| 1 | // Copyright (c) 2019, the Dart project authors. Please see the AUTHORS file |
| 2 | // for details. All rights reserved. Use of this source code is governed by a |
| 3 | // BSD-style license that can be found in the LICENSE file. |
| 4 | |
| 5 | #include "vm/globals.h" // Needed here to get TARGET_ARCH_ARM. |
| 6 | #if defined(TARGET_ARCH_ARM) |
| 7 | |
| 8 | #define SHOULD_NOT_INCLUDE_RUNTIME |
| 9 | |
| 10 | #include "vm/class_id.h" |
| 11 | #include "vm/compiler/asm_intrinsifier.h" |
| 12 | #include "vm/compiler/assembler/assembler.h" |
| 13 | |
| 14 | namespace dart { |
| 15 | namespace compiler { |
| 16 | |
| 17 | // When entering intrinsics code: |
| 18 | // R4: Arguments descriptor |
| 19 | // LR: Return address |
| 20 | // The R4 register can be destroyed only if there is no slow-path, i.e. |
| 21 | // if the intrinsified method always executes a return. |
| 22 | // The FP register should not be modified, because it is used by the profiler. |
| 23 | // The PP and THR registers (see constants_arm.h) must be preserved. |
| 24 | |
| 25 | #define __ assembler-> |
| 26 | |
| 27 | intptr_t AsmIntrinsifier::ParameterSlotFromSp() { |
| 28 | return -1; |
| 29 | } |
| 30 | |
| 31 | static bool IsABIPreservedRegister(Register reg) { |
| 32 | return ((1 << reg) & kAbiPreservedCpuRegs) != 0; |
| 33 | } |
| 34 | |
| 35 | void AsmIntrinsifier::IntrinsicCallPrologue(Assembler* assembler) { |
| 36 | ASSERT(IsABIPreservedRegister(CODE_REG)); |
| 37 | ASSERT(IsABIPreservedRegister(ARGS_DESC_REG)); |
| 38 | ASSERT(IsABIPreservedRegister(CALLEE_SAVED_TEMP)); |
| 39 | |
| 40 | // Save LR by moving it to a callee saved temporary register. |
| 41 | assembler->Comment("IntrinsicCallPrologue" ); |
| 42 | assembler->mov(CALLEE_SAVED_TEMP, Operand(LR)); |
| 43 | } |
| 44 | |
| 45 | void AsmIntrinsifier::IntrinsicCallEpilogue(Assembler* assembler) { |
| 46 | // Restore LR. |
| 47 | assembler->Comment("IntrinsicCallEpilogue" ); |
| 48 | assembler->mov(LR, Operand(CALLEE_SAVED_TEMP)); |
| 49 | } |
| 50 | |
| 51 | // Allocate a GrowableObjectArray:: using the backing array specified. |
| 52 | // On stack: type argument (+1), data (+0). |
| 53 | void AsmIntrinsifier::GrowableArray_Allocate(Assembler* assembler, |
| 54 | Label* normal_ir_body) { |
| 55 | // The newly allocated object is returned in R0. |
| 56 | const intptr_t kTypeArgumentsOffset = 1 * target::kWordSize; |
| 57 | const intptr_t kArrayOffset = 0 * target::kWordSize; |
| 58 | |
| 59 | // Try allocating in new space. |
| 60 | const Class& cls = GrowableObjectArrayClass(); |
| 61 | __ TryAllocate(cls, normal_ir_body, R0, R1); |
| 62 | |
| 63 | // Store backing array object in growable array object. |
| 64 | __ ldr(R1, Address(SP, kArrayOffset)); // Data argument. |
| 65 | // R0 is new, no barrier needed. |
| 66 | __ StoreIntoObjectNoBarrier( |
| 67 | R0, FieldAddress(R0, target::GrowableObjectArray::data_offset()), R1); |
| 68 | |
| 69 | // R0: new growable array object start as a tagged pointer. |
| 70 | // Store the type argument field in the growable array object. |
| 71 | __ ldr(R1, Address(SP, kTypeArgumentsOffset)); // Type argument. |
| 72 | __ StoreIntoObjectNoBarrier( |
| 73 | R0, |
| 74 | FieldAddress(R0, target::GrowableObjectArray::type_arguments_offset()), |
| 75 | R1); |
| 76 | |
| 77 | // Set the length field in the growable array object to 0. |
| 78 | __ LoadImmediate(R1, 0); |
| 79 | __ StoreIntoObjectNoBarrier( |
| 80 | R0, FieldAddress(R0, target::GrowableObjectArray::length_offset()), R1); |
| 81 | __ Ret(); // Returns the newly allocated object in R0. |
| 82 | |
| 83 | __ Bind(normal_ir_body); |
| 84 | } |
| 85 | |
| 86 | #define TYPED_ARRAY_ALLOCATION(cid, max_len, scale_shift) \ |
| 87 | Label fall_through; \ |
| 88 | const intptr_t kArrayLengthStackOffset = 0 * target::kWordSize; \ |
| 89 | NOT_IN_PRODUCT(__ LoadAllocationStatsAddress(R2, cid)); \ |
| 90 | NOT_IN_PRODUCT(__ MaybeTraceAllocation(R2, normal_ir_body)); \ |
| 91 | __ ldr(R2, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \ |
| 92 | /* Check that length is a positive Smi. */ \ |
| 93 | /* R2: requested array length argument. */ \ |
| 94 | __ tst(R2, Operand(kSmiTagMask)); \ |
| 95 | __ b(normal_ir_body, NE); \ |
| 96 | __ CompareImmediate(R2, 0); \ |
| 97 | __ b(normal_ir_body, LT); \ |
| 98 | __ SmiUntag(R2); \ |
| 99 | /* Check for maximum allowed length. */ \ |
| 100 | /* R2: untagged array length. */ \ |
| 101 | __ CompareImmediate(R2, max_len); \ |
| 102 | __ b(normal_ir_body, GT); \ |
| 103 | __ mov(R2, Operand(R2, LSL, scale_shift)); \ |
| 104 | const intptr_t fixed_size_plus_alignment_padding = \ |
| 105 | target::TypedData::InstanceSize() + \ |
| 106 | target::ObjectAlignment::kObjectAlignment - 1; \ |
| 107 | __ AddImmediate(R2, fixed_size_plus_alignment_padding); \ |
| 108 | __ bic(R2, R2, Operand(target::ObjectAlignment::kObjectAlignment - 1)); \ |
| 109 | __ ldr(R0, Address(THR, target::Thread::top_offset())); \ |
| 110 | \ |
| 111 | /* R2: allocation size. */ \ |
| 112 | __ adds(R1, R0, Operand(R2)); \ |
| 113 | __ b(normal_ir_body, CS); /* Fail on unsigned overflow. */ \ |
| 114 | \ |
| 115 | /* Check if the allocation fits into the remaining space. */ \ |
| 116 | /* R0: potential new object start. */ \ |
| 117 | /* R1: potential next object start. */ \ |
| 118 | /* R2: allocation size. */ \ |
| 119 | __ ldr(IP, Address(THR, target::Thread::end_offset())); \ |
| 120 | __ cmp(R1, Operand(IP)); \ |
| 121 | __ b(normal_ir_body, CS); \ |
| 122 | \ |
| 123 | __ str(R1, Address(THR, target::Thread::top_offset())); \ |
| 124 | __ AddImmediate(R0, kHeapObjectTag); \ |
| 125 | /* Initialize the tags. */ \ |
| 126 | /* R0: new object start as a tagged pointer. */ \ |
| 127 | /* R1: new object end address. */ \ |
| 128 | /* R2: allocation size. */ \ |
| 129 | { \ |
| 130 | __ CompareImmediate(R2, target::ObjectLayout::kSizeTagMaxSizeTag); \ |
| 131 | __ mov(R3, \ |
| 132 | Operand(R2, LSL, \ |
| 133 | target::ObjectLayout::kTagBitsSizeTagPos - \ |
| 134 | target::ObjectAlignment::kObjectAlignmentLog2), \ |
| 135 | LS); \ |
| 136 | __ mov(R3, Operand(0), HI); \ |
| 137 | \ |
| 138 | /* Get the class index and insert it into the tags. */ \ |
| 139 | uint32_t tags = \ |
| 140 | target::MakeTagWordForNewSpaceObject(cid, /*instance_size=*/0); \ |
| 141 | __ LoadImmediate(TMP, tags); \ |
| 142 | __ orr(R3, R3, Operand(TMP)); \ |
| 143 | __ str(R3, FieldAddress(R0, target::Object::tags_offset())); /* Tags. */ \ |
| 144 | } \ |
| 145 | /* Set the length field. */ \ |
| 146 | /* R0: new object start as a tagged pointer. */ \ |
| 147 | /* R1: new object end address. */ \ |
| 148 | /* R2: allocation size. */ \ |
| 149 | __ ldr(R3, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \ |
| 150 | __ StoreIntoObjectNoBarrier( \ |
| 151 | R0, FieldAddress(R0, target::TypedDataBase::length_offset()), R3); \ |
| 152 | /* Initialize all array elements to 0. */ \ |
| 153 | /* R0: new object start as a tagged pointer. */ \ |
| 154 | /* R1: new object end address. */ \ |
| 155 | /* R2: allocation size. */ \ |
| 156 | /* R3: iterator which initially points to the start of the variable */ \ |
| 157 | /* R8, R9: zero. */ \ |
| 158 | /* data area to be initialized. */ \ |
| 159 | __ LoadImmediate(R8, 0); \ |
| 160 | __ mov(R9, Operand(R8)); \ |
| 161 | __ AddImmediate(R3, R0, target::TypedData::InstanceSize() - 1); \ |
| 162 | __ StoreInternalPointer( \ |
| 163 | R0, FieldAddress(R0, target::TypedDataBase::data_field_offset()), R3); \ |
| 164 | Label init_loop; \ |
| 165 | __ Bind(&init_loop); \ |
| 166 | __ AddImmediate(R3, 2 * target::kWordSize); \ |
| 167 | __ cmp(R3, Operand(R1)); \ |
| 168 | __ strd(R8, R9, R3, -2 * target::kWordSize, LS); \ |
| 169 | __ b(&init_loop, CC); \ |
| 170 | __ str(R8, Address(R3, -2 * target::kWordSize), HI); \ |
| 171 | \ |
| 172 | __ Ret(); \ |
| 173 | __ Bind(normal_ir_body); |
| 174 | |
| 175 | static int GetScaleFactor(intptr_t size) { |
| 176 | switch (size) { |
| 177 | case 1: |
| 178 | return 0; |
| 179 | case 2: |
| 180 | return 1; |
| 181 | case 4: |
| 182 | return 2; |
| 183 | case 8: |
| 184 | return 3; |
| 185 | case 16: |
| 186 | return 4; |
| 187 | } |
| 188 | UNREACHABLE(); |
| 189 | return -1; |
| 190 | } |
| 191 | |
| 192 | #define TYPED_DATA_ALLOCATOR(clazz) \ |
| 193 | void AsmIntrinsifier::TypedData_##clazz##_factory(Assembler* assembler, \ |
| 194 | Label* normal_ir_body) { \ |
| 195 | intptr_t size = TypedDataElementSizeInBytes(kTypedData##clazz##Cid); \ |
| 196 | intptr_t max_len = TypedDataMaxNewSpaceElements(kTypedData##clazz##Cid); \ |
| 197 | int shift = GetScaleFactor(size); \ |
| 198 | TYPED_ARRAY_ALLOCATION(kTypedData##clazz##Cid, max_len, shift); \ |
| 199 | } |
| 200 | CLASS_LIST_TYPED_DATA(TYPED_DATA_ALLOCATOR) |
| 201 | #undef TYPED_DATA_ALLOCATOR |
| 202 | |
| 203 | // Loads args from stack into R0 and R1 |
| 204 | // Tests if they are smis, jumps to label not_smi if not. |
| 205 | static void TestBothArgumentsSmis(Assembler* assembler, Label* not_smi) { |
| 206 | __ ldr(R0, Address(SP, +0 * target::kWordSize)); |
| 207 | __ ldr(R1, Address(SP, +1 * target::kWordSize)); |
| 208 | __ orr(TMP, R0, Operand(R1)); |
| 209 | __ tst(TMP, Operand(kSmiTagMask)); |
| 210 | __ b(not_smi, NE); |
| 211 | } |
| 212 | |
| 213 | void AsmIntrinsifier::Integer_addFromInteger(Assembler* assembler, |
| 214 | Label* normal_ir_body) { |
| 215 | TestBothArgumentsSmis(assembler, normal_ir_body); // Checks two smis. |
| 216 | __ adds(R0, R0, Operand(R1)); // Adds. |
| 217 | __ bx(LR, VC); // Return if no overflow. |
| 218 | // Otherwise fall through. |
| 219 | __ Bind(normal_ir_body); |
| 220 | } |
| 221 | |
| 222 | void AsmIntrinsifier::Integer_add(Assembler* assembler, Label* normal_ir_body) { |
| 223 | Integer_addFromInteger(assembler, normal_ir_body); |
| 224 | } |
| 225 | |
| 226 | void AsmIntrinsifier::Integer_subFromInteger(Assembler* assembler, |
| 227 | Label* normal_ir_body) { |
| 228 | TestBothArgumentsSmis(assembler, normal_ir_body); |
| 229 | __ subs(R0, R0, Operand(R1)); // Subtract. |
| 230 | __ bx(LR, VC); // Return if no overflow. |
| 231 | // Otherwise fall through. |
| 232 | __ Bind(normal_ir_body); |
| 233 | } |
| 234 | |
| 235 | void AsmIntrinsifier::Integer_sub(Assembler* assembler, Label* normal_ir_body) { |
| 236 | TestBothArgumentsSmis(assembler, normal_ir_body); |
| 237 | __ subs(R0, R1, Operand(R0)); // Subtract. |
| 238 | __ bx(LR, VC); // Return if no overflow. |
| 239 | // Otherwise fall through. |
| 240 | __ Bind(normal_ir_body); |
| 241 | } |
| 242 | |
| 243 | void AsmIntrinsifier::Integer_mulFromInteger(Assembler* assembler, |
| 244 | Label* normal_ir_body) { |
| 245 | TestBothArgumentsSmis(assembler, normal_ir_body); // checks two smis |
| 246 | __ SmiUntag(R0); // Untags R0. We only want result shifted by one. |
| 247 | __ smull(R0, IP, R0, R1); // IP:R0 <- R0 * R1. |
| 248 | __ cmp(IP, Operand(R0, ASR, 31)); |
| 249 | __ bx(LR, EQ); |
| 250 | __ Bind(normal_ir_body); // Fall through on overflow. |
| 251 | } |
| 252 | |
| 253 | void AsmIntrinsifier::Integer_mul(Assembler* assembler, Label* normal_ir_body) { |
| 254 | Integer_mulFromInteger(assembler, normal_ir_body); |
| 255 | } |
| 256 | |
| 257 | // Optimizations: |
| 258 | // - result is 0 if: |
| 259 | // - left is 0 |
| 260 | // - left equals right |
| 261 | // - result is left if |
| 262 | // - left > 0 && left < right |
| 263 | // R1: Tagged left (dividend). |
| 264 | // R0: Tagged right (divisor). |
| 265 | // Returns: |
| 266 | // R1: Untagged fallthrough result (remainder to be adjusted), or |
| 267 | // R0: Tagged return result (remainder). |
| 268 | static void EmitRemainderOperation(Assembler* assembler) { |
| 269 | Label modulo; |
| 270 | const Register left = R1; |
| 271 | const Register right = R0; |
| 272 | const Register result = R1; |
| 273 | const Register tmp = R2; |
| 274 | ASSERT(left == result); |
| 275 | |
| 276 | // Check for quick zero results. |
| 277 | __ cmp(left, Operand(0)); |
| 278 | __ mov(R0, Operand(0), EQ); |
| 279 | __ bx(LR, EQ); // left is 0? Return 0. |
| 280 | __ cmp(left, Operand(right)); |
| 281 | __ mov(R0, Operand(0), EQ); |
| 282 | __ bx(LR, EQ); // left == right? Return 0. |
| 283 | |
| 284 | // Check if result should be left. |
| 285 | __ cmp(left, Operand(0)); |
| 286 | __ b(&modulo, LT); |
| 287 | // left is positive. |
| 288 | __ cmp(left, Operand(right)); |
| 289 | // left is less than right, result is left. |
| 290 | __ mov(R0, Operand(left), LT); |
| 291 | __ bx(LR, LT); |
| 292 | |
| 293 | __ Bind(&modulo); |
| 294 | // result <- left - right * (left / right) |
| 295 | __ SmiUntag(left); |
| 296 | __ SmiUntag(right); |
| 297 | |
| 298 | __ IntegerDivide(tmp, left, right, D1, D0); |
| 299 | |
| 300 | __ mls(result, right, tmp, left); // result <- left - right * TMP |
| 301 | } |
| 302 | |
| 303 | // Implementation: |
| 304 | // res = left % right; |
| 305 | // if (res < 0) { |
| 306 | // if (right < 0) { |
| 307 | // res = res - right; |
| 308 | // } else { |
| 309 | // res = res + right; |
| 310 | // } |
| 311 | // } |
| 312 | void AsmIntrinsifier::Integer_moduloFromInteger(Assembler* assembler, |
| 313 | Label* normal_ir_body) { |
| 314 | if (!TargetCPUFeatures::can_divide()) { |
| 315 | return; |
| 316 | } |
| 317 | // Check to see if we have integer division |
| 318 | __ ldr(R1, Address(SP, +0 * target::kWordSize)); |
| 319 | __ ldr(R0, Address(SP, +1 * target::kWordSize)); |
| 320 | __ orr(TMP, R0, Operand(R1)); |
| 321 | __ tst(TMP, Operand(kSmiTagMask)); |
| 322 | __ b(normal_ir_body, NE); |
| 323 | // R1: Tagged left (dividend). |
| 324 | // R0: Tagged right (divisor). |
| 325 | // Check if modulo by zero -> exception thrown in main function. |
| 326 | __ cmp(R0, Operand(0)); |
| 327 | __ b(normal_ir_body, EQ); |
| 328 | EmitRemainderOperation(assembler); |
| 329 | // Untagged right in R0. Untagged remainder result in R1. |
| 330 | |
| 331 | __ cmp(R1, Operand(0)); |
| 332 | __ mov(R0, Operand(R1, LSL, 1), GE); // Tag and move result to R0. |
| 333 | __ bx(LR, GE); |
| 334 | |
| 335 | // Result is negative, adjust it. |
| 336 | __ cmp(R0, Operand(0)); |
| 337 | __ sub(R0, R1, Operand(R0), LT); |
| 338 | __ add(R0, R1, Operand(R0), GE); |
| 339 | __ SmiTag(R0); |
| 340 | __ Ret(); |
| 341 | |
| 342 | __ Bind(normal_ir_body); |
| 343 | } |
| 344 | |
| 345 | void AsmIntrinsifier::Integer_truncDivide(Assembler* assembler, |
| 346 | Label* normal_ir_body) { |
| 347 | if (!TargetCPUFeatures::can_divide()) { |
| 348 | return; |
| 349 | } |
| 350 | // Check to see if we have integer division |
| 351 | |
| 352 | TestBothArgumentsSmis(assembler, normal_ir_body); |
| 353 | __ cmp(R0, Operand(0)); |
| 354 | __ b(normal_ir_body, EQ); // If b is 0, fall through. |
| 355 | |
| 356 | __ SmiUntag(R0); |
| 357 | __ SmiUntag(R1); |
| 358 | |
| 359 | __ IntegerDivide(R0, R1, R0, D1, D0); |
| 360 | |
| 361 | // Check the corner case of dividing the 'MIN_SMI' with -1, in which case we |
| 362 | // cannot tag the result. |
| 363 | __ CompareImmediate(R0, 0x40000000); |
| 364 | __ SmiTag(R0, NE); // Not equal. Okay to tag and return. |
| 365 | __ bx(LR, NE); // Return. |
| 366 | __ Bind(normal_ir_body); |
| 367 | } |
| 368 | |
| 369 | void AsmIntrinsifier::Integer_negate(Assembler* assembler, |
| 370 | Label* normal_ir_body) { |
| 371 | __ ldr(R0, Address(SP, +0 * target::kWordSize)); // Grab first argument. |
| 372 | __ tst(R0, Operand(kSmiTagMask)); // Test for Smi. |
| 373 | __ b(normal_ir_body, NE); |
| 374 | __ rsbs(R0, R0, Operand(0)); // R0 is a Smi. R0 <- 0 - R0. |
| 375 | __ bx(LR, VC); // Return if there wasn't overflow, fall through otherwise. |
| 376 | // R0 is not a Smi. Fall through. |
| 377 | __ Bind(normal_ir_body); |
| 378 | } |
| 379 | |
| 380 | void AsmIntrinsifier::Integer_bitAndFromInteger(Assembler* assembler, |
| 381 | Label* normal_ir_body) { |
| 382 | TestBothArgumentsSmis(assembler, normal_ir_body); // checks two smis |
| 383 | __ and_(R0, R0, Operand(R1)); |
| 384 | |
| 385 | __ Ret(); |
| 386 | __ Bind(normal_ir_body); |
| 387 | } |
| 388 | |
| 389 | void AsmIntrinsifier::Integer_bitAnd(Assembler* assembler, |
| 390 | Label* normal_ir_body) { |
| 391 | Integer_bitAndFromInteger(assembler, normal_ir_body); |
| 392 | } |
| 393 | |
| 394 | void AsmIntrinsifier::Integer_bitOrFromInteger(Assembler* assembler, |
| 395 | Label* normal_ir_body) { |
| 396 | TestBothArgumentsSmis(assembler, normal_ir_body); // checks two smis |
| 397 | __ orr(R0, R0, Operand(R1)); |
| 398 | |
| 399 | __ Ret(); |
| 400 | __ Bind(normal_ir_body); |
| 401 | } |
| 402 | |
| 403 | void AsmIntrinsifier::Integer_bitOr(Assembler* assembler, |
| 404 | Label* normal_ir_body) { |
| 405 | Integer_bitOrFromInteger(assembler, normal_ir_body); |
| 406 | } |
| 407 | |
| 408 | void AsmIntrinsifier::Integer_bitXorFromInteger(Assembler* assembler, |
| 409 | Label* normal_ir_body) { |
| 410 | TestBothArgumentsSmis(assembler, normal_ir_body); // checks two smis |
| 411 | __ eor(R0, R0, Operand(R1)); |
| 412 | |
| 413 | __ Ret(); |
| 414 | __ Bind(normal_ir_body); |
| 415 | } |
| 416 | |
| 417 | void AsmIntrinsifier::Integer_bitXor(Assembler* assembler, |
| 418 | Label* normal_ir_body) { |
| 419 | Integer_bitXorFromInteger(assembler, normal_ir_body); |
| 420 | } |
| 421 | |
| 422 | void AsmIntrinsifier::Integer_shl(Assembler* assembler, Label* normal_ir_body) { |
| 423 | ASSERT(kSmiTagShift == 1); |
| 424 | ASSERT(kSmiTag == 0); |
| 425 | TestBothArgumentsSmis(assembler, normal_ir_body); |
| 426 | __ CompareImmediate(R0, target::ToRawSmi(target::kSmiBits)); |
| 427 | __ b(normal_ir_body, HI); |
| 428 | |
| 429 | __ SmiUntag(R0); |
| 430 | |
| 431 | // Check for overflow by shifting left and shifting back arithmetically. |
| 432 | // If the result is different from the original, there was overflow. |
| 433 | __ mov(IP, Operand(R1, LSL, R0)); |
| 434 | __ cmp(R1, Operand(IP, ASR, R0)); |
| 435 | |
| 436 | // No overflow, result in R0. |
| 437 | __ mov(R0, Operand(R1, LSL, R0), EQ); |
| 438 | __ bx(LR, EQ); |
| 439 | |
| 440 | // Arguments are Smi but the shift produced an overflow to Mint. |
| 441 | __ CompareImmediate(R1, 0); |
| 442 | __ b(normal_ir_body, LT); |
| 443 | __ SmiUntag(R1); |
| 444 | |
| 445 | // Pull off high bits that will be shifted off of R1 by making a mask |
| 446 | // ((1 << R0) - 1), shifting it to the left, masking R1, then shifting back. |
| 447 | // high bits = (((1 << R0) - 1) << (32 - R0)) & R1) >> (32 - R0) |
| 448 | // lo bits = R1 << R0 |
| 449 | __ LoadImmediate(R8, 1); |
| 450 | __ mov(R8, Operand(R8, LSL, R0)); // R8 <- 1 << R0 |
| 451 | __ sub(R8, R8, Operand(1)); // R8 <- R8 - 1 |
| 452 | __ rsb(R3, R0, Operand(32)); // R3 <- 32 - R0 |
| 453 | __ mov(R8, Operand(R8, LSL, R3)); // R8 <- R8 << R3 |
| 454 | __ and_(R8, R1, Operand(R8)); // R8 <- R8 & R1 |
| 455 | __ mov(R8, Operand(R8, LSR, R3)); // R8 <- R8 >> R3 |
| 456 | // Now R8 has the bits that fall off of R1 on a left shift. |
| 457 | __ mov(R1, Operand(R1, LSL, R0)); // R1 gets the low bits. |
| 458 | |
| 459 | const Class& mint_class = MintClass(); |
| 460 | __ TryAllocate(mint_class, normal_ir_body, R0, R2); |
| 461 | |
| 462 | __ str(R1, FieldAddress(R0, target::Mint::value_offset())); |
| 463 | __ str(R8, |
| 464 | FieldAddress(R0, target::Mint::value_offset() + target::kWordSize)); |
| 465 | __ Ret(); |
| 466 | __ Bind(normal_ir_body); |
| 467 | } |
| 468 | |
| 469 | static void Get64SmiOrMint(Assembler* assembler, |
| 470 | Register res_hi, |
| 471 | Register res_lo, |
| 472 | Register reg, |
| 473 | Label* not_smi_or_mint) { |
| 474 | Label not_smi, done; |
| 475 | __ tst(reg, Operand(kSmiTagMask)); |
| 476 | __ b(¬_smi, NE); |
| 477 | __ SmiUntag(reg); |
| 478 | |
| 479 | // Sign extend to 64 bit |
| 480 | __ mov(res_lo, Operand(reg)); |
| 481 | __ mov(res_hi, Operand(res_lo, ASR, 31)); |
| 482 | __ b(&done); |
| 483 | |
| 484 | __ Bind(¬_smi); |
| 485 | __ CompareClassId(reg, kMintCid, res_lo); |
| 486 | __ b(not_smi_or_mint, NE); |
| 487 | |
| 488 | // Mint. |
| 489 | __ ldr(res_lo, FieldAddress(reg, target::Mint::value_offset())); |
| 490 | __ ldr(res_hi, |
| 491 | FieldAddress(reg, target::Mint::value_offset() + target::kWordSize)); |
| 492 | __ Bind(&done); |
| 493 | } |
| 494 | |
| 495 | static void CompareIntegers(Assembler* assembler, |
| 496 | Label* normal_ir_body, |
| 497 | Condition true_condition) { |
| 498 | Label try_mint_smi, is_true, is_false, drop_two_fall_through, fall_through; |
| 499 | TestBothArgumentsSmis(assembler, &try_mint_smi); |
| 500 | // R0 contains the right argument. R1 contains left argument |
| 501 | |
| 502 | __ cmp(R1, Operand(R0)); |
| 503 | __ b(&is_true, true_condition); |
| 504 | __ Bind(&is_false); |
| 505 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
| 506 | __ Ret(); |
| 507 | __ Bind(&is_true); |
| 508 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
| 509 | __ Ret(); |
| 510 | |
| 511 | // 64-bit comparison |
| 512 | Condition hi_true_cond, hi_false_cond, lo_false_cond; |
| 513 | switch (true_condition) { |
| 514 | case LT: |
| 515 | case LE: |
| 516 | hi_true_cond = LT; |
| 517 | hi_false_cond = GT; |
| 518 | lo_false_cond = (true_condition == LT) ? CS : HI; |
| 519 | break; |
| 520 | case GT: |
| 521 | case GE: |
| 522 | hi_true_cond = GT; |
| 523 | hi_false_cond = LT; |
| 524 | lo_false_cond = (true_condition == GT) ? LS : CC; |
| 525 | break; |
| 526 | default: |
| 527 | UNREACHABLE(); |
| 528 | hi_true_cond = hi_false_cond = lo_false_cond = VS; |
| 529 | } |
| 530 | |
| 531 | __ Bind(&try_mint_smi); |
| 532 | // Get left as 64 bit integer. |
| 533 | Get64SmiOrMint(assembler, R3, R2, R1, normal_ir_body); |
| 534 | // Get right as 64 bit integer. |
| 535 | Get64SmiOrMint(assembler, R1, R8, R0, normal_ir_body); |
| 536 | // R3: left high. |
| 537 | // R2: left low. |
| 538 | // R1: right high. |
| 539 | // R8: right low. |
| 540 | |
| 541 | __ cmp(R3, Operand(R1)); // Compare left hi, right high. |
| 542 | __ b(&is_false, hi_false_cond); |
| 543 | __ b(&is_true, hi_true_cond); |
| 544 | __ cmp(R2, Operand(R8)); // Compare left lo, right lo. |
| 545 | __ b(&is_false, lo_false_cond); |
| 546 | // Else is true. |
| 547 | __ b(&is_true); |
| 548 | |
| 549 | __ Bind(normal_ir_body); |
| 550 | } |
| 551 | |
| 552 | void AsmIntrinsifier::Integer_greaterThanFromInt(Assembler* assembler, |
| 553 | Label* normal_ir_body) { |
| 554 | CompareIntegers(assembler, normal_ir_body, LT); |
| 555 | } |
| 556 | |
| 557 | void AsmIntrinsifier::Integer_lessThan(Assembler* assembler, |
| 558 | Label* normal_ir_body) { |
| 559 | Integer_greaterThanFromInt(assembler, normal_ir_body); |
| 560 | } |
| 561 | |
| 562 | void AsmIntrinsifier::Integer_greaterThan(Assembler* assembler, |
| 563 | Label* normal_ir_body) { |
| 564 | CompareIntegers(assembler, normal_ir_body, GT); |
| 565 | } |
| 566 | |
| 567 | void AsmIntrinsifier::Integer_lessEqualThan(Assembler* assembler, |
| 568 | Label* normal_ir_body) { |
| 569 | CompareIntegers(assembler, normal_ir_body, LE); |
| 570 | } |
| 571 | |
| 572 | void AsmIntrinsifier::Integer_greaterEqualThan(Assembler* assembler, |
| 573 | Label* normal_ir_body) { |
| 574 | CompareIntegers(assembler, normal_ir_body, GE); |
| 575 | } |
| 576 | |
| 577 | // This is called for Smi and Mint receivers. The right argument |
| 578 | // can be Smi, Mint or double. |
| 579 | void AsmIntrinsifier::Integer_equalToInteger(Assembler* assembler, |
| 580 | Label* normal_ir_body) { |
| 581 | Label true_label, check_for_mint; |
| 582 | // For integer receiver '===' check first. |
| 583 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 584 | __ ldr(R1, Address(SP, 1 * target::kWordSize)); |
| 585 | __ cmp(R0, Operand(R1)); |
| 586 | __ b(&true_label, EQ); |
| 587 | |
| 588 | __ orr(R2, R0, Operand(R1)); |
| 589 | __ tst(R2, Operand(kSmiTagMask)); |
| 590 | __ b(&check_for_mint, NE); // If R0 or R1 is not a smi do Mint checks. |
| 591 | |
| 592 | // Both arguments are smi, '===' is good enough. |
| 593 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
| 594 | __ Ret(); |
| 595 | __ Bind(&true_label); |
| 596 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
| 597 | __ Ret(); |
| 598 | |
| 599 | // At least one of the arguments was not Smi. |
| 600 | Label receiver_not_smi; |
| 601 | __ Bind(&check_for_mint); |
| 602 | |
| 603 | __ tst(R1, Operand(kSmiTagMask)); // Check receiver. |
| 604 | __ b(&receiver_not_smi, NE); |
| 605 | |
| 606 | // Left (receiver) is Smi, return false if right is not Double. |
| 607 | // Note that an instance of Mint never contains a value that can be |
| 608 | // represented by Smi. |
| 609 | |
| 610 | __ CompareClassId(R0, kDoubleCid, R2); |
| 611 | __ b(normal_ir_body, EQ); |
| 612 | __ LoadObject(R0, |
| 613 | CastHandle<Object>(FalseObject())); // Smi == Mint -> false. |
| 614 | __ Ret(); |
| 615 | |
| 616 | __ Bind(&receiver_not_smi); |
| 617 | // R1:: receiver. |
| 618 | |
| 619 | __ CompareClassId(R1, kMintCid, R2); |
| 620 | __ b(normal_ir_body, NE); |
| 621 | // Receiver is Mint, return false if right is Smi. |
| 622 | __ tst(R0, Operand(kSmiTagMask)); |
| 623 | __ LoadObject(R0, CastHandle<Object>(FalseObject()), EQ); |
| 624 | __ bx(LR, EQ); |
| 625 | // TODO(srdjan): Implement Mint == Mint comparison. |
| 626 | |
| 627 | __ Bind(normal_ir_body); |
| 628 | } |
| 629 | |
| 630 | void AsmIntrinsifier::Integer_equal(Assembler* assembler, |
| 631 | Label* normal_ir_body) { |
| 632 | Integer_equalToInteger(assembler, normal_ir_body); |
| 633 | } |
| 634 | |
| 635 | void AsmIntrinsifier::Integer_sar(Assembler* assembler, Label* normal_ir_body) { |
| 636 | TestBothArgumentsSmis(assembler, normal_ir_body); |
| 637 | // Shift amount in R0. Value to shift in R1. |
| 638 | |
| 639 | // Fall through if shift amount is negative. |
| 640 | __ SmiUntag(R0); |
| 641 | __ CompareImmediate(R0, 0); |
| 642 | __ b(normal_ir_body, LT); |
| 643 | |
| 644 | // If shift amount is bigger than 31, set to 31. |
| 645 | __ CompareImmediate(R0, 0x1F); |
| 646 | __ LoadImmediate(R0, 0x1F, GT); |
| 647 | __ SmiUntag(R1); |
| 648 | __ mov(R0, Operand(R1, ASR, R0)); |
| 649 | __ SmiTag(R0); |
| 650 | __ Ret(); |
| 651 | __ Bind(normal_ir_body); |
| 652 | } |
| 653 | |
| 654 | void AsmIntrinsifier::Smi_bitNegate(Assembler* assembler, |
| 655 | Label* normal_ir_body) { |
| 656 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 657 | __ mvn(R0, Operand(R0)); |
| 658 | __ bic(R0, R0, Operand(kSmiTagMask)); // Remove inverted smi-tag. |
| 659 | __ Ret(); |
| 660 | } |
| 661 | |
| 662 | void AsmIntrinsifier::Smi_bitLength(Assembler* assembler, |
| 663 | Label* normal_ir_body) { |
| 664 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 665 | __ SmiUntag(R0); |
| 666 | // XOR with sign bit to complement bits if value is negative. |
| 667 | __ eor(R0, R0, Operand(R0, ASR, 31)); |
| 668 | __ clz(R0, R0); |
| 669 | __ rsb(R0, R0, Operand(32)); |
| 670 | __ SmiTag(R0); |
| 671 | __ Ret(); |
| 672 | } |
| 673 | |
| 674 | void AsmIntrinsifier::Smi_bitAndFromSmi(Assembler* assembler, |
| 675 | Label* normal_ir_body) { |
| 676 | Integer_bitAndFromInteger(assembler, normal_ir_body); |
| 677 | } |
| 678 | |
| 679 | void AsmIntrinsifier::Bigint_lsh(Assembler* assembler, Label* normal_ir_body) { |
| 680 | // static void _lsh(Uint32List x_digits, int x_used, int n, |
| 681 | // Uint32List r_digits) |
| 682 | |
| 683 | // R0 = x_used, R1 = x_digits, x_used > 0, x_used is Smi. |
| 684 | __ ldrd(R0, R1, SP, 2 * target::kWordSize); |
| 685 | // R2 = r_digits, R3 = n, n is Smi, n % _DIGIT_BITS != 0. |
| 686 | __ ldrd(R2, R3, SP, 0 * target::kWordSize); |
| 687 | __ SmiUntag(R3); |
| 688 | // R4 = n ~/ _DIGIT_BITS |
| 689 | __ Asr(R4, R3, Operand(5)); |
| 690 | // R8 = &x_digits[0] |
| 691 | __ add(R8, R1, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
| 692 | // R6 = &r_digits[1] |
| 693 | __ add(R6, R2, |
| 694 | Operand(target::TypedData::data_offset() - kHeapObjectTag + |
| 695 | kBytesPerBigIntDigit)); |
| 696 | // R2 = &x_digits[x_used] |
| 697 | __ add(R2, R8, Operand(R0, LSL, 1)); |
| 698 | // R6 = &r_digits[x_used + n ~/ _DIGIT_BITS + 1] |
| 699 | __ add(R4, R4, Operand(R0, ASR, 1)); |
| 700 | __ add(R6, R6, Operand(R4, LSL, 2)); |
| 701 | // R1 = n % _DIGIT_BITS |
| 702 | __ and_(R1, R3, Operand(31)); |
| 703 | // R0 = 32 - R1 |
| 704 | __ rsb(R0, R1, Operand(32)); |
| 705 | __ mov(R9, Operand(0)); |
| 706 | Label loop; |
| 707 | __ Bind(&loop); |
| 708 | __ ldr(R4, Address(R2, -kBytesPerBigIntDigit, Address::PreIndex)); |
| 709 | __ orr(R9, R9, Operand(R4, LSR, R0)); |
| 710 | __ str(R9, Address(R6, -kBytesPerBigIntDigit, Address::PreIndex)); |
| 711 | __ mov(R9, Operand(R4, LSL, R1)); |
| 712 | __ teq(R2, Operand(R8)); |
| 713 | __ b(&loop, NE); |
| 714 | __ str(R9, Address(R6, -kBytesPerBigIntDigit, Address::PreIndex)); |
| 715 | __ LoadObject(R0, NullObject()); |
| 716 | __ Ret(); |
| 717 | } |
| 718 | |
| 719 | void AsmIntrinsifier::Bigint_rsh(Assembler* assembler, Label* normal_ir_body) { |
| 720 | // static void _lsh(Uint32List x_digits, int x_used, int n, |
| 721 | // Uint32List r_digits) |
| 722 | |
| 723 | // R0 = x_used, R1 = x_digits, x_used > 0, x_used is Smi. |
| 724 | __ ldrd(R0, R1, SP, 2 * target::kWordSize); |
| 725 | // R2 = r_digits, R3 = n, n is Smi, n % _DIGIT_BITS != 0. |
| 726 | __ ldrd(R2, R3, SP, 0 * target::kWordSize); |
| 727 | __ SmiUntag(R3); |
| 728 | // R4 = n ~/ _DIGIT_BITS |
| 729 | __ Asr(R4, R3, Operand(5)); |
| 730 | // R6 = &r_digits[0] |
| 731 | __ add(R6, R2, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
| 732 | // R2 = &x_digits[n ~/ _DIGIT_BITS] |
| 733 | __ add(R2, R1, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
| 734 | __ add(R2, R2, Operand(R4, LSL, 2)); |
| 735 | // R8 = &r_digits[x_used - n ~/ _DIGIT_BITS - 1] |
| 736 | __ add(R4, R4, Operand(1)); |
| 737 | __ rsb(R4, R4, Operand(R0, ASR, 1)); |
| 738 | __ add(R8, R6, Operand(R4, LSL, 2)); |
| 739 | // R1 = n % _DIGIT_BITS |
| 740 | __ and_(R1, R3, Operand(31)); |
| 741 | // R0 = 32 - R1 |
| 742 | __ rsb(R0, R1, Operand(32)); |
| 743 | // R9 = x_digits[n ~/ _DIGIT_BITS] >> (n % _DIGIT_BITS) |
| 744 | __ ldr(R9, Address(R2, kBytesPerBigIntDigit, Address::PostIndex)); |
| 745 | __ mov(R9, Operand(R9, LSR, R1)); |
| 746 | Label loop_entry; |
| 747 | __ b(&loop_entry); |
| 748 | Label loop; |
| 749 | __ Bind(&loop); |
| 750 | __ ldr(R4, Address(R2, kBytesPerBigIntDigit, Address::PostIndex)); |
| 751 | __ orr(R9, R9, Operand(R4, LSL, R0)); |
| 752 | __ str(R9, Address(R6, kBytesPerBigIntDigit, Address::PostIndex)); |
| 753 | __ mov(R9, Operand(R4, LSR, R1)); |
| 754 | __ Bind(&loop_entry); |
| 755 | __ teq(R6, Operand(R8)); |
| 756 | __ b(&loop, NE); |
| 757 | __ str(R9, Address(R6, 0)); |
| 758 | __ LoadObject(R0, NullObject()); |
| 759 | __ Ret(); |
| 760 | } |
| 761 | |
| 762 | void AsmIntrinsifier::Bigint_absAdd(Assembler* assembler, |
| 763 | Label* normal_ir_body) { |
| 764 | // static void _absAdd(Uint32List digits, int used, |
| 765 | // Uint32List a_digits, int a_used, |
| 766 | // Uint32List r_digits) |
| 767 | |
| 768 | // R0 = used, R1 = digits |
| 769 | __ ldrd(R0, R1, SP, 3 * target::kWordSize); |
| 770 | // R1 = &digits[0] |
| 771 | __ add(R1, R1, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
| 772 | |
| 773 | // R2 = a_used, R3 = a_digits |
| 774 | __ ldrd(R2, R3, SP, 1 * target::kWordSize); |
| 775 | // R3 = &a_digits[0] |
| 776 | __ add(R3, R3, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
| 777 | |
| 778 | // R8 = r_digits |
| 779 | __ ldr(R8, Address(SP, 0 * target::kWordSize)); |
| 780 | // R8 = &r_digits[0] |
| 781 | __ add(R8, R8, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
| 782 | |
| 783 | // R2 = &digits[a_used >> 1], a_used is Smi. |
| 784 | __ add(R2, R1, Operand(R2, LSL, 1)); |
| 785 | |
| 786 | // R6 = &digits[used >> 1], used is Smi. |
| 787 | __ add(R6, R1, Operand(R0, LSL, 1)); |
| 788 | |
| 789 | __ adds(R4, R4, Operand(0)); // carry flag = 0 |
| 790 | Label add_loop; |
| 791 | __ Bind(&add_loop); |
| 792 | // Loop a_used times, a_used > 0. |
| 793 | __ ldr(R4, Address(R1, kBytesPerBigIntDigit, Address::PostIndex)); |
| 794 | __ ldr(R9, Address(R3, kBytesPerBigIntDigit, Address::PostIndex)); |
| 795 | __ adcs(R4, R4, Operand(R9)); |
| 796 | __ teq(R1, Operand(R2)); // Does not affect carry flag. |
| 797 | __ str(R4, Address(R8, kBytesPerBigIntDigit, Address::PostIndex)); |
| 798 | __ b(&add_loop, NE); |
| 799 | |
| 800 | Label last_carry; |
| 801 | __ teq(R1, Operand(R6)); // Does not affect carry flag. |
| 802 | __ b(&last_carry, EQ); // If used - a_used == 0. |
| 803 | |
| 804 | Label carry_loop; |
| 805 | __ Bind(&carry_loop); |
| 806 | // Loop used - a_used times, used - a_used > 0. |
| 807 | __ ldr(R4, Address(R1, kBytesPerBigIntDigit, Address::PostIndex)); |
| 808 | __ adcs(R4, R4, Operand(0)); |
| 809 | __ teq(R1, Operand(R6)); // Does not affect carry flag. |
| 810 | __ str(R4, Address(R8, kBytesPerBigIntDigit, Address::PostIndex)); |
| 811 | __ b(&carry_loop, NE); |
| 812 | |
| 813 | __ Bind(&last_carry); |
| 814 | __ mov(R4, Operand(0)); |
| 815 | __ adc(R4, R4, Operand(0)); |
| 816 | __ str(R4, Address(R8, 0)); |
| 817 | |
| 818 | __ LoadObject(R0, NullObject()); |
| 819 | __ Ret(); |
| 820 | } |
| 821 | |
| 822 | void AsmIntrinsifier::Bigint_absSub(Assembler* assembler, |
| 823 | Label* normal_ir_body) { |
| 824 | // static void _absSub(Uint32List digits, int used, |
| 825 | // Uint32List a_digits, int a_used, |
| 826 | // Uint32List r_digits) |
| 827 | |
| 828 | // R0 = used, R1 = digits |
| 829 | __ ldrd(R0, R1, SP, 3 * target::kWordSize); |
| 830 | // R1 = &digits[0] |
| 831 | __ add(R1, R1, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
| 832 | |
| 833 | // R2 = a_used, R3 = a_digits |
| 834 | __ ldrd(R2, R3, SP, 1 * target::kWordSize); |
| 835 | // R3 = &a_digits[0] |
| 836 | __ add(R3, R3, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
| 837 | |
| 838 | // R8 = r_digits |
| 839 | __ ldr(R8, Address(SP, 0 * target::kWordSize)); |
| 840 | // R8 = &r_digits[0] |
| 841 | __ add(R8, R8, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
| 842 | |
| 843 | // R2 = &digits[a_used >> 1], a_used is Smi. |
| 844 | __ add(R2, R1, Operand(R2, LSL, 1)); |
| 845 | |
| 846 | // R6 = &digits[used >> 1], used is Smi. |
| 847 | __ add(R6, R1, Operand(R0, LSL, 1)); |
| 848 | |
| 849 | __ subs(R4, R4, Operand(0)); // carry flag = 1 |
| 850 | Label sub_loop; |
| 851 | __ Bind(&sub_loop); |
| 852 | // Loop a_used times, a_used > 0. |
| 853 | __ ldr(R4, Address(R1, kBytesPerBigIntDigit, Address::PostIndex)); |
| 854 | __ ldr(R9, Address(R3, kBytesPerBigIntDigit, Address::PostIndex)); |
| 855 | __ sbcs(R4, R4, Operand(R9)); |
| 856 | __ teq(R1, Operand(R2)); // Does not affect carry flag. |
| 857 | __ str(R4, Address(R8, kBytesPerBigIntDigit, Address::PostIndex)); |
| 858 | __ b(&sub_loop, NE); |
| 859 | |
| 860 | Label done; |
| 861 | __ teq(R1, Operand(R6)); // Does not affect carry flag. |
| 862 | __ b(&done, EQ); // If used - a_used == 0. |
| 863 | |
| 864 | Label carry_loop; |
| 865 | __ Bind(&carry_loop); |
| 866 | // Loop used - a_used times, used - a_used > 0. |
| 867 | __ ldr(R4, Address(R1, kBytesPerBigIntDigit, Address::PostIndex)); |
| 868 | __ sbcs(R4, R4, Operand(0)); |
| 869 | __ teq(R1, Operand(R6)); // Does not affect carry flag. |
| 870 | __ str(R4, Address(R8, kBytesPerBigIntDigit, Address::PostIndex)); |
| 871 | __ b(&carry_loop, NE); |
| 872 | |
| 873 | __ Bind(&done); |
| 874 | __ LoadObject(R0, NullObject()); |
| 875 | __ Ret(); |
| 876 | } |
| 877 | |
| 878 | void AsmIntrinsifier::Bigint_mulAdd(Assembler* assembler, |
| 879 | Label* normal_ir_body) { |
| 880 | // Pseudo code: |
| 881 | // static int _mulAdd(Uint32List x_digits, int xi, |
| 882 | // Uint32List m_digits, int i, |
| 883 | // Uint32List a_digits, int j, int n) { |
| 884 | // uint32_t x = x_digits[xi >> 1]; // xi is Smi. |
| 885 | // if (x == 0 || n == 0) { |
| 886 | // return 1; |
| 887 | // } |
| 888 | // uint32_t* mip = &m_digits[i >> 1]; // i is Smi. |
| 889 | // uint32_t* ajp = &a_digits[j >> 1]; // j is Smi. |
| 890 | // uint32_t c = 0; |
| 891 | // SmiUntag(n); |
| 892 | // do { |
| 893 | // uint32_t mi = *mip++; |
| 894 | // uint32_t aj = *ajp; |
| 895 | // uint64_t t = x*mi + aj + c; // 32-bit * 32-bit -> 64-bit. |
| 896 | // *ajp++ = low32(t); |
| 897 | // c = high32(t); |
| 898 | // } while (--n > 0); |
| 899 | // while (c != 0) { |
| 900 | // uint64_t t = *ajp + c; |
| 901 | // *ajp++ = low32(t); |
| 902 | // c = high32(t); // c == 0 or 1. |
| 903 | // } |
| 904 | // return 1; |
| 905 | // } |
| 906 | |
| 907 | Label done; |
| 908 | // R3 = x, no_op if x == 0 |
| 909 | __ ldrd(R0, R1, SP, 5 * target::kWordSize); // R0 = xi as Smi, R1 = x_digits. |
| 910 | __ add(R1, R1, Operand(R0, LSL, 1)); |
| 911 | __ ldr(R3, FieldAddress(R1, target::TypedData::data_offset())); |
| 912 | __ tst(R3, Operand(R3)); |
| 913 | __ b(&done, EQ); |
| 914 | |
| 915 | // R8 = SmiUntag(n), no_op if n == 0 |
| 916 | __ ldr(R8, Address(SP, 0 * target::kWordSize)); |
| 917 | __ Asrs(R8, R8, Operand(kSmiTagSize)); |
| 918 | __ b(&done, EQ); |
| 919 | |
| 920 | // R4 = mip = &m_digits[i >> 1] |
| 921 | __ ldrd(R0, R1, SP, 3 * target::kWordSize); // R0 = i as Smi, R1 = m_digits. |
| 922 | __ add(R1, R1, Operand(R0, LSL, 1)); |
| 923 | __ add(R4, R1, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
| 924 | |
| 925 | // R9 = ajp = &a_digits[j >> 1] |
| 926 | __ ldrd(R0, R1, SP, 1 * target::kWordSize); // R0 = j as Smi, R1 = a_digits. |
| 927 | __ add(R1, R1, Operand(R0, LSL, 1)); |
| 928 | __ add(R9, R1, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
| 929 | |
| 930 | // R1 = c = 0 |
| 931 | __ mov(R1, Operand(0)); |
| 932 | |
| 933 | Label muladd_loop; |
| 934 | __ Bind(&muladd_loop); |
| 935 | // x: R3 |
| 936 | // mip: R4 |
| 937 | // ajp: R9 |
| 938 | // c: R1 |
| 939 | // n: R8 |
| 940 | |
| 941 | // uint32_t mi = *mip++ |
| 942 | __ ldr(R2, Address(R4, kBytesPerBigIntDigit, Address::PostIndex)); |
| 943 | |
| 944 | // uint32_t aj = *ajp |
| 945 | __ ldr(R0, Address(R9, 0)); |
| 946 | |
| 947 | // uint64_t t = x*mi + aj + c |
| 948 | __ umaal(R0, R1, R2, R3); // R1:R0 = R2*R3 + R1 + R0. |
| 949 | |
| 950 | // *ajp++ = low32(t) = R0 |
| 951 | __ str(R0, Address(R9, kBytesPerBigIntDigit, Address::PostIndex)); |
| 952 | |
| 953 | // c = high32(t) = R1 |
| 954 | |
| 955 | // while (--n > 0) |
| 956 | __ subs(R8, R8, Operand(1)); // --n |
| 957 | __ b(&muladd_loop, NE); |
| 958 | |
| 959 | __ tst(R1, Operand(R1)); |
| 960 | __ b(&done, EQ); |
| 961 | |
| 962 | // *ajp++ += c |
| 963 | __ ldr(R0, Address(R9, 0)); |
| 964 | __ adds(R0, R0, Operand(R1)); |
| 965 | __ str(R0, Address(R9, kBytesPerBigIntDigit, Address::PostIndex)); |
| 966 | __ b(&done, CC); |
| 967 | |
| 968 | Label propagate_carry_loop; |
| 969 | __ Bind(&propagate_carry_loop); |
| 970 | __ ldr(R0, Address(R9, 0)); |
| 971 | __ adds(R0, R0, Operand(1)); |
| 972 | __ str(R0, Address(R9, kBytesPerBigIntDigit, Address::PostIndex)); |
| 973 | __ b(&propagate_carry_loop, CS); |
| 974 | |
| 975 | __ Bind(&done); |
| 976 | __ mov(R0, Operand(target::ToRawSmi(1))); // One digit processed. |
| 977 | __ Ret(); |
| 978 | } |
| 979 | |
| 980 | void AsmIntrinsifier::Bigint_sqrAdd(Assembler* assembler, |
| 981 | Label* normal_ir_body) { |
| 982 | // Pseudo code: |
| 983 | // static int _sqrAdd(Uint32List x_digits, int i, |
| 984 | // Uint32List a_digits, int used) { |
| 985 | // uint32_t* xip = &x_digits[i >> 1]; // i is Smi. |
| 986 | // uint32_t x = *xip++; |
| 987 | // if (x == 0) return 1; |
| 988 | // uint32_t* ajp = &a_digits[i]; // j == 2*i, i is Smi. |
| 989 | // uint32_t aj = *ajp; |
| 990 | // uint64_t t = x*x + aj; |
| 991 | // *ajp++ = low32(t); |
| 992 | // uint64_t c = high32(t); |
| 993 | // int n = ((used - i) >> 1) - 1; // used and i are Smi. |
| 994 | // while (--n >= 0) { |
| 995 | // uint32_t xi = *xip++; |
| 996 | // uint32_t aj = *ajp; |
| 997 | // uint96_t t = 2*x*xi + aj + c; // 2-bit * 32-bit * 32-bit -> 65-bit. |
| 998 | // *ajp++ = low32(t); |
| 999 | // c = high64(t); // 33-bit. |
| 1000 | // } |
| 1001 | // uint32_t aj = *ajp; |
| 1002 | // uint64_t t = aj + c; // 32-bit + 33-bit -> 34-bit. |
| 1003 | // *ajp++ = low32(t); |
| 1004 | // *ajp = high32(t); |
| 1005 | // return 1; |
| 1006 | // } |
| 1007 | |
| 1008 | // The code has no bailout path, so we can use R6 (CODE_REG) freely. |
| 1009 | |
| 1010 | // R4 = xip = &x_digits[i >> 1] |
| 1011 | __ ldrd(R2, R3, SP, 2 * target::kWordSize); // R2 = i as Smi, R3 = x_digits |
| 1012 | __ add(R3, R3, Operand(R2, LSL, 1)); |
| 1013 | __ add(R4, R3, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
| 1014 | |
| 1015 | // R3 = x = *xip++, return if x == 0 |
| 1016 | Label x_zero; |
| 1017 | __ ldr(R3, Address(R4, kBytesPerBigIntDigit, Address::PostIndex)); |
| 1018 | __ tst(R3, Operand(R3)); |
| 1019 | __ b(&x_zero, EQ); |
| 1020 | |
| 1021 | // R6 = ajp = &a_digits[i] |
| 1022 | __ ldr(R1, Address(SP, 1 * target::kWordSize)); // a_digits |
| 1023 | __ add(R1, R1, Operand(R2, LSL, 2)); // j == 2*i, i is Smi. |
| 1024 | __ add(R6, R1, Operand(target::TypedData::data_offset() - kHeapObjectTag)); |
| 1025 | |
| 1026 | // R8:R0 = t = x*x + *ajp |
| 1027 | __ ldr(R0, Address(R6, 0)); |
| 1028 | __ mov(R8, Operand(0)); |
| 1029 | __ umaal(R0, R8, R3, R3); // R8:R0 = R3*R3 + R8 + R0. |
| 1030 | |
| 1031 | // *ajp++ = low32(t) = R0 |
| 1032 | __ str(R0, Address(R6, kBytesPerBigIntDigit, Address::PostIndex)); |
| 1033 | |
| 1034 | // R8 = low32(c) = high32(t) |
| 1035 | // R9 = high32(c) = 0 |
| 1036 | __ mov(R9, Operand(0)); |
| 1037 | |
| 1038 | // int n = used - i - 1; while (--n >= 0) ... |
| 1039 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); // used is Smi |
| 1040 | __ sub(TMP, R0, Operand(R2)); |
| 1041 | __ mov(R0, Operand(2)); // n = used - i - 2; if (n >= 0) ... while (--n >= 0) |
| 1042 | __ rsbs(TMP, R0, Operand(TMP, ASR, kSmiTagSize)); |
| 1043 | |
| 1044 | Label loop, done; |
| 1045 | __ b(&done, MI); |
| 1046 | |
| 1047 | __ Bind(&loop); |
| 1048 | // x: R3 |
| 1049 | // xip: R4 |
| 1050 | // ajp: R6 |
| 1051 | // c: R9:R8 |
| 1052 | // t: R2:R1:R0 (not live at loop entry) |
| 1053 | // n: TMP |
| 1054 | |
| 1055 | // uint32_t xi = *xip++ |
| 1056 | __ ldr(R2, Address(R4, kBytesPerBigIntDigit, Address::PostIndex)); |
| 1057 | |
| 1058 | // uint96_t t = R9:R8:R0 = 2*x*xi + aj + c |
| 1059 | __ umull(R0, R1, R2, R3); // R1:R0 = R2*R3. |
| 1060 | __ adds(R0, R0, Operand(R0)); |
| 1061 | __ adcs(R1, R1, Operand(R1)); |
| 1062 | __ mov(R2, Operand(0)); |
| 1063 | __ adc(R2, R2, Operand(0)); // R2:R1:R0 = 2*x*xi. |
| 1064 | __ adds(R0, R0, Operand(R8)); |
| 1065 | __ adcs(R1, R1, Operand(R9)); |
| 1066 | __ adc(R2, R2, Operand(0)); // R2:R1:R0 = 2*x*xi + c. |
| 1067 | __ ldr(R8, Address(R6, 0)); // R8 = aj = *ajp. |
| 1068 | __ adds(R0, R0, Operand(R8)); |
| 1069 | __ adcs(R8, R1, Operand(0)); |
| 1070 | __ adc(R9, R2, Operand(0)); // R9:R8:R0 = 2*x*xi + c + aj. |
| 1071 | |
| 1072 | // *ajp++ = low32(t) = R0 |
| 1073 | __ str(R0, Address(R6, kBytesPerBigIntDigit, Address::PostIndex)); |
| 1074 | |
| 1075 | // while (--n >= 0) |
| 1076 | __ subs(TMP, TMP, Operand(1)); // --n |
| 1077 | __ b(&loop, PL); |
| 1078 | |
| 1079 | __ Bind(&done); |
| 1080 | // uint32_t aj = *ajp |
| 1081 | __ ldr(R0, Address(R6, 0)); |
| 1082 | |
| 1083 | // uint64_t t = aj + c |
| 1084 | __ adds(R8, R8, Operand(R0)); |
| 1085 | __ adc(R9, R9, Operand(0)); |
| 1086 | |
| 1087 | // *ajp = low32(t) = R8 |
| 1088 | // *(ajp + 1) = high32(t) = R9 |
| 1089 | __ strd(R8, R9, R6, 0); |
| 1090 | |
| 1091 | __ Bind(&x_zero); |
| 1092 | __ mov(R0, Operand(target::ToRawSmi(1))); // One digit processed. |
| 1093 | __ Ret(); |
| 1094 | } |
| 1095 | |
| 1096 | void AsmIntrinsifier::Bigint_estimateQuotientDigit(Assembler* assembler, |
| 1097 | Label* normal_ir_body) { |
| 1098 | // No unsigned 64-bit / 32-bit divide instruction. |
| 1099 | } |
| 1100 | |
| 1101 | void AsmIntrinsifier::Montgomery_mulMod(Assembler* assembler, |
| 1102 | Label* normal_ir_body) { |
| 1103 | // Pseudo code: |
| 1104 | // static int _mulMod(Uint32List args, Uint32List digits, int i) { |
| 1105 | // uint32_t rho = args[_RHO]; // _RHO == 2. |
| 1106 | // uint32_t d = digits[i >> 1]; // i is Smi. |
| 1107 | // uint64_t t = rho*d; |
| 1108 | // args[_MU] = t mod DIGIT_BASE; // _MU == 4. |
| 1109 | // return 1; |
| 1110 | // } |
| 1111 | |
| 1112 | // R4 = args |
| 1113 | __ ldr(R4, Address(SP, 2 * target::kWordSize)); // args |
| 1114 | |
| 1115 | // R3 = rho = args[2] |
| 1116 | __ ldr(R3, FieldAddress(R4, target::TypedData::data_offset() + |
| 1117 | 2 * kBytesPerBigIntDigit)); |
| 1118 | |
| 1119 | // R2 = digits[i >> 1] |
| 1120 | __ ldrd(R0, R1, SP, 0 * target::kWordSize); // R0 = i as Smi, R1 = digits |
| 1121 | __ add(R1, R1, Operand(R0, LSL, 1)); |
| 1122 | __ ldr(R2, FieldAddress(R1, target::TypedData::data_offset())); |
| 1123 | |
| 1124 | // R1:R0 = t = rho*d |
| 1125 | __ umull(R0, R1, R2, R3); |
| 1126 | |
| 1127 | // args[4] = t mod DIGIT_BASE = low32(t) |
| 1128 | __ str(R0, FieldAddress(R4, target::TypedData::data_offset() + |
| 1129 | 4 * kBytesPerBigIntDigit)); |
| 1130 | |
| 1131 | __ mov(R0, Operand(target::ToRawSmi(1))); // One digit processed. |
| 1132 | __ Ret(); |
| 1133 | } |
| 1134 | |
| 1135 | // Check if the last argument is a double, jump to label 'is_smi' if smi |
| 1136 | // (easy to convert to double), otherwise jump to label 'not_double_smi', |
| 1137 | // Returns the last argument in R0. |
| 1138 | static void TestLastArgumentIsDouble(Assembler* assembler, |
| 1139 | Label* is_smi, |
| 1140 | Label* not_double_smi) { |
| 1141 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 1142 | __ tst(R0, Operand(kSmiTagMask)); |
| 1143 | __ b(is_smi, EQ); |
| 1144 | __ CompareClassId(R0, kDoubleCid, R1); |
| 1145 | __ b(not_double_smi, NE); |
| 1146 | // Fall through with Double in R0. |
| 1147 | } |
| 1148 | |
| 1149 | // Both arguments on stack, arg0 (left) is a double, arg1 (right) is of unknown |
| 1150 | // type. Return true or false object in the register R0. Any NaN argument |
| 1151 | // returns false. Any non-double arg1 causes control flow to fall through to the |
| 1152 | // slow case (compiled method body). |
| 1153 | static void CompareDoubles(Assembler* assembler, |
| 1154 | Label* normal_ir_body, |
| 1155 | Condition true_condition) { |
| 1156 | if (TargetCPUFeatures::vfp_supported()) { |
| 1157 | Label is_smi, double_op; |
| 1158 | |
| 1159 | TestLastArgumentIsDouble(assembler, &is_smi, normal_ir_body); |
| 1160 | // Both arguments are double, right operand is in R0. |
| 1161 | |
| 1162 | __ LoadDFromOffset(D1, R0, target::Double::value_offset() - kHeapObjectTag); |
| 1163 | __ Bind(&double_op); |
| 1164 | __ ldr(R0, Address(SP, 1 * target::kWordSize)); // Left argument. |
| 1165 | __ LoadDFromOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag); |
| 1166 | |
| 1167 | __ vcmpd(D0, D1); |
| 1168 | __ vmstat(); |
| 1169 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
| 1170 | // Return false if D0 or D1 was NaN before checking true condition. |
| 1171 | __ bx(LR, VS); |
| 1172 | __ LoadObject(R0, CastHandle<Object>(TrueObject()), true_condition); |
| 1173 | __ Ret(); |
| 1174 | |
| 1175 | __ Bind(&is_smi); // Convert R0 to a double. |
| 1176 | __ SmiUntag(R0); |
| 1177 | __ vmovsr(S0, R0); |
| 1178 | __ vcvtdi(D1, S0); |
| 1179 | __ b(&double_op); // Then do the comparison. |
| 1180 | __ Bind(normal_ir_body); |
| 1181 | } |
| 1182 | } |
| 1183 | |
| 1184 | void AsmIntrinsifier::Double_greaterThan(Assembler* assembler, |
| 1185 | Label* normal_ir_body) { |
| 1186 | CompareDoubles(assembler, normal_ir_body, HI); |
| 1187 | } |
| 1188 | |
| 1189 | void AsmIntrinsifier::Double_greaterEqualThan(Assembler* assembler, |
| 1190 | Label* normal_ir_body) { |
| 1191 | CompareDoubles(assembler, normal_ir_body, CS); |
| 1192 | } |
| 1193 | |
| 1194 | void AsmIntrinsifier::Double_lessThan(Assembler* assembler, |
| 1195 | Label* normal_ir_body) { |
| 1196 | CompareDoubles(assembler, normal_ir_body, CC); |
| 1197 | } |
| 1198 | |
| 1199 | void AsmIntrinsifier::Double_equal(Assembler* assembler, |
| 1200 | Label* normal_ir_body) { |
| 1201 | CompareDoubles(assembler, normal_ir_body, EQ); |
| 1202 | } |
| 1203 | |
| 1204 | void AsmIntrinsifier::Double_lessEqualThan(Assembler* assembler, |
| 1205 | Label* normal_ir_body) { |
| 1206 | CompareDoubles(assembler, normal_ir_body, LS); |
| 1207 | } |
| 1208 | |
| 1209 | // Expects left argument to be double (receiver). Right argument is unknown. |
| 1210 | // Both arguments are on stack. |
| 1211 | static void DoubleArithmeticOperations(Assembler* assembler, |
| 1212 | Label* normal_ir_body, |
| 1213 | Token::Kind kind) { |
| 1214 | if (TargetCPUFeatures::vfp_supported()) { |
| 1215 | Label is_smi, double_op; |
| 1216 | |
| 1217 | TestLastArgumentIsDouble(assembler, &is_smi, normal_ir_body); |
| 1218 | // Both arguments are double, right operand is in R0. |
| 1219 | __ LoadDFromOffset(D1, R0, target::Double::value_offset() - kHeapObjectTag); |
| 1220 | __ Bind(&double_op); |
| 1221 | __ ldr(R0, Address(SP, 1 * target::kWordSize)); // Left argument. |
| 1222 | __ LoadDFromOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag); |
| 1223 | switch (kind) { |
| 1224 | case Token::kADD: |
| 1225 | __ vaddd(D0, D0, D1); |
| 1226 | break; |
| 1227 | case Token::kSUB: |
| 1228 | __ vsubd(D0, D0, D1); |
| 1229 | break; |
| 1230 | case Token::kMUL: |
| 1231 | __ vmuld(D0, D0, D1); |
| 1232 | break; |
| 1233 | case Token::kDIV: |
| 1234 | __ vdivd(D0, D0, D1); |
| 1235 | break; |
| 1236 | default: |
| 1237 | UNREACHABLE(); |
| 1238 | } |
| 1239 | const Class& double_class = DoubleClass(); |
| 1240 | __ TryAllocate(double_class, normal_ir_body, R0, |
| 1241 | R1); // Result register. |
| 1242 | __ StoreDToOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag); |
| 1243 | __ Ret(); |
| 1244 | __ Bind(&is_smi); // Convert R0 to a double. |
| 1245 | __ SmiUntag(R0); |
| 1246 | __ vmovsr(S0, R0); |
| 1247 | __ vcvtdi(D1, S0); |
| 1248 | __ b(&double_op); |
| 1249 | __ Bind(normal_ir_body); |
| 1250 | } |
| 1251 | } |
| 1252 | |
| 1253 | void AsmIntrinsifier::Double_add(Assembler* assembler, Label* normal_ir_body) { |
| 1254 | DoubleArithmeticOperations(assembler, normal_ir_body, Token::kADD); |
| 1255 | } |
| 1256 | |
| 1257 | void AsmIntrinsifier::Double_mul(Assembler* assembler, Label* normal_ir_body) { |
| 1258 | DoubleArithmeticOperations(assembler, normal_ir_body, Token::kMUL); |
| 1259 | } |
| 1260 | |
| 1261 | void AsmIntrinsifier::Double_sub(Assembler* assembler, Label* normal_ir_body) { |
| 1262 | DoubleArithmeticOperations(assembler, normal_ir_body, Token::kSUB); |
| 1263 | } |
| 1264 | |
| 1265 | void AsmIntrinsifier::Double_div(Assembler* assembler, Label* normal_ir_body) { |
| 1266 | DoubleArithmeticOperations(assembler, normal_ir_body, Token::kDIV); |
| 1267 | } |
| 1268 | |
| 1269 | // Left is double, right is integer (Mint or Smi) |
| 1270 | void AsmIntrinsifier::Double_mulFromInteger(Assembler* assembler, |
| 1271 | Label* normal_ir_body) { |
| 1272 | if (TargetCPUFeatures::vfp_supported()) { |
| 1273 | Label fall_through; |
| 1274 | // Only smis allowed. |
| 1275 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 1276 | __ tst(R0, Operand(kSmiTagMask)); |
| 1277 | __ b(normal_ir_body, NE); |
| 1278 | // Is Smi. |
| 1279 | __ SmiUntag(R0); |
| 1280 | __ vmovsr(S0, R0); |
| 1281 | __ vcvtdi(D1, S0); |
| 1282 | __ ldr(R0, Address(SP, 1 * target::kWordSize)); |
| 1283 | __ LoadDFromOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag); |
| 1284 | __ vmuld(D0, D0, D1); |
| 1285 | const Class& double_class = DoubleClass(); |
| 1286 | __ TryAllocate(double_class, normal_ir_body, R0, |
| 1287 | R1); // Result register. |
| 1288 | __ StoreDToOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag); |
| 1289 | __ Ret(); |
| 1290 | __ Bind(normal_ir_body); |
| 1291 | } |
| 1292 | } |
| 1293 | |
| 1294 | void AsmIntrinsifier::DoubleFromInteger(Assembler* assembler, |
| 1295 | Label* normal_ir_body) { |
| 1296 | if (TargetCPUFeatures::vfp_supported()) { |
| 1297 | Label fall_through; |
| 1298 | |
| 1299 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 1300 | __ tst(R0, Operand(kSmiTagMask)); |
| 1301 | __ b(normal_ir_body, NE); |
| 1302 | // Is Smi. |
| 1303 | __ SmiUntag(R0); |
| 1304 | __ vmovsr(S0, R0); |
| 1305 | __ vcvtdi(D0, S0); |
| 1306 | const Class& double_class = DoubleClass(); |
| 1307 | __ TryAllocate(double_class, normal_ir_body, R0, |
| 1308 | R1); // Result register. |
| 1309 | __ StoreDToOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag); |
| 1310 | __ Ret(); |
| 1311 | __ Bind(normal_ir_body); |
| 1312 | } |
| 1313 | } |
| 1314 | |
| 1315 | void AsmIntrinsifier::Double_getIsNaN(Assembler* assembler, |
| 1316 | Label* normal_ir_body) { |
| 1317 | if (TargetCPUFeatures::vfp_supported()) { |
| 1318 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 1319 | __ LoadDFromOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag); |
| 1320 | __ vcmpd(D0, D0); |
| 1321 | __ vmstat(); |
| 1322 | __ LoadObject(R0, CastHandle<Object>(FalseObject()), VC); |
| 1323 | __ LoadObject(R0, CastHandle<Object>(TrueObject()), VS); |
| 1324 | __ Ret(); |
| 1325 | } |
| 1326 | } |
| 1327 | |
| 1328 | void AsmIntrinsifier::Double_getIsInfinite(Assembler* assembler, |
| 1329 | Label* normal_ir_body) { |
| 1330 | if (TargetCPUFeatures::vfp_supported()) { |
| 1331 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 1332 | // R1 <- value[0:31], R2 <- value[32:63] |
| 1333 | __ LoadFieldFromOffset(kWord, R1, R0, target::Double::value_offset()); |
| 1334 | __ LoadFieldFromOffset(kWord, R2, R0, |
| 1335 | target::Double::value_offset() + target::kWordSize); |
| 1336 | |
| 1337 | // If the low word isn't 0, then it isn't infinity. |
| 1338 | __ cmp(R1, Operand(0)); |
| 1339 | __ LoadObject(R0, CastHandle<Object>(FalseObject()), NE); |
| 1340 | __ bx(LR, NE); // Return if NE. |
| 1341 | |
| 1342 | // Mask off the sign bit. |
| 1343 | __ AndImmediate(R2, R2, 0x7FFFFFFF); |
| 1344 | // Compare with +infinity. |
| 1345 | __ CompareImmediate(R2, 0x7FF00000); |
| 1346 | __ LoadObject(R0, CastHandle<Object>(FalseObject()), NE); |
| 1347 | __ bx(LR, NE); |
| 1348 | |
| 1349 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
| 1350 | __ Ret(); |
| 1351 | } |
| 1352 | } |
| 1353 | |
| 1354 | void AsmIntrinsifier::Double_getIsNegative(Assembler* assembler, |
| 1355 | Label* normal_ir_body) { |
| 1356 | if (TargetCPUFeatures::vfp_supported()) { |
| 1357 | Label is_false, is_true, is_zero; |
| 1358 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 1359 | __ LoadDFromOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag); |
| 1360 | __ vcmpdz(D0); |
| 1361 | __ vmstat(); |
| 1362 | __ b(&is_false, VS); // NaN -> false. |
| 1363 | __ b(&is_zero, EQ); // Check for negative zero. |
| 1364 | __ b(&is_false, CS); // >= 0 -> false. |
| 1365 | |
| 1366 | __ Bind(&is_true); |
| 1367 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
| 1368 | __ Ret(); |
| 1369 | |
| 1370 | __ Bind(&is_false); |
| 1371 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
| 1372 | __ Ret(); |
| 1373 | |
| 1374 | __ Bind(&is_zero); |
| 1375 | // Check for negative zero by looking at the sign bit. |
| 1376 | __ vmovrrd(R0, R1, D0); // R1:R0 <- D0, so sign bit is in bit 31 of R1. |
| 1377 | __ mov(R1, Operand(R1, LSR, 31)); |
| 1378 | __ tst(R1, Operand(1)); |
| 1379 | __ b(&is_true, NE); // Sign bit set. |
| 1380 | __ b(&is_false); |
| 1381 | } |
| 1382 | } |
| 1383 | |
| 1384 | void AsmIntrinsifier::DoubleToInteger(Assembler* assembler, |
| 1385 | Label* normal_ir_body) { |
| 1386 | if (TargetCPUFeatures::vfp_supported()) { |
| 1387 | Label fall_through; |
| 1388 | |
| 1389 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 1390 | __ LoadDFromOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag); |
| 1391 | |
| 1392 | // Explicit NaN check, since ARM gives an FPU exception if you try to |
| 1393 | // convert NaN to an int. |
| 1394 | __ vcmpd(D0, D0); |
| 1395 | __ vmstat(); |
| 1396 | __ b(normal_ir_body, VS); |
| 1397 | |
| 1398 | __ vcvtid(S0, D0); |
| 1399 | __ vmovrs(R0, S0); |
| 1400 | // Overflow is signaled with minint. |
| 1401 | // Check for overflow and that it fits into Smi. |
| 1402 | __ CompareImmediate(R0, 0xC0000000); |
| 1403 | __ SmiTag(R0, PL); |
| 1404 | __ bx(LR, PL); |
| 1405 | __ Bind(normal_ir_body); |
| 1406 | } |
| 1407 | } |
| 1408 | |
| 1409 | void AsmIntrinsifier::Double_hashCode(Assembler* assembler, |
| 1410 | Label* normal_ir_body) { |
| 1411 | // TODO(dartbug.com/31174): Convert this to a graph intrinsic. |
| 1412 | |
| 1413 | if (!TargetCPUFeatures::vfp_supported()) return; |
| 1414 | |
| 1415 | // Load double value and check that it isn't NaN, since ARM gives an |
| 1416 | // FPU exception if you try to convert NaN to an int. |
| 1417 | Label double_hash; |
| 1418 | __ ldr(R1, Address(SP, 0 * target::kWordSize)); |
| 1419 | __ LoadDFromOffset(D0, R1, target::Double::value_offset() - kHeapObjectTag); |
| 1420 | __ vcmpd(D0, D0); |
| 1421 | __ vmstat(); |
| 1422 | __ b(&double_hash, VS); |
| 1423 | |
| 1424 | // Convert double value to signed 32-bit int in R0. |
| 1425 | __ vcvtid(S2, D0); |
| 1426 | __ vmovrs(R0, S2); |
| 1427 | |
| 1428 | // Tag the int as a Smi, making sure that it fits; this checks for |
| 1429 | // overflow in the conversion from double to int. Conversion |
| 1430 | // overflow is signalled by vcvt through clamping R0 to either |
| 1431 | // INT32_MAX or INT32_MIN (saturation). |
| 1432 | ASSERT(kSmiTag == 0 && kSmiTagShift == 1); |
| 1433 | __ adds(R0, R0, Operand(R0)); |
| 1434 | __ b(normal_ir_body, VS); |
| 1435 | |
| 1436 | // Compare the two double values. If they are equal, we return the |
| 1437 | // Smi tagged result immediately as the hash code. |
| 1438 | __ vcvtdi(D1, S2); |
| 1439 | __ vcmpd(D0, D1); |
| 1440 | __ vmstat(); |
| 1441 | __ bx(LR, EQ); |
| 1442 | |
| 1443 | // Convert the double bits to a hash code that fits in a Smi. |
| 1444 | __ Bind(&double_hash); |
| 1445 | __ ldr(R0, FieldAddress(R1, target::Double::value_offset())); |
| 1446 | __ ldr(R1, FieldAddress(R1, target::Double::value_offset() + 4)); |
| 1447 | __ eor(R0, R0, Operand(R1)); |
| 1448 | __ AndImmediate(R0, R0, target::kSmiMax); |
| 1449 | __ SmiTag(R0); |
| 1450 | __ Ret(); |
| 1451 | |
| 1452 | // Fall into the native C++ implementation. |
| 1453 | __ Bind(normal_ir_body); |
| 1454 | } |
| 1455 | |
| 1456 | void AsmIntrinsifier::MathSqrt(Assembler* assembler, Label* normal_ir_body) { |
| 1457 | if (TargetCPUFeatures::vfp_supported()) { |
| 1458 | Label is_smi, double_op; |
| 1459 | TestLastArgumentIsDouble(assembler, &is_smi, normal_ir_body); |
| 1460 | // Argument is double and is in R0. |
| 1461 | __ LoadDFromOffset(D1, R0, target::Double::value_offset() - kHeapObjectTag); |
| 1462 | __ Bind(&double_op); |
| 1463 | __ vsqrtd(D0, D1); |
| 1464 | const Class& double_class = DoubleClass(); |
| 1465 | __ TryAllocate(double_class, normal_ir_body, R0, |
| 1466 | R1); // Result register. |
| 1467 | __ StoreDToOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag); |
| 1468 | __ Ret(); |
| 1469 | __ Bind(&is_smi); |
| 1470 | __ SmiUntag(R0); |
| 1471 | __ vmovsr(S0, R0); |
| 1472 | __ vcvtdi(D1, S0); |
| 1473 | __ b(&double_op); |
| 1474 | __ Bind(normal_ir_body); |
| 1475 | } |
| 1476 | } |
| 1477 | |
| 1478 | // var state = ((_A * (_state[kSTATE_LO])) + _state[kSTATE_HI]) & _MASK_64; |
| 1479 | // _state[kSTATE_LO] = state & _MASK_32; |
| 1480 | // _state[kSTATE_HI] = state >> 32; |
| 1481 | void AsmIntrinsifier::Random_nextState(Assembler* assembler, |
| 1482 | Label* normal_ir_body) { |
| 1483 | const Field& state_field = LookupMathRandomStateFieldOffset(); |
| 1484 | const int64_t a_int_value = AsmIntrinsifier::kRandomAValue; |
| 1485 | |
| 1486 | // 'a_int_value' is a mask. |
| 1487 | ASSERT(Utils::IsUint(32, a_int_value)); |
| 1488 | int32_t a_int32_value = static_cast<int32_t>(a_int_value); |
| 1489 | |
| 1490 | // Receiver. |
| 1491 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 1492 | // Field '_state'. |
| 1493 | __ ldr(R1, FieldAddress(R0, target::Field::OffsetOf(state_field))); |
| 1494 | // Addresses of _state[0] and _state[1]. |
| 1495 | |
| 1496 | const int64_t disp_0 = |
| 1497 | target::Instance::DataOffsetFor(kTypedDataUint32ArrayCid); |
| 1498 | const int64_t disp_1 = |
| 1499 | disp_0 + target::Instance::ElementSizeFor(kTypedDataUint32ArrayCid); |
| 1500 | |
| 1501 | __ LoadImmediate(R0, a_int32_value); |
| 1502 | __ LoadFromOffset(kWord, R2, R1, disp_0 - kHeapObjectTag); |
| 1503 | __ LoadFromOffset(kWord, R3, R1, disp_1 - kHeapObjectTag); |
| 1504 | __ mov(R8, Operand(0)); // Zero extend unsigned _state[kSTATE_HI]. |
| 1505 | // Unsigned 32-bit multiply and 64-bit accumulate into R8:R3. |
| 1506 | __ umlal(R3, R8, R0, R2); // R8:R3 <- R8:R3 + R0 * R2. |
| 1507 | __ StoreToOffset(kWord, R3, R1, disp_0 - kHeapObjectTag); |
| 1508 | __ StoreToOffset(kWord, R8, R1, disp_1 - kHeapObjectTag); |
| 1509 | ASSERT(target::ToRawSmi(0) == 0); |
| 1510 | __ eor(R0, R0, Operand(R0)); |
| 1511 | __ Ret(); |
| 1512 | } |
| 1513 | |
| 1514 | void AsmIntrinsifier::ObjectEquals(Assembler* assembler, |
| 1515 | Label* normal_ir_body) { |
| 1516 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 1517 | __ ldr(R1, Address(SP, 1 * target::kWordSize)); |
| 1518 | __ cmp(R0, Operand(R1)); |
| 1519 | __ LoadObject(R0, CastHandle<Object>(FalseObject()), NE); |
| 1520 | __ LoadObject(R0, CastHandle<Object>(TrueObject()), EQ); |
| 1521 | __ Ret(); |
| 1522 | } |
| 1523 | |
| 1524 | static void RangeCheck(Assembler* assembler, |
| 1525 | Register val, |
| 1526 | Register tmp, |
| 1527 | intptr_t low, |
| 1528 | intptr_t high, |
| 1529 | Condition cc, |
| 1530 | Label* target) { |
| 1531 | __ AddImmediate(tmp, val, -low); |
| 1532 | __ CompareImmediate(tmp, high - low); |
| 1533 | __ b(target, cc); |
| 1534 | } |
| 1535 | |
| 1536 | const Condition kIfNotInRange = HI; |
| 1537 | const Condition kIfInRange = LS; |
| 1538 | |
| 1539 | static void JumpIfInteger(Assembler* assembler, |
| 1540 | Register cid, |
| 1541 | Register tmp, |
| 1542 | Label* target) { |
| 1543 | RangeCheck(assembler, cid, tmp, kSmiCid, kMintCid, kIfInRange, target); |
| 1544 | } |
| 1545 | |
| 1546 | static void JumpIfNotInteger(Assembler* assembler, |
| 1547 | Register cid, |
| 1548 | Register tmp, |
| 1549 | Label* target) { |
| 1550 | RangeCheck(assembler, cid, tmp, kSmiCid, kMintCid, kIfNotInRange, target); |
| 1551 | } |
| 1552 | |
| 1553 | static void JumpIfString(Assembler* assembler, |
| 1554 | Register cid, |
| 1555 | Register tmp, |
| 1556 | Label* target) { |
| 1557 | RangeCheck(assembler, cid, tmp, kOneByteStringCid, kExternalTwoByteStringCid, |
| 1558 | kIfInRange, target); |
| 1559 | } |
| 1560 | |
| 1561 | static void JumpIfNotString(Assembler* assembler, |
| 1562 | Register cid, |
| 1563 | Register tmp, |
| 1564 | Label* target) { |
| 1565 | RangeCheck(assembler, cid, tmp, kOneByteStringCid, kExternalTwoByteStringCid, |
| 1566 | kIfNotInRange, target); |
| 1567 | } |
| 1568 | |
| 1569 | // Return type quickly for simple types (not parameterized and not signature). |
| 1570 | void AsmIntrinsifier::ObjectRuntimeType(Assembler* assembler, |
| 1571 | Label* normal_ir_body) { |
| 1572 | Label use_declaration_type, not_double, not_integer; |
| 1573 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 1574 | __ LoadClassIdMayBeSmi(R1, R0); |
| 1575 | |
| 1576 | __ CompareImmediate(R1, kClosureCid); |
| 1577 | __ b(normal_ir_body, EQ); // Instance is a closure. |
| 1578 | |
| 1579 | __ CompareImmediate(R1, kNumPredefinedCids); |
| 1580 | __ b(&use_declaration_type, HI); |
| 1581 | |
| 1582 | __ CompareImmediate(R1, kDoubleCid); |
| 1583 | __ b(¬_double, NE); |
| 1584 | |
| 1585 | __ LoadIsolate(R0); |
| 1586 | __ LoadFromOffset(kWord, R0, R0, |
| 1587 | target::Isolate::cached_object_store_offset()); |
| 1588 | __ LoadFromOffset(kWord, R0, R0, target::ObjectStore::double_type_offset()); |
| 1589 | __ Ret(); |
| 1590 | |
| 1591 | __ Bind(¬_double); |
| 1592 | JumpIfNotInteger(assembler, R1, R0, ¬_integer); |
| 1593 | __ LoadIsolate(R0); |
| 1594 | __ LoadFromOffset(kWord, R0, R0, |
| 1595 | target::Isolate::cached_object_store_offset()); |
| 1596 | __ LoadFromOffset(kWord, R0, R0, target::ObjectStore::int_type_offset()); |
| 1597 | __ Ret(); |
| 1598 | |
| 1599 | __ Bind(¬_integer); |
| 1600 | JumpIfNotString(assembler, R1, R0, &use_declaration_type); |
| 1601 | __ LoadIsolate(R0); |
| 1602 | __ LoadFromOffset(kWord, R0, R0, |
| 1603 | target::Isolate::cached_object_store_offset()); |
| 1604 | __ LoadFromOffset(kWord, R0, R0, target::ObjectStore::string_type_offset()); |
| 1605 | __ Ret(); |
| 1606 | |
| 1607 | __ Bind(&use_declaration_type); |
| 1608 | __ LoadClassById(R2, R1); |
| 1609 | __ ldrh(R3, FieldAddress(R2, target::Class::num_type_arguments_offset())); |
| 1610 | __ CompareImmediate(R3, 0); |
| 1611 | __ b(normal_ir_body, NE); |
| 1612 | |
| 1613 | __ ldr(R0, FieldAddress(R2, target::Class::declaration_type_offset())); |
| 1614 | __ CompareObject(R0, NullObject()); |
| 1615 | __ b(normal_ir_body, EQ); |
| 1616 | __ Ret(); |
| 1617 | |
| 1618 | __ Bind(normal_ir_body); |
| 1619 | } |
| 1620 | |
| 1621 | // Compares cid1 and cid2 to see if they're syntactically equivalent. If this |
| 1622 | // can be determined by this fast path, it jumps to either equal or not_equal, |
| 1623 | // otherwise it jumps to normal_ir_body. May clobber cid1, cid2, and scratch. |
| 1624 | static void EquivalentClassIds(Assembler* assembler, |
| 1625 | Label* normal_ir_body, |
| 1626 | Label* equal, |
| 1627 | Label* not_equal, |
| 1628 | Register cid1, |
| 1629 | Register cid2, |
| 1630 | Register scratch) { |
| 1631 | Label different_cids, not_integer; |
| 1632 | |
| 1633 | // Check if left hand side is a closure. Closures are handled in the runtime. |
| 1634 | __ CompareImmediate(cid1, kClosureCid); |
| 1635 | __ b(normal_ir_body, EQ); |
| 1636 | |
| 1637 | // Check whether class ids match. If class ids don't match types may still be |
| 1638 | // considered equivalent (e.g. multiple string implementation classes map to a |
| 1639 | // single String type). |
| 1640 | __ cmp(cid1, Operand(cid2)); |
| 1641 | __ b(&different_cids, NE); |
| 1642 | |
| 1643 | // Types have the same class and neither is a closure type. |
| 1644 | // Check if there are no type arguments. In this case we can return true. |
| 1645 | // Otherwise fall through into the runtime to handle comparison. |
| 1646 | __ LoadClassById(scratch, cid1); |
| 1647 | __ ldrh(scratch, |
| 1648 | FieldAddress(scratch, target::Class::num_type_arguments_offset())); |
| 1649 | __ CompareImmediate(scratch, 0); |
| 1650 | __ b(normal_ir_body, NE); |
| 1651 | __ b(equal); |
| 1652 | |
| 1653 | // Class ids are different. Check if we are comparing two string types (with |
| 1654 | // different representations) or two integer types. |
| 1655 | __ Bind(&different_cids); |
| 1656 | __ CompareImmediate(cid1, kNumPredefinedCids); |
| 1657 | __ b(not_equal, HI); |
| 1658 | |
| 1659 | // Check if both are integer types. |
| 1660 | JumpIfNotInteger(assembler, cid1, scratch, ¬_integer); |
| 1661 | |
| 1662 | // First type is an integer. Check if the second is an integer too. |
| 1663 | // Otherwise types are unequiv because only integers have the same runtime |
| 1664 | // type as other integers. |
| 1665 | JumpIfInteger(assembler, cid2, scratch, equal); |
| 1666 | __ b(not_equal); |
| 1667 | |
| 1668 | __ Bind(¬_integer); |
| 1669 | // Check if the first type is String. If it is not then types are not |
| 1670 | // equivalent because they have different class ids and they are not strings |
| 1671 | // or integers. |
| 1672 | JumpIfNotString(assembler, cid1, scratch, not_equal); |
| 1673 | // First type is String. Check if the second is a string too. |
| 1674 | JumpIfString(assembler, cid2, scratch, equal); |
| 1675 | // String types are only equivalent to other String types. |
| 1676 | __ b(not_equal); |
| 1677 | } |
| 1678 | |
| 1679 | void AsmIntrinsifier::ObjectHaveSameRuntimeType(Assembler* assembler, |
| 1680 | Label* normal_ir_body) { |
| 1681 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 1682 | __ LoadClassIdMayBeSmi(R1, R0); |
| 1683 | |
| 1684 | __ ldr(R0, Address(SP, 1 * target::kWordSize)); |
| 1685 | __ LoadClassIdMayBeSmi(R2, R0); |
| 1686 | |
| 1687 | Label equal, not_equal; |
| 1688 | EquivalentClassIds(assembler, normal_ir_body, &equal, ¬_equal, R1, R2, R0); |
| 1689 | |
| 1690 | __ Bind(&equal); |
| 1691 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
| 1692 | __ Ret(); |
| 1693 | |
| 1694 | __ Bind(¬_equal); |
| 1695 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
| 1696 | __ Ret(); |
| 1697 | |
| 1698 | __ Bind(normal_ir_body); |
| 1699 | } |
| 1700 | |
| 1701 | void AsmIntrinsifier::String_getHashCode(Assembler* assembler, |
| 1702 | Label* normal_ir_body) { |
| 1703 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 1704 | __ ldr(R0, FieldAddress(R0, target::String::hash_offset())); |
| 1705 | __ cmp(R0, Operand(0)); |
| 1706 | __ bx(LR, NE); |
| 1707 | // Hash not yet computed. |
| 1708 | __ Bind(normal_ir_body); |
| 1709 | } |
| 1710 | |
| 1711 | void AsmIntrinsifier::Type_getHashCode(Assembler* assembler, |
| 1712 | Label* normal_ir_body) { |
| 1713 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 1714 | __ ldr(R0, FieldAddress(R0, target::Type::hash_offset())); |
| 1715 | __ cmp(R0, Operand(0)); |
| 1716 | __ bx(LR, NE); |
| 1717 | // Hash not yet computed. |
| 1718 | __ Bind(normal_ir_body); |
| 1719 | } |
| 1720 | |
| 1721 | void AsmIntrinsifier::Type_equality(Assembler* assembler, |
| 1722 | Label* normal_ir_body) { |
| 1723 | Label equal, not_equal, equiv_cids, check_legacy; |
| 1724 | |
| 1725 | __ ldm(IA, SP, (1 << R1 | 1 << R2)); |
| 1726 | __ cmp(R1, Operand(R2)); |
| 1727 | __ b(&equal, EQ); |
| 1728 | |
| 1729 | // R1 might not be a Type object, so check that first (R2 should be though, |
| 1730 | // since this is a method on the Type class). |
| 1731 | __ LoadClassIdMayBeSmi(R0, R1); |
| 1732 | __ CompareImmediate(R0, kTypeCid); |
| 1733 | __ b(normal_ir_body, NE); |
| 1734 | |
| 1735 | // Check if types are syntactically equal. |
| 1736 | __ ldr(R3, FieldAddress(R1, target::Type::type_class_id_offset())); |
| 1737 | __ SmiUntag(R3); |
| 1738 | __ ldr(R4, FieldAddress(R2, target::Type::type_class_id_offset())); |
| 1739 | __ SmiUntag(R4); |
| 1740 | EquivalentClassIds(assembler, normal_ir_body, &equiv_cids, ¬_equal, R3, R4, |
| 1741 | R0); |
| 1742 | |
| 1743 | // Check nullability. |
| 1744 | __ Bind(&equiv_cids); |
| 1745 | __ ldrb(R1, FieldAddress(R1, target::Type::nullability_offset())); |
| 1746 | __ ldrb(R2, FieldAddress(R2, target::Type::nullability_offset())); |
| 1747 | __ cmp(R1, Operand(R2)); |
| 1748 | __ b(&check_legacy, NE); |
| 1749 | // Fall through to equal case if nullability is strictly equal. |
| 1750 | |
| 1751 | __ Bind(&equal); |
| 1752 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
| 1753 | __ Ret(); |
| 1754 | |
| 1755 | // At this point the nullabilities are different, so they can only be |
| 1756 | // syntactically equivalent if they're both either kNonNullable or kLegacy. |
| 1757 | // These are the two largest values of the enum, so we can just do a < check. |
| 1758 | ASSERT(target::Nullability::kNullable < target::Nullability::kNonNullable && |
| 1759 | target::Nullability::kNonNullable < target::Nullability::kLegacy); |
| 1760 | __ Bind(&check_legacy); |
| 1761 | __ CompareImmediate(R1, target::Nullability::kNonNullable); |
| 1762 | __ b(¬_equal, LT); |
| 1763 | __ CompareImmediate(R2, target::Nullability::kNonNullable); |
| 1764 | __ b(&equal, GE); |
| 1765 | |
| 1766 | __ Bind(¬_equal); |
| 1767 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
| 1768 | __ Ret(); |
| 1769 | |
| 1770 | __ Bind(normal_ir_body); |
| 1771 | } |
| 1772 | |
| 1773 | void GenerateSubstringMatchesSpecialization(Assembler* assembler, |
| 1774 | intptr_t receiver_cid, |
| 1775 | intptr_t other_cid, |
| 1776 | Label* return_true, |
| 1777 | Label* return_false) { |
| 1778 | __ SmiUntag(R1); |
| 1779 | __ ldr(R8, FieldAddress(R0, target::String::length_offset())); // this.length |
| 1780 | __ SmiUntag(R8); |
| 1781 | __ ldr(R9, |
| 1782 | FieldAddress(R2, target::String::length_offset())); // other.length |
| 1783 | __ SmiUntag(R9); |
| 1784 | |
| 1785 | // if (other.length == 0) return true; |
| 1786 | __ cmp(R9, Operand(0)); |
| 1787 | __ b(return_true, EQ); |
| 1788 | |
| 1789 | // if (start < 0) return false; |
| 1790 | __ cmp(R1, Operand(0)); |
| 1791 | __ b(return_false, LT); |
| 1792 | |
| 1793 | // if (start + other.length > this.length) return false; |
| 1794 | __ add(R3, R1, Operand(R9)); |
| 1795 | __ cmp(R3, Operand(R8)); |
| 1796 | __ b(return_false, GT); |
| 1797 | |
| 1798 | if (receiver_cid == kOneByteStringCid) { |
| 1799 | __ AddImmediate(R0, target::OneByteString::data_offset() - kHeapObjectTag); |
| 1800 | __ add(R0, R0, Operand(R1)); |
| 1801 | } else { |
| 1802 | ASSERT(receiver_cid == kTwoByteStringCid); |
| 1803 | __ AddImmediate(R0, target::TwoByteString::data_offset() - kHeapObjectTag); |
| 1804 | __ add(R0, R0, Operand(R1)); |
| 1805 | __ add(R0, R0, Operand(R1)); |
| 1806 | } |
| 1807 | if (other_cid == kOneByteStringCid) { |
| 1808 | __ AddImmediate(R2, target::OneByteString::data_offset() - kHeapObjectTag); |
| 1809 | } else { |
| 1810 | ASSERT(other_cid == kTwoByteStringCid); |
| 1811 | __ AddImmediate(R2, target::TwoByteString::data_offset() - kHeapObjectTag); |
| 1812 | } |
| 1813 | |
| 1814 | // i = 0 |
| 1815 | __ LoadImmediate(R3, 0); |
| 1816 | |
| 1817 | // do |
| 1818 | Label loop; |
| 1819 | __ Bind(&loop); |
| 1820 | |
| 1821 | if (receiver_cid == kOneByteStringCid) { |
| 1822 | __ ldrb(R4, Address(R0, 0)); // this.codeUnitAt(i + start) |
| 1823 | } else { |
| 1824 | __ ldrh(R4, Address(R0, 0)); // this.codeUnitAt(i + start) |
| 1825 | } |
| 1826 | if (other_cid == kOneByteStringCid) { |
| 1827 | __ ldrb(TMP, Address(R2, 0)); // other.codeUnitAt(i) |
| 1828 | } else { |
| 1829 | __ ldrh(TMP, Address(R2, 0)); // other.codeUnitAt(i) |
| 1830 | } |
| 1831 | __ cmp(R4, Operand(TMP)); |
| 1832 | __ b(return_false, NE); |
| 1833 | |
| 1834 | // i++, while (i < len) |
| 1835 | __ AddImmediate(R3, 1); |
| 1836 | __ AddImmediate(R0, receiver_cid == kOneByteStringCid ? 1 : 2); |
| 1837 | __ AddImmediate(R2, other_cid == kOneByteStringCid ? 1 : 2); |
| 1838 | __ cmp(R3, Operand(R9)); |
| 1839 | __ b(&loop, LT); |
| 1840 | |
| 1841 | __ b(return_true); |
| 1842 | } |
| 1843 | |
| 1844 | // bool _substringMatches(int start, String other) |
| 1845 | // This intrinsic handles a OneByteString or TwoByteString receiver with a |
| 1846 | // OneByteString other. |
| 1847 | void AsmIntrinsifier::StringBaseSubstringMatches(Assembler* assembler, |
| 1848 | Label* normal_ir_body) { |
| 1849 | Label return_true, return_false, try_two_byte; |
| 1850 | __ ldr(R0, Address(SP, 2 * target::kWordSize)); // this |
| 1851 | __ ldr(R1, Address(SP, 1 * target::kWordSize)); // start |
| 1852 | __ ldr(R2, Address(SP, 0 * target::kWordSize)); // other |
| 1853 | __ Push(R4); // Make ARGS_DESC_REG available. |
| 1854 | |
| 1855 | __ tst(R1, Operand(kSmiTagMask)); |
| 1856 | __ b(normal_ir_body, NE); // 'start' is not a Smi. |
| 1857 | |
| 1858 | __ CompareClassId(R2, kOneByteStringCid, R3); |
| 1859 | __ b(normal_ir_body, NE); |
| 1860 | |
| 1861 | __ CompareClassId(R0, kOneByteStringCid, R3); |
| 1862 | __ b(&try_two_byte, NE); |
| 1863 | |
| 1864 | GenerateSubstringMatchesSpecialization(assembler, kOneByteStringCid, |
| 1865 | kOneByteStringCid, &return_true, |
| 1866 | &return_false); |
| 1867 | |
| 1868 | __ Bind(&try_two_byte); |
| 1869 | __ CompareClassId(R0, kTwoByteStringCid, R3); |
| 1870 | __ b(normal_ir_body, NE); |
| 1871 | |
| 1872 | GenerateSubstringMatchesSpecialization(assembler, kTwoByteStringCid, |
| 1873 | kOneByteStringCid, &return_true, |
| 1874 | &return_false); |
| 1875 | |
| 1876 | __ Bind(&return_true); |
| 1877 | __ Pop(R4); |
| 1878 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
| 1879 | __ Ret(); |
| 1880 | |
| 1881 | __ Bind(&return_false); |
| 1882 | __ Pop(R4); |
| 1883 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
| 1884 | __ Ret(); |
| 1885 | |
| 1886 | __ Bind(normal_ir_body); |
| 1887 | __ Pop(R4); |
| 1888 | } |
| 1889 | |
| 1890 | void AsmIntrinsifier::Object_getHash(Assembler* assembler, |
| 1891 | Label* normal_ir_body) { |
| 1892 | UNREACHABLE(); |
| 1893 | } |
| 1894 | |
| 1895 | void AsmIntrinsifier::Object_setHash(Assembler* assembler, |
| 1896 | Label* normal_ir_body) { |
| 1897 | UNREACHABLE(); |
| 1898 | } |
| 1899 | |
| 1900 | void AsmIntrinsifier::StringBaseCharAt(Assembler* assembler, |
| 1901 | Label* normal_ir_body) { |
| 1902 | Label try_two_byte_string; |
| 1903 | |
| 1904 | __ ldr(R1, Address(SP, 0 * target::kWordSize)); // Index. |
| 1905 | __ ldr(R0, Address(SP, 1 * target::kWordSize)); // String. |
| 1906 | __ tst(R1, Operand(kSmiTagMask)); |
| 1907 | __ b(normal_ir_body, NE); // Index is not a Smi. |
| 1908 | // Range check. |
| 1909 | __ ldr(R2, FieldAddress(R0, target::String::length_offset())); |
| 1910 | __ cmp(R1, Operand(R2)); |
| 1911 | __ b(normal_ir_body, CS); // Runtime throws exception. |
| 1912 | |
| 1913 | __ CompareClassId(R0, kOneByteStringCid, R3); |
| 1914 | __ b(&try_two_byte_string, NE); |
| 1915 | __ SmiUntag(R1); |
| 1916 | __ AddImmediate(R0, target::OneByteString::data_offset() - kHeapObjectTag); |
| 1917 | __ ldrb(R1, Address(R0, R1)); |
| 1918 | __ CompareImmediate(R1, target::Symbols::kNumberOfOneCharCodeSymbols); |
| 1919 | __ b(normal_ir_body, GE); |
| 1920 | __ ldr(R0, Address(THR, target::Thread::predefined_symbols_address_offset())); |
| 1921 | __ AddImmediate( |
| 1922 | R0, target::Symbols::kNullCharCodeSymbolOffset * target::kWordSize); |
| 1923 | __ ldr(R0, Address(R0, R1, LSL, 2)); |
| 1924 | __ Ret(); |
| 1925 | |
| 1926 | __ Bind(&try_two_byte_string); |
| 1927 | __ CompareClassId(R0, kTwoByteStringCid, R3); |
| 1928 | __ b(normal_ir_body, NE); |
| 1929 | ASSERT(kSmiTagShift == 1); |
| 1930 | __ AddImmediate(R0, target::TwoByteString::data_offset() - kHeapObjectTag); |
| 1931 | __ ldrh(R1, Address(R0, R1)); |
| 1932 | __ CompareImmediate(R1, target::Symbols::kNumberOfOneCharCodeSymbols); |
| 1933 | __ b(normal_ir_body, GE); |
| 1934 | __ ldr(R0, Address(THR, target::Thread::predefined_symbols_address_offset())); |
| 1935 | __ AddImmediate( |
| 1936 | R0, target::Symbols::kNullCharCodeSymbolOffset * target::kWordSize); |
| 1937 | __ ldr(R0, Address(R0, R1, LSL, 2)); |
| 1938 | __ Ret(); |
| 1939 | |
| 1940 | __ Bind(normal_ir_body); |
| 1941 | } |
| 1942 | |
| 1943 | void AsmIntrinsifier::StringBaseIsEmpty(Assembler* assembler, |
| 1944 | Label* normal_ir_body) { |
| 1945 | __ ldr(R0, Address(SP, 0 * target::kWordSize)); |
| 1946 | __ ldr(R0, FieldAddress(R0, target::String::length_offset())); |
| 1947 | __ cmp(R0, Operand(target::ToRawSmi(0))); |
| 1948 | __ LoadObject(R0, CastHandle<Object>(TrueObject()), EQ); |
| 1949 | __ LoadObject(R0, CastHandle<Object>(FalseObject()), NE); |
| 1950 | __ Ret(); |
| 1951 | } |
| 1952 | |
| 1953 | void AsmIntrinsifier::OneByteString_getHashCode(Assembler* assembler, |
| 1954 | Label* normal_ir_body) { |
| 1955 | __ ldr(R1, Address(SP, 0 * target::kWordSize)); |
| 1956 | __ ldr(R0, FieldAddress(R1, target::String::hash_offset())); |
| 1957 | __ cmp(R0, Operand(0)); |
| 1958 | __ bx(LR, NE); // Return if already computed. |
| 1959 | |
| 1960 | __ ldr(R2, FieldAddress(R1, target::String::length_offset())); |
| 1961 | |
| 1962 | Label done; |
| 1963 | // If the string is empty, set the hash to 1, and return. |
| 1964 | __ cmp(R2, Operand(target::ToRawSmi(0))); |
| 1965 | __ b(&done, EQ); |
| 1966 | |
| 1967 | __ SmiUntag(R2); |
| 1968 | __ mov(R3, Operand(0)); |
| 1969 | __ AddImmediate(R8, R1, |
| 1970 | target::OneByteString::data_offset() - kHeapObjectTag); |
| 1971 | // R1: Instance of OneByteString. |
| 1972 | // R2: String length, untagged integer. |
| 1973 | // R3: Loop counter, untagged integer. |
| 1974 | // R8: String data. |
| 1975 | // R0: Hash code, untagged integer. |
| 1976 | |
| 1977 | Label loop; |
| 1978 | // Add to hash code: (hash_ is uint32) |
| 1979 | // hash_ += ch; |
| 1980 | // hash_ += hash_ << 10; |
| 1981 | // hash_ ^= hash_ >> 6; |
| 1982 | // Get one characters (ch). |
| 1983 | __ Bind(&loop); |
| 1984 | __ ldrb(TMP, Address(R8, 0)); |
| 1985 | // TMP: ch. |
| 1986 | __ add(R3, R3, Operand(1)); |
| 1987 | __ add(R8, R8, Operand(1)); |
| 1988 | __ add(R0, R0, Operand(TMP)); |
| 1989 | __ add(R0, R0, Operand(R0, LSL, 10)); |
| 1990 | __ eor(R0, R0, Operand(R0, LSR, 6)); |
| 1991 | __ cmp(R3, Operand(R2)); |
| 1992 | __ b(&loop, NE); |
| 1993 | |
| 1994 | // Finalize. |
| 1995 | // hash_ += hash_ << 3; |
| 1996 | // hash_ ^= hash_ >> 11; |
| 1997 | // hash_ += hash_ << 15; |
| 1998 | __ add(R0, R0, Operand(R0, LSL, 3)); |
| 1999 | __ eor(R0, R0, Operand(R0, LSR, 11)); |
| 2000 | __ add(R0, R0, Operand(R0, LSL, 15)); |
| 2001 | // hash_ = hash_ & ((static_cast<intptr_t>(1) << bits) - 1); |
| 2002 | __ LoadImmediate(R2, |
| 2003 | (static_cast<intptr_t>(1) << target::String::kHashBits) - 1); |
| 2004 | __ and_(R0, R0, Operand(R2)); |
| 2005 | __ cmp(R0, Operand(0)); |
| 2006 | // return hash_ == 0 ? 1 : hash_; |
| 2007 | __ Bind(&done); |
| 2008 | __ mov(R0, Operand(1), EQ); |
| 2009 | __ SmiTag(R0); |
| 2010 | __ StoreIntoSmiField(FieldAddress(R1, target::String::hash_offset()), R0); |
| 2011 | __ Ret(); |
| 2012 | } |
| 2013 | |
| 2014 | // Allocates a _OneByteString or _TwoByteString. The content is not initialized. |
| 2015 | // 'length-reg' (R2) contains the desired length as a _Smi or _Mint. |
| 2016 | // Returns new string as tagged pointer in R0. |
| 2017 | static void TryAllocateString(Assembler* assembler, |
| 2018 | classid_t cid, |
| 2019 | Label* ok, |
| 2020 | Label* failure) { |
| 2021 | ASSERT(cid == kOneByteStringCid || cid == kTwoByteStringCid); |
| 2022 | const Register length_reg = R2; |
| 2023 | // _Mint length: call to runtime to produce error. |
| 2024 | __ BranchIfNotSmi(length_reg, failure); |
| 2025 | // Negative length: call to runtime to produce error. |
| 2026 | __ cmp(length_reg, Operand(0)); |
| 2027 | __ b(failure, LT); |
| 2028 | |
| 2029 | NOT_IN_PRODUCT(__ LoadAllocationStatsAddress(R0, cid)); |
| 2030 | NOT_IN_PRODUCT(__ MaybeTraceAllocation(R0, failure)); |
| 2031 | __ mov(R8, Operand(length_reg)); // Save the length register. |
| 2032 | if (cid == kOneByteStringCid) { |
| 2033 | __ SmiUntag(length_reg); |
| 2034 | } else { |
| 2035 | // Untag length and multiply by element size -> no-op. |
| 2036 | } |
| 2037 | const intptr_t fixed_size_plus_alignment_padding = |
| 2038 | target::String::InstanceSize() + |
| 2039 | target::ObjectAlignment::kObjectAlignment - 1; |
| 2040 | __ AddImmediate(length_reg, fixed_size_plus_alignment_padding); |
| 2041 | __ bic(length_reg, length_reg, |
| 2042 | Operand(target::ObjectAlignment::kObjectAlignment - 1)); |
| 2043 | |
| 2044 | __ ldr(R0, Address(THR, target::Thread::top_offset())); |
| 2045 | |
| 2046 | // length_reg: allocation size. |
| 2047 | __ adds(R1, R0, Operand(length_reg)); |
| 2048 | __ b(failure, CS); // Fail on unsigned overflow. |
| 2049 | |
| 2050 | // Check if the allocation fits into the remaining space. |
| 2051 | // R0: potential new object start. |
| 2052 | // R1: potential next object start. |
| 2053 | // R2: allocation size. |
| 2054 | __ ldr(TMP, Address(THR, target::Thread::end_offset())); |
| 2055 | __ cmp(R1, Operand(TMP)); |
| 2056 | __ b(failure, CS); |
| 2057 | |
| 2058 | // Successfully allocated the object(s), now update top to point to |
| 2059 | // next object start and initialize the object. |
| 2060 | __ str(R1, Address(THR, target::Thread::top_offset())); |
| 2061 | __ AddImmediate(R0, kHeapObjectTag); |
| 2062 | |
| 2063 | // Initialize the tags. |
| 2064 | // R0: new object start as a tagged pointer. |
| 2065 | // R1: new object end address. |
| 2066 | // R2: allocation size. |
| 2067 | { |
| 2068 | const intptr_t shift = target::ObjectLayout::kTagBitsSizeTagPos - |
| 2069 | target::ObjectAlignment::kObjectAlignmentLog2; |
| 2070 | |
| 2071 | __ CompareImmediate(R2, target::ObjectLayout::kSizeTagMaxSizeTag); |
| 2072 | __ mov(R3, Operand(R2, LSL, shift), LS); |
| 2073 | __ mov(R3, Operand(0), HI); |
| 2074 | |
| 2075 | // Get the class index and insert it into the tags. |
| 2076 | // R3: size and bit tags. |
| 2077 | const uint32_t tags = |
| 2078 | target::MakeTagWordForNewSpaceObject(cid, /*instance_size=*/0); |
| 2079 | __ LoadImmediate(TMP, tags); |
| 2080 | __ orr(R3, R3, Operand(TMP)); |
| 2081 | __ str(R3, FieldAddress(R0, target::Object::tags_offset())); // Store tags. |
| 2082 | } |
| 2083 | |
| 2084 | // Set the length field using the saved length (R8). |
| 2085 | __ StoreIntoObjectNoBarrier( |
| 2086 | R0, FieldAddress(R0, target::String::length_offset()), R8); |
| 2087 | // Clear hash. |
| 2088 | __ LoadImmediate(TMP, 0); |
| 2089 | __ StoreIntoObjectNoBarrier( |
| 2090 | R0, FieldAddress(R0, target::String::hash_offset()), TMP); |
| 2091 | |
| 2092 | __ b(ok); |
| 2093 | } |
| 2094 | |
| 2095 | // Arg0: OneByteString (receiver). |
| 2096 | // Arg1: Start index as Smi. |
| 2097 | // Arg2: End index as Smi. |
| 2098 | // The indexes must be valid. |
| 2099 | void AsmIntrinsifier::OneByteString_substringUnchecked(Assembler* assembler, |
| 2100 | Label* normal_ir_body) { |
| 2101 | const intptr_t kStringOffset = 2 * target::kWordSize; |
| 2102 | const intptr_t kStartIndexOffset = 1 * target::kWordSize; |
| 2103 | const intptr_t kEndIndexOffset = 0 * target::kWordSize; |
| 2104 | Label ok; |
| 2105 | |
| 2106 | __ ldr(R2, Address(SP, kEndIndexOffset)); |
| 2107 | __ ldr(TMP, Address(SP, kStartIndexOffset)); |
| 2108 | __ orr(R3, R2, Operand(TMP)); |
| 2109 | __ tst(R3, Operand(kSmiTagMask)); |
| 2110 | __ b(normal_ir_body, NE); // 'start', 'end' not Smi. |
| 2111 | |
| 2112 | __ sub(R2, R2, Operand(TMP)); |
| 2113 | TryAllocateString(assembler, kOneByteStringCid, &ok, normal_ir_body); |
| 2114 | __ Bind(&ok); |
| 2115 | // R0: new string as tagged pointer. |
| 2116 | // Copy string. |
| 2117 | __ ldr(R3, Address(SP, kStringOffset)); |
| 2118 | __ ldr(R1, Address(SP, kStartIndexOffset)); |
| 2119 | __ SmiUntag(R1); |
| 2120 | __ add(R3, R3, Operand(R1)); |
| 2121 | // Calculate start address and untag (- 1). |
| 2122 | __ AddImmediate(R3, target::OneByteString::data_offset() - 1); |
| 2123 | |
| 2124 | // R3: Start address to copy from (untagged). |
| 2125 | // R1: Untagged start index. |
| 2126 | __ ldr(R2, Address(SP, kEndIndexOffset)); |
| 2127 | __ SmiUntag(R2); |
| 2128 | __ sub(R2, R2, Operand(R1)); |
| 2129 | |
| 2130 | // R3: Start address to copy from (untagged). |
| 2131 | // R2: Untagged number of bytes to copy. |
| 2132 | // R0: Tagged result string. |
| 2133 | // R8: Pointer into R3. |
| 2134 | // R1: Pointer into R0. |
| 2135 | // TMP: Scratch register. |
| 2136 | Label loop, done; |
| 2137 | __ cmp(R2, Operand(0)); |
| 2138 | __ b(&done, LE); |
| 2139 | __ mov(R8, Operand(R3)); |
| 2140 | __ mov(R1, Operand(R0)); |
| 2141 | __ Bind(&loop); |
| 2142 | __ ldrb(TMP, Address(R8, 1, Address::PostIndex)); |
| 2143 | __ sub(R2, R2, Operand(1)); |
| 2144 | __ cmp(R2, Operand(0)); |
| 2145 | __ strb(TMP, FieldAddress(R1, target::OneByteString::data_offset())); |
| 2146 | __ add(R1, R1, Operand(1)); |
| 2147 | __ b(&loop, GT); |
| 2148 | |
| 2149 | __ Bind(&done); |
| 2150 | __ Ret(); |
| 2151 | __ Bind(normal_ir_body); |
| 2152 | } |
| 2153 | |
| 2154 | void AsmIntrinsifier::WriteIntoOneByteString(Assembler* assembler, |
| 2155 | Label* normal_ir_body) { |
| 2156 | __ ldr(R2, Address(SP, 0 * target::kWordSize)); // Value. |
| 2157 | __ ldr(R1, Address(SP, 1 * target::kWordSize)); // Index. |
| 2158 | __ ldr(R0, Address(SP, 2 * target::kWordSize)); // OneByteString. |
| 2159 | __ SmiUntag(R1); |
| 2160 | __ SmiUntag(R2); |
| 2161 | __ AddImmediate(R3, R0, |
| 2162 | target::OneByteString::data_offset() - kHeapObjectTag); |
| 2163 | __ strb(R2, Address(R3, R1)); |
| 2164 | __ Ret(); |
| 2165 | } |
| 2166 | |
| 2167 | void AsmIntrinsifier::WriteIntoTwoByteString(Assembler* assembler, |
| 2168 | Label* normal_ir_body) { |
| 2169 | __ ldr(R2, Address(SP, 0 * target::kWordSize)); // Value. |
| 2170 | __ ldr(R1, Address(SP, 1 * target::kWordSize)); // Index. |
| 2171 | __ ldr(R0, Address(SP, 2 * target::kWordSize)); // TwoByteString. |
| 2172 | // Untag index and multiply by element size -> no-op. |
| 2173 | __ SmiUntag(R2); |
| 2174 | __ AddImmediate(R3, R0, |
| 2175 | target::TwoByteString::data_offset() - kHeapObjectTag); |
| 2176 | __ strh(R2, Address(R3, R1)); |
| 2177 | __ Ret(); |
| 2178 | } |
| 2179 | |
| 2180 | void AsmIntrinsifier::AllocateOneByteString(Assembler* assembler, |
| 2181 | Label* normal_ir_body) { |
| 2182 | __ ldr(R2, Address(SP, 0 * target::kWordSize)); // Length. |
| 2183 | Label ok; |
| 2184 | TryAllocateString(assembler, kOneByteStringCid, &ok, normal_ir_body); |
| 2185 | |
| 2186 | __ Bind(&ok); |
| 2187 | __ Ret(); |
| 2188 | |
| 2189 | __ Bind(normal_ir_body); |
| 2190 | } |
| 2191 | |
| 2192 | void AsmIntrinsifier::AllocateTwoByteString(Assembler* assembler, |
| 2193 | Label* normal_ir_body) { |
| 2194 | __ ldr(R2, Address(SP, 0 * target::kWordSize)); // Length. |
| 2195 | Label ok; |
| 2196 | TryAllocateString(assembler, kTwoByteStringCid, &ok, normal_ir_body); |
| 2197 | |
| 2198 | __ Bind(&ok); |
| 2199 | __ Ret(); |
| 2200 | |
| 2201 | __ Bind(normal_ir_body); |
| 2202 | } |
| 2203 | |
| 2204 | // TODO(srdjan): Add combinations (one-byte/two-byte/external strings). |
| 2205 | static void StringEquality(Assembler* assembler, |
| 2206 | Label* normal_ir_body, |
| 2207 | intptr_t string_cid) { |
| 2208 | Label is_true, is_false, loop; |
| 2209 | __ ldr(R0, Address(SP, 1 * target::kWordSize)); // This. |
| 2210 | __ ldr(R1, Address(SP, 0 * target::kWordSize)); // Other. |
| 2211 | |
| 2212 | // Are identical? |
| 2213 | __ cmp(R0, Operand(R1)); |
| 2214 | __ b(&is_true, EQ); |
| 2215 | |
| 2216 | // Is other OneByteString? |
| 2217 | __ tst(R1, Operand(kSmiTagMask)); |
| 2218 | __ b(normal_ir_body, EQ); |
| 2219 | __ CompareClassId(R1, string_cid, R2); |
| 2220 | __ b(normal_ir_body, NE); |
| 2221 | |
| 2222 | // Have same length? |
| 2223 | __ ldr(R2, FieldAddress(R0, target::String::length_offset())); |
| 2224 | __ ldr(R3, FieldAddress(R1, target::String::length_offset())); |
| 2225 | __ cmp(R2, Operand(R3)); |
| 2226 | __ b(&is_false, NE); |
| 2227 | |
| 2228 | // Check contents, no fall-through possible. |
| 2229 | // TODO(zra): try out other sequences. |
| 2230 | ASSERT((string_cid == kOneByteStringCid) || |
| 2231 | (string_cid == kTwoByteStringCid)); |
| 2232 | const intptr_t offset = (string_cid == kOneByteStringCid) |
| 2233 | ? target::OneByteString::data_offset() |
| 2234 | : target::TwoByteString::data_offset(); |
| 2235 | __ AddImmediate(R0, offset - kHeapObjectTag); |
| 2236 | __ AddImmediate(R1, offset - kHeapObjectTag); |
| 2237 | __ SmiUntag(R2); |
| 2238 | __ Bind(&loop); |
| 2239 | __ AddImmediate(R2, -1); |
| 2240 | __ cmp(R2, Operand(0)); |
| 2241 | __ b(&is_true, LT); |
| 2242 | if (string_cid == kOneByteStringCid) { |
| 2243 | __ ldrb(R3, Address(R0)); |
| 2244 | __ ldrb(R4, Address(R1)); |
| 2245 | __ AddImmediate(R0, 1); |
| 2246 | __ AddImmediate(R1, 1); |
| 2247 | } else if (string_cid == kTwoByteStringCid) { |
| 2248 | __ ldrh(R3, Address(R0)); |
| 2249 | __ ldrh(R4, Address(R1)); |
| 2250 | __ AddImmediate(R0, 2); |
| 2251 | __ AddImmediate(R1, 2); |
| 2252 | } else { |
| 2253 | UNIMPLEMENTED(); |
| 2254 | } |
| 2255 | __ cmp(R3, Operand(R4)); |
| 2256 | __ b(&is_false, NE); |
| 2257 | __ b(&loop); |
| 2258 | |
| 2259 | __ Bind(&is_true); |
| 2260 | __ LoadObject(R0, CastHandle<Object>(TrueObject())); |
| 2261 | __ Ret(); |
| 2262 | |
| 2263 | __ Bind(&is_false); |
| 2264 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
| 2265 | __ Ret(); |
| 2266 | |
| 2267 | __ Bind(normal_ir_body); |
| 2268 | } |
| 2269 | |
| 2270 | void AsmIntrinsifier::OneByteString_equality(Assembler* assembler, |
| 2271 | Label* normal_ir_body) { |
| 2272 | StringEquality(assembler, normal_ir_body, kOneByteStringCid); |
| 2273 | } |
| 2274 | |
| 2275 | void AsmIntrinsifier::TwoByteString_equality(Assembler* assembler, |
| 2276 | Label* normal_ir_body) { |
| 2277 | StringEquality(assembler, normal_ir_body, kTwoByteStringCid); |
| 2278 | } |
| 2279 | |
| 2280 | void AsmIntrinsifier::IntrinsifyRegExpExecuteMatch(Assembler* assembler, |
| 2281 | Label* normal_ir_body, |
| 2282 | bool sticky) { |
| 2283 | if (FLAG_interpret_irregexp) return; |
| 2284 | |
| 2285 | static const intptr_t kRegExpParamOffset = 2 * target::kWordSize; |
| 2286 | static const intptr_t kStringParamOffset = 1 * target::kWordSize; |
| 2287 | // start_index smi is located at offset 0. |
| 2288 | |
| 2289 | // Incoming registers: |
| 2290 | // R0: Function. (Will be reloaded with the specialized matcher function.) |
| 2291 | // R4: Arguments descriptor. (Will be preserved.) |
| 2292 | // R9: Unknown. (Must be GC safe on tail call.) |
| 2293 | |
| 2294 | // Load the specialized function pointer into R0. Leverage the fact the |
| 2295 | // string CIDs as well as stored function pointers are in sequence. |
| 2296 | __ ldr(R2, Address(SP, kRegExpParamOffset)); |
| 2297 | __ ldr(R1, Address(SP, kStringParamOffset)); |
| 2298 | __ LoadClassId(R1, R1); |
| 2299 | __ AddImmediate(R1, -kOneByteStringCid); |
| 2300 | __ add(R1, R2, Operand(R1, LSL, target::kWordSizeLog2)); |
| 2301 | __ ldr(R0, FieldAddress(R1, target::RegExp::function_offset(kOneByteStringCid, |
| 2302 | sticky))); |
| 2303 | |
| 2304 | // Registers are now set up for the lazy compile stub. It expects the function |
| 2305 | // in R0, the argument descriptor in R4, and IC-Data in R9. |
| 2306 | __ eor(R9, R9, Operand(R9)); |
| 2307 | |
| 2308 | // Tail-call the function. |
| 2309 | __ ldr(CODE_REG, FieldAddress(R0, target::Function::code_offset())); |
| 2310 | __ Branch(FieldAddress(R0, target::Function::entry_point_offset())); |
| 2311 | } |
| 2312 | |
| 2313 | // On stack: user tag (+0). |
| 2314 | void AsmIntrinsifier::UserTag_makeCurrent(Assembler* assembler, |
| 2315 | Label* normal_ir_body) { |
| 2316 | // R1: Isolate. |
| 2317 | __ LoadIsolate(R1); |
| 2318 | // R0: Current user tag. |
| 2319 | __ ldr(R0, Address(R1, target::Isolate::current_tag_offset())); |
| 2320 | // R2: UserTag. |
| 2321 | __ ldr(R2, Address(SP, +0 * target::kWordSize)); |
| 2322 | // Set target::Isolate::current_tag_. |
| 2323 | __ str(R2, Address(R1, target::Isolate::current_tag_offset())); |
| 2324 | // R2: UserTag's tag. |
| 2325 | __ ldr(R2, FieldAddress(R2, target::UserTag::tag_offset())); |
| 2326 | // Set target::Isolate::user_tag_. |
| 2327 | __ str(R2, Address(R1, target::Isolate::user_tag_offset())); |
| 2328 | __ Ret(); |
| 2329 | } |
| 2330 | |
| 2331 | void AsmIntrinsifier::UserTag_defaultTag(Assembler* assembler, |
| 2332 | Label* normal_ir_body) { |
| 2333 | __ LoadIsolate(R0); |
| 2334 | __ ldr(R0, Address(R0, target::Isolate::default_tag_offset())); |
| 2335 | __ Ret(); |
| 2336 | } |
| 2337 | |
| 2338 | void AsmIntrinsifier::Profiler_getCurrentTag(Assembler* assembler, |
| 2339 | Label* normal_ir_body) { |
| 2340 | __ LoadIsolate(R0); |
| 2341 | __ ldr(R0, Address(R0, target::Isolate::current_tag_offset())); |
| 2342 | __ Ret(); |
| 2343 | } |
| 2344 | |
| 2345 | void AsmIntrinsifier::Timeline_isDartStreamEnabled(Assembler* assembler, |
| 2346 | Label* normal_ir_body) { |
| 2347 | #if !defined(SUPPORT_TIMELINE) |
| 2348 | __ LoadObject(R0, CastHandle<Object>(FalseObject())); |
| 2349 | __ Ret(); |
| 2350 | #else |
| 2351 | // Load TimelineStream*. |
| 2352 | __ ldr(R0, Address(THR, target::Thread::dart_stream_offset())); |
| 2353 | // Load uintptr_t from TimelineStream*. |
| 2354 | __ ldr(R0, Address(R0, target::TimelineStream::enabled_offset())); |
| 2355 | __ cmp(R0, Operand(0)); |
| 2356 | __ LoadObject(R0, CastHandle<Object>(TrueObject()), NE); |
| 2357 | __ LoadObject(R0, CastHandle<Object>(FalseObject()), EQ); |
| 2358 | __ Ret(); |
| 2359 | #endif |
| 2360 | } |
| 2361 | |
| 2362 | void AsmIntrinsifier::ClearAsyncThreadStackTrace(Assembler* assembler, |
| 2363 | Label* normal_ir_body) { |
| 2364 | __ LoadObject(R0, NullObject()); |
| 2365 | __ str(R0, Address(THR, target::Thread::async_stack_trace_offset())); |
| 2366 | __ Ret(); |
| 2367 | } |
| 2368 | |
| 2369 | void AsmIntrinsifier::SetAsyncThreadStackTrace(Assembler* assembler, |
| 2370 | Label* normal_ir_body) { |
| 2371 | __ ldr(R0, Address(THR, target::Thread::async_stack_trace_offset())); |
| 2372 | __ LoadObject(R0, NullObject()); |
| 2373 | __ Ret(); |
| 2374 | } |
| 2375 | |
| 2376 | #undef __ |
| 2377 | |
| 2378 | } // namespace compiler |
| 2379 | } // namespace dart |
| 2380 | |
| 2381 | #endif // defined(TARGET_ARCH_ARM) |
| 2382 | |