| 1 | /* |
| 2 | * Legal Notice |
| 3 | * |
| 4 | * This document and associated source code (the "Work") is a part of a |
| 5 | * benchmark specification maintained by the TPC. |
| 6 | * |
| 7 | * The TPC reserves all right, title, and interest to the Work as provided |
| 8 | * under U.S. and international laws, including without limitation all patent |
| 9 | * and trademark rights therein. |
| 10 | * |
| 11 | * No Warranty |
| 12 | * |
| 13 | * 1.1 TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, THE INFORMATION |
| 14 | * CONTAINED HEREIN IS PROVIDED "AS IS" AND WITH ALL FAULTS, AND THE |
| 15 | * AUTHORS AND DEVELOPERS OF THE WORK HEREBY DISCLAIM ALL OTHER |
| 16 | * WARRANTIES AND CONDITIONS, EITHER EXPRESS, IMPLIED OR STATUTORY, |
| 17 | * INCLUDING, BUT NOT LIMITED TO, ANY (IF ANY) IMPLIED WARRANTIES, |
| 18 | * DUTIES OR CONDITIONS OF MERCHANTABILITY, OF FITNESS FOR A PARTICULAR |
| 19 | * PURPOSE, OF ACCURACY OR COMPLETENESS OF RESPONSES, OF RESULTS, OF |
| 20 | * WORKMANLIKE EFFORT, OF LACK OF VIRUSES, AND OF LACK OF NEGLIGENCE. |
| 21 | * ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, |
| 22 | * QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT |
| 23 | * WITH REGARD TO THE WORK. |
| 24 | * 1.2 IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THE WORK BE LIABLE TO |
| 25 | * ANY OTHER PARTY FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO THE |
| 26 | * COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS |
| 27 | * OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, |
| 28 | * INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, |
| 29 | * OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT |
| 30 | * RELATING TO THE WORK, WHETHER OR NOT SUCH AUTHOR OR DEVELOPER HAD |
| 31 | * ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. |
| 32 | * |
| 33 | * Contributors |
| 34 | * - Charles Levine, Philip Durr, Doug Johnson, Cecil Reames, Matt Emmerton |
| 35 | */ |
| 36 | |
| 37 | #include "utilities/Random.h" |
| 38 | |
| 39 | #include <cmath> |
| 40 | #include <time.h> |
| 41 | |
| 42 | #include "utilities/BigMath.h" |
| 43 | #include "utilities/MiscConsts.h" |
| 44 | |
| 45 | using namespace TPCE; |
| 46 | |
| 47 | inline RNGSEED CRandom::UInt64Rand(void) { |
| 48 | |
| 49 | UINT64 a = (UINT64)UInt64Rand_A_MULTIPLIER; |
| 50 | UINT64 c = (UINT64)UInt64Rand_C_INCREMENT; |
| 51 | m_seed = (m_seed * a + c); // implicitly truncated to 64bits |
| 52 | |
| 53 | return (m_seed); |
| 54 | } |
| 55 | |
| 56 | RNGSEED CRandom::RndNthElement(RNGSEED nSeed, RNGSEED nCount) { |
| 57 | UINT64 a = UInt64Rand_A_MULTIPLIER; |
| 58 | UINT64 c = UInt64Rand_C_INCREMENT; |
| 59 | int nBit; |
| 60 | UINT64 Apow = a; |
| 61 | UINT64 Dsum = UInt64Rand_ONE; |
| 62 | |
| 63 | // if nothing to do, do nothing ! |
| 64 | if (nCount == 0) { |
| 65 | return nSeed; |
| 66 | } |
| 67 | |
| 68 | // Recursively compute X(n) = A * X(n-1) + C |
| 69 | // |
| 70 | // explicitly: |
| 71 | // X(n) = A^n * X(0) + { A^(n-1) + A^(n-2) + ... A + 1 } * C |
| 72 | // |
| 73 | // we write this as: |
| 74 | // X(n) = Apow(n) * X(0) + Dsum(n) * C |
| 75 | // |
| 76 | // we use the following relations: |
| 77 | // Apow(n) = A^(n%2)*Apow(n/2)*Apow(n/2) |
| 78 | // Dsum(n) = (n%2)*Apow(n/2)*Apow(n/2) + (Apow(n/2) + 1) * Dsum(n/2) |
| 79 | // |
| 80 | |
| 81 | // first get the highest non-zero bit |
| 82 | for (nBit = 0; (nCount >> nBit) != UInt64Rand_ONE; nBit++) { |
| 83 | } |
| 84 | |
| 85 | // go 1 bit at the time |
| 86 | while (--nBit >= 0) { |
| 87 | Dsum *= (Apow + 1); |
| 88 | Apow = Apow * Apow; |
| 89 | if (((nCount >> nBit) % 2) == 1) { // odd value |
| 90 | Dsum += Apow; |
| 91 | Apow *= a; |
| 92 | } |
| 93 | } |
| 94 | nSeed = nSeed * Apow + Dsum * c; |
| 95 | return nSeed; |
| 96 | } |
| 97 | |
| 98 | CRandom::CRandom(void) { |
| 99 | do { |
| 100 | // use portable way to get the seed |
| 101 | m_seed = (RNGSEED)time(NULL); |
| 102 | } while (m_seed == 0); |
| 103 | } |
| 104 | |
| 105 | CRandom::CRandom(RNGSEED seed) { |
| 106 | SetSeed(seed); |
| 107 | } |
| 108 | |
| 109 | void CRandom::SetSeed(RNGSEED seed) { |
| 110 | m_seed = seed; |
| 111 | } |
| 112 | |
| 113 | #ifdef EGEN_USE_DEPRECATED_CODE |
| 114 | |
| 115 | // returns a random value in the range [0 .. 0.99999999999999999994578989137572] |
| 116 | // care should be taken in casting the result as a float because of the |
| 117 | // potential loss of precision. |
| 118 | double CRandom::RndDouble(void) { |
| 119 | return ((double)UInt64Rand()) * (double)UInt64Rand_RECIPROCAL_2_POWER_64; |
| 120 | } |
| 121 | |
| 122 | #endif // EGEN_USE_DEPRECATED_CODE |
| 123 | |
| 124 | int CRandom::RndIntRange(int min, int max) { |
| 125 | if (max <= min) |
| 126 | return min; // max <= min |
| 127 | |
| 128 | UINT range = (max - min + 1); |
| 129 | |
| 130 | if (range <= 1) |
| 131 | return min; // overflow happened |
| 132 | |
| 133 | UInt64Rand(); // generate next seed value |
| 134 | |
| 135 | return (min + (int)Mul6432WithShiftRight64(m_seed, range)); |
| 136 | } |
| 137 | |
| 138 | INT64 CRandom::RndInt64Range(INT64 min, INT64 max) { |
| 139 | if (max <= min) |
| 140 | return min; |
| 141 | |
| 142 | UINT64 range = (max - min + 1); |
| 143 | |
| 144 | if (range <= 1) |
| 145 | return min; // overflow happened |
| 146 | |
| 147 | UInt64Rand(); // generate next seed value |
| 148 | |
| 149 | return (min + (INT64)Mul6464WithShiftRight64(m_seed, range)); |
| 150 | } |
| 151 | |
| 152 | int CRandom::RndNthIntRange(RNGSEED Seed, RNGSEED N, int min, int max) { |
| 153 | if (max <= min) |
| 154 | return min; // max <= min |
| 155 | |
| 156 | UINT range = (max - min + 1); |
| 157 | |
| 158 | if (range <= 1) |
| 159 | return min; // overflow happened |
| 160 | |
| 161 | RNGSEED nseed = RndNthElement(Seed, N); // generate next seed value |
| 162 | |
| 163 | return (min + (int)Mul6432WithShiftRight64(nseed, range)); |
| 164 | } |
| 165 | |
| 166 | // return Nth element in the sequence over the integer range |
| 167 | INT64 CRandom::RndNthInt64Range(RNGSEED Seed, RNGSEED N, INT64 min, INT64 max) { |
| 168 | if (max <= min) |
| 169 | return min; |
| 170 | |
| 171 | UINT64 range = (max - min + 1); |
| 172 | |
| 173 | if (range <= 1) |
| 174 | return min; // overflow happened |
| 175 | |
| 176 | RNGSEED nseed = RndNthElement(Seed, N); // generate next seed value |
| 177 | |
| 178 | return (min + (INT64)Mul6464WithShiftRight64(nseed, range)); |
| 179 | } |
| 180 | |
| 181 | int CRandom::RndIntRangeExclude(int low, int high, int exclude) { |
| 182 | int temp; |
| 183 | |
| 184 | temp = RndIntRange(low, high - 1); |
| 185 | if (temp >= exclude) |
| 186 | temp += 1; |
| 187 | |
| 188 | return temp; |
| 189 | } |
| 190 | |
| 191 | INT64 CRandom::RndInt64RangeExclude(INT64 low, INT64 high, INT64 exclude) { |
| 192 | INT64 temp; |
| 193 | |
| 194 | temp = RndInt64Range(low, high - 1); |
| 195 | if (temp >= exclude) |
| 196 | temp += 1; |
| 197 | |
| 198 | return temp; |
| 199 | } |
| 200 | |
| 201 | #ifdef EGEN_USE_DEPRECATED_CODE |
| 202 | |
| 203 | double CRandom::RndDoubleRange(double min, double max) { |
| 204 | return min + RndDouble() * (max - min); |
| 205 | } |
| 206 | |
| 207 | #endif // EGEN_USE_DEPRECATED_CODE |
| 208 | |
| 209 | double CRandom::RndDoubleIncrRange(double min, double max, double incr) { |
| 210 | INT64 width = (INT64)((max - min) / incr); // need [0..width], so no +1 |
| 211 | return min + ((double)RndInt64Range(0, width) * incr); |
| 212 | } |
| 213 | |
| 214 | // returns a random double value from a negative exponential distribution with |
| 215 | // the given mean |
| 216 | double CRandom::RndDoubleNegExp(double mean) { |
| 217 | return ((-1.0 * std::log(RndDoubleIncrRange(0.0, 1.0, 0.000000000001))) * mean); |
| 218 | } |
| 219 | |
| 220 | /* Returns a non-uniform random 64-bit integer in range of [P .. Q]. |
| 221 | * |
| 222 | * NURnd is used to create a skewed data access pattern. The function is |
| 223 | * similar to NURand in TPC-C. (The two functions are identical when C=0 |
| 224 | * and s=0.) |
| 225 | * |
| 226 | * The parameter A must be of the form 2^k - 1, so that Rnd[0..A] will |
| 227 | * produce a k-bit field with all bits having 50/50 probability of being 0 |
| 228 | * or 1. |
| 229 | * |
| 230 | * With a k-bit A value, the weights range from 3^k down to 1 with the |
| 231 | * number of equal probability values given by C(k,i) = k! /(i!(k-i)!) for |
| 232 | * 0 <= i <= k. So a bigger A value from a larger k has much more skew. |
| 233 | * |
| 234 | * Left shifting of Rnd[0..A] by "s" bits gets a larger interval without |
| 235 | * getting huge amounts of skew. For example, when applied to elapsed time |
| 236 | * in milliseconds, s=10 effectively ignores the milliseconds, while s=16 |
| 237 | * effectively ignores seconds and milliseconds, giving a granularity of |
| 238 | * just over 1 minute (65.536 seconds). A smaller A value can then give |
| 239 | * the desired amount of skew at effectively one-minute resolution. |
| 240 | */ |
| 241 | INT64 CRandom::NURnd(INT64 P, INT64 Q, INT32 A, INT32 s) { |
| 242 | return (((RndInt64Range(P, Q) | (RndInt64Range(0, A) << s)) % (Q - P + 1)) + P); |
| 243 | } |
| 244 | |
| 245 | /* |
| 246 | * Returns an alphanumeric string in a specified format; |
| 247 | */ |
| 248 | |
| 249 | void CRandom::RndAlphaNumFormatted(char *szReturnString, const char *szFormat) { |
| 250 | while (szFormat && *szFormat) { |
| 251 | switch (*szFormat) { |
| 252 | case 'a': |
| 253 | *szReturnString = UpperCaseLetters[RndIntRange(0, 25)]; // only uppercase |
| 254 | break; |
| 255 | case 'n': |
| 256 | *szReturnString = Numerals[RndIntRange(0, 9)]; |
| 257 | break; |
| 258 | default: |
| 259 | *szReturnString = *szFormat; |
| 260 | } |
| 261 | |
| 262 | ++szFormat; |
| 263 | ++szReturnString; |
| 264 | } |
| 265 | *szReturnString = '\0'; |
| 266 | } |
| 267 | |