| 1 | #include "duckdb/planner/expression/bound_columnref_expression.hpp" |
| 2 | #include "duckdb/planner/expression/bound_comparison_expression.hpp" |
| 3 | #include "duckdb/planner/expression/bound_conjunction_expression.hpp" |
| 4 | #include "duckdb/planner/expression/bound_constant_expression.hpp" |
| 5 | #include "duckdb/planner/expression/bound_operator_expression.hpp" |
| 6 | #include "duckdb/planner/expression/bound_subquery_expression.hpp" |
| 7 | #include "duckdb/planner/expression_iterator.hpp" |
| 8 | #include "duckdb/planner/binder.hpp" |
| 9 | #include "duckdb/planner/operator/logical_any_join.hpp" |
| 10 | #include "duckdb/planner/operator/logical_comparison_join.hpp" |
| 11 | #include "duckdb/planner/operator/logical_cross_product.hpp" |
| 12 | #include "duckdb/planner/operator/logical_filter.hpp" |
| 13 | #include "duckdb/planner/tableref/bound_joinref.hpp" |
| 14 | |
| 15 | using namespace duckdb; |
| 16 | using namespace std; |
| 17 | |
| 18 | //! Create a JoinCondition from a comparison |
| 19 | static bool CreateJoinCondition(Expression &expr, unordered_set<idx_t> &left_bindings, |
| 20 | unordered_set<idx_t> &right_bindings, vector<JoinCondition> &conditions) { |
| 21 | // comparison |
| 22 | auto &comparison = (BoundComparisonExpression &)expr; |
| 23 | auto left_side = JoinSide::GetJoinSide(*comparison.left, left_bindings, right_bindings); |
| 24 | auto right_side = JoinSide::GetJoinSide(*comparison.right, left_bindings, right_bindings); |
| 25 | if (left_side != JoinSide::BOTH && right_side != JoinSide::BOTH) { |
| 26 | // join condition can be divided in a left/right side |
| 27 | JoinCondition condition; |
| 28 | condition.comparison = expr.type; |
| 29 | auto left = move(comparison.left); |
| 30 | auto right = move(comparison.right); |
| 31 | if (left_side == JoinSide::RIGHT) { |
| 32 | // left = right, right = left, flip the comparison symbol and reverse sides |
| 33 | swap(left, right); |
| 34 | condition.comparison = FlipComparisionExpression(expr.type); |
| 35 | } |
| 36 | condition.left = move(left); |
| 37 | condition.right = move(right); |
| 38 | conditions.push_back(move(condition)); |
| 39 | return true; |
| 40 | } |
| 41 | return false; |
| 42 | } |
| 43 | |
| 44 | unique_ptr<LogicalOperator> LogicalComparisonJoin::CreateJoin(JoinType type, unique_ptr<LogicalOperator> left_child, |
| 45 | unique_ptr<LogicalOperator> right_child, |
| 46 | unordered_set<idx_t> &left_bindings, |
| 47 | unordered_set<idx_t> &right_bindings, |
| 48 | vector<unique_ptr<Expression>> &expressions) { |
| 49 | vector<JoinCondition> conditions; |
| 50 | vector<unique_ptr<Expression>> arbitrary_expressions; |
| 51 | // first check if we can create |
| 52 | for (idx_t i = 0; i < expressions.size(); i++) { |
| 53 | auto &expr = expressions[i]; |
| 54 | auto total_side = JoinSide::GetJoinSide(*expr, left_bindings, right_bindings); |
| 55 | if (total_side != JoinSide::BOTH) { |
| 56 | // join condition does not reference both sides, add it as filter under the join |
| 57 | if (type == JoinType::LEFT && total_side == JoinSide::RIGHT) { |
| 58 | // filter is on RHS and the join is a LEFT OUTER join, we can push it in the right child |
| 59 | if (right_child->type != LogicalOperatorType::FILTER) { |
| 60 | // not a filter yet, push a new empty filter |
| 61 | auto filter = make_unique<LogicalFilter>(); |
| 62 | filter->AddChild(move(right_child)); |
| 63 | right_child = move(filter); |
| 64 | } |
| 65 | // push the expression into the filter |
| 66 | auto &filter = (LogicalFilter &)*right_child; |
| 67 | filter.expressions.push_back(move(expr)); |
| 68 | continue; |
| 69 | } |
| 70 | } else if (expr->type >= ExpressionType::COMPARE_EQUAL && |
| 71 | expr->type <= ExpressionType::COMPARE_GREATERTHANOREQUALTO) { |
| 72 | // comparison, check if we can create a comparison JoinCondition |
| 73 | if (CreateJoinCondition(*expr, left_bindings, right_bindings, conditions)) { |
| 74 | // successfully created the join condition |
| 75 | continue; |
| 76 | } |
| 77 | } |
| 78 | arbitrary_expressions.push_back(move(expr)); |
| 79 | } |
| 80 | if (conditions.size() > 0) { |
| 81 | // we successfully convertedexpressions into JoinConditions |
| 82 | // create a LogicalComparisonJoin |
| 83 | auto comp_join = make_unique<LogicalComparisonJoin>(type); |
| 84 | comp_join->conditions = move(conditions); |
| 85 | comp_join->children.push_back(move(left_child)); |
| 86 | comp_join->children.push_back(move(right_child)); |
| 87 | if (arbitrary_expressions.size() > 0) { |
| 88 | // we have some arbitrary expressions as well |
| 89 | // add them to a filter |
| 90 | auto filter = make_unique<LogicalFilter>(); |
| 91 | for (auto &expr : arbitrary_expressions) { |
| 92 | filter->expressions.push_back(move(expr)); |
| 93 | } |
| 94 | LogicalFilter::SplitPredicates(filter->expressions); |
| 95 | filter->children.push_back(move(comp_join)); |
| 96 | return move(filter); |
| 97 | } |
| 98 | return move(comp_join); |
| 99 | } else { |
| 100 | if (arbitrary_expressions.size() == 0) { |
| 101 | // all conditions were pushed down, add TRUE predicate |
| 102 | arbitrary_expressions.push_back(make_unique<BoundConstantExpression>(Value::BOOLEAN(true))); |
| 103 | } |
| 104 | // if we get here we could not create any JoinConditions |
| 105 | // turn this into an arbitrary expression join |
| 106 | auto any_join = make_unique<LogicalAnyJoin>(type); |
| 107 | // create the condition |
| 108 | any_join->children.push_back(move(left_child)); |
| 109 | any_join->children.push_back(move(right_child)); |
| 110 | // AND all the arbitrary expressions together |
| 111 | // do the same with any remaining conditions |
| 112 | any_join->condition = move(arbitrary_expressions[0]); |
| 113 | for (idx_t i = 1; i < arbitrary_expressions.size(); i++) { |
| 114 | any_join->condition = make_unique<BoundConjunctionExpression>( |
| 115 | ExpressionType::CONJUNCTION_AND, move(any_join->condition), move(arbitrary_expressions[i])); |
| 116 | } |
| 117 | return move(any_join); |
| 118 | } |
| 119 | } |
| 120 | |
| 121 | unique_ptr<LogicalOperator> Binder::CreatePlan(BoundJoinRef &ref) { |
| 122 | auto left = CreatePlan(*ref.left); |
| 123 | auto right = CreatePlan(*ref.right); |
| 124 | if (ref.type == JoinType::RIGHT) { |
| 125 | ref.type = JoinType::LEFT; |
| 126 | std::swap(left, right); |
| 127 | } |
| 128 | |
| 129 | if (ref.type == JoinType::INNER) { |
| 130 | // inner join, generate a cross product + filter |
| 131 | // this will be later turned into a proper join by the join order optimizer |
| 132 | auto cross_product = make_unique<LogicalCrossProduct>(); |
| 133 | |
| 134 | cross_product->AddChild(move(left)); |
| 135 | cross_product->AddChild(move(right)); |
| 136 | |
| 137 | unique_ptr<LogicalOperator> root = move(cross_product); |
| 138 | |
| 139 | auto filter = make_unique<LogicalFilter>(move(ref.condition)); |
| 140 | // visit the expressions in the filter |
| 141 | for (idx_t i = 0; i < filter->expressions.size(); i++) { |
| 142 | PlanSubqueries(&filter->expressions[i], &root); |
| 143 | } |
| 144 | filter->AddChild(move(root)); |
| 145 | return move(filter); |
| 146 | } |
| 147 | |
| 148 | // split the expressions by the AND clause |
| 149 | vector<unique_ptr<Expression>> expressions; |
| 150 | expressions.push_back(move(ref.condition)); |
| 151 | LogicalFilter::SplitPredicates(expressions); |
| 152 | |
| 153 | // find the table bindings on the LHS and RHS of the join |
| 154 | unordered_set<idx_t> left_bindings, right_bindings; |
| 155 | LogicalJoin::GetTableReferences(*left, left_bindings); |
| 156 | LogicalJoin::GetTableReferences(*right, right_bindings); |
| 157 | // now create the join operator from the set of join conditions |
| 158 | auto result = LogicalComparisonJoin::CreateJoin(ref.type, move(left), move(right), left_bindings, right_bindings, |
| 159 | expressions); |
| 160 | |
| 161 | LogicalOperator *join; |
| 162 | if (result->type == LogicalOperatorType::FILTER) { |
| 163 | join = result->children[0].get(); |
| 164 | } else { |
| 165 | join = result.get(); |
| 166 | } |
| 167 | |
| 168 | // we visit the expressions depending on the type of join |
| 169 | if (join->type == LogicalOperatorType::COMPARISON_JOIN) { |
| 170 | // comparison join |
| 171 | // in this join we visit the expressions on the LHS with the LHS as root node |
| 172 | // and the expressions on the RHS with the RHS as root node |
| 173 | auto &comp_join = (LogicalComparisonJoin &)*join; |
| 174 | for (idx_t i = 0; i < comp_join.conditions.size(); i++) { |
| 175 | PlanSubqueries(&comp_join.conditions[i].left, &comp_join.children[0]); |
| 176 | PlanSubqueries(&comp_join.conditions[i].right, &comp_join.children[1]); |
| 177 | } |
| 178 | } else if (join->type == LogicalOperatorType::ANY_JOIN) { |
| 179 | auto &any_join = (LogicalAnyJoin &)*join; |
| 180 | // for the any join we just visit the condition |
| 181 | if (any_join.condition->HasSubquery()) { |
| 182 | throw NotImplementedException("Cannot perform non-inner join on subquery!" ); |
| 183 | } |
| 184 | } |
| 185 | return result; |
| 186 | } |
| 187 | |