = instr->AsAllocateObject()) { |
| 2021 | for (Value* use = alloc->input_use_list(); use != NULL; |
| 2022 | use = use->next_use()) { |
| 2023 | // Look for all immediate loads/stores from this object. |
| 2024 | if (use->use_index() != 0) { |
| 2025 | continue; |
| 2026 | } |
| 2027 | const Slot* slot = nullptr; |
| 2028 | intptr_t place_id = 0; |
| 2029 | if (auto load = use->instruction()->AsLoadField()) { |
| 2030 | slot = &load->slot(); |
| 2031 | place_id = GetPlaceId(load); |
| 2032 | } else if (auto store = |
| 2033 | use->instruction()->AsStoreInstanceField()) { |
| 2034 | slot = &store->slot(); |
| 2035 | place_id = GetPlaceId(store); |
| 2036 | } |
| 2037 | |
| 2038 | if (slot != nullptr) { |
| 2039 | // Found a load/store. Initialize current value of the field |
| 2040 | // to null for normal fields, or with type arguments. |
| 2041 | |
| 2042 | // If the object escapes then don't forward final fields - see |
| 2043 | // the comment above for explanation. |
| 2044 | if (aliased_set_->CanBeAliased(alloc) && slot->IsDartField() && |
| 2045 | slot->is_immutable()) { |
| 2046 | continue; |
| 2047 | } |
| 2048 | |
| 2049 | Definition* forward_def = graph_->constant_null(); |
| 2050 | if (alloc->type_arguments() != nullptr) { |
| 2051 | const Slot& type_args_slot = Slot::GetTypeArgumentsSlotFor( |
| 2052 | graph_->thread(), alloc->cls()); |
| 2053 | if (slot->IsIdentical(type_args_slot)) { |
| 2054 | forward_def = alloc->type_arguments()->definition(); |
| 2055 | } |
| 2056 | } |
| 2057 | gen->Add(place_id); |
| 2058 | if (out_values == nullptr) out_values = CreateBlockOutValues(); |
| 2059 | (*out_values)[place_id] = forward_def; |
| 2060 | } |
| 2061 | } |
| 2062 | continue; |
| 2063 | } |
| 2064 | |
| 2065 | if (!IsLoadEliminationCandidate(defn)) { |
| 2066 | continue; |
| 2067 | } |
| 2068 | |
| 2069 | const intptr_t place_id = GetPlaceId(defn); |
| 2070 | if (gen->Contains(place_id)) { |
| 2071 | // This is a locally redundant load. |
| 2072 | ASSERT((out_values != NULL) && ((*out_values)[place_id] != NULL)); |
| 2073 | |
| 2074 | Definition* replacement = (*out_values)[place_id]; |
| 2075 | graph_->EnsureSSATempIndex(defn, replacement); |
| 2076 | if (FLAG_trace_optimization) { |
| 2077 | THR_Print("Replacing load v%" Pd " with v%" Pd "\n" , |
| 2078 | defn->ssa_temp_index(), replacement->ssa_temp_index()); |
| 2079 | } |
| 2080 | |
| 2081 | defn->ReplaceUsesWith(replacement); |
| 2082 | instr_it.RemoveCurrentFromGraph(); |
| 2083 | forwarded_ = true; |
| 2084 | continue; |
| 2085 | } else if (!kill->Contains(place_id)) { |
| 2086 | // This is an exposed load: it is the first representative of a |
| 2087 | // given expression id and it is not killed on the path from |
| 2088 | // the block entry. |
| 2089 | if (exposed_values == NULL) { |
| 2090 | static const intptr_t kMaxExposedValuesInitialSize = 5; |
| 2091 | exposed_values = new (Z) ZoneGrowableArray<Definition*>( |
| 2092 | Utils::Minimum(kMaxExposedValuesInitialSize, |
| 2093 | aliased_set_->max_place_id())); |
| 2094 | } |
| 2095 | |
| 2096 | exposed_values->Add(defn); |
| 2097 | } |
| 2098 | |
| 2099 | gen->Add(place_id); |
| 2100 | |
| 2101 | if (out_values == NULL) out_values = CreateBlockOutValues(); |
| 2102 | (*out_values)[place_id] = defn; |
| 2103 | } |
| 2104 | |
| 2105 | exposed_values_[preorder_number] = exposed_values; |
| 2106 | out_values_[preorder_number] = out_values; |
| 2107 | } |
| 2108 | } |
| 2109 | |
| 2110 | static void PerformPhiMoves(PhiPlaceMoves::MovesList phi_moves, |
| 2111 | BitVector* out, |
| 2112 | BitVector* forwarded_loads) { |
| 2113 | forwarded_loads->Clear(); |
| 2114 | |
| 2115 | for (intptr_t i = 0; i < phi_moves->length(); i++) { |
| 2116 | const intptr_t from = (*phi_moves)[i].from(); |
| 2117 | const intptr_t to = (*phi_moves)[i].to(); |
| 2118 | if (from == to) continue; |
| 2119 | |
| 2120 | if (out->Contains(from)) { |
| 2121 | forwarded_loads->Add(to); |
| 2122 | } |
| 2123 | } |
| 2124 | |
| 2125 | for (intptr_t i = 0; i < phi_moves->length(); i++) { |
| 2126 | const intptr_t from = (*phi_moves)[i].from(); |
| 2127 | const intptr_t to = (*phi_moves)[i].to(); |
| 2128 | if (from == to) continue; |
| 2129 | |
| 2130 | out->Remove(to); |
| 2131 | } |
| 2132 | |
| 2133 | out->AddAll(forwarded_loads); |
| 2134 | } |
| 2135 | |
| 2136 | // Compute OUT sets by propagating them iteratively until fix point |
| 2137 | // is reached. |
| 2138 | void ComputeOutSets() { |
| 2139 | BitVector* temp = new (Z) BitVector(Z, aliased_set_->max_place_id()); |
| 2140 | BitVector* forwarded_loads = |
| 2141 | new (Z) BitVector(Z, aliased_set_->max_place_id()); |
| 2142 | BitVector* temp_out = new (Z) BitVector(Z, aliased_set_->max_place_id()); |
| 2143 | |
| 2144 | bool changed = true; |
| 2145 | while (changed) { |
| 2146 | changed = false; |
| 2147 | |
| 2148 | for (BlockIterator block_it = graph_->reverse_postorder_iterator(); |
| 2149 | !block_it.Done(); block_it.Advance()) { |
| 2150 | BlockEntryInstr* block = block_it.Current(); |
| 2151 | |
| 2152 | const intptr_t preorder_number = block->preorder_number(); |
| 2153 | |
| 2154 | BitVector* block_in = in_[preorder_number]; |
| 2155 | BitVector* block_out = out_[preorder_number]; |
| 2156 | BitVector* block_kill = kill_[preorder_number]; |
| 2157 | BitVector* block_gen = gen_[preorder_number]; |
| 2158 | |
| 2159 | // Compute block_in as the intersection of all out(p) where p |
| 2160 | // is a predecessor of the current block. |
| 2161 | if (block->IsGraphEntry()) { |
| 2162 | temp->Clear(); |
| 2163 | } else { |
| 2164 | temp->SetAll(); |
| 2165 | ASSERT(block->PredecessorCount() > 0); |
| 2166 | for (intptr_t i = 0; i < block->PredecessorCount(); i++) { |
| 2167 | BlockEntryInstr* pred = block->PredecessorAt(i); |
| 2168 | BitVector* pred_out = out_[pred->preorder_number()]; |
| 2169 | if (pred_out == NULL) continue; |
| 2170 | PhiPlaceMoves::MovesList phi_moves = |
| 2171 | aliased_set_->phi_moves()->GetOutgoingMoves(pred); |
| 2172 | if (phi_moves != NULL) { |
| 2173 | // If there are phi moves, perform intersection with |
| 2174 | // a copy of pred_out where the phi moves are applied. |
| 2175 | temp_out->CopyFrom(pred_out); |
| 2176 | PerformPhiMoves(phi_moves, temp_out, forwarded_loads); |
| 2177 | pred_out = temp_out; |
| 2178 | } |
| 2179 | temp->Intersect(pred_out); |
| 2180 | } |
| 2181 | } |
| 2182 | |
| 2183 | if (!temp->Equals(*block_in) || (block_out == NULL)) { |
| 2184 | // If IN set has changed propagate the change to OUT set. |
| 2185 | block_in->CopyFrom(temp); |
| 2186 | |
| 2187 | temp->RemoveAll(block_kill); |
| 2188 | temp->AddAll(block_gen); |
| 2189 | |
| 2190 | if ((block_out == NULL) || !block_out->Equals(*temp)) { |
| 2191 | if (block_out == NULL) { |
| 2192 | block_out = out_[preorder_number] = |
| 2193 | new (Z) BitVector(Z, aliased_set_->max_place_id()); |
| 2194 | } |
| 2195 | block_out->CopyFrom(temp); |
| 2196 | changed = true; |
| 2197 | } |
| 2198 | } |
| 2199 | } |
| 2200 | } |
| 2201 | } |
| 2202 | |
| 2203 | // Compute out_values mappings by propagating them in reverse postorder once |
| 2204 | // through the graph. Generate phis on back edges where eager merge is |
| 2205 | // impossible. |
| 2206 | // No replacement is done at this point and thus any out_value[place_id] is |
| 2207 | // changed at most once: from NULL to an actual value. |
| 2208 | // When merging incoming loads we might need to create a phi. |
| 2209 | // These phis are not inserted at the graph immediately because some of them |
| 2210 | // might become redundant after load forwarding is done. |
| 2211 | void ComputeOutValues() { |
| 2212 | GrowableArray<PhiInstr*> pending_phis(5); |
| 2213 | ZoneGrowableArray<Definition*>* temp_forwarded_values = NULL; |
| 2214 | |
| 2215 | for (BlockIterator block_it = graph_->reverse_postorder_iterator(); |
| 2216 | !block_it.Done(); block_it.Advance()) { |
| 2217 | BlockEntryInstr* block = block_it.Current(); |
| 2218 | |
| 2219 | const bool can_merge_eagerly = CanMergeEagerly(block); |
| 2220 | |
| 2221 | const intptr_t preorder_number = block->preorder_number(); |
| 2222 | |
| 2223 | ZoneGrowableArray<Definition*>* block_out_values = |
| 2224 | out_values_[preorder_number]; |
| 2225 | |
| 2226 | // If OUT set has changed then we have new values available out of |
| 2227 | // the block. Compute these values creating phi where necessary. |
| 2228 | for (BitVector::Iterator it(out_[preorder_number]); !it.Done(); |
| 2229 | it.Advance()) { |
| 2230 | const intptr_t place_id = it.Current(); |
| 2231 | |
| 2232 | if (block_out_values == NULL) { |
| 2233 | out_values_[preorder_number] = block_out_values = |
| 2234 | CreateBlockOutValues(); |
| 2235 | } |
| 2236 | |
| 2237 | if ((*block_out_values)[place_id] == NULL) { |
| 2238 | ASSERT(block->PredecessorCount() > 0); |
| 2239 | Definition* in_value = |
| 2240 | can_merge_eagerly ? MergeIncomingValues(block, place_id) : NULL; |
| 2241 | if ((in_value == NULL) && |
| 2242 | (in_[preorder_number]->Contains(place_id))) { |
| 2243 | PhiInstr* phi = new (Z) |
| 2244 | PhiInstr(block->AsJoinEntry(), block->PredecessorCount()); |
| 2245 | SetPlaceId(phi, place_id); |
| 2246 | pending_phis.Add(phi); |
| 2247 | in_value = phi; |
| 2248 | } |
| 2249 | (*block_out_values)[place_id] = in_value; |
| 2250 | } |
| 2251 | } |
| 2252 | |
| 2253 | // If the block has outgoing phi moves perform them. Use temporary list |
| 2254 | // of values to ensure that cyclic moves are performed correctly. |
| 2255 | PhiPlaceMoves::MovesList phi_moves = |
| 2256 | aliased_set_->phi_moves()->GetOutgoingMoves(block); |
| 2257 | if ((phi_moves != NULL) && (block_out_values != NULL)) { |
| 2258 | if (temp_forwarded_values == NULL) { |
| 2259 | temp_forwarded_values = CreateBlockOutValues(); |
| 2260 | } |
| 2261 | |
| 2262 | for (intptr_t i = 0; i < phi_moves->length(); i++) { |
| 2263 | const intptr_t from = (*phi_moves)[i].from(); |
| 2264 | const intptr_t to = (*phi_moves)[i].to(); |
| 2265 | if (from == to) continue; |
| 2266 | |
| 2267 | (*temp_forwarded_values)[to] = (*block_out_values)[from]; |
| 2268 | } |
| 2269 | |
| 2270 | for (intptr_t i = 0; i < phi_moves->length(); i++) { |
| 2271 | const intptr_t from = (*phi_moves)[i].from(); |
| 2272 | const intptr_t to = (*phi_moves)[i].to(); |
| 2273 | if (from == to) continue; |
| 2274 | |
| 2275 | (*block_out_values)[to] = (*temp_forwarded_values)[to]; |
| 2276 | } |
| 2277 | } |
| 2278 | |
| 2279 | if (FLAG_trace_load_optimization) { |
| 2280 | THR_Print("B%" Pd "\n" , block->block_id()); |
| 2281 | THR_Print(" IN: " ); |
| 2282 | aliased_set_->PrintSet(in_[preorder_number]); |
| 2283 | THR_Print("\n" ); |
| 2284 | |
| 2285 | THR_Print(" KILL: " ); |
| 2286 | aliased_set_->PrintSet(kill_[preorder_number]); |
| 2287 | THR_Print("\n" ); |
| 2288 | |
| 2289 | THR_Print(" OUT: " ); |
| 2290 | aliased_set_->PrintSet(out_[preorder_number]); |
| 2291 | THR_Print("\n" ); |
| 2292 | } |
| 2293 | } |
| 2294 | |
| 2295 | // All blocks were visited. Fill pending phis with inputs |
| 2296 | // that flow on back edges. |
| 2297 | for (intptr_t i = 0; i < pending_phis.length(); i++) { |
| 2298 | FillPhiInputs(pending_phis[i]); |
| 2299 | } |
| 2300 | } |
| 2301 | |
| 2302 | bool CanMergeEagerly(BlockEntryInstr* block) { |
| 2303 | for (intptr_t i = 0; i < block->PredecessorCount(); i++) { |
| 2304 | BlockEntryInstr* pred = block->PredecessorAt(i); |
| 2305 | if (pred->postorder_number() < block->postorder_number()) { |
| 2306 | return false; |
| 2307 | } |
| 2308 | } |
| 2309 | return true; |
| 2310 | } |
| 2311 | |
| 2312 | void MarkLoopInvariantLoads() { |
| 2313 | const ZoneGrowableArray<BlockEntryInstr*>& = |
| 2314 | graph_->GetLoopHierarchy().headers(); |
| 2315 | |
| 2316 | ZoneGrowableArray<BitVector*>* invariant_loads = |
| 2317 | new (Z) ZoneGrowableArray<BitVector*>(loop_headers.length()); |
| 2318 | |
| 2319 | for (intptr_t i = 0; i < loop_headers.length(); i++) { |
| 2320 | BlockEntryInstr* = loop_headers[i]; |
| 2321 | BlockEntryInstr* = header->ImmediateDominator(); |
| 2322 | if (pre_header == NULL) { |
| 2323 | invariant_loads->Add(NULL); |
| 2324 | continue; |
| 2325 | } |
| 2326 | |
| 2327 | BitVector* loop_gen = new (Z) BitVector(Z, aliased_set_->max_place_id()); |
| 2328 | for (BitVector::Iterator loop_it(header->loop_info()->blocks()); |
| 2329 | !loop_it.Done(); loop_it.Advance()) { |
| 2330 | const intptr_t preorder_number = loop_it.Current(); |
| 2331 | loop_gen->AddAll(gen_[preorder_number]); |
| 2332 | } |
| 2333 | |
| 2334 | for (BitVector::Iterator loop_it(header->loop_info()->blocks()); |
| 2335 | !loop_it.Done(); loop_it.Advance()) { |
| 2336 | const intptr_t preorder_number = loop_it.Current(); |
| 2337 | loop_gen->RemoveAll(kill_[preorder_number]); |
| 2338 | } |
| 2339 | |
| 2340 | if (FLAG_trace_optimization) { |
| 2341 | for (BitVector::Iterator it(loop_gen); !it.Done(); it.Advance()) { |
| 2342 | THR_Print("place %s is loop invariant for B%" Pd "\n" , |
| 2343 | aliased_set_->places()[it.Current()]->ToCString(), |
| 2344 | header->block_id()); |
| 2345 | } |
| 2346 | } |
| 2347 | |
| 2348 | invariant_loads->Add(loop_gen); |
| 2349 | } |
| 2350 | |
| 2351 | graph_->set_loop_invariant_loads(invariant_loads); |
| 2352 | } |
| 2353 | |
| 2354 | // Compute incoming value for the given expression id. |
| 2355 | // Will create a phi if different values are incoming from multiple |
| 2356 | // predecessors. |
| 2357 | Definition* MergeIncomingValues(BlockEntryInstr* block, intptr_t place_id) { |
| 2358 | // First check if the same value is coming in from all predecessors. |
| 2359 | static Definition* const kDifferentValuesMarker = |
| 2360 | reinterpret_cast<Definition*>(-1); |
| 2361 | Definition* incoming = NULL; |
| 2362 | for (intptr_t i = 0; i < block->PredecessorCount(); i++) { |
| 2363 | BlockEntryInstr* pred = block->PredecessorAt(i); |
| 2364 | ZoneGrowableArray<Definition*>* pred_out_values = |
| 2365 | out_values_[pred->preorder_number()]; |
| 2366 | if ((pred_out_values == NULL) || ((*pred_out_values)[place_id] == NULL)) { |
| 2367 | return NULL; |
| 2368 | } else if (incoming == NULL) { |
| 2369 | incoming = (*pred_out_values)[place_id]; |
| 2370 | } else if (incoming != (*pred_out_values)[place_id]) { |
| 2371 | incoming = kDifferentValuesMarker; |
| 2372 | } |
| 2373 | } |
| 2374 | |
| 2375 | if (incoming != kDifferentValuesMarker) { |
| 2376 | ASSERT(incoming != NULL); |
| 2377 | return incoming; |
| 2378 | } |
| 2379 | |
| 2380 | // Incoming values are different. Phi is required to merge. |
| 2381 | PhiInstr* phi = |
| 2382 | new (Z) PhiInstr(block->AsJoinEntry(), block->PredecessorCount()); |
| 2383 | SetPlaceId(phi, place_id); |
| 2384 | FillPhiInputs(phi); |
| 2385 | return phi; |
| 2386 | } |
| 2387 | |
| 2388 | void FillPhiInputs(PhiInstr* phi) { |
| 2389 | BlockEntryInstr* block = phi->GetBlock(); |
| 2390 | const intptr_t place_id = GetPlaceId(phi); |
| 2391 | |
| 2392 | for (intptr_t i = 0; i < block->PredecessorCount(); i++) { |
| 2393 | BlockEntryInstr* pred = block->PredecessorAt(i); |
| 2394 | ZoneGrowableArray<Definition*>* pred_out_values = |
| 2395 | out_values_[pred->preorder_number()]; |
| 2396 | ASSERT((*pred_out_values)[place_id] != NULL); |
| 2397 | |
| 2398 | // Sets of outgoing values are not linked into use lists so |
| 2399 | // they might contain values that were replaced and removed |
| 2400 | // from the graph by this iteration. |
| 2401 | // To prevent using them we additionally mark definitions themselves |
| 2402 | // as replaced and store a pointer to the replacement. |
| 2403 | Definition* replacement = (*pred_out_values)[place_id]->Replacement(); |
| 2404 | Value* input = new (Z) Value(replacement); |
| 2405 | phi->SetInputAt(i, input); |
| 2406 | replacement->AddInputUse(input); |
| 2407 | } |
| 2408 | |
| 2409 | graph_->AllocateSSAIndexes(phi); |
| 2410 | phis_.Add(phi); // Postpone phi insertion until after load forwarding. |
| 2411 | |
| 2412 | if (FLAG_support_il_printer && FLAG_trace_load_optimization) { |
| 2413 | THR_Print("created pending phi %s for %s at B%" Pd "\n" , phi->ToCString(), |
| 2414 | aliased_set_->places()[place_id]->ToCString(), |
| 2415 | block->block_id()); |
| 2416 | } |
| 2417 | } |
| 2418 | |
| 2419 | // Iterate over basic blocks and replace exposed loads with incoming |
| 2420 | // values. |
| 2421 | void ForwardLoads() { |
| 2422 | for (BlockIterator block_it = graph_->reverse_postorder_iterator(); |
| 2423 | !block_it.Done(); block_it.Advance()) { |
| 2424 | BlockEntryInstr* block = block_it.Current(); |
| 2425 | |
| 2426 | ZoneGrowableArray<Definition*>* loads = |
| 2427 | exposed_values_[block->preorder_number()]; |
| 2428 | if (loads == NULL) continue; // No exposed loads. |
| 2429 | |
| 2430 | BitVector* in = in_[block->preorder_number()]; |
| 2431 | |
| 2432 | for (intptr_t i = 0; i < loads->length(); i++) { |
| 2433 | Definition* load = (*loads)[i]; |
| 2434 | if (!in->Contains(GetPlaceId(load))) continue; // No incoming value. |
| 2435 | |
| 2436 | Definition* replacement = MergeIncomingValues(block, GetPlaceId(load)); |
| 2437 | ASSERT(replacement != NULL); |
| 2438 | |
| 2439 | // Sets of outgoing values are not linked into use lists so |
| 2440 | // they might contain values that were replace and removed |
| 2441 | // from the graph by this iteration. |
| 2442 | // To prevent using them we additionally mark definitions themselves |
| 2443 | // as replaced and store a pointer to the replacement. |
| 2444 | replacement = replacement->Replacement(); |
| 2445 | |
| 2446 | if (load != replacement) { |
| 2447 | graph_->EnsureSSATempIndex(load, replacement); |
| 2448 | |
| 2449 | if (FLAG_trace_optimization) { |
| 2450 | THR_Print("Replacing load v%" Pd " with v%" Pd "\n" , |
| 2451 | load->ssa_temp_index(), replacement->ssa_temp_index()); |
| 2452 | } |
| 2453 | |
| 2454 | load->ReplaceUsesWith(replacement); |
| 2455 | load->RemoveFromGraph(); |
| 2456 | load->SetReplacement(replacement); |
| 2457 | forwarded_ = true; |
| 2458 | } |
| 2459 | } |
| 2460 | } |
| 2461 | } |
| 2462 | |
| 2463 | // Check if the given phi take the same value on all code paths. |
| 2464 | // Eliminate it as redundant if this is the case. |
| 2465 | // When analyzing phi operands assumes that only generated during |
| 2466 | // this load phase can be redundant. They can be distinguished because |
| 2467 | // they are not marked alive. |
| 2468 | // TODO(vegorov): move this into a separate phase over all phis. |
| 2469 | bool EliminateRedundantPhi(PhiInstr* phi) { |
| 2470 | Definition* value = NULL; // Possible value of this phi. |
| 2471 | |
| 2472 | worklist_.Clear(); |
| 2473 | if (in_worklist_ == NULL) { |
| 2474 | in_worklist_ = new (Z) BitVector(Z, graph_->current_ssa_temp_index()); |
| 2475 | } else { |
| 2476 | in_worklist_->Clear(); |
| 2477 | } |
| 2478 | |
| 2479 | worklist_.Add(phi); |
| 2480 | in_worklist_->Add(phi->ssa_temp_index()); |
| 2481 | |
| 2482 | for (intptr_t i = 0; i < worklist_.length(); i++) { |
| 2483 | PhiInstr* phi = worklist_[i]; |
| 2484 | |
| 2485 | for (intptr_t i = 0; i < phi->InputCount(); i++) { |
| 2486 | Definition* input = phi->InputAt(i)->definition(); |
| 2487 | if (input == phi) continue; |
| 2488 | |
| 2489 | PhiInstr* phi_input = input->AsPhi(); |
| 2490 | if ((phi_input != NULL) && !phi_input->is_alive()) { |
| 2491 | if (!in_worklist_->Contains(phi_input->ssa_temp_index())) { |
| 2492 | worklist_.Add(phi_input); |
| 2493 | in_worklist_->Add(phi_input->ssa_temp_index()); |
| 2494 | } |
| 2495 | continue; |
| 2496 | } |
| 2497 | |
| 2498 | if (value == NULL) { |
| 2499 | value = input; |
| 2500 | } else if (value != input) { |
| 2501 | return false; // This phi is not redundant. |
| 2502 | } |
| 2503 | } |
| 2504 | } |
| 2505 | |
| 2506 | // All phis in the worklist are redundant and have the same computed |
| 2507 | // value on all code paths. |
| 2508 | ASSERT(value != NULL); |
| 2509 | for (intptr_t i = 0; i < worklist_.length(); i++) { |
| 2510 | worklist_[i]->ReplaceUsesWith(value); |
| 2511 | } |
| 2512 | |
| 2513 | return true; |
| 2514 | } |
| 2515 | |
| 2516 | // Returns true if definitions are congruent assuming their inputs |
| 2517 | // are congruent. |
| 2518 | bool CanBeCongruent(Definition* a, Definition* b) { |
| 2519 | return (a->tag() == b->tag()) && |
| 2520 | ((a->IsPhi() && (a->GetBlock() == b->GetBlock())) || |
| 2521 | (a->AllowsCSE() && a->AttributesEqual(b))); |
| 2522 | } |
| 2523 | |
| 2524 | // Given two definitions check if they are congruent under assumption that |
| 2525 | // their inputs will be proven congruent. If they are - add them to the |
| 2526 | // worklist to check their inputs' congruency. |
| 2527 | // Returns true if pair was added to the worklist or is already in the |
| 2528 | // worklist and false if a and b are not congruent. |
| 2529 | bool AddPairToCongruencyWorklist(Definition* a, Definition* b) { |
| 2530 | if (!CanBeCongruent(a, b)) { |
| 2531 | return false; |
| 2532 | } |
| 2533 | |
| 2534 | // If a is already in the worklist check if it is being compared to b. |
| 2535 | // Give up if it is not. |
| 2536 | if (in_worklist_->Contains(a->ssa_temp_index())) { |
| 2537 | for (intptr_t i = 0; i < congruency_worklist_.length(); i += 2) { |
| 2538 | if (a == congruency_worklist_[i]) { |
| 2539 | return (b == congruency_worklist_[i + 1]); |
| 2540 | } |
| 2541 | } |
| 2542 | UNREACHABLE(); |
| 2543 | } else if (in_worklist_->Contains(b->ssa_temp_index())) { |
| 2544 | return AddPairToCongruencyWorklist(b, a); |
| 2545 | } |
| 2546 | |
| 2547 | congruency_worklist_.Add(a); |
| 2548 | congruency_worklist_.Add(b); |
| 2549 | in_worklist_->Add(a->ssa_temp_index()); |
| 2550 | return true; |
| 2551 | } |
| 2552 | |
| 2553 | bool AreInputsCongruent(Definition* a, Definition* b) { |
| 2554 | ASSERT(a->tag() == b->tag()); |
| 2555 | ASSERT(a->InputCount() == b->InputCount()); |
| 2556 | for (intptr_t j = 0; j < a->InputCount(); j++) { |
| 2557 | Definition* inputA = a->InputAt(j)->definition(); |
| 2558 | Definition* inputB = b->InputAt(j)->definition(); |
| 2559 | |
| 2560 | if (inputA != inputB) { |
| 2561 | if (!AddPairToCongruencyWorklist(inputA, inputB)) { |
| 2562 | return false; |
| 2563 | } |
| 2564 | } |
| 2565 | } |
| 2566 | return true; |
| 2567 | } |
| 2568 | |
| 2569 | // Returns true if instruction dom dominates instruction other. |
| 2570 | static bool Dominates(Instruction* dom, Instruction* other) { |
| 2571 | BlockEntryInstr* dom_block = dom->GetBlock(); |
| 2572 | BlockEntryInstr* other_block = other->GetBlock(); |
| 2573 | |
| 2574 | if (dom_block == other_block) { |
| 2575 | for (Instruction* current = dom->next(); current != NULL; |
| 2576 | current = current->next()) { |
| 2577 | if (current == other) { |
| 2578 | return true; |
| 2579 | } |
| 2580 | } |
| 2581 | return false; |
| 2582 | } |
| 2583 | |
| 2584 | return dom_block->Dominates(other_block); |
| 2585 | } |
| 2586 | |
| 2587 | // Replace the given phi with another if they are congruent. |
| 2588 | // Returns true if succeeds. |
| 2589 | bool ReplacePhiWith(PhiInstr* phi, PhiInstr* replacement) { |
| 2590 | ASSERT(phi->InputCount() == replacement->InputCount()); |
| 2591 | ASSERT(phi->block() == replacement->block()); |
| 2592 | |
| 2593 | congruency_worklist_.Clear(); |
| 2594 | if (in_worklist_ == NULL) { |
| 2595 | in_worklist_ = new (Z) BitVector(Z, graph_->current_ssa_temp_index()); |
| 2596 | } else { |
| 2597 | in_worklist_->Clear(); |
| 2598 | } |
| 2599 | |
| 2600 | // During the comparison worklist contains pairs of definitions to be |
| 2601 | // compared. |
| 2602 | if (!AddPairToCongruencyWorklist(phi, replacement)) { |
| 2603 | return false; |
| 2604 | } |
| 2605 | |
| 2606 | // Process the worklist. It might grow during each comparison step. |
| 2607 | for (intptr_t i = 0; i < congruency_worklist_.length(); i += 2) { |
| 2608 | if (!AreInputsCongruent(congruency_worklist_[i], |
| 2609 | congruency_worklist_[i + 1])) { |
| 2610 | return false; |
| 2611 | } |
| 2612 | } |
| 2613 | |
| 2614 | // At this point worklist contains pairs of congruent definitions. |
| 2615 | // Replace the one member of the pair with another maintaining proper |
| 2616 | // domination relation between definitions and uses. |
| 2617 | for (intptr_t i = 0; i < congruency_worklist_.length(); i += 2) { |
| 2618 | Definition* a = congruency_worklist_[i]; |
| 2619 | Definition* b = congruency_worklist_[i + 1]; |
| 2620 | |
| 2621 | // If these definitions are not phis then we need to pick up one |
| 2622 | // that dominates another as the replacement: if a dominates b swap them. |
| 2623 | // Note: both a and b are used as a phi input at the same block B which |
| 2624 | // means a dominates B and b dominates B, which guarantees that either |
| 2625 | // a dominates b or b dominates a. |
| 2626 | if (!a->IsPhi()) { |
| 2627 | if (Dominates(a, b)) { |
| 2628 | Definition* t = a; |
| 2629 | a = b; |
| 2630 | b = t; |
| 2631 | } |
| 2632 | ASSERT(Dominates(b, a)); |
| 2633 | } |
| 2634 | |
| 2635 | if (FLAG_support_il_printer && FLAG_trace_load_optimization) { |
| 2636 | THR_Print("Replacing %s with congruent %s\n" , a->ToCString(), |
| 2637 | b->ToCString()); |
| 2638 | } |
| 2639 | |
| 2640 | a->ReplaceUsesWith(b); |
| 2641 | if (a->IsPhi()) { |
| 2642 | // We might be replacing a phi introduced by the load forwarding |
| 2643 | // that is not inserted in the graph yet. |
| 2644 | ASSERT(b->IsPhi()); |
| 2645 | PhiInstr* phi_a = a->AsPhi(); |
| 2646 | if (phi_a->is_alive()) { |
| 2647 | phi_a->mark_dead(); |
| 2648 | phi_a->block()->RemovePhi(phi_a); |
| 2649 | phi_a->UnuseAllInputs(); |
| 2650 | } |
| 2651 | } else { |
| 2652 | a->RemoveFromGraph(); |
| 2653 | } |
| 2654 | } |
| 2655 | |
| 2656 | return true; |
| 2657 | } |
| 2658 | |
| 2659 | // Insert the given phi into the graph. Attempt to find an equal one in the |
| 2660 | // target block first. |
| 2661 | // Returns true if the phi was inserted and false if it was replaced. |
| 2662 | bool EmitPhi(PhiInstr* phi) { |
| 2663 | for (PhiIterator it(phi->block()); !it.Done(); it.Advance()) { |
| 2664 | if (ReplacePhiWith(phi, it.Current())) { |
| 2665 | return false; |
| 2666 | } |
| 2667 | } |
| 2668 | |
| 2669 | phi->mark_alive(); |
| 2670 | phi->block()->InsertPhi(phi); |
| 2671 | return true; |
| 2672 | } |
| 2673 | |
| 2674 | // Phis have not yet been inserted into the graph but they have uses of |
| 2675 | // their inputs. Insert the non-redundant ones and clear the input uses |
| 2676 | // of the redundant ones. |
| 2677 | void EmitPhis() { |
| 2678 | // First eliminate all redundant phis. |
| 2679 | for (intptr_t i = 0; i < phis_.length(); i++) { |
| 2680 | PhiInstr* phi = phis_[i]; |
| 2681 | if (!phi->HasUses() || EliminateRedundantPhi(phi)) { |
| 2682 | phi->UnuseAllInputs(); |
| 2683 | phis_[i] = NULL; |
| 2684 | } |
| 2685 | } |
| 2686 | |
| 2687 | // Now emit phis or replace them with equal phis already present in the |
| 2688 | // graph. |
| 2689 | for (intptr_t i = 0; i < phis_.length(); i++) { |
| 2690 | PhiInstr* phi = phis_[i]; |
| 2691 | if ((phi != NULL) && (!phi->HasUses() || !EmitPhi(phi))) { |
| 2692 | phi->UnuseAllInputs(); |
| 2693 | } |
| 2694 | } |
| 2695 | } |
| 2696 | |
| 2697 | ZoneGrowableArray<Definition*>* CreateBlockOutValues() { |
| 2698 | ZoneGrowableArray<Definition*>* out = |
| 2699 | new (Z) ZoneGrowableArray<Definition*>(aliased_set_->max_place_id()); |
| 2700 | for (intptr_t i = 0; i < aliased_set_->max_place_id(); i++) { |
| 2701 | out->Add(NULL); |
| 2702 | } |
| 2703 | return out; |
| 2704 | } |
| 2705 | |
| 2706 | FlowGraph* graph_; |
| 2707 | DirectChainedHashMap<PointerKeyValueTrait<Place> >* map_; |
| 2708 | |
| 2709 | // Mapping between field offsets in words and expression ids of loads from |
| 2710 | // that offset. |
| 2711 | AliasedSet* aliased_set_; |
| 2712 | |
| 2713 | // Per block sets of expression ids for loads that are: incoming (available |
| 2714 | // on the entry), outgoing (available on the exit), generated and killed. |
| 2715 | GrowableArray<BitVector*> in_; |
| 2716 | GrowableArray<BitVector*> out_; |
| 2717 | GrowableArray<BitVector*> gen_; |
| 2718 | GrowableArray<BitVector*> kill_; |
| 2719 | |
| 2720 | // Per block list of upwards exposed loads. |
| 2721 | GrowableArray<ZoneGrowableArray<Definition*>*> exposed_values_; |
| 2722 | |
| 2723 | // Per block mappings between expression ids and outgoing definitions that |
| 2724 | // represent those ids. |
| 2725 | GrowableArray<ZoneGrowableArray<Definition*>*> out_values_; |
| 2726 | |
| 2727 | // List of phis generated during ComputeOutValues and ForwardLoads. |
| 2728 | // Some of these phis might be redundant and thus a separate pass is |
| 2729 | // needed to emit only non-redundant ones. |
| 2730 | GrowableArray<PhiInstr*> phis_; |
| 2731 | |
| 2732 | // Auxiliary worklist used by redundant phi elimination. |
| 2733 | GrowableArray<PhiInstr*> worklist_; |
| 2734 | GrowableArray<Definition*> congruency_worklist_; |
| 2735 | BitVector* in_worklist_; |
| 2736 | |
| 2737 | // True if any load was eliminated. |
| 2738 | bool forwarded_; |
| 2739 | |
| 2740 | DISALLOW_COPY_AND_ASSIGN(LoadOptimizer); |
| 2741 | }; |
| 2742 | |
| 2743 | bool DominatorBasedCSE::Optimize(FlowGraph* graph) { |
| 2744 | bool changed = false; |
| 2745 | if (FLAG_load_cse) { |
| 2746 | changed = LoadOptimizer::OptimizeGraph(graph) || changed; |
| 2747 | } |
| 2748 | |
| 2749 | CSEInstructionMap map; |
| 2750 | changed = OptimizeRecursive(graph, graph->graph_entry(), &map) || changed; |
| 2751 | |
| 2752 | return changed; |
| 2753 | } |
| 2754 | |
| 2755 | bool DominatorBasedCSE::OptimizeRecursive(FlowGraph* graph, |
| 2756 | BlockEntryInstr* block, |
| 2757 | CSEInstructionMap* map) { |
| 2758 | bool changed = false; |
| 2759 | for (ForwardInstructionIterator it(block); !it.Done(); it.Advance()) { |
| 2760 | Instruction* current = it.Current(); |
| 2761 | if (current->AllowsCSE()) { |
| 2762 | Instruction* replacement = map->Lookup(current); |
| 2763 | |
| 2764 | if (replacement != NULL) { |
| 2765 | // Replace current with lookup result. |
| 2766 | ASSERT(replacement->AllowsCSE()); |
| 2767 | graph->ReplaceCurrentInstruction(&it, current, replacement); |
| 2768 | changed = true; |
| 2769 | continue; |
| 2770 | } |
| 2771 | |
| 2772 | map->Insert(current); |
| 2773 | } |
| 2774 | } |
| 2775 | |
| 2776 | // Process children in the dominator tree recursively. |
| 2777 | intptr_t num_children = block->dominated_blocks().length(); |
| 2778 | if (num_children != 0) { |
| 2779 | graph->thread()->CheckForSafepoint(); |
| 2780 | } |
| 2781 | for (intptr_t i = 0; i < num_children; ++i) { |
| 2782 | BlockEntryInstr* child = block->dominated_blocks()[i]; |
| 2783 | if (i < num_children - 1) { |
| 2784 | // Copy map. |
| 2785 | CSEInstructionMap child_map(*map); |
| 2786 | changed = OptimizeRecursive(graph, child, &child_map) || changed; |
| 2787 | } else { |
| 2788 | // Reuse map for the last child. |
| 2789 | changed = OptimizeRecursive(graph, child, map) || changed; |
| 2790 | } |
| 2791 | } |
| 2792 | return changed; |
| 2793 | } |
| 2794 | |
| 2795 | class StoreOptimizer : public LivenessAnalysis { |
| 2796 | public: |
| 2797 | StoreOptimizer(FlowGraph* graph, |
| 2798 | AliasedSet* aliased_set, |
| 2799 | DirectChainedHashMap<PointerKeyValueTrait<Place> >* map) |
| 2800 | : LivenessAnalysis(aliased_set->max_place_id(), graph->postorder()), |
| 2801 | graph_(graph), |
| 2802 | map_(map), |
| 2803 | aliased_set_(aliased_set), |
| 2804 | exposed_stores_(graph_->postorder().length()) { |
| 2805 | const intptr_t num_blocks = graph_->postorder().length(); |
| 2806 | for (intptr_t i = 0; i < num_blocks; i++) { |
| 2807 | exposed_stores_.Add(NULL); |
| 2808 | } |
| 2809 | } |
| 2810 | |
| 2811 | static void OptimizeGraph(FlowGraph* graph) { |
| 2812 | ASSERT(FLAG_load_cse); |
| 2813 | |
| 2814 | // For now, bail out for large functions to avoid OOM situations. |
| 2815 | // TODO(fschneider): Fix the memory consumption issue. |
| 2816 | intptr_t function_length = graph->function().end_token_pos().Pos() - |
| 2817 | graph->function().token_pos().Pos(); |
| 2818 | if (function_length >= FLAG_huge_method_cutoff_in_tokens) { |
| 2819 | return; |
| 2820 | } |
| 2821 | |
| 2822 | DirectChainedHashMap<PointerKeyValueTrait<Place> > map; |
| 2823 | AliasedSet* aliased_set = NumberPlaces(graph, &map, kOptimizeStores); |
| 2824 | if ((aliased_set != NULL) && !aliased_set->IsEmpty()) { |
| 2825 | StoreOptimizer store_optimizer(graph, aliased_set, &map); |
| 2826 | store_optimizer.Optimize(); |
| 2827 | } |
| 2828 | } |
| 2829 | |
| 2830 | private: |
| 2831 | void Optimize() { |
| 2832 | Analyze(); |
| 2833 | if (FLAG_trace_load_optimization) { |
| 2834 | Dump(); |
| 2835 | } |
| 2836 | EliminateDeadStores(); |
| 2837 | } |
| 2838 | |
| 2839 | bool CanEliminateStore(Instruction* instr) { |
| 2840 | switch (instr->tag()) { |
| 2841 | case Instruction::kStoreInstanceField: { |
| 2842 | StoreInstanceFieldInstr* store_instance = instr->AsStoreInstanceField(); |
| 2843 | // Can't eliminate stores that initialize fields. |
| 2844 | return !store_instance->is_initialization(); |
| 2845 | } |
| 2846 | case Instruction::kStoreIndexed: |
| 2847 | case Instruction::kStoreStaticField: |
| 2848 | return true; |
| 2849 | default: |
| 2850 | UNREACHABLE(); |
| 2851 | return false; |
| 2852 | } |
| 2853 | } |
| 2854 | |
| 2855 | virtual void ComputeInitialSets() { |
| 2856 | Zone* zone = graph_->zone(); |
| 2857 | BitVector* all_places = |
| 2858 | new (zone) BitVector(zone, aliased_set_->max_place_id()); |
| 2859 | all_places->SetAll(); |
| 2860 | for (BlockIterator block_it = graph_->postorder_iterator(); |
| 2861 | !block_it.Done(); block_it.Advance()) { |
| 2862 | BlockEntryInstr* block = block_it.Current(); |
| 2863 | const intptr_t postorder_number = block->postorder_number(); |
| 2864 | |
| 2865 | BitVector* kill = kill_[postorder_number]; |
| 2866 | BitVector* live_in = live_in_[postorder_number]; |
| 2867 | BitVector* live_out = live_out_[postorder_number]; |
| 2868 | |
| 2869 | ZoneGrowableArray<Instruction*>* exposed_stores = NULL; |
| 2870 | |
| 2871 | // Iterate backwards starting at the last instruction. |
| 2872 | for (BackwardInstructionIterator instr_it(block); !instr_it.Done(); |
| 2873 | instr_it.Advance()) { |
| 2874 | Instruction* instr = instr_it.Current(); |
| 2875 | |
| 2876 | bool is_load = false; |
| 2877 | bool is_store = false; |
| 2878 | Place place(instr, &is_load, &is_store); |
| 2879 | if (place.IsImmutableField()) { |
| 2880 | // Loads/stores of final fields do not participate. |
| 2881 | continue; |
| 2882 | } |
| 2883 | |
| 2884 | // Handle stores. |
| 2885 | if (is_store) { |
| 2886 | if (kill->Contains(GetPlaceId(instr))) { |
| 2887 | if (!live_in->Contains(GetPlaceId(instr)) && |
| 2888 | CanEliminateStore(instr)) { |
| 2889 | if (FLAG_trace_optimization) { |
| 2890 | THR_Print("Removing dead store to place %" Pd " in block B%" Pd |
| 2891 | "\n" , |
| 2892 | GetPlaceId(instr), block->block_id()); |
| 2893 | } |
| 2894 | instr_it.RemoveCurrentFromGraph(); |
| 2895 | } |
| 2896 | } else if (!live_in->Contains(GetPlaceId(instr))) { |
| 2897 | // Mark this store as down-ward exposed: They are the only |
| 2898 | // candidates for the global store elimination. |
| 2899 | if (exposed_stores == NULL) { |
| 2900 | const intptr_t kMaxExposedStoresInitialSize = 5; |
| 2901 | exposed_stores = new (zone) ZoneGrowableArray<Instruction*>( |
| 2902 | Utils::Minimum(kMaxExposedStoresInitialSize, |
| 2903 | aliased_set_->max_place_id())); |
| 2904 | } |
| 2905 | exposed_stores->Add(instr); |
| 2906 | } |
| 2907 | // Interfering stores kill only loads from the same place. |
| 2908 | kill->Add(GetPlaceId(instr)); |
| 2909 | live_in->Remove(GetPlaceId(instr)); |
| 2910 | continue; |
| 2911 | } |
| 2912 | |
| 2913 | // Handle side effects, deoptimization and function return. |
| 2914 | if (instr->HasUnknownSideEffects() || instr->CanDeoptimize() || |
| 2915 | instr->MayThrow() || instr->IsReturn()) { |
| 2916 | // Instructions that return from the function, instructions with side |
| 2917 | // effects and instructions that can deoptimize are considered as |
| 2918 | // loads from all places. |
| 2919 | live_in->CopyFrom(all_places); |
| 2920 | if (instr->IsThrow() || instr->IsReThrow() || instr->IsReturn()) { |
| 2921 | // Initialize live-out for exit blocks since it won't be computed |
| 2922 | // otherwise during the fixed point iteration. |
| 2923 | live_out->CopyFrom(all_places); |
| 2924 | } |
| 2925 | continue; |
| 2926 | } |
| 2927 | |
| 2928 | // Handle loads. |
| 2929 | Definition* defn = instr->AsDefinition(); |
| 2930 | if ((defn != NULL) && IsLoadEliminationCandidate(defn)) { |
| 2931 | const intptr_t alias = aliased_set_->LookupAliasId(place.ToAlias()); |
| 2932 | live_in->AddAll(aliased_set_->GetKilledSet(alias)); |
| 2933 | continue; |
| 2934 | } |
| 2935 | } |
| 2936 | exposed_stores_[postorder_number] = exposed_stores; |
| 2937 | } |
| 2938 | if (FLAG_trace_load_optimization) { |
| 2939 | Dump(); |
| 2940 | THR_Print("---\n" ); |
| 2941 | } |
| 2942 | } |
| 2943 | |
| 2944 | void EliminateDeadStores() { |
| 2945 | // Iteration order does not matter here. |
| 2946 | for (BlockIterator block_it = graph_->postorder_iterator(); |
| 2947 | !block_it.Done(); block_it.Advance()) { |
| 2948 | BlockEntryInstr* block = block_it.Current(); |
| 2949 | const intptr_t postorder_number = block->postorder_number(); |
| 2950 | |
| 2951 | BitVector* live_out = live_out_[postorder_number]; |
| 2952 | |
| 2953 | ZoneGrowableArray<Instruction*>* exposed_stores = |
| 2954 | exposed_stores_[postorder_number]; |
| 2955 | if (exposed_stores == NULL) continue; // No exposed stores. |
| 2956 | |
| 2957 | // Iterate over candidate stores. |
| 2958 | for (intptr_t i = 0; i < exposed_stores->length(); ++i) { |
| 2959 | Instruction* instr = (*exposed_stores)[i]; |
| 2960 | bool is_load = false; |
| 2961 | bool is_store = false; |
| 2962 | Place place(instr, &is_load, &is_store); |
| 2963 | ASSERT(!is_load && is_store); |
| 2964 | if (place.IsImmutableField()) { |
| 2965 | // Final field do not participate in dead store elimination. |
| 2966 | continue; |
| 2967 | } |
| 2968 | // Eliminate a downward exposed store if the corresponding place is not |
| 2969 | // in live-out. |
| 2970 | if (!live_out->Contains(GetPlaceId(instr)) && |
| 2971 | CanEliminateStore(instr)) { |
| 2972 | if (FLAG_trace_optimization) { |
| 2973 | THR_Print("Removing dead store to place %" Pd " block B%" Pd "\n" , |
| 2974 | GetPlaceId(instr), block->block_id()); |
| 2975 | } |
| 2976 | instr->RemoveFromGraph(/* ignored */ false); |
| 2977 | } |
| 2978 | } |
| 2979 | } |
| 2980 | } |
| 2981 | |
| 2982 | FlowGraph* graph_; |
| 2983 | DirectChainedHashMap<PointerKeyValueTrait<Place> >* map_; |
| 2984 | |
| 2985 | // Mapping between field offsets in words and expression ids of loads from |
| 2986 | // that offset. |
| 2987 | AliasedSet* aliased_set_; |
| 2988 | |
| 2989 | // Per block list of downward exposed stores. |
| 2990 | GrowableArray<ZoneGrowableArray<Instruction*>*> exposed_stores_; |
| 2991 | |
| 2992 | DISALLOW_COPY_AND_ASSIGN(StoreOptimizer); |
| 2993 | }; |
| 2994 | |
| 2995 | void DeadStoreElimination::Optimize(FlowGraph* graph) { |
| 2996 | if (FLAG_dead_store_elimination) { |
| 2997 | StoreOptimizer::OptimizeGraph(graph); |
| 2998 | } |
| 2999 | } |
| 3000 | |
| 3001 | // |
| 3002 | // Allocation Sinking |
| 3003 | // |
| 3004 | |
| 3005 | // Returns true if the given instruction is an allocation that |
| 3006 | // can be sunk by the Allocation Sinking pass. |
| 3007 | static bool IsSupportedAllocation(Instruction* instr) { |
| 3008 | return instr->IsAllocateObject() || instr->IsAllocateUninitializedContext(); |
| 3009 | } |
| 3010 | |
| 3011 | enum SafeUseCheck { kOptimisticCheck, kStrictCheck }; |
| 3012 | |
| 3013 | // Check if the use is safe for allocation sinking. Allocation sinking |
| 3014 | // candidates can only be used at store instructions: |
| 3015 | // |
| 3016 | // - any store into the allocation candidate itself is unconditionally safe |
| 3017 | // as it just changes the rematerialization state of this candidate; |
| 3018 | // - store into another object is only safe if another object is allocation |
| 3019 | // candidate. |
| 3020 | // |
| 3021 | // We use a simple fix-point algorithm to discover the set of valid candidates |
| 3022 | // (see CollectCandidates method), that's why this IsSafeUse can operate in two |
| 3023 | // modes: |
| 3024 | // |
| 3025 | // - optimistic, when every allocation is assumed to be an allocation |
| 3026 | // sinking candidate; |
| 3027 | // - strict, when only marked allocations are assumed to be allocation |
| 3028 | // sinking candidates. |
| 3029 | // |
| 3030 | // Fix-point algorithm in CollectCandiates first collects a set of allocations |
| 3031 | // optimistically and then checks each collected candidate strictly and unmarks |
| 3032 | // invalid candidates transitively until only strictly valid ones remain. |
| 3033 | static bool IsSafeUse(Value* use, SafeUseCheck check_type) { |
| 3034 | if (use->instruction()->IsMaterializeObject()) { |
| 3035 | return true; |
| 3036 | } |
| 3037 | |
| 3038 | StoreInstanceFieldInstr* store = use->instruction()->AsStoreInstanceField(); |
| 3039 | if (store != NULL) { |
| 3040 | if (use == store->value()) { |
| 3041 | Definition* instance = store->instance()->definition(); |
| 3042 | return IsSupportedAllocation(instance) && |
| 3043 | ((check_type == kOptimisticCheck) || |
| 3044 | instance->Identity().IsAllocationSinkingCandidate()); |
| 3045 | } |
| 3046 | return true; |
| 3047 | } |
| 3048 | |
| 3049 | return false; |
| 3050 | } |
| 3051 | |
| 3052 | // Right now we are attempting to sink allocation only into |
| 3053 | // deoptimization exit. So candidate should only be used in StoreInstanceField |
| 3054 | // instructions that write into fields of the allocated object. |
| 3055 | static bool IsAllocationSinkingCandidate(Definition* alloc, |
| 3056 | SafeUseCheck check_type) { |
| 3057 | for (Value* use = alloc->input_use_list(); use != NULL; |
| 3058 | use = use->next_use()) { |
| 3059 | if (!IsSafeUse(use, check_type)) { |
| 3060 | if (FLAG_support_il_printer && FLAG_trace_optimization) { |
| 3061 | THR_Print("use of %s at %s is unsafe for allocation sinking\n" , |
| 3062 | alloc->ToCString(), use->instruction()->ToCString()); |
| 3063 | } |
| 3064 | return false; |
| 3065 | } |
| 3066 | } |
| 3067 | |
| 3068 | return true; |
| 3069 | } |
| 3070 | |
| 3071 | // If the given use is a store into an object then return an object we are |
| 3072 | // storing into. |
| 3073 | static Definition* StoreInto(Value* use) { |
| 3074 | StoreInstanceFieldInstr* store = use->instruction()->AsStoreInstanceField(); |
| 3075 | if (store != NULL) { |
| 3076 | return store->instance()->definition(); |
| 3077 | } |
| 3078 | |
| 3079 | return NULL; |
| 3080 | } |
| 3081 | |
| 3082 | // Remove the given allocation from the graph. It is not observable. |
| 3083 | // If deoptimization occurs the object will be materialized. |
| 3084 | void AllocationSinking::EliminateAllocation(Definition* alloc) { |
| 3085 | ASSERT(IsAllocationSinkingCandidate(alloc, kStrictCheck)); |
| 3086 | |
| 3087 | if (FLAG_trace_optimization) { |
| 3088 | THR_Print("removing allocation from the graph: v%" Pd "\n" , |
| 3089 | alloc->ssa_temp_index()); |
| 3090 | } |
| 3091 | |
| 3092 | // As an allocation sinking candidate it is only used in stores to its own |
| 3093 | // fields. Remove these stores. |
| 3094 | for (Value* use = alloc->input_use_list(); use != NULL; |
| 3095 | use = alloc->input_use_list()) { |
| 3096 | use->instruction()->RemoveFromGraph(); |
| 3097 | } |
| 3098 | |
| 3099 | // There should be no environment uses. The pass replaced them with |
| 3100 | // MaterializeObject instructions. |
| 3101 | #ifdef DEBUG |
| 3102 | for (Value* use = alloc->env_use_list(); use != NULL; use = use->next_use()) { |
| 3103 | ASSERT(use->instruction()->IsMaterializeObject()); |
| 3104 | } |
| 3105 | #endif |
| 3106 | ASSERT(alloc->input_use_list() == NULL); |
| 3107 | alloc->RemoveFromGraph(); |
| 3108 | if (alloc->ArgumentCount() > 0) { |
| 3109 | ASSERT(alloc->ArgumentCount() == 1); |
| 3110 | ASSERT(!alloc->HasPushArguments()); |
| 3111 | } |
| 3112 | } |
| 3113 | |
| 3114 | // Find allocation instructions that can be potentially eliminated and |
| 3115 | // rematerialized at deoptimization exits if needed. See IsSafeUse |
| 3116 | // for the description of algorithm used below. |
| 3117 | void AllocationSinking::CollectCandidates() { |
| 3118 | // Optimistically collect all potential candidates. |
| 3119 | for (BlockIterator block_it = flow_graph_->reverse_postorder_iterator(); |
| 3120 | !block_it.Done(); block_it.Advance()) { |
| 3121 | BlockEntryInstr* block = block_it.Current(); |
| 3122 | for (ForwardInstructionIterator it(block); !it.Done(); it.Advance()) { |
| 3123 | Instruction* current = it.Current(); |
| 3124 | if (!IsSupportedAllocation(current)) { |
| 3125 | continue; |
| 3126 | } |
| 3127 | |
| 3128 | Definition* alloc = current->Cast<Definition>(); |
| 3129 | if (IsAllocationSinkingCandidate(alloc, kOptimisticCheck)) { |
| 3130 | alloc->SetIdentity(AliasIdentity::AllocationSinkingCandidate()); |
| 3131 | candidates_.Add(alloc); |
| 3132 | } |
| 3133 | } |
| 3134 | } |
| 3135 | |
| 3136 | // Transitively unmark all candidates that are not strictly valid. |
| 3137 | bool changed; |
| 3138 | do { |
| 3139 | changed = false; |
| 3140 | for (intptr_t i = 0; i < candidates_.length(); i++) { |
| 3141 | Definition* alloc = candidates_[i]; |
| 3142 | if (alloc->Identity().IsAllocationSinkingCandidate()) { |
| 3143 | if (!IsAllocationSinkingCandidate(alloc, kStrictCheck)) { |
| 3144 | alloc->SetIdentity(AliasIdentity::Unknown()); |
| 3145 | changed = true; |
| 3146 | } |
| 3147 | } |
| 3148 | } |
| 3149 | } while (changed); |
| 3150 | |
| 3151 | // Shrink the list of candidates removing all unmarked ones. |
| 3152 | intptr_t j = 0; |
| 3153 | for (intptr_t i = 0; i < candidates_.length(); i++) { |
| 3154 | Definition* alloc = candidates_[i]; |
| 3155 | if (alloc->Identity().IsAllocationSinkingCandidate()) { |
| 3156 | if (FLAG_trace_optimization) { |
| 3157 | THR_Print("discovered allocation sinking candidate: v%" Pd "\n" , |
| 3158 | alloc->ssa_temp_index()); |
| 3159 | } |
| 3160 | |
| 3161 | if (j != i) { |
| 3162 | candidates_[j] = alloc; |
| 3163 | } |
| 3164 | j++; |
| 3165 | } |
| 3166 | } |
| 3167 | candidates_.TruncateTo(j); |
| 3168 | } |
| 3169 | |
| 3170 | // If materialization references an allocation sinking candidate then replace |
| 3171 | // this reference with a materialization which should have been computed for |
| 3172 | // this side-exit. CollectAllExits should have collected this exit. |
| 3173 | void AllocationSinking::NormalizeMaterializations() { |
| 3174 | for (intptr_t i = 0; i < candidates_.length(); i++) { |
| 3175 | Definition* alloc = candidates_[i]; |
| 3176 | |
| 3177 | Value* next_use; |
| 3178 | for (Value* use = alloc->input_use_list(); use != NULL; use = next_use) { |
| 3179 | next_use = use->next_use(); |
| 3180 | if (use->instruction()->IsMaterializeObject()) { |
| 3181 | use->BindTo(MaterializationFor(alloc, use->instruction())); |
| 3182 | } |
| 3183 | } |
| 3184 | } |
| 3185 | } |
| 3186 | |
| 3187 | // We transitively insert materializations at each deoptimization exit that |
| 3188 | // might see the given allocation (see ExitsCollector). Some of this |
| 3189 | // materializations are not actually used and some fail to compute because |
| 3190 | // they are inserted in the block that is not dominated by the allocation. |
| 3191 | // Remove them unused materializations from the graph. |
| 3192 | void AllocationSinking::RemoveUnusedMaterializations() { |
| 3193 | intptr_t j = 0; |
| 3194 | for (intptr_t i = 0; i < materializations_.length(); i++) { |
| 3195 | MaterializeObjectInstr* mat = materializations_[i]; |
| 3196 | if ((mat->input_use_list() == NULL) && (mat->env_use_list() == NULL)) { |
| 3197 | // Check if this materialization failed to compute and remove any |
| 3198 | // unforwarded loads. There were no loads from any allocation sinking |
| 3199 | // candidate in the beginning so it is safe to assume that any encountered |
| 3200 | // load was inserted by CreateMaterializationAt. |
| 3201 | for (intptr_t i = 0; i < mat->InputCount(); i++) { |
| 3202 | LoadFieldInstr* load = mat->InputAt(i)->definition()->AsLoadField(); |
| 3203 | if ((load != NULL) && |
| 3204 | (load->instance()->definition() == mat->allocation())) { |
| 3205 | load->ReplaceUsesWith(flow_graph_->constant_null()); |
| 3206 | load->RemoveFromGraph(); |
| 3207 | } |
| 3208 | } |
| 3209 | mat->RemoveFromGraph(); |
| 3210 | } else { |
| 3211 | if (j != i) { |
| 3212 | materializations_[j] = mat; |
| 3213 | } |
| 3214 | j++; |
| 3215 | } |
| 3216 | } |
| 3217 | materializations_.TruncateTo(j); |
| 3218 | } |
| 3219 | |
| 3220 | // Some candidates might stop being eligible for allocation sinking after |
| 3221 | // the load forwarding because they flow into phis that load forwarding |
| 3222 | // inserts. Discover such allocations and remove them from the list |
| 3223 | // of allocation sinking candidates undoing all changes that we did |
| 3224 | // in preparation for sinking these allocations. |
| 3225 | void AllocationSinking::DiscoverFailedCandidates() { |
| 3226 | // Transitively unmark all candidates that are not strictly valid. |
| 3227 | bool changed; |
| 3228 | do { |
| 3229 | changed = false; |
| 3230 | for (intptr_t i = 0; i < candidates_.length(); i++) { |
| 3231 | Definition* alloc = candidates_[i]; |
| 3232 | if (alloc->Identity().IsAllocationSinkingCandidate()) { |
| 3233 | if (!IsAllocationSinkingCandidate(alloc, kStrictCheck)) { |
| 3234 | alloc->SetIdentity(AliasIdentity::Unknown()); |
| 3235 | changed = true; |
| 3236 | } |
| 3237 | } |
| 3238 | } |
| 3239 | } while (changed); |
| 3240 | |
| 3241 | // Remove all failed candidates from the candidates list. |
| 3242 | intptr_t j = 0; |
| 3243 | for (intptr_t i = 0; i < candidates_.length(); i++) { |
| 3244 | Definition* alloc = candidates_[i]; |
| 3245 | if (!alloc->Identity().IsAllocationSinkingCandidate()) { |
| 3246 | if (FLAG_trace_optimization) { |
| 3247 | THR_Print("allocation v%" Pd " can't be eliminated\n" , |
| 3248 | alloc->ssa_temp_index()); |
| 3249 | } |
| 3250 | |
| 3251 | #ifdef DEBUG |
| 3252 | for (Value* use = alloc->env_use_list(); use != NULL; |
| 3253 | use = use->next_use()) { |
| 3254 | ASSERT(use->instruction()->IsMaterializeObject()); |
| 3255 | } |
| 3256 | #endif |
| 3257 | |
| 3258 | // All materializations will be removed from the graph. Remove inserted |
| 3259 | // loads first and detach materializations from allocation's environment |
| 3260 | // use list: we will reconstruct it when we start removing |
| 3261 | // materializations. |
| 3262 | alloc->set_env_use_list(NULL); |
| 3263 | for (Value* use = alloc->input_use_list(); use != NULL; |
| 3264 | use = use->next_use()) { |
| 3265 | if (use->instruction()->IsLoadField()) { |
| 3266 | LoadFieldInstr* load = use->instruction()->AsLoadField(); |
| 3267 | load->ReplaceUsesWith(flow_graph_->constant_null()); |
| 3268 | load->RemoveFromGraph(); |
| 3269 | } else { |
| 3270 | ASSERT(use->instruction()->IsMaterializeObject() || |
| 3271 | use->instruction()->IsPhi() || |
| 3272 | use->instruction()->IsStoreInstanceField()); |
| 3273 | } |
| 3274 | } |
| 3275 | } else { |
| 3276 | if (j != i) { |
| 3277 | candidates_[j] = alloc; |
| 3278 | } |
| 3279 | j++; |
| 3280 | } |
| 3281 | } |
| 3282 | |
| 3283 | if (j != candidates_.length()) { // Something was removed from candidates. |
| 3284 | intptr_t k = 0; |
| 3285 | for (intptr_t i = 0; i < materializations_.length(); i++) { |
| 3286 | MaterializeObjectInstr* mat = materializations_[i]; |
| 3287 | if (!mat->allocation()->Identity().IsAllocationSinkingCandidate()) { |
| 3288 | // Restore environment uses of the allocation that were replaced |
| 3289 | // by this materialization and drop materialization. |
| 3290 | mat->ReplaceUsesWith(mat->allocation()); |
| 3291 | mat->RemoveFromGraph(); |
| 3292 | } else { |
| 3293 | if (k != i) { |
| 3294 | materializations_[k] = mat; |
| 3295 | } |
| 3296 | k++; |
| 3297 | } |
| 3298 | } |
| 3299 | materializations_.TruncateTo(k); |
| 3300 | } |
| 3301 | |
| 3302 | candidates_.TruncateTo(j); |
| 3303 | } |
| 3304 | |
| 3305 | void AllocationSinking::Optimize() { |
| 3306 | CollectCandidates(); |
| 3307 | |
| 3308 | // Insert MaterializeObject instructions that will describe the state of the |
| 3309 | // object at all deoptimization points. Each inserted materialization looks |
| 3310 | // like this (where v_0 is allocation that we are going to eliminate): |
| 3311 | // v_1 <- LoadField(v_0, field_1) |
| 3312 | // ... |
| 3313 | // v_N <- LoadField(v_0, field_N) |
| 3314 | // v_{N+1} <- MaterializeObject(field_1 = v_1, ..., field_N = v_{N}) |
| 3315 | for (intptr_t i = 0; i < candidates_.length(); i++) { |
| 3316 | InsertMaterializations(candidates_[i]); |
| 3317 | } |
| 3318 | |
| 3319 | // Run load forwarding to eliminate LoadField instructions inserted above. |
| 3320 | // All loads will be successfully eliminated because: |
| 3321 | // a) they use fields (not offsets) and thus provide precise aliasing |
| 3322 | // information |
| 3323 | // b) candidate does not escape and thus its fields is not affected by |
| 3324 | // external effects from calls. |
| 3325 | LoadOptimizer::OptimizeGraph(flow_graph_); |
| 3326 | |
| 3327 | NormalizeMaterializations(); |
| 3328 | |
| 3329 | RemoveUnusedMaterializations(); |
| 3330 | |
| 3331 | // If any candidates are no longer eligible for allocation sinking abort |
| 3332 | // the optimization for them and undo any changes we did in preparation. |
| 3333 | DiscoverFailedCandidates(); |
| 3334 | |
| 3335 | // At this point we have computed the state of object at each deoptimization |
| 3336 | // point and we can eliminate it. Loads inserted above were forwarded so there |
| 3337 | // are no uses of the allocation just as in the begging of the pass. |
| 3338 | for (intptr_t i = 0; i < candidates_.length(); i++) { |
| 3339 | EliminateAllocation(candidates_[i]); |
| 3340 | } |
| 3341 | |
| 3342 | // Process materializations and unbox their arguments: materializations |
| 3343 | // are part of the environment and can materialize boxes for double/mint/simd |
| 3344 | // values when needed. |
| 3345 | // TODO(vegorov): handle all box types here. |
| 3346 | for (intptr_t i = 0; i < materializations_.length(); i++) { |
| 3347 | MaterializeObjectInstr* mat = materializations_[i]; |
| 3348 | for (intptr_t j = 0; j < mat->InputCount(); j++) { |
| 3349 | Definition* defn = mat->InputAt(j)->definition(); |
| 3350 | if (defn->IsBox()) { |
| 3351 | mat->InputAt(j)->BindTo(defn->InputAt(0)->definition()); |
| 3352 | } |
| 3353 | } |
| 3354 | } |
| 3355 | } |
| 3356 | |
| 3357 | // Remove materializations from the graph. Register allocator will treat them |
| 3358 | // as part of the environment not as a real instruction. |
| 3359 | void AllocationSinking::DetachMaterializations() { |
| 3360 | for (intptr_t i = 0; i < materializations_.length(); i++) { |
| 3361 | materializations_[i]->previous()->LinkTo(materializations_[i]->next()); |
| 3362 | } |
| 3363 | } |
| 3364 | |
| 3365 | // Add a field/offset to the list of fields if it is not yet present there. |
| 3366 | static bool AddSlot(ZoneGrowableArray<const Slot*>* slots, const Slot& slot) { |
| 3367 | for (auto s : *slots) { |
| 3368 | if (s == &slot) { |
| 3369 | return false; |
| 3370 | } |
| 3371 | } |
| 3372 | slots->Add(&slot); |
| 3373 | return true; |
| 3374 | } |
| 3375 | |
| 3376 | // Find deoptimization exit for the given materialization assuming that all |
| 3377 | // materializations are emitted right before the instruction which is a |
| 3378 | // deoptimization exit. |
| 3379 | static Instruction* ExitForMaterialization(MaterializeObjectInstr* mat) { |
| 3380 | while (mat->next()->IsMaterializeObject()) { |
| 3381 | mat = mat->next()->AsMaterializeObject(); |
| 3382 | } |
| 3383 | return mat->next(); |
| 3384 | } |
| 3385 | |
| 3386 | // Given the deoptimization exit find first materialization that was inserted |
| 3387 | // before it. |
| 3388 | static Instruction* FirstMaterializationAt(Instruction* exit) { |
| 3389 | while (exit->previous()->IsMaterializeObject()) { |
| 3390 | exit = exit->previous(); |
| 3391 | } |
| 3392 | return exit; |
| 3393 | } |
| 3394 | |
| 3395 | // Given the allocation and deoptimization exit try to find MaterializeObject |
| 3396 | // instruction corresponding to this allocation at this exit. |
| 3397 | MaterializeObjectInstr* AllocationSinking::MaterializationFor( |
| 3398 | Definition* alloc, |
| 3399 | Instruction* exit) { |
| 3400 | if (exit->IsMaterializeObject()) { |
| 3401 | exit = ExitForMaterialization(exit->AsMaterializeObject()); |
| 3402 | } |
| 3403 | |
| 3404 | for (MaterializeObjectInstr* mat = exit->previous()->AsMaterializeObject(); |
| 3405 | mat != NULL; mat = mat->previous()->AsMaterializeObject()) { |
| 3406 | if (mat->allocation() == alloc) { |
| 3407 | return mat; |
| 3408 | } |
| 3409 | } |
| 3410 | |
| 3411 | return NULL; |
| 3412 | } |
| 3413 | |
| 3414 | // Insert MaterializeObject instruction for the given allocation before |
| 3415 | // the given instruction that can deoptimize. |
| 3416 | void AllocationSinking::CreateMaterializationAt( |
| 3417 | Instruction* exit, |
| 3418 | Definition* alloc, |
| 3419 | const ZoneGrowableArray<const Slot*>& slots) { |
| 3420 | ZoneGrowableArray<Value*>* values = |
| 3421 | new (Z) ZoneGrowableArray<Value*>(slots.length()); |
| 3422 | |
| 3423 | // All loads should be inserted before the first materialization so that |
| 3424 | // IR follows the following pattern: loads, materializations, deoptimizing |
| 3425 | // instruction. |
| 3426 | Instruction* load_point = FirstMaterializationAt(exit); |
| 3427 | |
| 3428 | // Insert load instruction for every field. |
| 3429 | for (auto slot : slots) { |
| 3430 | LoadFieldInstr* load = |
| 3431 | new (Z) LoadFieldInstr(new (Z) Value(alloc), *slot, alloc->token_pos()); |
| 3432 | flow_graph_->InsertBefore(load_point, load, nullptr, FlowGraph::kValue); |
| 3433 | values->Add(new (Z) Value(load)); |
| 3434 | } |
| 3435 | |
| 3436 | MaterializeObjectInstr* mat = nullptr; |
| 3437 | if (alloc->IsAllocateObject()) { |
| 3438 | mat = new (Z) |
| 3439 | MaterializeObjectInstr(alloc->AsAllocateObject(), slots, values); |
| 3440 | } else { |
| 3441 | ASSERT(alloc->IsAllocateUninitializedContext()); |
| 3442 | mat = new (Z) MaterializeObjectInstr( |
| 3443 | alloc->AsAllocateUninitializedContext(), slots, values); |
| 3444 | } |
| 3445 | |
| 3446 | flow_graph_->InsertBefore(exit, mat, nullptr, FlowGraph::kValue); |
| 3447 | |
| 3448 | // Replace all mentions of this allocation with a newly inserted |
| 3449 | // MaterializeObject instruction. |
| 3450 | // We must preserve the identity: all mentions are replaced by the same |
| 3451 | // materialization. |
| 3452 | exit->ReplaceInEnvironment(alloc, mat); |
| 3453 | |
| 3454 | // Mark MaterializeObject as an environment use of this allocation. |
| 3455 | // This will allow us to discover it when we are looking for deoptimization |
| 3456 | // exits for another allocation that potentially flows into this one. |
| 3457 | Value* val = new (Z) Value(alloc); |
| 3458 | val->set_instruction(mat); |
| 3459 | alloc->AddEnvUse(val); |
| 3460 | |
| 3461 | // Record inserted materialization. |
| 3462 | materializations_.Add(mat); |
| 3463 | } |
| 3464 | |
| 3465 | // Add given instruction to the list of the instructions if it is not yet |
| 3466 | // present there. |
| 3467 | template <typename T> |
| 3468 | void AddInstruction(GrowableArray<T*>* list, T* value) { |
| 3469 | ASSERT(!value->IsGraphEntry() && !value->IsFunctionEntry()); |
| 3470 | for (intptr_t i = 0; i < list->length(); i++) { |
| 3471 | if ((*list)[i] == value) { |
| 3472 | return; |
| 3473 | } |
| 3474 | } |
| 3475 | list->Add(value); |
| 3476 | } |
| 3477 | |
| 3478 | // Transitively collect all deoptimization exits that might need this allocation |
| 3479 | // rematerialized. It is not enough to collect only environment uses of this |
| 3480 | // allocation because it can flow into other objects that will be |
| 3481 | // dematerialized and that are referenced by deopt environments that |
| 3482 | // don't contain this allocation explicitly. |
| 3483 | void AllocationSinking::ExitsCollector::Collect(Definition* alloc) { |
| 3484 | for (Value* use = alloc->env_use_list(); use != NULL; use = use->next_use()) { |
| 3485 | if (use->instruction()->IsMaterializeObject()) { |
| 3486 | AddInstruction(&exits_, ExitForMaterialization( |
| 3487 | use->instruction()->AsMaterializeObject())); |
| 3488 | } else { |
| 3489 | AddInstruction(&exits_, use->instruction()); |
| 3490 | } |
| 3491 | } |
| 3492 | |
| 3493 | // Check if this allocation is stored into any other allocation sinking |
| 3494 | // candidate and put it on worklist so that we conservatively collect all |
| 3495 | // exits for that candidate as well because they potentially might see |
| 3496 | // this object. |
| 3497 | for (Value* use = alloc->input_use_list(); use != NULL; |
| 3498 | use = use->next_use()) { |
| 3499 | Definition* obj = StoreInto(use); |
| 3500 | if ((obj != NULL) && (obj != alloc)) { |
| 3501 | AddInstruction(&worklist_, obj); |
| 3502 | } |
| 3503 | } |
| 3504 | } |
| 3505 | |
| 3506 | void AllocationSinking::ExitsCollector::CollectTransitively(Definition* alloc) { |
| 3507 | exits_.TruncateTo(0); |
| 3508 | worklist_.TruncateTo(0); |
| 3509 | |
| 3510 | worklist_.Add(alloc); |
| 3511 | |
| 3512 | // Note: worklist potentially will grow while we are iterating over it. |
| 3513 | // We are not removing allocations from the worklist not to waste space on |
| 3514 | // the side maintaining BitVector of already processed allocations: worklist |
| 3515 | // is expected to be very small thus linear search in it is just as efficient |
| 3516 | // as a bitvector. |
| 3517 | for (intptr_t i = 0; i < worklist_.length(); i++) { |
| 3518 | Collect(worklist_[i]); |
| 3519 | } |
| 3520 | } |
| 3521 | |
| 3522 | void AllocationSinking::InsertMaterializations(Definition* alloc) { |
| 3523 | // Collect all fields that are written for this instance. |
| 3524 | auto slots = new (Z) ZoneGrowableArray<const Slot*>(5); |
| 3525 | |
| 3526 | for (Value* use = alloc->input_use_list(); use != NULL; |
| 3527 | use = use->next_use()) { |
| 3528 | StoreInstanceFieldInstr* store = use->instruction()->AsStoreInstanceField(); |
| 3529 | if ((store != NULL) && (store->instance()->definition() == alloc)) { |
| 3530 | AddSlot(slots, store->slot()); |
| 3531 | } |
| 3532 | } |
| 3533 | |
| 3534 | if (auto alloc_object = alloc->AsAllocateObject()) { |
| 3535 | if (alloc_object->type_arguments() != nullptr) { |
| 3536 | AddSlot(slots, Slot::GetTypeArgumentsSlotFor(flow_graph_->thread(), |
| 3537 | alloc_object->cls())); |
| 3538 | } |
| 3539 | } |
| 3540 | |
| 3541 | // Collect all instructions that mention this object in the environment. |
| 3542 | exits_collector_.CollectTransitively(alloc); |
| 3543 | |
| 3544 | // Insert materializations at environment uses. |
| 3545 | for (intptr_t i = 0; i < exits_collector_.exits().length(); i++) { |
| 3546 | CreateMaterializationAt(exits_collector_.exits()[i], alloc, *slots); |
| 3547 | } |
| 3548 | } |
| 3549 | |
| 3550 | // TryCatchAnalyzer tries to reduce the state that needs to be synchronized |
| 3551 | // on entry to the catch by discovering Parameter-s which are never used |
| 3552 | // or which are always constant. |
| 3553 | // |
| 3554 | // This analysis is similar to dead/redundant phi elimination because |
| 3555 | // Parameter instructions serve as "implicit" phis. |
| 3556 | // |
| 3557 | // Caveat: when analyzing which Parameter-s are redundant we limit ourselves to |
| 3558 | // constant values because CatchBlockEntry-s are hanging out directly from |
| 3559 | // GraphEntry and thus they are only dominated by constants from GraphEntry - |
| 3560 | // thus we can't replace Parameter with arbitrary Definition which is not a |
| 3561 | // Constant even if we know that this Parameter is redundant and would always |
| 3562 | // evaluate to that Definition. |
| 3563 | class TryCatchAnalyzer : public ValueObject { |
| 3564 | public: |
| 3565 | explicit TryCatchAnalyzer(FlowGraph* flow_graph, bool is_aot) |
| 3566 | : flow_graph_(flow_graph), |
| 3567 | is_aot_(is_aot), |
| 3568 | // Initial capacity is selected based on trivial examples. |
| 3569 | worklist_(flow_graph, /*initial_capacity=*/10) {} |
| 3570 | |
| 3571 | // Run analysis and eliminate dead/redundant Parameter-s. |
| 3572 | void Optimize(); |
| 3573 | |
| 3574 | private: |
| 3575 | // In precompiled mode we can eliminate all parameters that have no real uses |
| 3576 | // and subsequently clear out corresponding slots in the environments assigned |
| 3577 | // to instructions that can throw an exception which would be caught by |
| 3578 | // the corresponding CatchEntryBlock. |
| 3579 | // |
| 3580 | // Computing "dead" parameters is essentially a fixed point algorithm because |
| 3581 | // Parameter value can flow into another Parameter via an environment attached |
| 3582 | // to an instruction that can throw. |
| 3583 | // |
| 3584 | // Note: this optimization pass assumes that environment values are only |
| 3585 | // used during catching, that is why it should only be used in AOT mode. |
| 3586 | void OptimizeDeadParameters() { |
| 3587 | ASSERT(is_aot_); |
| 3588 | |
| 3589 | NumberCatchEntryParameters(); |
| 3590 | ComputeIncomingValues(); |
| 3591 | CollectAliveParametersOrPhis(); |
| 3592 | PropagateLivenessToInputs(); |
| 3593 | EliminateDeadParameters(); |
| 3594 | } |
| 3595 | |
| 3596 | static intptr_t GetParameterId(const Instruction* instr) { |
| 3597 | return instr->GetPassSpecificId(CompilerPass::kTryCatchOptimization); |
| 3598 | } |
| 3599 | |
| 3600 | static void SetParameterId(Instruction* instr, intptr_t id) { |
| 3601 | instr->SetPassSpecificId(CompilerPass::kTryCatchOptimization, id); |
| 3602 | } |
| 3603 | |
| 3604 | static bool HasParameterId(Instruction* instr) { |
| 3605 | return instr->HasPassSpecificId(CompilerPass::kTryCatchOptimization); |
| 3606 | } |
| 3607 | |
| 3608 | // Assign sequential ids to each ParameterInstr in each CatchEntryBlock. |
| 3609 | // Collect reverse mapping from try indexes to corresponding catches. |
| 3610 | void NumberCatchEntryParameters() { |
| 3611 | for (auto catch_entry : flow_graph_->graph_entry()->catch_entries()) { |
| 3612 | const GrowableArray<Definition*>& idefs = |
| 3613 | *catch_entry->initial_definitions(); |
| 3614 | for (auto idef : idefs) { |
| 3615 | if (idef->IsParameter()) { |
| 3616 | SetParameterId(idef, parameter_info_.length()); |
| 3617 | parameter_info_.Add(new ParameterInfo(idef->AsParameter())); |
| 3618 | } |
| 3619 | } |
| 3620 | |
| 3621 | catch_by_index_.EnsureLength(catch_entry->catch_try_index() + 1, nullptr); |
| 3622 | catch_by_index_[catch_entry->catch_try_index()] = catch_entry; |
| 3623 | } |
| 3624 | } |
| 3625 | |
| 3626 | // Compute potential incoming values for each Parameter in each catch block |
| 3627 | // by looking into environments assigned to MayThrow instructions within |
| 3628 | // blocks covered by the corresponding catch. |
| 3629 | void ComputeIncomingValues() { |
| 3630 | for (auto block : flow_graph_->reverse_postorder()) { |
| 3631 | if (block->try_index() == kInvalidTryIndex) { |
| 3632 | continue; |
| 3633 | } |
| 3634 | |
| 3635 | ASSERT(block->try_index() < catch_by_index_.length()); |
| 3636 | auto catch_entry = catch_by_index_[block->try_index()]; |
| 3637 | const auto& idefs = *catch_entry->initial_definitions(); |
| 3638 | |
| 3639 | for (ForwardInstructionIterator instr_it(block); !instr_it.Done(); |
| 3640 | instr_it.Advance()) { |
| 3641 | Instruction* current = instr_it.Current(); |
| 3642 | if (!current->MayThrow()) continue; |
| 3643 | |
| 3644 | Environment* env = current->env()->Outermost(); |
| 3645 | ASSERT(env != nullptr); |
| 3646 | |
| 3647 | for (intptr_t env_idx = 0; env_idx < idefs.length(); ++env_idx) { |
| 3648 | if (ParameterInstr* param = idefs[env_idx]->AsParameter()) { |
| 3649 | Definition* defn = env->ValueAt(env_idx)->definition(); |
| 3650 | |
| 3651 | // Add defn as an incoming value to the parameter if it is not |
| 3652 | // already present in the list. |
| 3653 | bool found = false; |
| 3654 | for (auto other_defn : |
| 3655 | parameter_info_[GetParameterId(param)]->incoming) { |
| 3656 | if (other_defn == defn) { |
| 3657 | found = true; |
| 3658 | break; |
| 3659 | } |
| 3660 | } |
| 3661 | if (!found) { |
| 3662 | parameter_info_[GetParameterId(param)]->incoming.Add(defn); |
| 3663 | } |
| 3664 | } |
| 3665 | } |
| 3666 | } |
| 3667 | } |
| 3668 | } |
| 3669 | |
| 3670 | // Find all parameters (and phis) that are definitely alive - because they |
| 3671 | // have non-phi uses and place them into worklist. |
| 3672 | // |
| 3673 | // Note: phis that only have phi (and environment) uses would be marked as |
| 3674 | // dead. |
| 3675 | void CollectAliveParametersOrPhis() { |
| 3676 | for (auto block : flow_graph_->reverse_postorder()) { |
| 3677 | if (JoinEntryInstr* join = block->AsJoinEntry()) { |
| 3678 | if (join->phis() == nullptr) continue; |
| 3679 | |
| 3680 | for (auto phi : *join->phis()) { |
| 3681 | phi->mark_dead(); |
| 3682 | if (HasNonPhiUse(phi)) { |
| 3683 | MarkLive(phi); |
| 3684 | } |
| 3685 | } |
| 3686 | } |
| 3687 | } |
| 3688 | |
| 3689 | for (auto info : parameter_info_) { |
| 3690 | if (HasNonPhiUse(info->instr)) { |
| 3691 | MarkLive(info->instr); |
| 3692 | } |
| 3693 | } |
| 3694 | } |
| 3695 | |
| 3696 | // Propagate liveness from live parameters and phis to other parameters and |
| 3697 | // phis transitively. |
| 3698 | void PropagateLivenessToInputs() { |
| 3699 | while (!worklist_.IsEmpty()) { |
| 3700 | Definition* defn = worklist_.RemoveLast(); |
| 3701 | if (ParameterInstr* param = defn->AsParameter()) { |
| 3702 | auto s = parameter_info_[GetParameterId(param)]; |
| 3703 | for (auto input : s->incoming) { |
| 3704 | MarkLive(input); |
| 3705 | } |
| 3706 | } else if (PhiInstr* phi = defn->AsPhi()) { |
| 3707 | for (intptr_t i = 0; i < phi->InputCount(); i++) { |
| 3708 | MarkLive(phi->InputAt(i)->definition()); |
| 3709 | } |
| 3710 | } |
| 3711 | } |
| 3712 | } |
| 3713 | |
| 3714 | // Mark definition as live if it is a dead Phi or a dead Parameter and place |
| 3715 | // them into worklist. |
| 3716 | void MarkLive(Definition* defn) { |
| 3717 | if (PhiInstr* phi = defn->AsPhi()) { |
| 3718 | if (!phi->is_alive()) { |
| 3719 | phi->mark_alive(); |
| 3720 | worklist_.Add(phi); |
| 3721 | } |
| 3722 | } else if (ParameterInstr* param = defn->AsParameter()) { |
| 3723 | if (HasParameterId(param)) { |
| 3724 | auto input_s = parameter_info_[GetParameterId(param)]; |
| 3725 | if (!input_s->alive) { |
| 3726 | input_s->alive = true; |
| 3727 | worklist_.Add(param); |
| 3728 | } |
| 3729 | } |
| 3730 | } |
| 3731 | } |
| 3732 | |
| 3733 | // Replace all dead parameters with null value and clear corresponding |
| 3734 | // slots in environments. |
| 3735 | void EliminateDeadParameters() { |
| 3736 | for (auto info : parameter_info_) { |
| 3737 | if (!info->alive) { |
| 3738 | info->instr->ReplaceUsesWith(flow_graph_->constant_null()); |
| 3739 | } |
| 3740 | } |
| 3741 | |
| 3742 | for (auto block : flow_graph_->reverse_postorder()) { |
| 3743 | if (block->try_index() == -1) continue; |
| 3744 | |
| 3745 | auto catch_entry = catch_by_index_[block->try_index()]; |
| 3746 | const auto& idefs = *catch_entry->initial_definitions(); |
| 3747 | |
| 3748 | for (ForwardInstructionIterator instr_it(block); !instr_it.Done(); |
| 3749 | instr_it.Advance()) { |
| 3750 | Instruction* current = instr_it.Current(); |
| 3751 | if (!current->MayThrow()) continue; |
| 3752 | |
| 3753 | Environment* env = current->env()->Outermost(); |
| 3754 | RELEASE_ASSERT(env != nullptr); |
| 3755 | |
| 3756 | for (intptr_t env_idx = 0; env_idx < idefs.length(); ++env_idx) { |
| 3757 | if (ParameterInstr* param = idefs[env_idx]->AsParameter()) { |
| 3758 | if (!parameter_info_[GetParameterId(param)]->alive) { |
| 3759 | env->ValueAt(env_idx)->BindToEnvironment( |
| 3760 | flow_graph_->constant_null()); |
| 3761 | } |
| 3762 | } |
| 3763 | } |
| 3764 | } |
| 3765 | } |
| 3766 | |
| 3767 | DeadCodeElimination::RemoveDeadAndRedundantPhisFromTheGraph(flow_graph_); |
| 3768 | } |
| 3769 | |
| 3770 | // Returns true if definition has a use in an instruction which is not a phi. |
| 3771 | static bool HasNonPhiUse(Definition* defn) { |
| 3772 | for (Value* use = defn->input_use_list(); use != nullptr; |
| 3773 | use = use->next_use()) { |
| 3774 | if (!use->instruction()->IsPhi()) { |
| 3775 | return true; |
| 3776 | } |
| 3777 | } |
| 3778 | return false; |
| 3779 | } |
| 3780 | |
| 3781 | struct ParameterInfo : public ZoneAllocated { |
| 3782 | explicit ParameterInfo(ParameterInstr* instr) : instr(instr) {} |
| 3783 | |
| 3784 | ParameterInstr* instr; |
| 3785 | bool alive = false; |
| 3786 | GrowableArray<Definition*> incoming; |
| 3787 | }; |
| 3788 | |
| 3789 | FlowGraph* const flow_graph_; |
| 3790 | const bool is_aot_; |
| 3791 | |
| 3792 | // Additional information for each Parameter from each CatchBlockEntry. |
| 3793 | // Parameter-s are numbered and their number is stored in |
| 3794 | // Instruction::place_id() field which is otherwise not used for anything |
| 3795 | // at this stage. |
| 3796 | GrowableArray<ParameterInfo*> parameter_info_; |
| 3797 | |
| 3798 | // Mapping from catch_try_index to corresponding CatchBlockEntry-s. |
| 3799 | GrowableArray<CatchBlockEntryInstr*> catch_by_index_; |
| 3800 | |
| 3801 | // Worklist for live Phi and Parameter instructions which need to be |
| 3802 | // processed by PropagateLivenessToInputs. |
| 3803 | DefinitionWorklist worklist_; |
| 3804 | }; |
| 3805 | |
| 3806 | void OptimizeCatchEntryStates(FlowGraph* flow_graph, bool is_aot) { |
| 3807 | if (flow_graph->graph_entry()->catch_entries().is_empty()) { |
| 3808 | return; |
| 3809 | } |
| 3810 | |
| 3811 | TryCatchAnalyzer analyzer(flow_graph, is_aot); |
| 3812 | analyzer.Optimize(); |
| 3813 | } |
| 3814 | |
| 3815 | void TryCatchAnalyzer::Optimize() { |
| 3816 | // Analyze catch entries and remove "dead" Parameter instructions. |
| 3817 | if (is_aot_) { |
| 3818 | OptimizeDeadParameters(); |
| 3819 | } |
| 3820 | |
| 3821 | // For every catch-block: Iterate over all call instructions inside the |
| 3822 | // corresponding try-block and figure out for each environment value if it |
| 3823 | // is the same constant at all calls. If yes, replace the initial definition |
| 3824 | // at the catch-entry with this constant. |
| 3825 | const GrowableArray<CatchBlockEntryInstr*>& catch_entries = |
| 3826 | flow_graph_->graph_entry()->catch_entries(); |
| 3827 | |
| 3828 | for (auto catch_entry : catch_entries) { |
| 3829 | // Initialize cdefs with the original initial definitions (ParameterInstr). |
| 3830 | // The following representation is used: |
| 3831 | // ParameterInstr => unknown |
| 3832 | // ConstantInstr => known constant |
| 3833 | // NULL => non-constant |
| 3834 | GrowableArray<Definition*>* idefs = catch_entry->initial_definitions(); |
| 3835 | GrowableArray<Definition*> cdefs(idefs->length()); |
| 3836 | cdefs.AddArray(*idefs); |
| 3837 | |
| 3838 | // exception_var and stacktrace_var are never constant. In asynchronous or |
| 3839 | // generator functions they may be context-allocated in which case they are |
| 3840 | // not tracked in the environment anyway. |
| 3841 | |
| 3842 | cdefs[flow_graph_->EnvIndex(catch_entry->raw_exception_var())] = nullptr; |
| 3843 | cdefs[flow_graph_->EnvIndex(catch_entry->raw_stacktrace_var())] = nullptr; |
| 3844 | |
| 3845 | for (BlockIterator block_it = flow_graph_->reverse_postorder_iterator(); |
| 3846 | !block_it.Done(); block_it.Advance()) { |
| 3847 | BlockEntryInstr* block = block_it.Current(); |
| 3848 | if (block->try_index() == catch_entry->catch_try_index()) { |
| 3849 | for (ForwardInstructionIterator instr_it(block); !instr_it.Done(); |
| 3850 | instr_it.Advance()) { |
| 3851 | Instruction* current = instr_it.Current(); |
| 3852 | if (current->MayThrow()) { |
| 3853 | Environment* env = current->env()->Outermost(); |
| 3854 | ASSERT(env != nullptr); |
| 3855 | for (intptr_t env_idx = 0; env_idx < cdefs.length(); ++env_idx) { |
| 3856 | if (cdefs[env_idx] != nullptr && !cdefs[env_idx]->IsConstant() && |
| 3857 | env->ValueAt(env_idx)->BindsToConstant()) { |
| 3858 | // If the recorded definition is not a constant, record this |
| 3859 | // definition as the current constant definition. |
| 3860 | cdefs[env_idx] = env->ValueAt(env_idx)->definition(); |
| 3861 | } |
| 3862 | if (cdefs[env_idx] != env->ValueAt(env_idx)->definition()) { |
| 3863 | // Non-constant definitions are reset to nullptr. |
| 3864 | cdefs[env_idx] = nullptr; |
| 3865 | } |
| 3866 | } |
| 3867 | } |
| 3868 | } |
| 3869 | } |
| 3870 | } |
| 3871 | for (intptr_t j = 0; j < idefs->length(); ++j) { |
| 3872 | if (cdefs[j] != nullptr && cdefs[j]->IsConstant()) { |
| 3873 | Definition* old = (*idefs)[j]; |
| 3874 | ConstantInstr* orig = cdefs[j]->AsConstant(); |
| 3875 | ConstantInstr* copy = |
| 3876 | new (flow_graph_->zone()) ConstantInstr(orig->value()); |
| 3877 | copy->set_ssa_temp_index(flow_graph_->alloc_ssa_temp_index()); |
| 3878 | if (FlowGraph::NeedsPairLocation(copy->representation())) { |
| 3879 | flow_graph_->alloc_ssa_temp_index(); |
| 3880 | } |
| 3881 | old->ReplaceUsesWith(copy); |
| 3882 | copy->set_previous(old->previous()); // partial link |
| 3883 | (*idefs)[j] = copy; |
| 3884 | } |
| 3885 | } |
| 3886 | } |
| 3887 | } |
| 3888 | |
| 3889 | // Returns true iff this definition is used in a non-phi instruction. |
| 3890 | static bool HasRealUse(Definition* def) { |
| 3891 | // Environment uses are real (non-phi) uses. |
| 3892 | if (def->env_use_list() != NULL) return true; |
| 3893 | |
| 3894 | for (Value::Iterator it(def->input_use_list()); !it.Done(); it.Advance()) { |
| 3895 | if (!it.Current()->instruction()->IsPhi()) return true; |
| 3896 | } |
| 3897 | return false; |
| 3898 | } |
| 3899 | |
| 3900 | void DeadCodeElimination::EliminateDeadPhis(FlowGraph* flow_graph) { |
| 3901 | GrowableArray<PhiInstr*> live_phis; |
| 3902 | for (BlockIterator b = flow_graph->postorder_iterator(); !b.Done(); |
| 3903 | b.Advance()) { |
| 3904 | JoinEntryInstr* join = b.Current()->AsJoinEntry(); |
| 3905 | if (join != NULL) { |
| 3906 | for (PhiIterator it(join); !it.Done(); it.Advance()) { |
| 3907 | PhiInstr* phi = it.Current(); |
| 3908 | // Phis that have uses and phis inside try blocks are |
| 3909 | // marked as live. |
| 3910 | if (HasRealUse(phi)) { |
| 3911 | live_phis.Add(phi); |
| 3912 | phi->mark_alive(); |
| 3913 | } else { |
| 3914 | phi->mark_dead(); |
| 3915 | } |
| 3916 | } |
| 3917 | } |
| 3918 | } |
| 3919 | |
| 3920 | while (!live_phis.is_empty()) { |
| 3921 | PhiInstr* phi = live_phis.RemoveLast(); |
| 3922 | for (intptr_t i = 0; i < phi->InputCount(); i++) { |
| 3923 | Value* val = phi->InputAt(i); |
| 3924 | PhiInstr* used_phi = val->definition()->AsPhi(); |
| 3925 | if ((used_phi != NULL) && !used_phi->is_alive()) { |
| 3926 | used_phi->mark_alive(); |
| 3927 | live_phis.Add(used_phi); |
| 3928 | } |
| 3929 | } |
| 3930 | } |
| 3931 | |
| 3932 | RemoveDeadAndRedundantPhisFromTheGraph(flow_graph); |
| 3933 | } |
| 3934 | |
| 3935 | void DeadCodeElimination::RemoveDeadAndRedundantPhisFromTheGraph( |
| 3936 | FlowGraph* flow_graph) { |
| 3937 | for (auto block : flow_graph->postorder()) { |
| 3938 | if (JoinEntryInstr* join = block->AsJoinEntry()) { |
| 3939 | if (join->phis_ == nullptr) continue; |
| 3940 | |
| 3941 | // Eliminate dead phis and compact the phis_ array of the block. |
| 3942 | intptr_t to_index = 0; |
| 3943 | for (intptr_t i = 0; i < join->phis_->length(); ++i) { |
| 3944 | PhiInstr* phi = (*join->phis_)[i]; |
| 3945 | if (phi != nullptr) { |
| 3946 | if (!phi->is_alive()) { |
| 3947 | phi->ReplaceUsesWith(flow_graph->constant_null()); |
| 3948 | phi->UnuseAllInputs(); |
| 3949 | (*join->phis_)[i] = nullptr; |
| 3950 | if (FLAG_trace_optimization) { |
| 3951 | THR_Print("Removing dead phi v%" Pd "\n" , phi->ssa_temp_index()); |
| 3952 | } |
| 3953 | } else { |
| 3954 | (*join->phis_)[to_index++] = phi; |
| 3955 | } |
| 3956 | } |
| 3957 | } |
| 3958 | if (to_index == 0) { |
| 3959 | join->phis_ = nullptr; |
| 3960 | } else { |
| 3961 | join->phis_->TruncateTo(to_index); |
| 3962 | } |
| 3963 | } |
| 3964 | } |
| 3965 | } |
| 3966 | |
| 3967 | // Returns true if [current] instruction can be possibly eliminated |
| 3968 | // (if its result is not used). |
| 3969 | static bool CanEliminateInstruction(Instruction* current, |
| 3970 | BlockEntryInstr* block) { |
| 3971 | ASSERT(current->GetBlock() == block); |
| 3972 | if (MayHaveVisibleEffect(current) || current->CanDeoptimize() || |
| 3973 | current == block->last_instruction() || current->IsMaterializeObject() || |
| 3974 | current->IsCheckStackOverflow() || current->IsReachabilityFence() || |
| 3975 | current->IsEnterHandleScope() || current->IsExitHandleScope() || |
| 3976 | current->IsRawStoreField()) { |
| 3977 | return false; |
| 3978 | } |
| 3979 | return true; |
| 3980 | } |
| 3981 | |
| 3982 | void DeadCodeElimination::EliminateDeadCode(FlowGraph* flow_graph) { |
| 3983 | GrowableArray<Instruction*> worklist; |
| 3984 | BitVector live(flow_graph->zone(), flow_graph->current_ssa_temp_index()); |
| 3985 | |
| 3986 | // Mark all instructions with side-effects as live. |
| 3987 | for (BlockIterator block_it = flow_graph->reverse_postorder_iterator(); |
| 3988 | !block_it.Done(); block_it.Advance()) { |
| 3989 | BlockEntryInstr* block = block_it.Current(); |
| 3990 | for (ForwardInstructionIterator it(block); !it.Done(); it.Advance()) { |
| 3991 | Instruction* current = it.Current(); |
| 3992 | ASSERT(!current->IsPushArgument()); |
| 3993 | // TODO(alexmarkov): take control dependencies into account and |
| 3994 | // eliminate dead branches/conditions. |
| 3995 | if (!CanEliminateInstruction(current, block)) { |
| 3996 | worklist.Add(current); |
| 3997 | if (Definition* def = current->AsDefinition()) { |
| 3998 | if (def->HasSSATemp()) { |
| 3999 | live.Add(def->ssa_temp_index()); |
| 4000 | } |
| 4001 | } |
| 4002 | } |
| 4003 | } |
| 4004 | } |
| 4005 | |
| 4006 | // Iteratively follow inputs of instructions in the work list. |
| 4007 | while (!worklist.is_empty()) { |
| 4008 | Instruction* current = worklist.RemoveLast(); |
| 4009 | for (intptr_t i = 0, n = current->InputCount(); i < n; ++i) { |
| 4010 | Definition* input = current->InputAt(i)->definition(); |
| 4011 | ASSERT(input->HasSSATemp()); |
| 4012 | if (!live.Contains(input->ssa_temp_index())) { |
| 4013 | worklist.Add(input); |
| 4014 | live.Add(input->ssa_temp_index()); |
| 4015 | } |
| 4016 | } |
| 4017 | for (intptr_t i = 0, n = current->ArgumentCount(); i < n; ++i) { |
| 4018 | Definition* input = current->ArgumentAt(i); |
| 4019 | ASSERT(input->HasSSATemp()); |
| 4020 | if (!live.Contains(input->ssa_temp_index())) { |
| 4021 | worklist.Add(input); |
| 4022 | live.Add(input->ssa_temp_index()); |
| 4023 | } |
| 4024 | } |
| 4025 | if (current->env() != nullptr) { |
| 4026 | for (Environment::DeepIterator it(current->env()); !it.Done(); |
| 4027 | it.Advance()) { |
| 4028 | Definition* input = it.CurrentValue()->definition(); |
| 4029 | ASSERT(!input->IsPushArgument()); |
| 4030 | if (input->HasSSATemp() && !live.Contains(input->ssa_temp_index())) { |
| 4031 | worklist.Add(input); |
| 4032 | live.Add(input->ssa_temp_index()); |
| 4033 | } |
| 4034 | } |
| 4035 | } |
| 4036 | } |
| 4037 | |
| 4038 | // Remove all instructions which are not marked as live. |
| 4039 | for (BlockIterator block_it = flow_graph->reverse_postorder_iterator(); |
| 4040 | !block_it.Done(); block_it.Advance()) { |
| 4041 | BlockEntryInstr* block = block_it.Current(); |
| 4042 | if (JoinEntryInstr* join = block->AsJoinEntry()) { |
| 4043 | for (PhiIterator it(join); !it.Done(); it.Advance()) { |
| 4044 | PhiInstr* current = it.Current(); |
| 4045 | if (!live.Contains(current->ssa_temp_index())) { |
| 4046 | it.RemoveCurrentFromGraph(); |
| 4047 | } |
| 4048 | } |
| 4049 | } |
| 4050 | for (ForwardInstructionIterator it(block); !it.Done(); it.Advance()) { |
| 4051 | Instruction* current = it.Current(); |
| 4052 | if (!CanEliminateInstruction(current, block)) { |
| 4053 | continue; |
| 4054 | } |
| 4055 | ASSERT(!current->IsPushArgument()); |
| 4056 | ASSERT((current->ArgumentCount() == 0) || !current->HasPushArguments()); |
| 4057 | if (Definition* def = current->AsDefinition()) { |
| 4058 | if (def->HasSSATemp() && live.Contains(def->ssa_temp_index())) { |
| 4059 | continue; |
| 4060 | } |
| 4061 | } |
| 4062 | it.RemoveCurrentFromGraph(); |
| 4063 | } |
| 4064 | } |
| 4065 | } |
| 4066 | |
| 4067 | void CheckStackOverflowElimination::EliminateStackOverflow(FlowGraph* graph) { |
| 4068 | CheckStackOverflowInstr* first_stack_overflow_instr = NULL; |
| 4069 | for (BlockIterator block_it = graph->reverse_postorder_iterator(); |
| 4070 | !block_it.Done(); block_it.Advance()) { |
| 4071 | BlockEntryInstr* entry = block_it.Current(); |
| 4072 | |
| 4073 | for (ForwardInstructionIterator it(entry); !it.Done(); it.Advance()) { |
| 4074 | Instruction* current = it.Current(); |
| 4075 | |
| 4076 | if (CheckStackOverflowInstr* instr = current->AsCheckStackOverflow()) { |
| 4077 | if (first_stack_overflow_instr == NULL) { |
| 4078 | first_stack_overflow_instr = instr; |
| 4079 | ASSERT(!first_stack_overflow_instr->in_loop()); |
| 4080 | } |
| 4081 | continue; |
| 4082 | } |
| 4083 | |
| 4084 | if (current->IsBranch()) { |
| 4085 | current = current->AsBranch()->comparison(); |
| 4086 | } |
| 4087 | |
| 4088 | if (current->HasUnknownSideEffects()) { |
| 4089 | return; |
| 4090 | } |
| 4091 | } |
| 4092 | } |
| 4093 | |
| 4094 | if (first_stack_overflow_instr != NULL) { |
| 4095 | first_stack_overflow_instr->RemoveFromGraph(); |
| 4096 | } |
| 4097 | } |
| 4098 | |
| 4099 | } // namespace dart |
| 4100 | |